# A machine learning approach to optimal regularization: Affine Manifolds

Valeriya Naumova

(joint work with Ernesto De Vito, Massimo Fornasier, Zeljko Kereta)

Simula Research Laboratory AS

Department of Mathematical Sciences, NTNU, 18 September 2018

- ▶ **Motivation:** Data from many real-life acquisitions (signals, images, etc.) are affected by noise of various distribution and intensity.
- ► Methods: Regularization-based approaches balance the discrepancy between data and complexity of the solution, measured by some norm (total variation, ℓ₁-norm etc.), depending on so-called regularization parameter(s).
- Problem: To find appropriate regularization parameter in a fast way is difficult.
- Goal: To learn the nonlinear function defined in high dimension that describes the relation between special features of the data and the optimal regularization parameter from a number of given examples.
- ► **Tools:** regularization methods, statistical learning theory, data representation, probability theory, sparsity.

- ▶ **Motivation:** Data from many real-life acquisitions (signals, images, etc.) are affected by noise of various distribution and intensity.
- Methods: Regularization-based approaches balance the discrepancy between data and complexity of the solution, measured by some norm (total variation, ℓ₁-norm etc.), depending on so-called regularization parameter(s).
- Problem: To find appropriate regularization parameter in a fast way is difficult.
- Goal: To learn the nonlinear function defined in high dimension that describes the relation between special features of the data and the optimal regularization parameter from a number of given examples.
- Tools: regularization methods, statistical learning theory, data representation, probability theory, sparsity.

- ▶ Motivation: Data from many real-life acquisitions (signals, images, etc.) are affected by noise of various distribution and intensity.
- ▶ **Methods:** Regularization-based approaches balance the discrepancy between data and complexity of the solution, measured by some norm (total variation, ℓ₁-norm etc.), depending on so-called regularization parameter(s).
- Problem: To find appropriate regularization parameter in a fast way is difficult.
- ▶ Goal: To learn the nonlinear function defined in high dimension that describes the relation between special features of the data and the optimal regularization parameter from a number of given examples.
- Tools: regularization methods, statistical learning theory, data representation, probability theory, sparsity.

- ▶ **Motivation:** Data from many real-life acquisitions (signals, images, etc.) are affected by noise of various distribution and intensity.
- Methods: Regularization-based approaches balance the discrepancy between data and complexity of the solution, measured by some norm (total variation, ℓ₁-norm etc.), depending on so-called regularization parameter(s).
- Problem: To find appropriate regularization parameter in a fast way is difficult.
- ▶ **Goal:** To learn the nonlinear function defined in high dimension that describes the relation between special features of the data and the optimal regularization parameter from a number of given examples.
- ► **Tools:** regularization methods, statistical learning theory, data representation, probability theory, sparsity.

#### **Problem Statement**

Consider a linear inverse problem  $Y = AX + \sigma W$ , where

- $lacksquare X \in \mathbb{R}^d$  is the quantity of interest (e.g., ground truth image),
- ▶  $A \in \mathbb{R}^{m \times d}$  is a measurement operator (e.g., convolution, mask),
- $V \in \mathbb{R}^m$  is a random variable / noise,
- ▶  $Y \in \mathbb{R}^m$  is the observed quantity (e.g., noisy image).

We consider regularization approaches, where the **regularized solution** is given as the result of minimizing functionals of the type

$$Z^{\alpha} = \underset{z \in \mathbb{R}^d}{\operatorname{argmin}} \|Az - Y\|^2 + \alpha J(z).$$

#### **Problem Statement**

Consider a linear inverse problem  $Y = AX + \sigma W$ , where

- $lacksquare X \in \mathbb{R}^d$  is the quantity of interest (e.g., ground truth image),
- $ightharpoonup A \in \mathbb{R}^{m \times d}$  is a measurement operator (e.g., convolution, mask),
- $V \in \mathbb{R}^m$  is a random variable / noise,
- ▶  $Y \in \mathbb{R}^m$  is the observed quantity (e.g., noisy image).

We consider regularization approaches, where the **regularized solution** is given as the result of minimizing functionals of the type

$$Z^{\alpha} = \operatorname*{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z).$$

#### **Problem Statement**

Consider a linear inverse problem  $Y = AX + \sigma W$ , where

- $lacksquare X \in \mathbb{R}^d$  is the quantity of interest (e.g., ground truth image),
- ▶  $A \in \mathbb{R}^{m \times d}$  is a measurement operator (e.g., convolution, mask),
- ▶  $W \in \mathbb{R}^m$  is a random variable / noise,
- ▶  $Y \in \mathbb{R}^m$  is the observed quantity (e.g., noisy image).

