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Introduction

Compressed sensing

original signal measurements recovered signal
T . - A
L] (ERRENUORE e NN
N
Unknown k-sparse z ¢ RY  y =Tz € R™ = A('y) €R

» known (linear) encoder T € R™N with RIP properties;
» unknown (non-linear) decoder A;
» Popular decoders:

> Ao(y) = argming,_, ||z[lo; (non-convex, NP-hard)
> A¢(y) = argming,_, ||z||s. (convex)
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» unknown (non-linear) decoder A;
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> Ao(y) = argming,_, ||z[lo; (non-convex, NP-hard)
> Ay(y) = argming,_, ||z[|s. (convex)

simula - by thinking constantly about it



Introduction

Compressed sensing with measurement noise

original signal measurements recovered signal
T A ?
—_— s |—

Ll e '

Unknown k-sparse z € RY y’=‘ Tz + eeR™ = A(y) € RY

» Popular decoder:

> Aqs(y) =argmingg,_, <5 2]l
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Introduction

Compressed sensing with measurement noise

original signal measurements recovered signal
T . A P
—_— o —
] I 1l A B [ ]

Unknown k-sparse z € RY y’=‘ Tx +€ €R™ Tt =Ay) € RY

» Popular decoder:

> Aqs(y) =argmingg,_, <5 2]l
—
A, = argminAl|z||y + || Tz — y||3. (basis pursuit, £;—minimization, Lasso)

» Large amount of literature:

Candes, Romberg, and Tao, IEEE Trans Inf Theory '06; Donoho, IEEE
Trans Inf Theory, '06; Rauhut and Fourcart, Springer, '13.
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Introduction

Compressed sensing with signal noise

original signal measurements recovered signal
SR X S PN
!l + IT!L I! 3eleless L PRI t ‘.:' ]

Unknown z+neRY y=T(x+n)eR™ x*:A(y) eRY
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Introduction

Compressed sensing with signal noise

original signal measurements recovered signal
SR X S PN
!l + IT!I‘. Ix 3elelss L PRI t ‘.:' L]

Unknown z+n € RY  y=T(x+n) cR™ z"=A(y) eRY

» General approach y = T(x +n) = Tx + Tn;
» Define ¢ = Tn and consider it as noise on measurements;

Arias-Castro and Eldar, IEEE Signal Process Lett, '11; Aeron, Saligrama, and Zhao,
IEEE Trans Inf Theory, '10.
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Introduction

Compressed sensing with signal noise

original signal measurements recovered signal
SR X S PN
t! + ‘ITJ Ixz slss L PRI t ‘.:' L]

Unknown z+n e RY y=T(zx+n)eR™ z*=A(y) € RV

» General approach y = T(x +n) = Tx + Tn;

» Define ¢ = Tn and consider it as noise on measurements;

» Noise-folding phenomenon, i.e., the variance of the noise on the
original signal is amplified by a factor of %;

» Due to noise-folding phenomenon, e.g., the sole {;-regularization
fails to accurately separate the signal from the noise.

Arias-Castro and Eldar, IEEE Signal Process Lett, '11; Aeron, Saligrama, and Zhao,
IEEE Trans Inf Theory, '10.

simula - by thinking constantly about it



Introduction

Compressed sensing with signal / measurement noise
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Inverse problems of the unmixing type

Unmixing problem: restore and separate two (or more) components
ut and v of the solution from an observed datum y where

_ T T
y=TW + v )+\£/,

signal noise noise

lll-posedness: an infinite number of solutions, operator T may have
non-closed range.
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Inverse problems of the unmixing type

Unmixing problem: restore and separate two (or more) components
ut and v of the solution from an observed datum y where

— T T
=T+ D+

signal noise noise

lll-posedness: an infinite number of solutions, operator T may have
non-closed range.

Assumption: u' € {,and v € €, = {;N € for 0 < p < 2and
2<g<o0.

Regularization functional:
Jpg(u,v) == | T(u+v) —y|3 +R(u, v) — min
—— e N—— uv
data fitting regularization

> R(u,v) = Allu+ vl
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Inverse problems of the unmixing type
Unmixing problem: restore and separate two (or more) components
ut and v of the solution from an observed datum y where
— T(ut+ ot
y=TW+V )+ ¢

signal noise noise

lll-posedness: an infinite number of solutions, operator T may have
non-closed range.
Assumption: u' € {,and v € €, = {;N € for 0 < p < 2and
2<g<o0.
Regularization functional:
Jpg(u,v) == | T(u+v) —y|3 +R(u, v) — min
—_— —— u,v
data fitting regularization
> R(u,v) = Aqllu+ v|l¢, (¢4 fails to accurately separate the signal from the noise).
> R(u,v) = Ai|lullg, + Az|lv[|g, (multi-penalty regularization)

> Ay, A2 € R, are regularization parameters;
> Ay, A2, p, g are unknown.
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Does multi-penalty regularization really work?
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Problems on the way...

