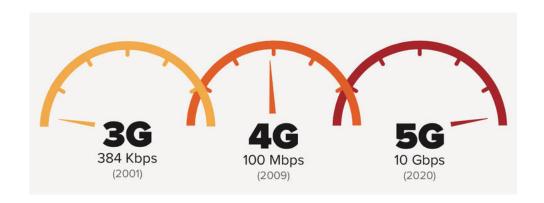
Taking Mobile Broadband for a Drive Run: Coverage Profiling and Analysis

Andra Lutu

Yuba Raj Siwakoti Özgü Alay Džiugas Baltrūnas Ahmed Elmokashfi

Simula Research Laboratory AS

August 28, 2015



Challenges

 New use cases, increasing traffic volume and a wide variety of user devices → need for new technologies

- Increasingly complex network infrastructures which incur high operational expenditure
- Need to ensure seamless handovers between existing radio access technologies

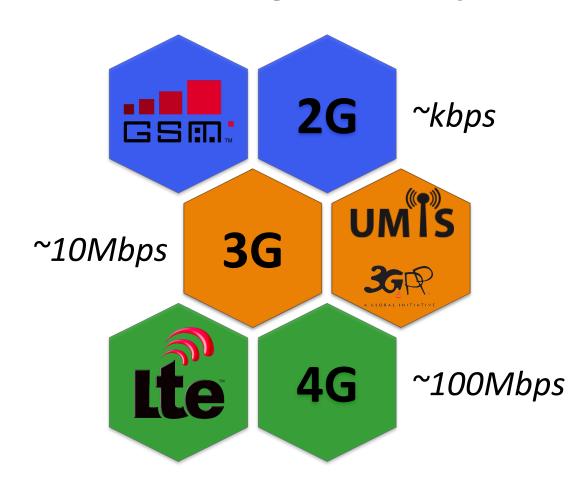
Understanding mobile network coverage is no easy task!

We propose a

wholistic approach to

coverage

characterization in a


certain area,

considering the

interplay of all

available radio access

technologies over time

What does this mean?

Georeferenced Dataset

Clustering Approach

Coverage Profile

Analysis

- Use a vast dataset of periodic coverage measurements performed in certain areas
- Demonstrate clustering approach to draw knowledge in terms of prevalent coverage profiles
- Understand to what extent areas with similar coverage translates into areas with similar performance

Georeferenced **Dataset**

Clustering Approach

Coverage Profile Analysis

Raw data:

- Network metadata

Geo-tagged Data Points

- Network performance measurements
- **GPS** readings from the train system

Geo-referencing:

- Generate geotagged data points

Data Morphing Time series of coverage charts:

- Create grid blocks with fix spatial coordinates
- Generate the grid block coverage chart

Sifting **Minimum** thresholds

- 4 data points per grid block
- 70% of the drive runs traverse the grid block

Clustering - Similarity measure between grid blocks

- Clustering method
- **Hierarchical** - Optimal number of clusters with Silhouette index

- Derive the prevalent coverage profiles

Coverage Profiling Stability - Analysis of coverage profiling stability and drive run similarity

Analysis - Connection uptime analysis **Performance**

- Evaluation of the stationarity of packet loss per coverage profile

Georeferenced **Dataset**

Raw data:

- Network metadata

Geo-tagged Data Points

- Network performance measurements
- **GPS** readings from the train system

Geo-referencing:

- Generate geotagged data points

Clustering Approach

Time series of coverage charts:

Data Morphing

- Create grid blocks with fix spatial coordinates
- Generate the grid block coverage chart

Sifting **Minimum** thresholds

- 4 data points per grid block
- 70% of the drive runs traverse the grid block

Clustering - Similarity measure between grid blocks

- Clustering method
- Hierarchical - Optimal number of clusters with Silhouette index

Coverage Profile Analysis

- Derive the prevalent coverage profiles

Coverage Profiling Stability - Analysis of coverage profiling stability and drive run similarity