We consider regularization approaches, where the **regularized solution** is given as the result of minimizing functionals of the type

$$Z^{\alpha} = \operatorname*{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z).$$

- ► Tikhonov regularization:  $J(z) = ||z||_2^2$ ,
- ► Elastic-net regularization:  $J(z) = ||z||_1 + \epsilon ||z||_2^2$ ,
- $\ell_1$ —regularization:  $J(z) = ||z||_1$ ,
- ▶ TV- regularization:  $J(z) = \int_{\Omega} |\nabla z|$ ,
- **.** . . .

#### What about $\alpha$ choice?

The optimal regularization parameter is given as

$$\begin{cases} \alpha^* = \operatorname{argmin}_{\alpha \in (0, +\infty)} \|Z^{\alpha} - X\|^2 \\ \text{s.t. } Z^{\alpha} = \operatorname{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z) \end{cases}$$

- Techniques for regularization parameter choice:
  - A priori choice rules based on the noise level and some knowledge about the solution.
  - A posteriori choice rules based on the datum Y and the noise level:
     Examples: discrepancy principle, L-curve, balancing principle,
     MSE-based methods, etc.
  - Heuristic choice rules based on the datum Y:
     Examples: quasi-balancing principle, quasi-optimality criterion, generalized cross validation, etc.
- ▶ (Unsupervised) data-driven method for parameter selection.

#### What about $\alpha$ choice?

The optimal regularization parameter is given as

$$\begin{cases} \alpha^* = \operatorname{argmin}_{\alpha \in (0, +\infty)} \|Z^{\alpha} - X\|^2 \\ \text{s.t. } Z^{\alpha} = \operatorname{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z) \end{cases}$$

- Techniques for regularization parameter choice:
  - A priori choice rules based on the noise level and some knowledge about the solution.
  - A posteriori choice rules based on the datum Y and the noise level:
     Examples: discrepancy principle, L-curve, balancing principle,
     MSE-based methods, etc.
  - Heuristic choice rules based on the datum Y:
     Examples: quasi-balancing principle, quasi-optimality criterion, generalized cross validation, etc.
- (Unsupervised) data-driven method for parameter selection.

#### What about $\alpha$ choice?

The optimal regularization parameter is given as

$$\begin{cases} \alpha^* = \operatorname{argmin}_{\alpha \in (0,+\infty)} \|Z^{\alpha} - X\|^2 \\ \text{s.t. } Z^{\alpha} = \operatorname{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z) \end{cases}$$

- Techniques for regularization parameter choice:
  - A priori choice rules based on the noise level and some knowledge about the solution.
  - A posteriori choice rules based on the datum Y and the noise level:
     Examples: discrepancy principle, L-curve, balancing principle,
     MSE-based methods, etc.
  - Heuristic choice rules based on the datum Y:
     Examples: quasi-balancing principle, quasi-optimality criterion, generalized cross validation, etc.
- (Unsupervised) data-driven method for parameter selection

What about  $\alpha$  choice?

The optimal regularization parameter is given as

$$\begin{cases} \alpha^* = \operatorname{argmin}_{\alpha \in (0,+\infty)} \|Z^{\alpha} - X\|^2 \\ \text{s.t. } Z^{\alpha} = \operatorname{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z) \end{cases}$$

- Techniques for regularization parameter choice:
  - A priori choice rules based on the noise level and some knowledge about the solution.
  - A posteriori choice rules based on the datum Y and the noise level:
     Examples: discrepancy principle, L-curve, balancing principle,
     MSE-based methods, etc.
  - Heuristic choice rules based on the datum Y:
     Examples: quasi-balancing principle, quasi-optimality criterion, generalized cross validation, etc.
- ► (Unsupervised) data-driven method for parameter selection.

Parameter learning under supervised machine learning setting

- Assume we are provided with  $\{(X_i, Y_i)\}_{i=1}^n$ .
- We can compute the optimal parameters

$$(X_{1}, Y_{1}) \rightarrow \alpha_{1}^{*} = \underset{\alpha \in (0, +\infty)}{\operatorname{argmin}} \|Z^{\alpha}(Y_{1}) - X_{1}\|$$

$$\dots \qquad \dots$$

$$(X_{n}, Y_{n}) \rightarrow \alpha_{n}^{*} = \underset{\alpha \in (0, +\infty)}{\operatorname{argmin}} \|Z^{\alpha}(Y_{n}) - X_{n}\|$$