» lterative alternating algorithm to perform minimization of J, 4;
Problem: non-convexity of the functional for 0 < p < 1;

Way-out: adaptation of several techniques on a single-parameter
regularization with sparsity promoting terms.
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» lterative alternating algorithm to perform minimization of J, 4;
Problem: non-convexity of the functional for 0 < p < 1;

Way-out: adaptation of several techniques on a single-parameter
regularization with sparsity promoting terms.

» Theoretical guarantees on the support recovery by means of
multi-penalty regularization

Problem: non-linearity with respect to the parameters;

Way-out: generalization and extension of the results from
single-penalty regularization.
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Problems on the way...

» lterative alternating algorithm to perform minimization of J, 4;
Problem: non-convexity of the functional for 0 < p < 1;

Way-out: adaptation of several techniques on a single-parameter
regularization with sparsity promoting terms.

» Theoretical guarantees on the support recovery by means of
multi-penalty regularization

Problem: non-linearity with respect to the parameters;

Way-out: generalization and extension of the results from
single-penalty regularization.

» Adaptive choice of the regularization parameters for optimal
support recovery.

Problem: how to choose multiple parameters and which ones allow
the best support reconstruction;

Way-out: extension of Lasso-path for multi-penalty, statistical
learning theory.
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Multi-parameter regularization

Some contributions

» Image processing: Meyer '02; Vese and Osher '03, '04; Daubechies
and Teschke '05; Bredies and Holler '14; Holler and Kunisch ’14; De
Los Reyes, Schonlieb, and Valkonen ’15; Calatroni, De Los Reyes,
and Schonlieb '16.

» Signal processing: Donoho et al. ’89, '01, "13.

» Geomathematics: Lu and Pereverzyev '11.

» Regularization and learning theory: Lu and Pereverzyev '11; VN,
Pereverzyev ’'13; Fornasier, VN, and Pereverzyev '13; Sivananthan

"16.

» Huber regularization: Huber '64; Beck and Teboulle '12; Zadorozhnyi
etal., "16.
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Alternating minimization algorithm

Joint work with Steffen Peter and Massimo Fornasier, TU Munich

Peter and VN, Inverse Problems, ’14.
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Alternating minimization algorithm

Problem formation and state of the art

» We are interested in designing an algorithm for minimization of the
non-convex non-smooth functional

Joglu, V) i= I T(u+v) =yl +Mllull, + (RellvIE, +elvIZ,)

where A, A2, e € R.,0 < p<2,2< g< oo are parameters of the
problem.
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Alternating minimization algorithm

Problem formation and state of the art

» We are interested in designing an algorithm for minimization of the
non-convex non-smooth functional

Joglu, V) i= I T(u+v) =yl +Mllull, + (RellvIE, +elvIZ,)

where A, A2, e € R.,0 < p<2,2< g< oo are parameters of the
problem.

» Regularization with non-convex constraints for single-parameter
regularization:

» Bredies and Lorenz '09; Ramlau and Zarzer '12; Lu et al. '13; Ito and Kunisch '14.

The first work that provides an explicit direct mechanism for
minimization of the multi-penalty functional with non-convex and
non-smooth terms, and highlights its improved accuracy power with
respect to more traditional one-parameter regularizations.
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Alternating minimization algorithm

based on iterative thresholding

1: sete >0, VTOL > 0.
2: setul® =y =0and v(® = v10) =0,

3: repeat
4: u(n) — u[n,L) — u(n+1,0]

5. for/l=1toL—1do

6: u" = R (™ [Ty — TV M) Tyt
7:  end for

g V(n) _ V(n,M) _ V(n+1,0)

9: for/=1to M—1do

10 T =T (T [Ty — T — T,
11:  end for

12: until ||u(™ — "], > VTOL

ng,s' Hf1 are the thresholding functions.
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Alternating minimization algorithm

= .

_Jo, x| < Ty,
= {(F;ﬁ ), x> T,

where

A -
The thresholding function HY for (1) N t+ 3% sgn(1)tlP~" and
p =0,0.15,0.3,0.45,0.6,0.9,1 and Ay = 0.1. T = aap (M (1 —p)) /P
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Theoretical results

Theorem (Weak Convergence)

Assume 0 < p < 1 and2 < q < oo. The algorithm produces sequences (u'™), (v(") in
Lo whose weak accumulation points are fixed points of the algorithm.
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Theoretical results

Theorem (Weak Convergence)

Assume 0 < p < 1 and2 < q < oo. The algorithm produces sequences (u'™), (v(") in
Lo whose weak accumulation points are fixed points of the algorithm.

