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Introduction
Compressed sensing

I known (linear) encoder T ∈ Rm×N with RIP properties;
I unknown (non-linear) decoder ∆;
I Popular decoders:

I ∆0(y) = argminTz=y ‖z‖0; (non-convex, NP-hard)
I ∆1(y) = argminTz=y ‖z‖1. (convex)
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Introduction
Compressed sensing with measurement noise

I Popular decoder:
I ∆1,δ(y) = argmin‖Tz−y‖6δ ‖z‖1

⇐⇒
∆`1 = argmin λ‖z‖1 + ‖Tz − y‖2

2. (basis pursuit, `1−minimization, Lasso)

I Large amount of literature:

Candes, Romberg, and Tao, IEEE Trans Inf Theory ’06; Donoho, IEEE
Trans Inf Theory, ’06; Rauhut and Fourcart, Springer, ’13.
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Introduction
Compressed sensing with signal noise

I General approach y = T (x + n) = Tx + Tn;
I Define ε = Tn and consider it as noise on measurements;
I Noise-folding phenomenon, i.e., the variance of the noise on the

original signal is amplified by a factor of N
m ;

I Due to noise-folding phenomenon, e.g., the sole `1-regularization
fails to accurately separate the signal from the noise.
Arias-Castro and Eldar, IEEE Signal Process Lett, ’11; Aeron, Saligrama, and Zhao,

IEEE Trans Inf Theory, ’10.
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Introduction
Compressed sensing with signal / measurement noise



Inverse problems of the unmixing type
Unmixing problem: restore and separate two (or more) components
u† and v† of the solution from an observed datum y where

y = T (u† + v†︸︷︷︸
signal noise

) + ε︸︷︷︸
noise

,

Ill-posedness: an infinite number of solutions, operator T may have
non-closed range.

Assumption: u† ∈ `p and v† ∈ `2 = `q ∩ `2 for 0 6 p < 2 and
2 6 q <∞.

Regularization functional:

Jp,q(u, v) := ‖T (u + v) − y‖2
2︸ ︷︷ ︸

data fitting

+R(u, v)︸ ︷︷ ︸
regularization

→ min
u,v

I R(u, v) = λ1‖u + v‖`1 (`1 fails to accurately separate the signal from the noise).
I R(u, v) = λ1‖u‖p

`p
+ λ2‖v‖q

`q
(multi-penalty regularization)

I λ1,λ2 ∈ R+ are regularization parameters;
I λ1,λ2, p, q are unknown.
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Does multi-penalty regularization really work?



Problems on the way...

I Iterative alternating algorithm to perform minimization of Jp,q ;
Problem: non-convexity of the functional for 0 < p < 1;
Way-out: adaptation of several techniques on a single-parameter
regularization with sparsity promoting terms.

I Theoretical guarantees on the support recovery by means of
multi-penalty regularization
Problem: non-linearity with respect to the parameters;
Way-out: generalization and extension of the results from
single-penalty regularization.

I Adaptive choice of the regularization parameters for optimal
support recovery.
Problem: how to choose multiple parameters and which ones allow
the best support reconstruction;
Way-out: extension of Lasso-path for multi-penalty, statistical
learning theory.
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Multi-parameter regularization
Some contributions

I Image processing: Meyer ’02; Vese and Osher ’03, ’04; Daubechies
and Teschke ’05; Bredies and Holler ’14; Holler and Kunisch ’14; De
Los Reyes, Schönlieb, and Valkonen ’15; Calatroni, De Los Reyes,
and Schönlieb ’16.

I Signal processing: Donoho et al. ’89, ’01, ’13.

I Geomathematics: Lu and Pereverzyev ’11.

I Regularization and learning theory: Lu and Pereverzyev ’11; VN,
Pereverzyev ’13; Fornasier, VN, and Pereverzyev ’13; Sivananthan
’16.

I Huber regularization: Huber ’64; Beck and Teboulle ’12; Zadorozhnyi
et al., ’16.



Alternating minimization algorithm

Joint work with Steffen Peter and Massimo Fornasier, TU Munich

Peter and VN, Inverse Problems, ’14.