Analysis - Connection uptime analysis Performance - Evaluation of the

stationarity of packet loss per coverage profile

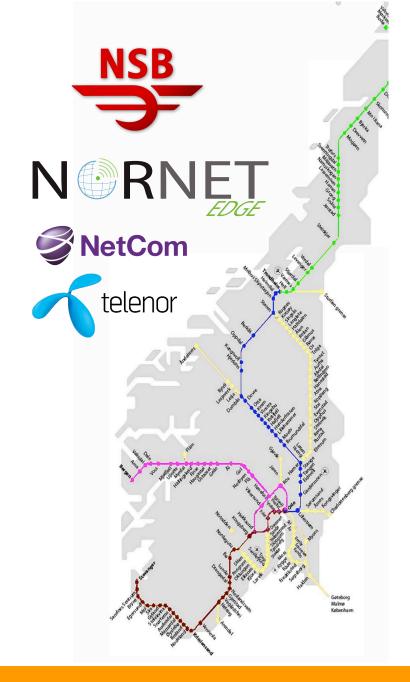
Common Approaches for Assessing Coverage

Drive testing

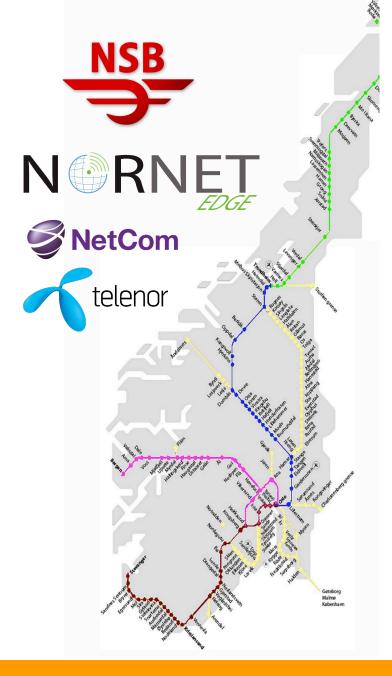
- High cost, requires custom equipment
- Small area covered, no time component considered

Crowdsourcing

- No control over the measurement device
- Lack of repeatability


Source: http://cinifglobal.in/

Source: opensignal.com


NNE data

- Data collected during 5 months (Nov. 2014 – Mar. 2015) over 4 routes
 - ACTIVE MEASUREMENTS: UDP ping (20bytes packet sent every second to an NNE server)
 - METADATA: radio access technology (RAT), signal quality indicators (RSSI, RSRQ), network attachment information (cell ID, LAC), radio resource control state.

Geo-referenced Dataset

- Data collected over 5 months (Nov. 2014 – Mar. 2015)
 - NNE metadata collected over 4
 different routes: Oslo-Voss, Oslo Stavanger, Oslo-Trondheim, Trondheim Bodø
 - GPS data from the Norwegian railway system with 10-15 sec granularity
 - One run = a train trip on a given route
- Merge the NorNet Edge measurements with the GPS dataset to generate geotagged data points

Georeferenced **Dataset**

Raw data:

- Network metadata

Geo-tagged Data Points

- Network performance measurements
- **GPS** readings from the train system

Geo-referencing:

- Generate geotagged data points

Clustering Approach

Time series of coverage charts:

Data Morphing

- Create grid blocks with fix spatial coordinates
- Generate the grid block coverage chart

Sifting **Minimum** thresholds

- 4 data points per grid block
- 70% of the drive runs traverse the grid block

Clustering - Similarity measure between grid blocks

- Hierarchical - Clustering method
- Optimal number of clusters with Silhouette index

Coverage Profile Analysis

- Derive the prevalent coverage profiles
- **Coverage Profiling Stability** - Analysis of coverage profiling stability and drive run similarity

Analysis - Connection uptime analysis Performance

- Evaluation of the stationarity of packet loss per coverage profile

Data Morphing

Geographical data binning

- Tackle limitations of the georeferenced dataset
- Group the geo-tagged data points into 2km x 2km geographical bins

Coverage Chart time series

- Distribution of the 4 different levels of RAT within a grid block
- Time series -> all the trips the train makes on every route over
 5 months

Data Morphing

Geographical data binning

- Tackle limitations of the georeferenced dataset
- Group the geo-tagged data points into 2km x 2km geographical bins

Coverage Chart time series

- Distribution of the 4 different levels of RAT within a grid block
- Time series -> all the trips the train makes on every route over
 5 months

Data Morphing

Geographical data binning

- Tackle limitations of the georeferenced dataset
- Group the geo-tagged data points into 2km x 2km geographical bins

Coverage Chart time series

- Distribution of the 4 different levels of RAT within a grid block
- Time series -> all the trips the train makes on every route over 5 months

Coverage Chart:

{2G:20%, 3G:40%, 4G:20%,

noS:20%}

Georeferenced **Dataset**

Raw data:

- Network metadata

Geo-tagged Data Points

- Network performance measurements
- **GPS** readings from the train system

Geo-referencing:

- Generate geotagged data points

Clustering Approach

Time series of coverage charts:

Data Morphing

- Create grid blocks with fix spatial coordinates
- Generate the grid block coverage chart

Sifting **Minimum** thresholds

- 4 data points per grid block
- 70% of the drive runs traverse the grid block

Clustering - Similarity measure between grid blocks

- Hierarchical - Clustering method
 - Optimal number of clusters with Silhouette index

Coverage Profile Analysis

- Derive the prevalent coverage profiles

Coverage Profiling Stability - Analysis of coverage profiling stability and drive run similarity

Analysis - Connection uptime analysis Performance

- Evaluation of the stationarity of packet loss per coverage profile

Data Sifting

- Spatial threshold: at least 4 geo-tagged data points per grid block
 - Ensure the measurement node spends at least 30-45sec in the grid-block to gather enough performance data (UDP ping)
- Temporal threshold: the grid block is traversed by at least
 75% of all the runs in the dataset for that route
 - Ensure we have enough data to characterize coverage in the grid block over time

Route	No threshold		Spatial threshold [data points]		Temporal threshold [drive runs]	
	Telenor	Netcom	Telenor	Netcom	Telenor	Netcom
Oslo - Voss	244	242	207	205	120	92
Oslo - Stavanger	374	374	319	319	182	182
Oslo - Trondheim	365	365	275	276	192	189
Trondheim - Bodø	514	514	380	378	228	157

Georeferenced **Dataset**

Clustering Approach

Coverage Profile Analysis

Raw data:

- Network metadata

Geo-tagged Data Points

- Network performance measurements
- **GPS** readings from the train system

Geo-referencing:

- Generate geotagged data points

Data Morphing Time series of coverage charts:

- Create grid blocks with fix spatial coordinates
- Generate the grid block coverage chart

Sifting **Minimum** thresholds

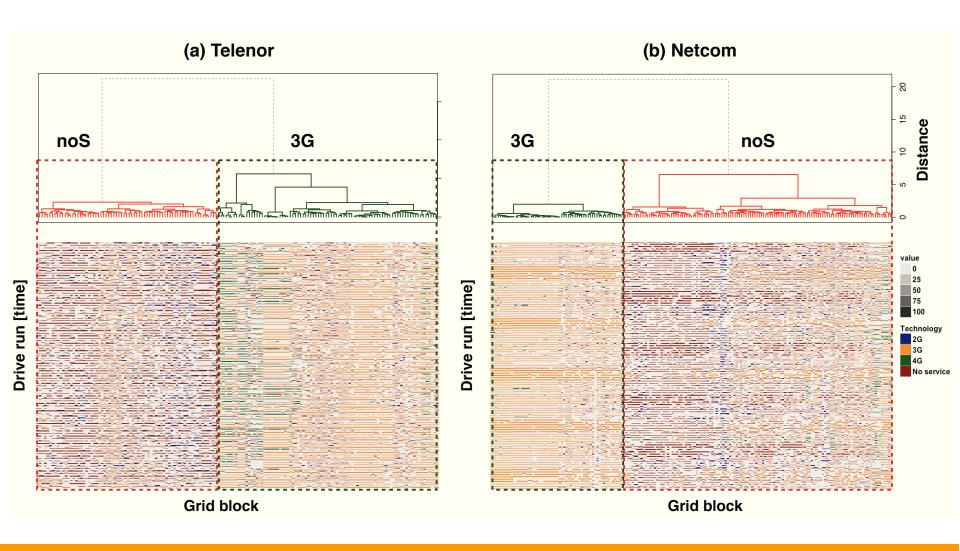
- 4 data points per grid block
- 70% of the drive runs traverse the grid block

Clustering - Similarity measure between grid blocks

- Clustering method
- **Hierarchical** - Optimal number of clusters with Silhouette index

- Derive the prevalent coverage profiles

Coverage Profiling Stability - Analysis of coverage profiling stability and drive run similarity


Analysis - Connection uptime analysis Performance

- Evaluation of the stationarity of packet loss per coverage profile

Clustering Approach

- Similarity measure: extended Jaccard measure
- Clustering method: average-link hierarchical clustering of time series (Ward's minimum variance method)
- Optimal number of clusters: validity index (Silhouette index)

Clustering Approach

Georeferenced **Dataset**

Clustering Approach

Coverage Profile Analysis

Raw data:

- Network metadata

Geo-tagged Data Points

- Network performance measurements
- **GPS** readings from the train system

Geo-referencing:

- Generate geotagged data points

Data Morphing Time series of coverage charts:

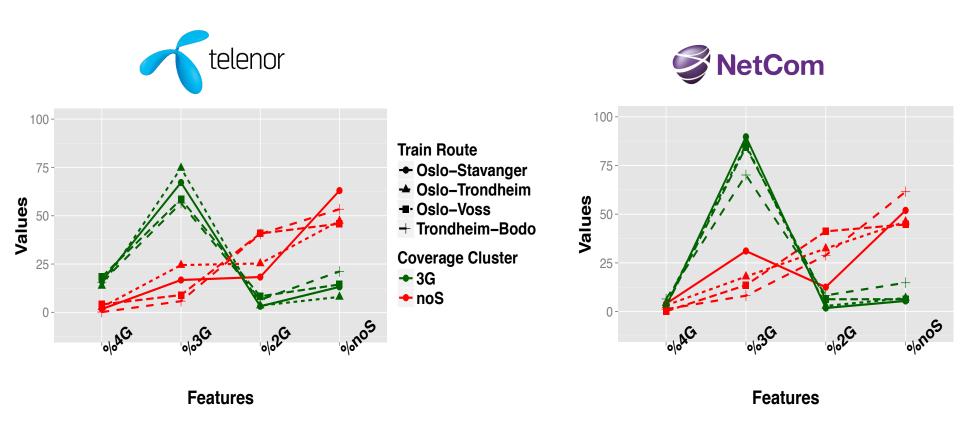
- Create grid blocks with fix spatial coordinates
- Generate the grid block coverage chart

Sifting **Minimum** thresholds

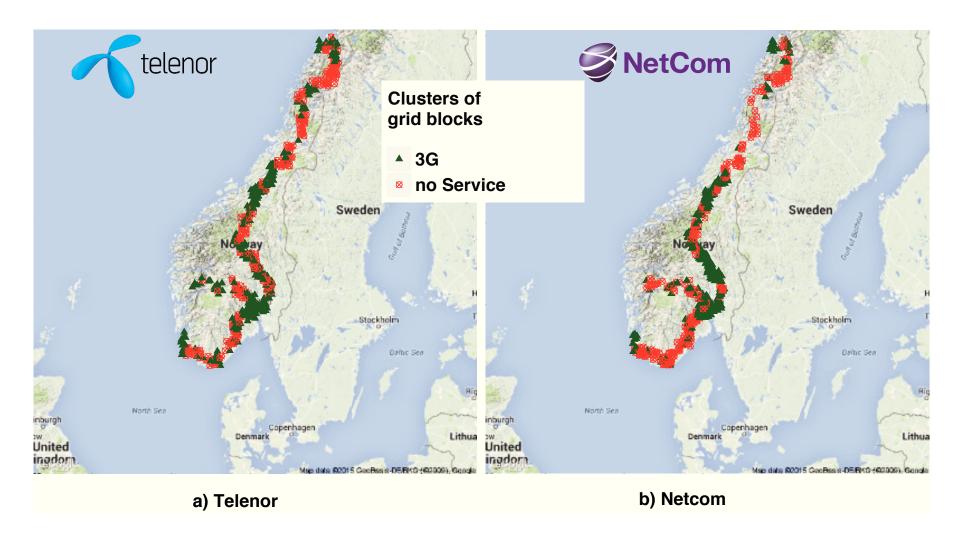
- 4 data points per grid block
- 70% of the drive runs traverse the grid block

Clustering - Similarity measure between grid blocks

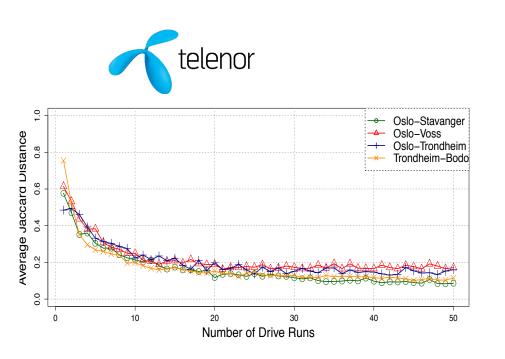
- Clustering method
- Hierarchical - Optimal number of clusters with Silhouette index