Theorem (Minimizers)

Let T have the FBI property, i.e., T is injective whenever restricted to finitely many
coefficients. Then we have the following inclusion

Fix C L,

where Fix is the set of fixed points, L is the set of local minimizers of Jp q.
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Theoretical results

Theorem (Weak Convergence)

Assume 0 < p < 1 and2 < q < oo. The algorithm produces sequences (u'™), (v(") in
Lo whose weak accumulation points are fixed points of the algorithm.

Theorem (Minimizers)

Let T have the FBI property, i.e., T is injective whenever restricted to finitely many
coefficients. Then we have the following inclusion

Fix C L,

where Fix is the set of fixed points, L is the set of local minimizers of Jp q.

Theorem (Strong Convergence)

The algorithm produces sequences (u'™) and (v\")) in ¢, that converge strongly to the
vectors u*, v* € Fix respectively.
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Numerical experiments

The model problem
y = T(u'+vh),

where T € R™N is an i.i.d Gaussian matrix, u' is a sparse vector and v’
is a noise vector.
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Numerical experiments

The model problem
y = T(u'+vh),

where T € R™N is an i.i.d Gaussian matrix, u' is a sparse vector and v’
is a noise vector.

Data:
» 20 problems, m =40, N =100;
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Numerical experiments

The model problem
y = T(u'+vh),

where T € R™N is an i.i.d Gaussian matrix, u' is a sparse vector and v’
is a noise vector.

Data:

» 20 problems, m =40, N = 100;
ut and vt are randomly generated;
#supp(ut) =7;

[vi]e = 0.7;

v vy
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Numerical experiments

The model problem
y = T(u'+vh),

where T € R™N is an i.i.d Gaussian matrix, u' is a sparse vector and v’
is a noise vector.

Data:

» 20 problems, m =40, N =100;
ut and vt are randomly generated;
#supp(u') =7,
Ivi[l2 =0.7;
pc{0,0.3,0.5,0.8 1} and g € {2, 4,10, x0};
L=M=20, u® =v® =0.

vV v v v Y
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Comparison with the single-parameter counterpart

One-parameter regularization:
o) = [|Tu — y|5 + A ullf,
with p € [0, 1].

A local minimizer uy, , can be computed by the iterations

U = H (0 Ty — Tu)), n>o0,

where H}, is the thresholding operator.
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Comparison with the single-parameter counterpart

AE mean value SD mean value

g =2
Eg =4
ElJ =
[Jmono-penalt

=00
[Jmono-penalt

1.5¢

0.5r

0 p=0 p=03 p=05 p=08 p=1 p=0 p=03 p=0.5 p=08 p=1

Figure: For each p € {0,0.3,0.5,0.8, 1} the mean of the AE (left) and SD (right) for the
solution uf for 20 problems for different parameter values q € {2, 4, oo} and u;f\hp. For each
of the 20 problems and each pair (p, q), the best individual parameter pair (A1, A2) was
chosen for comparison
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Comparison with the single-parameter counterpart

AE comparison to mono-penalty SD comparison to mono-penalty
1 o
Wl =2
By =4
Hl( = >
0.81
0.61
0.4r
0.2r
0 0
p=0 p=03 p=0.5 p=08 p=1 p=0 p=03 p=0.5 p=08 p=1

Figure: A coloured bar indicates the empirical probability of better performance by the
multi-penalty approach in terms of AE (left) and SD (right) with respect to the mono-penalty
approach
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Conditions on optimal support recovery

Joint work with Markus Grasmair, NTNU

Grasmair and VN, Inverse Problems, ’'16.
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Conditions on optimal support recovery

» We are interested in deriving theoretical results for multi-penalty
Tikhonov regularization of the form

1 A
o v) = I+ v) =3+ Adlulle, + 5 vIE,

» Conditions on convergence of sparsity-promoting regularization:

» Grasmair, Sherzer, and Haltmeier, '11; Bredies and Holler, '14; Lu et al., '13.
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Conditions on optimal support recovery

» We are interested in deriving theoretical results for multi-penalty
Tikhonov regularization of the form

1 A
o v) = I+ v) =3+ Adlulle, + 5 vIE,

» Conditions on convergence of sparsity-promoting regularization:

» Grasmair, Sherzer, and Haltmeier, '11; Bredies and Holler, '14; Lu et al., '13.