Alternating minimization algorithm
Problem formation and state of the art

I We are interested in designing an algorithm for minimization of the
non-convex non-smooth functional

Jp,q(u, v) := ‖T (u + v) − y‖2
2 + λ1‖u‖p

`p
+
(
λ2‖v‖q

`q
+ ε‖v‖2

`2

)
,

where λ1, λ2, ε ∈ R+, 0 6 p < 2, 2 6 q <∞ are parameters of the
problem.

I Regularization with non-convex constraints for single-parameter
regularization:

I Bredies and Lorenz ’09; Ramlau and Zarzer ’12; Lu et al. ’13; Ito and Kunisch ’14.

The first work that provides an explicit direct mechanism for
minimization of the multi-penalty functional with non-convex and
non-smooth terms, and highlights its improved accuracy power with
respect to more traditional one-parameter regularizations.
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Alternating minimization algorithm
based on iterative thresholding

1: set ε > 0,VTOL > 0.
2: set u(0) = u(1,0) = 0 and v(0) = v(1,0) = 0.
3: repeat
4: u(n) = u(n,L) = u(n+1,0)

5: for l = 1 to L − 1 do
6: u(n+1,l+1)

λ = Hp
λ1
(u(n+1,l)
λ + [T ∗(y − Tv(n,M) − Tu(n+1,l))]λ).

7: end for
8: v(n) = v(n,M) = v(n+1,0)

9: for l = 1 to M − 1 do
10: v(n+1,l+1)

λ = Sq
λ2,ε

(v(n+1,l)
λ + [T ∗(y − Tu(n+1) − Tv(n+1,l))]λ)

11: end for
12: until ‖u(n) − u(n+1)‖`1 > VTOL

Sq
λ2,ε

,Hp
λ1

are the thresholding functions.



Alternating minimization algorithm
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The thresholding function Hp
λ1

for

p = 0, 0.15, 0.3, 0.45, 0.6, 0.9, 1 and λ1 = 0.1.

Hp
λ1
(x) =

{
0, |x| 6 τλ1 ,

(F p
λ1
)−1(x), |x| > τλ1 ,

where

F p
λ1
(t) = t + λ1p

2 sgn(t)|t|p−1 and

τλ1 = 2−p
2−2p (λ1(1 − p))1/(2−p).



Theoretical results

Theorem (Weak Convergence)

Assume 0 < p < 1 and 2 6 q <∞. The algorithm produces sequences (u(n)), (v(n)) in

`2 whose weak accumulation points are fixed points of the algorithm.

Theorem (Minimizers)
Let T have the FBI property, i.e., T is injective whenever restricted to finitely many
coefficients. Then we have the following inclusion

Fix ⊂ L,

where Fix is the set of fixed points, L is the set of local minimizers of Jp,q .

Theorem (Strong Convergence)

The algorithm produces sequences (u(n)) and (v(n)) in `2 that converge strongly to the

vectors u∗, v∗ ∈ Fix respectively.
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Numerical experiments

The model problem
y = T (u† + v†),

where T ∈ Rm×N is an i.i.d Gaussian matrix, u† is a sparse vector and v†

is a noise vector.

Data:
I 20 problems, m = 40, N = 100;
I u† and v† are randomly generated;
I # supp(u†) = 7;
I ‖v†‖2 = 0.7;
I p ∈ {0, 0.3, 0.5, 0.8, 1} and q ∈ {2, 4, 10,∞};

I L = M = 20, u(0) = v (0) = 0.
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Comparison with the single-parameter counterpart

One-parameter regularization:

Jp(u) := ‖Tu − y‖2
2 + λ1‖u‖p

p,

with p ∈ [0, 1].

A local minimizer u∗λ1,p can be computed by the iterations

u(n+1)
λ1,p = Hp

λ1
(u(n)
λ + [T ∗(y − Tu(n))]λ), n > 0,

where Hp
λ1

is the thresholding operator.



Comparison with the single-parameter counterpart
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Figure: For each p ∈ {0, 0.3, 0.5, 0.8, 1} the mean of the AE (left) and SD (right) for the

solution u† for 20 problems for different parameter values q ∈ {2, 4,∞} and u†λ1,p
. For each

of the 20 problems and each pair (p, q), the best individual parameter pair (λ1,λ2) was

chosen for comparison



Comparison with the single-parameter counterpart
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Figure: A coloured bar indicates the empirical probability of better performance by the

multi-penalty approach in terms of AE (left) and SD (right) with respect to the mono-penalty

approach



Conditions on optimal support recovery

Joint work with Markus Grasmair, NTNU

Grasmair and VN, Inverse Problems, ’16.



