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Motivation, Goal, and Tools

I Motivation: Data from many real-life acquisitions (signals, images,
etc.) are affected by noise of various distribution and intensity.

I Methods: Regularization-based approaches balance the
discrepancy between data and complexity of the solution, measured
by some norm (total variation, `1-norm etc.), depending on so-called
regularization parameter(s).

I Problem: To find appropriate regularization parameter in a fast way
is difficult.

I Goal: To learn the nonlinear function defined in high dimension that
describes the relation between special features of the data and the
optimal regularization parameter from a number of given examples.

I Tools: regularization methods, statistical learning theory, data
representation, probability theory, sparsity.
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Introduction
Problem Statement

Consider a linear inverse problem Y = AX + σW , where
I X ∈ Rd is the quantity of interest (e.g., ground truth image),
I A ∈ Rm×d is a measurement operator (e.g., convolution, mask),
I W ∈ Rm is a random variable / noise,
I Y ∈ Rm is the observed quantity (e.g., noisy image).

We consider regularization approaches, where the regularized solution
is given as the result of minimizing functionals of the type

Zα = argmin
z∈Rd

‖Az − Y‖2 + αJ(z).

Tikhonov regularization: J(z) = ‖z‖2
2,

Elastic-net regularization: J(z) = ‖z‖1 + ε‖z‖2
2,

`1−regularization: J(z) = ‖z‖1,

TV- regularization: J(z) =
∫
Ω |∇z |,

. . .
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Introduction
What about α choice?

I The optimal regularization parameter is given as{
α∗ = argminα∈(0,+∞) ‖Zα − X‖2

s.t. Zα = argminz∈Rd ‖Az − Y‖2 + αJ(z)

However , both X and σ are unknown.
I Techniques for regularization parameter choice:

I A priori choice rules based on the noise level and some knowledge
about the solution.

I A posteriori choice rules based on the datum Y and the noise level:
Examples: discrepancy principle, L-curve, balancing principle,
MSE-based methods, etc.

I Heuristic choice rules based on the datum Y :
Examples: quasi-balancing principle, quasi-optimality criterion,
generalized cross validation, etc.

I (Unsupervised) data-driven method for parameter selection.
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Introduction
Parameter learning under supervised machine learning setting

I Assume we are provided with {(Xi , Yi)}
n
i=1.

I We can compute the optimal parameters

(X1, Y1) → α∗1 = argmin
α∈(0,+∞)

‖Zα(Y1) − X1‖
. . . . . .

(Xn, Yn) → α∗n = argmin
α∈(0,+∞)

‖Zα(Yn) − Xn‖

I We want to compute α for previously unseen data: (??, Y )→ ᾱ

=⇒We want to find the regression function

R : Y 7→ ᾱ := R(Y ) =

∫∞
0
αdµ(α | Y ),

µ is the (unknown) joint distribution of (Y1,α
∗
1), . . . , (Yn,α

∗
n),

µ(· | Y ) is its conditional distribution, very much concentrated.
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Introduction
Parameter learning under supervised machine learning setting

I We want to find an approximation R̂ to the regression function R

using only (a small number of) samples n.
I We do not know the conditional distribution µ(· | Y ).
I The problem is known to be intractable (Novak & Wozniakowski ’09)

even for infinitely differentiable functions.
I The number of training points must grow exponentially in m.
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Introduction
Parameter learning under unsupervised machine learning setting

Conclusion: High smoothness does not help!

=⇒Way out: Solutions concentrate around lower dimensional sets
(manifolds), h� d .

Method idea:
I Using noisy samples {Yi }

n
i=1, construct an approximation X̂ to X ;

=⇒ does not depend on the regularisation method.

=⇒ require theoretical analysis for different model types.
I Find the optimal parameter α̂ as

α̂ = arg min R̂(Y ) and R̂(Y ) = ‖Zα(Y ) − X̂‖2.

=⇒ depends on the regularisation method.

=⇒ require development of efficient numerical methods.
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Problem setting
Empirical estimators

Consider Y = AX +σW such that
I X ∈ Rd has a sub-Gaussian distribution over a linear subspace V,

I dimV = rangeΣ(X) = h� d ,
I W is an independent sub-Gaussian vector with Σ(W) = I.

I We define the projection Π onto W, where W = AV.
I dimW = dimV = h.
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eigenvectors of Σ̂(Y) = 1
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=⇒ with high probability Π̂n ∼ Π and is unique for n = O(m) and small σ.
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I X ∈ Rd has a sub-Gaussian distribution over a linear subspace V,

I dimV = rangeΣ(X) = h� d ,
I W is an independent sub-Gaussian vector with Σ(W) = I.

I We define the empirical estimators of X and W as

X̂ = A†Π̂nY and Ŵ = (Y − Π̂nY),

which satisfies empirical inverse problem AX̂ + QŴ = QY and Q = AA†



Empirical estimators
Consider Y = AX +σW such that

I X ∈ Rd has a sub-Gaussian distribution over a linear subspace V,

I dimV = rangeΣ(X) = h� d ,
I W is an independent sub-Gaussian vector with Σ(W) = I.