The first work that provides a theoretical analysis of the multi-penalty
regularization with a non-smooth sparsity promoting regularization
term, and an explicit comparison with the single-parameter counterpart.
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Conditions on optimal support recovery
We consider the multi-penalty Tikhonov regularization of the form
_ 1 5112 }\2 2
Jwv) = SITWw+v) =yl +Mlulle, + S lIvIE,. (1)

and signals belonging to the class S¢qx = U<k Sc,a,1 With

Sear={(u,v) e R¥ x RN : supp(u) = |, Igl; ui > ¢ ||v]|e < d}
1
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Conditions on optimal support recovery

We consider the multi-penalty Tikhonov regularization of the form
1 512 }\2 2
Jwv) = SlITw+v) =y lz + Allulle, + S lIvile,. (1)

and signals belonging to the class S¢qx = U<k Sc,a,1 With

Sear={(u,v) e R¥ x RN : supp(u) = |, Igl; ui > ¢ ||v]|e < d}
I

Definition

LetA, € Ry U{oo} be fixed. We call S; 4,1 a set of exact support recovery
if there exists A1 > 0 such that the solution (ux, a,, Va,.a,) Of (1) satisfies
supp(Un, A,) = supp(u') whenever the given data y has the form

y = T(u' + vT) with (uf, v) € Sz 4.

The parameters Ay > 0 for which this property holds are called
admissible for S¢ 4.
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Multi-penalty = single-penalty regularization

We would like to address the following two fundamental questions:

» Could multi-penalty regularization allow for the exact recovery of the
support of the true solution uf?

» How is "theoretical performance” of the multi-penalty regularization
compared to the mono-penalty one?
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Multi-penalty = single-penalty regularization

Lemma
The pair (U, a,, Va,.n,) SOIves (1) if and only if

Vare = A2l + T*T) (T y — T* Tup, 0,)
and uy, », solves the optimization problem
1 2 .
EHB)\ZU—,V)\EHQ + Mlully = min

with
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Multi-penalty = single-penalty regularization

Lemma
The pair (U, a,, Va,.n,) SOIves (1) if and only if

Vare = A2l + T*T) (T y — T* Tup, 0,)
and uy, », solves the optimization problem
1 2 .
EHB)\QU—,V)\EHQ + Mlully = min

with

T\ /2 T\ /%
By, = | I+ T and y\ =(I+ Y.
)\2 )\2

Note: The theory of {'-regularization works for the multi-penalty setting:
for fixed Ao > 0 under a source conditions, we get

Y. — Br,U'|3
[ut = un, 2, [l < Crahs + Cz,y\gnz)\—z”2
;
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Optimality conditions for single-penalty
Lemma
The vector uy, minimizes

]
T(u) = EIITU—}/H% + Mlulls
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Optimality conditions for single-penalty
Lemma
The vector uy, minimizes

1 *
T(u) = §||TU—}’||§+7\1||U||1 > T*(Tur, — y) € —Aqsgn(uy,).
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Optimality conditions for single-penalty

Lemma
The vector uy, minimizes

1 .
T(u):= E||Tu—y||§ +Mullt <= T (Tux, — y) € —Arsgn(uy,).

Lemma

We have supp(uy,) = | <= I wy, € (R\ {0})! such that
TF(Tiwa, —y) = —Aisgn(wa,)  and  [[T7(Tiwa, — ¥)lleo < As,

where J .= {i : u,-T = 0} and T, is the restriction of T to the span of the
support of ut.
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Optimality conditions for single-penalty

Proposition
Assume that T, is injective and that

ITITHUT T oo < 1. (2)
Then the set S; 4,1 is a set of exact support recovery whenever

e N (T T T =D T lool (T T oo

+ (T T) "7 T o
d 1_||TjTI(T/*TI)71||oo ||( li /) I} ||

Moreover, every parameter Ay > 0 satisfying

AT (T(TFT) T =) T|eo
=TT T

c—d|I(TF T) " T/ Tl

<A <
‘ 1T T oo

is admissible on S; 4 ;.
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Optimality conditions for multi-penalty regularization

Lemma
We have supp(ux, »,) = | <= 3wy, € (R\{0}) such that

T (Tiwa,n, —Y) = —Arsgn(wa, a,)  and  ||Tx, J(Tiwa, — ¥l < A1,

L\ 1
where Ty, := (1+ 1) ' T.
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Optimality conditions for multi-penalty regularization

Lemma

We have supp(ux, »,) = | <= 3wy, € (R\{0}) such that

T (Tiwa,n, —Y) = —Arsgn(wa, a,)  and  ||Tx, J(Tiwa, — ¥l < A1,

)71 T.