Conditions on optimal support recovery

I We are interested in deriving theoretical results for multi-penalty
Tikhonov regularization of the form

J(u, v) =
1
2
‖T (u + v) − yδ‖2

2 + λ1‖u‖`1 +
λ2

2
‖v‖2

`2
,

I Conditions on convergence of sparsity-promoting regularization:
I Grasmair, Sherzer, and Haltmeier, ’11; Bredies and Holler, ’14; Lu et al., ’13.

The first work that provides a theoretical analysis of the multi-penalty
regularization with a non-smooth sparsity promoting regularization
term, and an explicit comparison with the single-parameter counterpart.



Conditions on optimal support recovery

I We are interested in deriving theoretical results for multi-penalty
Tikhonov regularization of the form

J(u, v) =
1
2
‖T (u + v) − yδ‖2

2 + λ1‖u‖`1 +
λ2

2
‖v‖2

`2
,

I Conditions on convergence of sparsity-promoting regularization:
I Grasmair, Sherzer, and Haltmeier, ’11; Bredies and Holler, ’14; Lu et al., ’13.

The first work that provides a theoretical analysis of the multi-penalty
regularization with a non-smooth sparsity promoting regularization
term, and an explicit comparison with the single-parameter counterpart.



Conditions on optimal support recovery

We consider the multi-penalty Tikhonov regularization of the form

J(u, v) =
1
2
‖T (u + v) − yδ‖2

2 + λ1‖u‖`1 +
λ2

2
‖v‖2

`2
, (1)

and signals belonging to the class Sc,d ,k = ∪#I<k Sc,d ,I with

Sc,d ,I = {(u, v) ∈ RN × RN : supp(u) = I, inf
i∈I

ui > c, ‖v‖∞ < d}

Definition

Let λ2 ∈ R+ ∪ {∞} be fixed. We call Sc,d ,I a set of exact support recovery
if there exists λ1 > 0 such that the solution (uλ1,λ2 , vλ1,λ2) of (1) satisfies
supp(uλ1,λ2) = supp(u†) whenever the given data y has the form
y = T (u† + v†) with (u†, v†) ∈ Sc,d ,I .

The parameters λ1 > 0 for which this property holds are called
admissible for Sc,d ,I .
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Multi-penalty⇒ single-penalty regularization

We would like to address the following two fundamental questions:

I Could multi-penalty regularization allow for the exact recovery of the
support of the true solution u†?

I How is ”theoretical performance” of the multi-penalty regularization
compared to the mono-penalty one?



Multi-penalty⇒ single-penalty regularization

Lemma

The pair (uλ1,λ2 , vλ1,λ2) solves (1) if and only if

vλ1,λ2 = (λ2I+ T ∗T )−1(T ∗y − T ∗Tuλ1,λ2)

and uλ1,λ2 solves the optimization problem

1
2
‖Bλ2 u − yλ2‖2

2 + λ1‖u‖1 → min

with

Bλ2 =

(
I+

TT ∗

λ2

)−1/2

T and yλ2 =

(
I+

TT ∗

λ2

)−1/2

y .

Note: The theory of `1-regularization works for the multi-penalty setting:
for fixed λ2 > 0 under a source conditions, we get

‖u† − uλ1,λ2‖1 6 C1,λ2λ1 + C2,λ2

‖yλ2 − Bλ2 u†‖2
2

λ1
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Optimality conditions for single-penalty

Lemma

The vector uλ1 minimizes

T (u) :=
1
2
‖Tu − y‖2

2 + λ1‖u‖1

⇐⇒ T ∗(Tuλ1 − y) ∈ −λ1 sgn(uλ1).