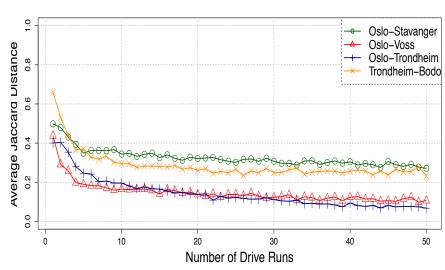

- Derive the prevalent coverage profiles

Coverage Profiling Stability - Analysis of coverage profiling stability and drive run similarity

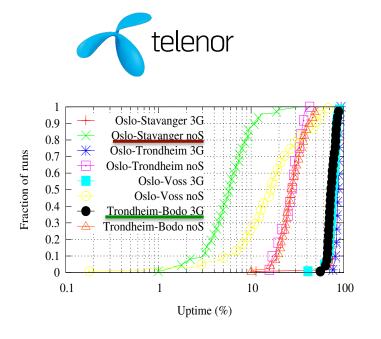

Analysis - Connection uptime analysis **Performance** - Evaluation

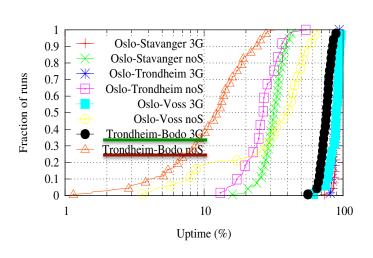
of the stationarity of packet loss per coverage profile


Prevalent Coverage Profiles

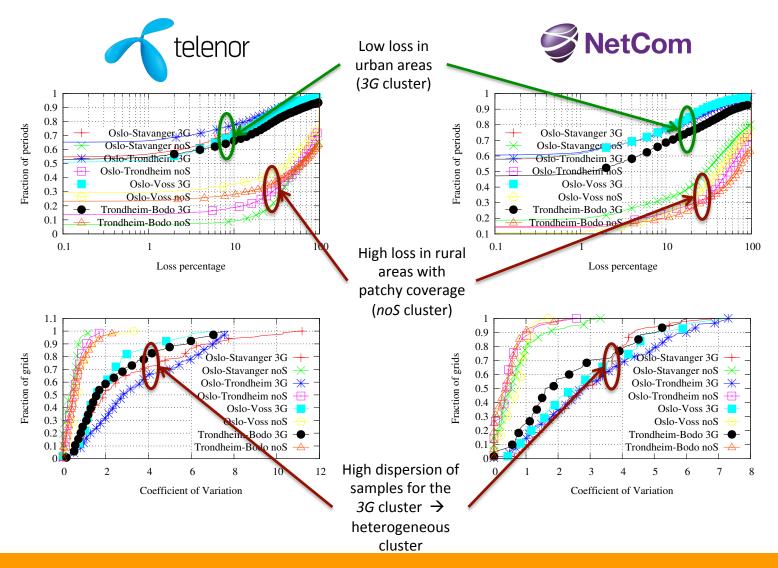

Coverage Profiles on the Map

Stability of Coverage Profiles and Similarity of Runs





Coverage Implications: Uptime


- Uptime = #UDP_packets/T, T = interval of interest
- Dominant-noS cluster shows low uptime
- Trondheim-Bodø worst performing "3G" cluster for both operators

Coverage Implications: Packet Loss

Recap

Georeferenced **Dataset**

Clustering Approach

Coverage Profile Analysis

Raw data:

- Network metadata

Geo-tagged Data Points

- Network performance measurements
- **GPS** readings from the train system

Geo-referencing:

- Generate geotagged data points

Data Morphing Time series of coverage charts:

- Create grid blocks with fix spatial coordinates
- Generate the grid block coverage chart

Sifting **Minimum** thresholds

- 4 data points per grid block
- 70% of the drive runs traverse the grid block

Clustering - Similarity measure between grid blocks

- Clustering method
- **Hierarchical** - Optimal number of clusters with Silhouette index

- Derive the prevalent coverage profiles

Coverage Profiling Stability - Analysis of coverage profiling stability and drive run similarity

Analysis - Connection uptime analysis **Performance**

- Evaluation of the stationarity of packet loss per coverage profile

For the future...

- Granularity of the coverage map
 - Higher granularity of the geo-tagged data points
 - Smaller size of the grid block
- Accuracy of coverage maps
 - Use spatial interpolation to generate more accurate
- Applications of the coverage maps
 - Dive into the correlation between the coverage profile and enduser experience
- With access to the mobile broadband connection of the railway system, compare effect of being inside the train
- Measurement node deployments in buses in Oslo better coverage map in urban areas