— TT*
where Ty, = (]I + 5%
Sketch of the proof.
Using the fact that

B,Br, = T{,T and By, =Ty,y

«\ 1/2
with By, = (]I + )\—2) T, and the lemma for single-penalty case. [
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Optimality conditions for multi-penalty regularization
Proposition
Assume that 0 < Ay < oo is such that
1T T Ty T oo < 1. (3)

Then the set S; 4,/ is a set of exact support recovery in the multi-penalty
setting whenever

c _ T (T (T T T, = D T ool (T3, T ™ oo
= > T T T Tt —22 2./ 2 _
@ W) Tl T T T T

Moreover, all pairs of parameters (A1, \2) satisfying above and

|| T, (TT3,, T T, = DT o <A c—d|[(T%,, T T3 Tleo
1= T3, 7T T oo h 1T T oo

are admissible on S 4 .
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Optimality conditions

Setup:
» 20 i.i.d. Gaussian matrices, m = 30, N = 60 and m = 40, N = 80.
> #supp(uf) =23, 4.
> Check conditions || T T)(T;T)) ' ||eo < 101 ||T7’\‘2‘JT/(T;\‘2’,T,)*‘ loo < 1.

m =30 Mono-penalty Multi-penalty
N =60 A2 =10 Ao =1 A2 =0.1
Median 0.5425 0.3814 0.1214 0.0623
Mean 0.5559 0.3922 0.1225 0.0635
SD 0.05652 0.04142 0.01518 0.01083

m =40 Mono-penalty Multi-penalty
N =180 A2 =10 Ao =1 A2 =0.1
Median 0.2696 0.1523 0.0396 0.0256
Mean 0.2746 0.1547 0.0413 0.0262
SD 0.03060 0.01848 0.00659 0.00447

Table: Percentage of 3-sparse subspaces for which (2) or (3) failed.
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Adaptive parameter choice for multi-penalty
regularization

Joint work with Markus Grasmair, NTNU, and Timo Klock, Simula
Research Lab

DI

Grasmair, Klock, and VN, submitted, ’17.
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Adaptive parameter choice for multi-penalty
regularization

» We are interested in designing a rule for adaptive choice of the
regularization parameters for multi-penalty regularization of the form

1 A
Jwv) = ST+ v) =y 3+ Mllulle, + FIVIE,

» Parameter choice for {;— regularization:

» Rosset and Zhu, '07; Efron, Hastie, Johnstone, and Tibshirani, '04; Tibshirani, '13; Jua and
Rohe, "15.
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Adaptive parameter choice for multi-penalty
regularization

» We are interested in designing a rule for adaptive choice of the
regularization parameters for multi-penalty regularization of the form

1 A
Jwv) = ST+ v) =y 3+ Mllulle, + FIVIE,

» Parameter choice for {;— regularization:

» Rosset and Zhu, '07; Efron, Hastie, Johnstone, and Tibshirani, '04; Tibshirani, '13; Jua and
Rohe, "15.

The first work that provides an efficient algorithm for identification of
possible parameter regions leading to structurally similar solutions
from multi-penalty regularization: solutions with the same support and
sign pattern.
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Lasso path for single-penalty regularization

o1
Un, ag = argmin | Bygts — yag|* + | ull -
u

» Lasso solutions are piece-wise linear and can be computed
successively.
= Only nodes A} (A9) need to be computed.

Components ..

as(é)
)

as()

)

)
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Extension of the Lasso path

Multi-penalty framework

» The nodes are calculated by inductive verification of the KKT
conditions:
» Find A/"(A9) from A} (A9), /, o via iterative verification of KKT
conditions, here / is a support and o is a sign pattern.
» Entries are in the support as long as

|BJy ;- Residual(Byg, yag, M)l = As.
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Extension of the Lasso path

Multi-penalty framework

» The nodes are calculated by inductive verification of the KKT
conditions:
» Find A/"(A9) from A} (A9), /, o via iterative verification of KKT
conditions, here / is a support and o is a sign pattern.
» Entries are in the support as long as

|BJy ;- Residual(Byg, yag, M)l = As.

» Candidates for new nodes:

B;gvl,(H—BAgv,(B;g'/BAgJ)HB;gvl)y)\g "y
‘ H1-BT, Byg, (B, Byg,) 0 1y
N (1 0,00) = N
1100 A2) = (18] Bag )BT ),
e e ifjel
- - :
((Bxg,/BAgJ) 10),‘
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Extension of the Lasso path

Multi-penalty framework

» The nodes are calculated by inductive verification of the KKT
conditions:
» Find A/"(A9) from A} (A9), /, o via iterative verification of KKT
conditions, here / is a support and o is a sign pattern.
» Entries are in the support as long as

|BJy ;- Residual(Byg, yag, M)l = As.