Lemma

We have supp(uλ1) = I ⇐⇒ ∃ wλ1 ∈ (R \ {0})I such that

T ∗I (TIwλ1 − y) = −λ1 sgn(wλ1) and ‖T ∗J (TIwλ1 − y)‖∞ 6 λ1,

where J := {i : u†i = 0} and TI is the restriction of T to the span of the
support of u†.
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Optimality conditions for single-penalty

Proposition

Assume that TI is injective and that

‖T ∗J TI(T ∗I TI)
−1‖∞ < 1. (2)

Then the set Sc,d ,I is a set of exact support recovery whenever

c
d
>
‖T ∗J (TI(T ∗I TI)

−1T ∗I − I)T‖∞‖(T ∗I TI)
−1‖∞

1 − ‖T ∗J TI(T ∗I TI)−1‖∞ + ‖(T ∗I TI)
−1T ∗I T‖∞.

Moreover, every parameter λ1 > 0 satisfying

d‖T ∗J (TI(T ∗I TI)
−1T ∗I − I)T‖∞

1 − ‖T ∗J TI(T ∗I TI)−1‖∞ 6 λ1 <
c − d‖(T ∗I TI)

−1T ∗I T‖∞
‖(T ∗I TI)−1‖∞

is admissible on Sc,d ,I .



Optimality conditions for multi-penalty regularization

Lemma

We have supp(uλ1,λ2) = I ⇐⇒ ∃wλ1 ∈ (R \ {0})I such that

T ∗λ2,I(TIwλ1,λ2 − y) = −λ1 sgn(wλ1,λ2) and ‖T ∗λ2,J(TIwλ1 − y)‖∞ 6 λ1,

where Tλ2 :=
(
I+ TT∗

λ2

)−1
T .

Sketch of the proof.

Using the fact that

B∗λ2
Bλ2 = T ∗λ2

T and B∗λ2
yλ2 = T ∗λ2

y

with Bλ2 =
(
I+ TT∗

λ2

)−1/2
T , and the lemma for single-penalty case.
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Optimality conditions for multi-penalty regularization

Proposition

Assume that 0 < λ2 <∞ is such that

‖T ∗λ2,JTI(T ∗λ2,ITI)
−1‖∞ < 1. (3)

Then the set Sc,d ,I is a set of exact support recovery in the multi-penalty
setting whenever

c
d
> ‖(T ∗λ2,ITI)

−1T ∗λ2,IT‖∞+‖T
∗
λ2,J(TI(T ∗λ2,ITI)

−1T ∗λ2,I − I)T‖∞‖(T ∗λ2,ITI)
−1‖∞

1 − ‖T ∗λ2,JTI(T ∗λ2,ITI)−1‖∞ .

Moreover, all pairs of parameters (λ1, λ2) satisfying above and

d‖T ∗λ2,J(TI(T ∗λ2,ITI)
−1T ∗λ2,I − I)T‖∞
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Optimality conditions
Setup:

I 20 i.i.d. Gaussian matrices, m = 30,N = 60 and m = 40,N = 80.
I # supp(u†) = 2, 3, 4.
I Check conditions ‖T ∗J TI(T ∗I TI)

−1‖∞ < 1 or ‖T ∗λ2,J
TI(T ∗λ2,I

TI)
−1‖∞ < 1.

m = 30 Mono-penalty Multi-penalty
N = 60 λ2 = 10 λ2 = 1 λ2 = 0.1
Median 0.5425 0.3814 0.1214 0.0623

Mean 0.5559 0.3922 0.1225 0.0635
SD 0.05652 0.04142 0.01518 0.01083

m = 40 Mono-penalty Multi-penalty
N = 80 λ2 = 10 λ2 = 1 λ2 = 0.1
Median 0.2696 0.1523 0.0396 0.0256

Mean 0.2746 0.1547 0.0413 0.0262
SD 0.03060 0.01848 0.00659 0.00447

Table: Percentage of 3-sparse subspaces for which (2) or (3) failed.

SD = standard deviation
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Adaptive parameter choice for multi-penalty
regularization

Joint work with Markus Grasmair, NTNU, and Timo Klock, Simula
Research Lab

Grasmair, Klock, and VN, submitted, ’17.



Adaptive parameter choice for multi-penalty
regularization

I We are interested in designing a rule for adaptive choice of the
regularization parameters for multi-penalty regularization of the form

J(u, v) =
1
2
‖T (u + v) − yδ‖2

2 + λ1‖u‖`1 +
λ2

2
‖v‖2

`2
,

I Parameter choice for `1− regularization:
I Rosset and Zhu, ’07; Efron, Hastie, Johnstone, and Tibshirani, ’04; Tibshirani, ’13; Jua and

Rohe, ’15.