I Let Ẑα(Y) = arg min‖Az − Qy‖+αJ(z). Then Ẑα(Y) = Zα(Y).
I We consider

α̂ = min‖Zα − X̂‖2.
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Parameter learning for different regularisation

{
α̂∗ = arg min ‖Zα − X̂‖2

s.t. Zα = argminz∈Rd ‖Az − Y‖2 + αJ(z)

I Tikhonov: J(z) = ‖z‖2
2, (Theoretical results)

I Elastic-net: J(z) = ‖z‖1 + ε‖z‖2
2, (Theoretical results)

I `1: J(z) = ‖z‖1, (Encouraging numerical results)
I TV: J(z) =

∫
Ω |∇z |. (Encouraging numerical results)

Z t = argmin
z∈Rd

(
t ‖Az − Y‖2 + (1 − t)J(z)

)
, t ∈ [0, 1]

⇐⇒

Zα = argmin
z∈Rd

‖Az − Y‖2 + αJ(z), α = (1 − t)/t ∈ [0,+∞]
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Optimal Parameter Choice
Minimizers

I Tikhonov minimizer

Z t
Tik = argmin

z∈Rd

(
t ‖Az − Y‖2 + (1 − t)‖z‖2)

=⇒ close-form solution exists
I Elastic-net minimizer

Z t
EN = argmin

z∈Rd

(
t ‖Az − Y‖2 + (1 − t)

[
‖z‖1 + ε‖z‖2])

=⇒ close form solution exists only when AT A = I,
=⇒otherwise, solution is given via soft-thresholding



Optimal Parameter Choice
Quadratic loss

We study the behaviour of the

I True quadratic loss

R(t) = ‖Z t − X‖2

I Empirical quadratic loss

R̂(t) = ‖Z t − X̂‖2
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When A is injective t̂∗ ∼ t∗
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Optimal Parameter Choice
Quadratic loss

We study the behaviour of the

I True quadratic loss

R(t) = ‖Z t − X‖2

I Empirical quadratic loss

R̂(t) = ‖Z t − X̂‖2

I Projected empirical loss

R̂p(t) = ‖PZ t−X̂‖2, P = A†A

I Modified projected loss

R̂m(t) = ‖AZ t − Π̂y‖2
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Optimal Parameter Choice
Tikhonov regularisation with A = I

Theorem (De Vito, Fornasier, Naumova)

For τ > 1 with probability greater than 1 − 6 exp−τ2

|̂t∗ − t∗| 6
1
λh

(√
d
n
+

τ√
n
+ σ2

)
+
τ

d
(
√

h + τ)

for n = O(d) and λh > 0 is the smallest non-zero eigenvalue of Σ(Ax).

I Explicit formula for calculating t̂∗.
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Optimal Parameter Choice
Elastic-net with A = I and Bernoulli noise

Theorem (De Vito, Kereta, Naumova)

For τ > 0 with probability of at least 1 − 2 exp−τ

|̂t∗ − t∗| 6
λ1

λh

(√
h + τ+ σ2m

n
+

h + τ+ σ2m
n

)
+ σ

√
h
m

for n = O(h + m) and λ1 > λh > 0 is the largest and the smallest
non-zero eigenvalue of Σ(Ax).

I Existence and uniqueness results for bounded noise.
I OptEN Algorithm for finding t̂∗ using a line search method.
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Numerical Examples
Parameter learning for Tikhonov regularization

Data:
I {(Xi , Yi)}

n
i=1, n = 50.

I Xi ∈ R1000, Yi ∈ R60, and σ = 0.06 .
I X ∈ V for V = span{e1, e2, . . . , e5}.
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Figure: Empirical distribution of the optimal parameters t∗ (left) and the learned
parameter t̂∗ (right), n = 1000.



Numerical Examples
Parameter learning for Elastic-net

Data:
I {(Xi , Yi)}

n
i=1, n = 50.

I Xi ∈ R100, Yi ∈ R500, and σ ∈ [0.1, 0.5].
I X ∈ V for V = span{e1, e2, . . . , e10}.

Compare with state-of-the-art parameter
choice methods

I discrepancy principle (dp)

I balancing principle (bp)

I non-linear generalised
cross-validation (ngcv)

I ....



Numerical Examples
Image denoising using Elastic-net



Numerical Examples
Image denoising using Elastic-net

OptEN delivers the best PSNR and SSIM for all images for various noise levels



Numerical Examples
Image denoising using TV



Numerical Examples
Image denoising using TV



Conclusion and Future Directions

Conclusion:

I Unsupervised machine learning approach for optimal regularization:

I Theoretical results for data-driven parameter learning in Tikhonov and
Elastic-net;

I Practical implementation of the method;
I Promising numerical results for TV-regularization.

I The approach determines the parameter that allows for achievement of the same
quality of reconstruction in terms of PSNR and visual quality as the optimal parameter.

Future direction:
I Theoretical results for V being a lower-dimensional nonlinear manifold;

I Theoretical results when X belongs to unions of linear subspaces;

I Consider different noise models (results of J. C. Reyes and C. Schönlieb ’13, ’16);

I Applicability of the method for practical problems.
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