» Candidates for new nodes:

T —1 BT
B)\g,/(]l_BAo ,(B?\o ,B ) B}\gv,)y;\g

ifj&l
18, BAOI(BAO Brg) 1o ¢
(GANY - By yxz),

((B)\O /BAO N 0),‘

N (1,0,A9) =

ifjel

» Choose ) 3
N = max(¥(1,0,38) < N(A3))

and recompute solution (/, T).
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Extension of the Lasso path

Multi-penalty framework

» Building upon the Lasso path, we can create tiles, which contain
parameter regions leading to the same support and sign pattern;

» Results on the tiles structure using a directed multi-graph framework;

» An algorithm for efficient computation of the tiles over the whole
range of the parameters.

Support tiling u;

0.7
0.6
0.5

0.4
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Numerical experiments

The model problem
y = T(u' +vh),

where T € R™N is a measurement operator, u' is a sparse vector and
vl is a noise vector.
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Numerical experiments

The model problem
y =T +vh),

where T € R™N is a measurement operator, u' is a sparse vector and
vl is a noise vector.

Data:
» 100 problems for each configuration;

» three different measurement operators: Gaussian, random circulant
matrices, and Gamma/Gaussian matrices of different sizes;

u' are randomly generated with entries uniformly sampled from (1.5, 5);

vt are randomly generated with entries uniformly sampled from (—0.2,0.2);
B range is (107, 100);

support size of u' is known;

vV v v v Y

compared to ¢;—regularization, IHT with warm start, OMP, preconditioned
Lasso;
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Numerical experiments

Multi-penalty algorithm with adaptive parameter choice

» Construct the graph/tiles attainable for any (A1, A2) up to the given
support size.
» Support selection via criterion:
» For each tiling t(/, o) calculate
SNR(1) = %ﬂ[“’]f' where
oo

uy = argmin ||Tu—y|?
ussupp(u)=/

vi= Ty —Tu).
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Numerical experiments

Multi-penalty algorithm with adaptive parameter choice

» Construct the graph/tiles attainable for any (A1, A2) up to the given
support size.
» Support selection via criterion:
» For each tiling t(/, o) calculate

_ minjg, [[uljl

SNR(t) = ——=—=, where
vl
uy = argmin ||Tu—y|?
ussupp(u)=/
vi= Ty —Tu).

» Select
I" = arg max SNR(T).

T,|l|=s
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Comparison with the single-parameter counterparts

Accuracy wrt to varying support size

~o- LASSO  —&- LLIHT

1.0 o 8| o pLasso  — mpLASSO (al) A
S |-m owe ~~- MPLASSO (Rank) e
0.8 o '
o o6
1 L
Co.6 £
8 ¥
g 5?
g 0.4 g
o
0.2 £2
o tasso k- mT N S
8- PLASSO — MPLASSO (All) a 0
0.0] ™ OMP  ——- MPLASSO (Rank) °
] 10 20 30 40

Support size Support size

Figure: Accuracy of the support recovery for Gaussian random matrices A € R800%2500
and varying support sizes: (a) success rate (b) symmetric difference.
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Comparison with the single-parameter counterparts

Accuracy wrt to varying support size

o LASSO - LUMT
@ | -e- passo — mpLasso (am
o 8 -#- OMP ~=- MPLASSO (Rank)
=4
[
g o
® E6
= S
0w
a L
=
8 g4
a £
. > E2
o~ LASSO  —a- LUMT S >
-@- PLASSO —— MPLASSO (All) & ]
0.0] ™ OMP  ——- MPLASSO (Rank) = . o
] 10 20 30 40 V] 10 20 30 40

Support size Support size

Figure: Accuracy of the support recovery for random circulant matrices A € R900%2500 gng
varying support sizes s: (a) success rate (b) symmetric difference.
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Comparison with the single-parameter counterparts

Accuracy wrt to varying support size

o~ LASSO  —&- LLHT
-®- PLASSO —— MPLASSO (All)
@ oMP ~+- MPLASSO (Rank)

6~ LASSO  —&- LLHT
-e- PLASSO  — MPLASSO (All)
-m omp ~~- MPLASSO (Rank) |

Success rate

30 40

20 20 40
Support size Support size

Figure: Accuracy of the support recovery for Gamma/Gaussian matrices A € R900%2500
and varying support sizes s: (a) success rate (b) symmetric difference.
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Comparison with the single-parameter counterparts

Accuracy wrt to varying noise

~0- LASSO  —&- LUHT

o -8- PLASSO  — MPLASSO (all)
02,0 = owr ~+- MPLASSO (Rank)
o
]
£1.5
©
L2
51.0
|9
£
o~ LASSO k- LLHT >,°'5
-8- PLASSO  — MPLASSO (Ranked) "