The first work that provides an efficient algorithm for identification of
possible parameter regions leading to structurally similar solutions
from multi-penalty regularization: solutions with the same support and
sign pattern.
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Lasso path for single-penalty regularization

uλ1,λ
0
2
= argmin

u

1
2
‖Bλ0

2
u − yλ0

2
‖2 + λ1‖u‖1.

I Lasso solutions are piece-wise linear and can be computed
successively.

=⇒ Only nodes λi
1(λ

0
2) need to be computed.



Extension of the Lasso path
Multi-penalty framework

I The nodes are calculated by inductive verification of the KKT
conditions:

I Find λi+1
1 (λ0

2) from λi
1(λ

0
2), I,σ via iterative verification of KKT

conditions, here I is a support and σ is a sign pattern.
I Entries are in the support as long as

|BT
λ0

2,j
·Residual(Bλ0

2
, yλ0

2
, λ1)| = λ1.

I Candidates for new nodes:

λ̃
j
1(I,σ, λ

0
2) :=


BT
λ0

2 ,j
(I−B

λ0
2 ,I
(BT

λ0
2 ,I

B
λ0

2 ,I
)−1BT

λ0
2 ,I
)y

λ0
2

±1−BT
λ0

2 ,j
B
λ0

2 ,I
(BT

λ0
2 ,I

B
λ0

2 ,I
)−1σ

if j 6∈ I(
(BT

λ0
2 ,I

B
λ0

2 ,I
)−1BT

λ0
2 ,I

y
λ0

2

)
j(

(BT
λ0

2 ,I
B
λ0

2 ,I
)−1σ

)
j

if j ∈ I.

I Choose
λi+1

1 = max
j
{λ̃

j
1(I,σ, λ

0
2) < λi(λ

0
2)}

and recompute solution (I, τ).
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Extension of the Lasso path
Multi-penalty framework

I Building upon the Lasso path, we can create tiles, which contain
parameter regions leading to the same support and sign pattern;

I Results on the tiles structure using a directed multi-graph framework;
I An algorithm for efficient computation of the tiles over the whole

range of the parameters.



Numerical experiments

The model problem
y = T (u† + v†),

where T ∈ Rm×N is a measurement operator, u† is a sparse vector and
v† is a noise vector.

Data:
I 100 problems for each configuration;
I three different measurement operators: Gaussian, random circulant

matrices, and Gamma/Gaussian matrices of different sizes;
I u† are randomly generated with entries uniformly sampled from (1.5, 5);
I v† are randomly generated with entries uniformly sampled from (−0.2, 0.2);
I β range is (10−6, 100);
I support size of u† is known;

I compared to `1−regularization, IHT with warm start, OMP, preconditioned
Lasso;
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Numerical experiments
Multi-penalty algorithm with adaptive parameter choice

I Construct the graph/tiles attainable for any (λ1, λ2) up to the given
support size.

I Support selection via criterion:
I For each tiling τ(I,σ) calculate

SNR(τ) =
minj∈I |[uI ]j |

||vI ||∞ , where

uI = argmin
u:supp(u)=I

‖Tu − y‖2

vI = T †(y − TuI).

I Select
I∗ = arg max

τ,|I|=s
SNR(τ).
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Comparison with the single-parameter counterparts
Accuracy wrt to varying support size

Figure: Accuracy of the support recovery for Gaussian random matrices A ∈ R600×2500

and varying support sizes: (a) success rate (b) symmetric difference.



Comparison with the single-parameter counterparts
Accuracy wrt to varying support size

Figure: Accuracy of the support recovery for random circulant matrices A ∈ R900×2500 and

varying support sizes s: (a) success rate (b) symmetric difference.



Comparison with the single-parameter counterparts
Accuracy wrt to varying support size

Figure: Accuracy of the support recovery for Gamma/Gaussian matrices A ∈ R900×2500

and varying support sizes s: (a) success rate (b) symmetric difference.



Comparison with the single-parameter counterparts
Accuracy wrt to varying noise

Figure: Accuracy of the support recovery for Gaussian random matrices A ∈ R600×2500

and varying measurement noise: (a) success rate (b) symmetric difference.



