
28th Nordic Seminar on Computational Mechanics
NSCM-28

A. Berezovski, K.Tamm, T.Peets (Eds.)
c©TUT, Tallinn, 2015

PERSONALIZATION OF A CARDIAC
COMPUTATIONAL MODEL USING CLINICAL

MEASUREMENTS

HENRIK N. FINSBERG∗,‡, GABRIEL BALABAN∗,‡,
JOAKIM SUNDNES∗,‡, MARIE ROGNES∗, HANS-HENRIK

ODLAND†,‡, STIAN ROSS†,‡, SAMUEL WALL∗,‡

∗Simula Research Laboratory
Martin Linges v 17, Fornebu, Norway

e-mail: henriknf@simula.no, web page: http://www.simula.no/,

†Oslo University Hospital
Sognsvannsveien 20, 0372 Oslo,

‡Center for Cardiological Innovation
Songsvannsveien 9, 0372 Oslo

web page: http://www.heart-sfi.no

Key words: Cardiac Mechanics, Finite Element Method, Adjoint, PDE-constrained
Optimization, Parameter Estimation

Summary. Important features in cardiac mechanics that cannot easily be measured
in the clinic, can be computed using a computational model that is calibrated to
behave in the same way as a patient’s heart. To construct such a model, clinical
measurements such as strain, volume and cavity pressure are used to personalize
the mechanics of a cardiac computational model. The problem is formulated as a
PDE-constrained optimization problem where the minimization functional represents
the misfit between the measured and simulated data. The target parameters are
material parameters and a spatially varying contraction parameter. The minimization
is carried out using a gradient based optimization algorithm and an automatically
derived adjoint equation. The method has been tested on synthetic data, and is able
to reproduce a prescribed contraction pattern on the left ventricle.

1 INTRODUCTION

Abnormal stresses are hypothesized to be a key driver in remodelling processes
associated with heart failure1. However, it is impossible to measure stresses in vivo
in a human heart. This necessitates the use of computational models in cardiac
stress calculation. A key step to making calculated stresses useful for clinical practice
is patient specificity. This means that the calculated stresses should come from a
computational model that has been calibrated to behave in the same way as a patient’s
heart.
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In this study, we combine strain data obtained using 4D echocardiography meth-
ods, with left ventricular pressure and volume measurements in order to match simu-
lated ventricular mechanics to those observed in a patient. We formulate this match-
ing as a mathematical optimization problem in which we minimize the difference
between simulated and measured strains and volumes. As a result, we obtain patient
specific stress maps that can be used as guidance in the decision making for cardiac
treatments.

2 THE MECHANICAL MODEL

We model the heart as a continuum body with a reference configuration taken
at the beginning of the passive filling phase. To model the active contraction of the
heart we introduce a single spatially varying parameter γ = γ(x, t), and apply the
active strain formulation3. This is based on a multiplicative decomposition of the
deformation gradient,

F = FeFa, (1)

where Fe is the elastic part and Fa the active part of the deformation gradient.
Under the assumption that the active contraction is volume preserving and results in
a shortening in the fiber direction, the active deformation gradient takes the following
form

Fa = (1− γ)f0 ⊗ f0 +
1√

1− γ
(I− f0 ⊗ f0). (2)

The parameter γ is modeled as a smooth function over the domain and represents the
relative shortening of the fibers.

The myocardium is modeled as an incompressible, hyperelastic material. We use
a transversally isotropic version of the strain energy density function proposed by
Holzapfel and Ogden2,

W(Ce) =
a

2b

(
eb(I1−3) − 1

)
+

af
2bf

(
ebf (I4,f0−1)2+ − 1

)
. (3)

Here I1 is the first isotropic invariant of the elastic part of the right Cauchy-Green
tensor Ce = FTe Fe, I4,f0 = f0 · (Cef0) is the quasi-invariant with a preferred direction
along the fibers f0 and (·)+ = max{·, 0}.