0.0 @ omMP ~+- MPLASSO (All)

0.00 0.02 0.04 0.06 0.08 0.10
&

Figure: Accuracy of the support recovery for Gaussian random matrices A € R800x2500
and varying measurement noise: (a) success rate (b) symmetric difference.
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Comparison with the single-parameter counterparts

Accuracy wrt to varying noise

1.0/ v PO —— e " ~o- LASSO  —&- LLHT PSPt ad
s ~~pommms o -@- PLASSO —— MPLASSO (All) e
\ < 25| .m omp ~+- MPLASSO (Rank) =~
08 o
g \ @ 20
[ | ES
So.6 o tasso - Lumr S
8 \ -8- PLASSO — MPLASSO (Ranked) | (, 15
@ OMP ~+- MPLASSO (All) =
So0.a . = z
=3 c 10
@ £
— a 5

0.00 002 0.4 006 008 010 0000 0.2 004 0.6 008 0.0
6

Figure: Accuracy of the support recovery for Gamma/Gaussian random matrices
A € R990%2500 and varying measurement noise: (a) success rate (b) symmetric difference.
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Robust recovery of low-rank matrices

Joint work with Johannes Maly and Massimo Fornasier, TU Munich

Fornasier, Maly, VN, submitted, '18.
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Robust recovery of low-rank matrices

» We are interested in designing an algorithm for recovery low-rank
matrices from linear noisy measurements

(A1, X)F
y=AX)+n=—= : +m,
vm :
<Am1X>F

» A:RM*"™ — R™is a linear measurement operator.
» X € R™*"™ is an unknown low-rank matrix with approximately sparse
singular vectors such that

R
X=Y u(v) and |V < Vs|[V[zforr=1,...R.
r=1
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Robust recovery of low-rank matrices
» We are interested in designing an algorithm for recovery low-rank
matrices from linear noisy measurements
(A1, X)F
=A(X = :
y=A(X)+n N : +1,
(Am, X)F

» A:RM*"™ — R™is a linear measurement operator.

» X € R™*"™ is an unknown low-rank matrix with approximately sparse
singular vectors such that

R
X=Y u(v) and |V < Vs|[V[zforr=1,...R.
r=1

» Low-rank matrix recovery / blind deconvolution:
» Oymak et. al., '15; Lee et al., "13 and '17; Ahmed, Recht, and Romberg, 14, ...
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Robust recovery of low-rank matrices

» We are interested in designing an algorithm for recovery low-rank
matrices from linear noisy measurements

(A1, X)F

y=AX)+n=— : +n,
vm '
<Am:X>F

» A:RM*"™ — R™is a linear measurement operator.
» X € R™*"™ is an unknown low-rank matrix with approximately sparse
singular vectors such that

R
X=Y u(v) and |V < Vs|[V[zforr=1,...R.
r=1

» Low-rank matrix recovery / blind deconvolution:
» Oymak et. al., '15; Lee et al., "13 and '17; Ahmed, Recht, and Romberg, 14, ...

» We consider the multi-penalty functional

R
y—A (Z u’(v’)T>

r=1

ngﬁ(u',...,u'q,v1,...,vR)::

2 R R
oy [lUTE+B Y IV,
2 r=1 r=1
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Theoretical results

ULJH = argmin,

2

.

= ATEA LT — A (] )H2 +aclluld + 1 llu— 13,
k

. T 2
Vi —argming | (v —ATEP,uvi T — a7 +rs||v||1+ﬁuvamg,
k
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Theoretical results

ULJH = argmin,

2

.

= ATEA LT — A (] )H2 +aclluld + 1 llu— 13,
k

B 2
vhpy —argming | (v —ATEE w7 — At DT+ Blvily - ﬁ v —vi 3.

Theorem (Strong Convergence)

(1) (Fi])

The algorithm produces (uy " ... v, which converges to a global minimizer of Jiﬁ .
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Theoretical results

u{(+1 = argminy, (yfﬂ[zﬁizul’(vk )7A(uvk )H +zx||u||2 *rHufukHz

Vhq = aroming | (v —ATZF, v )—A(uk+1v7)|\ +rs||v||1+ﬁuvakuz,

Theorem (Strong Convergence)

(1) (Fi])

The algorithm produces (uy " ... v, which converges to a global minimizer of Jiﬁ

Lemma (Number of measurements)

An operator A fulfils the rank-R approximately (s1, s )-sparse RIP w.h.p. with y constant
for
m> v *R%(si + s2) log® (max{n, n2})

ifall A for1 < i < m have iid subgaussian entries and

el /Mullz < Vs vl /1IV Iz < Ve

simula - by thinking constantly about it



Theoretical results

r
(yfﬂ[zﬁzzul’(vz.r]) 7A(uv/( )

2
ulq = argming ‘2+oc|\u||§+ir\\u7u!(\\§,
k

. T 2
vl’(Jr1 :argmanH(yfﬂ[Z?:zul’(vz ])7A(u"(+1v7)” +[5||V||1+ﬁ£\\v7vf(\\§,

Theorem (Strong Convergence)

(1) (Fi])

The algorithm produces (u, " ... v, which converges to a global minimizer of Jo'i‘,ﬁ .