Comparison with the single-parameter counterparts
Accuracy wrt to varying noise

Figure: Accuracy of the support recovery for Gamma/Gaussian random matrices

A ∈ R900×2500 and varying measurement noise: (a) success rate (b) symmetric difference.



Robust recovery of low-rank matrices

Joint work with Johannes Maly and Massimo Fornasier, TU Munich

Fornasier, Maly, VN, submitted, ’18.



Robust recovery of low-rank matrices
I We are interested in designing an algorithm for recovery low-rank

matrices from linear noisy measurements

y = A(X ) + η =
1√
m

〈A1,X 〉F
...

〈Am,X 〉F

+ η,

I A : Rn1×n2 → Rm is a linear measurement operator.
I X ∈ Rn1×n2 is an unknown low-rank matrix with approximately sparse

singular vectors such that

X =

R∑
r=1

ur (v r )T and ‖v r‖1 6
√

s‖v r‖2 for r = 1, . . .R.

I Low-rank matrix recovery / blind deconvolution:
I Oymak et. al., ’15; Lee et al., ’13 and ’17; Ahmed, Recht, and Romberg, ’14, ...

I We consider the multi-penalty functional

JR
α,β(u1, . . . , uR , v1, . . . , vR) :=

∥∥∥∥∥y −A

(
R∑

r=1

ur(v r)T

)∥∥∥∥∥
2

2

+α

R∑
r=1

‖ur‖2
2+β

R∑
r=1

‖v r‖1,
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Theoretical results


ul
k+1 = argminu

∥∥∥∥(y −A[
∑R

r=2 ur
k vr

k
T ])−A(uvl

k
T
)

∥∥∥∥2

2
+α‖u‖2

2 + 1
2λl

k
‖u − ul

k‖
2
2 ,

vl
k+1 = argminv

∥∥∥(y −A[
∑R

r=2 ur
k vr

k
T ])−A(ul

k+1vT )
∥∥∥2

+β‖v‖1 + 1
2µl

k
‖v − vl

k‖
2
2 ,

Theorem (Strong Convergence)

The algorithm produces (u(1)
k . . . v(R)

k ) which converges to a global minimizer of JR
α,β.

Lemma (Number of measurements)

An operator A fulfils the rank-R approximately (s1, s2)-sparse RIP w.h.p. with γ constant
for

m & γ−4R3(s1 + s2) log3 (max{n1, n2})

if all Ai for 1 6 i 6 m have iid subgaussian entries and

‖ur‖1/‖ur‖2 6
√

s1,‖v r‖1/‖v r‖2 6
√

s2.

Theorem (Error estimations for approximately sparse matrices)

Assume α = β = ‖η‖2
2/‖X̂‖

2
3
2
3
< 1 and that A satisfies RIP with some constant γ. Then

‖X̂ − Xα,β‖F 6 (2
√

CR2/3s1/3 + 2)‖η‖2 +
√
γ 6 (2

√
s1/3 + 2)‖η‖2 +

√
γ.
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Numerical experiments

We compare our algorithm to Sparse Power Factorization (SPF) [Lee et al. ’17], the so far
stand-alone algorithm for low-rank recovery under additional sparsity constraints.

Data:
I 30 iterations, X ∈ R16×100 with ‖X‖F = 10;
I R = 1, ‖η‖ = 0.3‖X‖F ;

I success if ‖X − Xapprox‖F/‖X‖F 6 0.4.

Our Algorithm SPF
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Conclusions and Outlook
I We have presented a unified framework for solution of the inverse

problems of unmixing type by means of multi-penalty regularization;
I Both theoretical and numerical results show superiority of the

multi-penalty regularization compared to its single-penalty
counterparts;

I Adaptive parameter choice rule allows for efficient and accurate
selection of the optimal parameters.

Open questions:
I Theoretical results for

J(u, v) =
1
2
‖T (u + v) − yδ‖2

Y + λ1‖u‖`1 + λ2‖v‖`∞ .

I Numerical and theoretical framework for the matrix recovery from
incomplete data y by the multi-penalty regularization of the type

J(u, v) = ‖T (

R∑
r=1

ur · (v r )T ) − y‖2
F + λ1

R∑
r=1

‖ur‖q
`q
+ λ2

R∑
r=1

‖v r‖p
`p
,

with 0 6 p 6 2 and 2 6 q 6∞
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