3 PERSONALIZED SIMULATION

Left ventricular epicardial and endocardial surfaces are provided through 4D echocar-
diography. We use these two surfaces to generate and attach an artificial right ven-
tricle using an in-house algorithm. The mesh generation is done using Gmsh4. Since
measuring the myocardial fiber orientation is currently not possible using echocar-
diography methods, we apply the rule-based method proposed by Bayer et. al5 for
assigning myocardial fiber orientation. Cavity volume and average regional strain
for the left ventricle were measured in the left ventricle (LV) during a cardiac cycle
using 4D echocardiography6. Left ventricular pressure data were obtained invasively
by catheterization of each patient during later surgery. The pressure and volume
data has been synchronized in order to produce a pressure volume loop for each pa-
tient. The average regional strain is measured in the circumferential(ec), radial(er)
and longitudinal(el) direction relative to the LV. The heart Ω, is partitioned into 18
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regions, Ω =
⋃17
k=0 Ωk, with ΩLV =

⋃17
k=1 Ωk, and ΩRV = Ω0. The average regional

strain over the region Ωj in the direction ek can be approximated as

ε̃k,j =

∫
Ωj

eTk∇u· ek dx, (4)

where u is the displacement. Let N be the number of discrete measurements during a
cardiac cycle, and let NED be the number of points from the beginning of the passive
filling to end diastole. For point i = 1, · · · , N we define the strain misfit functional
as,

Iistrain =

17∑
j=1

∥∥W(εij − ε̃ij)
∥∥

2
, εij =

εic,jεir,j
εil,j

 , W = diag(ωc,j , ωr,j , ωl,j). (5)

The weights ωk,j are based on the quality of the strain measurement over the region
Ωj in the direction ek. The LV volume misfit functional is defined as

Iivol =
|Vi − Ṽi|

Vi
, Ṽi =

1

3

∫
∂Ωendo LV

(I + u)· JF−TN dS, (6)

where ∂Ωendo LV is the surface inside the left ventricular cavity. Because of noise in
the measurements, optimizing the strain only, does not necessarily lead to the correct
volume. On the other hand, optimizing only the volume, does not capture regional
differences that may be present due to a diseased heart. We therefore combine the
mismatch between the strain and volume into one single mismatch functional of the
form

Iiα = αIivol + (1− α)Iistrain. (7)

The parameter α controls how much weight is given to the volume matching versus
the strain matching.

During the passive filling there is assumed to be little or no active contraction.
This makes this phase suitable for estimating the material parameters. We select the
material parameter set m = (a, b, af , bf ) that minimizes the misfit functional for a
given value of α. In other words, we solve the following problem

minimize
m

NED∑
i=0

Iiα

subject to R(u, p) = 0.

(8)

Here R(u, p) = 0 denotes the force balance equation. From end diastole and through-
out the rest of the cardiac cycle we fix the material parameters so that γ determines
the motion. Thus, we are searching for γ that solves the following optimization prob-
lem:

minimize
γ(x,i)

Iiα + λ‖∇γ‖2L2(Ω)

subject to R(u, p) = 0,

γ(x, i) ∈ [0, 1), x ∈ Ω, i = NED + 1, · · · , N.

(9)

Here we have also introduced a regularization parameter λ that penalizes high values
of the gradient ∇γ.
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The solver is fully parallelized and based on the open–source framework FEniCS7.
To solve the PDE-constrained optimization problem we use a gradient based opti-
mization algorithm8 where the gradient is computed by solving the automatically
derived adjoint equation9.

4 CONCLUSION

Using clinical measurements coming from 4D echocardiography together with in-
vasive pressure measurements, we are able to personalize the mechanics of a cardiac
computational model. The model has been tested on synthetic data with a prescribed
sequence of contraction parameters. Results show that the model is able to reproduce
a similar contraction pattern on the LV when α ∈ [0, 1). This model can therefore be
used to visualize patient specific stress maps which may provide clinicians with useful
information about the heart’s condition.
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