Lemma (Number of measurements)

An operator A fulfils the rank-R approximately (s1, s )-sparse RIP w.h.p. with y constant
for

m> v *R%(si + s2) log® (max{n, n2})
ifall A for1 < i < m have iid subgaussian entries and

el /Mullz < Vs vl /1IV Iz < Ve

Theorem (Error estimations for approximately sparse matrices)

.2
Assume o« = B = |m||3/]|X||3 < 1 and that A satisfies RIP with some constanty. Then
3

IX = XapllF < (2 CR?/381/3 4 2) |2 + ¥
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Theoretical results

r
(yfﬂ[zﬁzzul’(vz.r]) 7A(uv/( )

2
ulq = argming ‘2+oc|\u||§+ir\\u7u!(\\§,
k

. T 2
vl’(Jr1 :argmanH(yfﬂ[Z?:zul’(vz ])7A(u"(+1v7)” +[5||V||1+ﬁ£\\v7vf(\\§,

Theorem (Strong Convergence)

(1) (Fi])

The algorithm produces (u, " ... v, which converges to a global minimizer of Jo'i‘,ﬁ .

Lemma (Number of measurements)

An operator A fulfils the rank-R approximately (s1, s )-sparse RIP w.h.p. with y constant
for
m >y *R%(s1 + s2) log® (max{n, n2})

ifall A for1 < i < m have iid subgaussian entries and

1l /1lu" Nz < Vst Vil /vl < Vs
Theorem (Error estimations for approximately sparse matrices)

.2
Assume o« = B = |m||3/]|X||3 < 1 and that A satisfies RIP with some constanty. Then
3

X — XapllF < (2VCR2/3s1/3 4+ 2) |l + v¥ < (2VS'/3 +2)[Inl2 + V7.
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Numerical experiments

We compare our algorithm to Sparse Power Factorization (SPF) [Lee et al. '17], the so far
stand-alone algorithm for low-rank recovery under additional sparsity constraints.
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Numerical experiments

We compare our algorithm to Sparse Power Factorization (SPF) [Lee et al. '17], the so far
stand-alone algorithm for low-rank recovery under additional sparsity constraints.
Data:

» 30 iterations, X € R'®*"% with || X||z = 10;
> R=1,|nl=03[X]F;
> success if || X — Xapprox || £/[| X||F < 0.4.

1 1 1
09 0.9 09
08 0.8 08
0.7 07 07

2,“ 0.6 w06 06

£ 05 05

E 04 04
03 03
0.2 02
01 01

o

0.4 0.6
s/n,

2 s/n,
Our Algorithm SPF
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Conclusions and Outlook

» We have presented a unified framework for solution of the inverse
problems of unmixing type by means of multi-penalty regularization;

» Both theoretical and numerical results show superiority of the
multi-penalty regularization compared to its single-penalty
counterparts;

» Adaptive parameter choice rule allows for efficient and accurate
selection of the optimal parameters.
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Conclusions and Outlook

» We have presented a unified framework for solution of the inverse
problems of unmixing type by means of multi-penalty regularization;

» Both theoretical and numerical results show superiority of the
multi-penalty regularization compared to its single-penalty
counterparts;

» Adaptive parameter choice rule allows for efficient and accurate
selection of the optimal parameters.

Open questions:
» Theoretical results for

1
Jw,v) = SITW+v) = y° 5 + Mllule, +Rellv]e..-
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Conclusions and Outlook

» We have presented a unified framework for solution of the inverse
problems of unmixing type by means of multi-penalty regularization;

» Both theoretical and numerical results show superiority of the
multi-penalty regularization compared to its single-penalty
counterparts;

» Adaptive parameter choice rule allows for efficient and accurate
selection of the optimal parameters.

Open questions:
» Theoretical results for

J(u,v) —||T u+v) = yol5 + Mllulle, + A2l v]]e...

» Numerical and theoretical framework for the matrix recovery from
incomplete data y by the multi-penalty regularization of the type
R

R
Juv) =T v (v =ylE+M D ] +Azz||v 15,
=1

r=1

r=
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