We want to compute  $\alpha$  for previously unseen data:  $(??, Y) \rightarrow \bar{\alpha}$   $\Longrightarrow$  We want to find the regression function

$$\mathcal{R}: Y \mapsto \bar{\alpha} := \mathcal{R}(Y) = \int_0^\infty \alpha d\mu(\alpha \mid Y),$$

 $\mu$  is the (unknown) joint distribution of  $(Y_1, \alpha_1^*), \ldots, (Y_n, \alpha_n^*), \mu(\cdot \mid Y)$  is its conditional distribution, very much concentrated

Parameter learning under supervised machine learning setting

- Assume we are provided with  $\{(X_i, Y_i)\}_{i=1}^n$ .
- We can compute the optimal parameters

$$(X_1, Y_1) \rightarrow \alpha_1^* = \underset{\alpha \in (0, +\infty)}{\operatorname{argmin}} \|Z^{\alpha}(Y_1) - X_1\|$$

$$\dots \qquad \dots$$

$$(X_n, Y_n) \rightarrow \alpha_n^* = \underset{\alpha \in (0, +\infty)}{\operatorname{argmin}} \|Z^{\alpha}(Y_n) - X_n\|$$

We want to compute  $\alpha$  for previously unseen data:  $(??, Y) \rightarrow \bar{\alpha}$ We want to find the regression function

$$\mathcal{R}: Y \mapsto \bar{\alpha} := \mathcal{R}(Y) = \int_0^\infty \alpha d\mu(\alpha \mid Y),$$

 $\mu$  is the (unknown) joint distribution of  $(Y_1, \alpha_1^*), \ldots, (Y_n, \alpha_n^*), \mu(\cdot \mid Y)$  is its conditional distribution, very much concentrated

Parameter learning under supervised machine learning setting

- ▶ Assume we are provided with  $\{(X_i, Y_i)\}_{i=1}^n$ .
- We can compute the optimal parameters

$$(X_{1}, Y_{1}) \rightarrow \alpha_{1}^{*} = \underset{\alpha \in (0, +\infty)}{\operatorname{argmin}} \|Z^{\alpha}(Y_{1}) - X_{1}\|$$

$$\dots \qquad \dots$$

$$(X_{n}, Y_{n}) \rightarrow \alpha_{n}^{*} = \underset{\alpha \in (0, +\infty)}{\operatorname{argmin}} \|Z^{\alpha}(Y_{n}) - X_{n}\|$$

We want to compute  $\alpha$  for previously unseen data:  $(??, Y) \rightarrow \bar{\alpha}$   $\Longrightarrow$  We want to find the regression function

$$\mathcal{R}: Y \mapsto \bar{\alpha} := \mathcal{R}(Y) = \int_0^\infty \alpha d\mu(\alpha \mid Y),$$

 $\mu$  is the (unknown) joint distribution of  $(Y_1, \alpha_1^*), \ldots, (Y_n, \alpha_n^*), \mu(\cdot \mid Y)$  is its conditional distribution, very much concentrated.

Parameter learning under supervised machine learning setting



- We want to find an approximation  $\hat{\mathbb{R}}$  to the regression function  $\mathbb{R}$  using only (a small number of) samples n.
- ▶ We do not know the conditional distribution  $\mu(\cdot \mid Y)$ .
- ► The problem is known to be intractable (Novak & Wozniakowski '09) even for infinitely differentiable functions.
- ▶ The number of training points must grow exponentially in *m*.

Parameter learning under supervised machine learning setting



- We want to find an approximation  $\hat{\mathbb{R}}$  to the regression function  $\mathbb{R}$  using only (a small number of) samples n.
- ▶ We do not know the conditional distribution  $\mu(\cdot \mid Y)$ .
- ► The problem is known to be intractable (Novak & Wozniakowski '09) even for infinitely differentiable functions.
- ▶ The number of training points must grow exponentially in *m*.

Parameter learning under supervised machine learning setting



- We want to find an approximation  $\hat{\mathbb{R}}$  to the regression function  $\mathbb{R}$  using only (a small number of) samples n.
- ▶ We do not know the conditional distribution  $\mu(\cdot \mid Y)$ .
- ► The problem is known to be intractable (Novak & Wozniakowski '09) even for infinitely differentiable functions.
- ▶ The number of training points must grow exponentially in *m*.

Parameter learning under unsupervised machine learning setting

### Conclusion: High smoothness does not help!

 $\Longrightarrow$  Way out: Solutions concentrate around lower dimensional sets (manifolds),  $h \ll d$ .

- Using noisy samples {Y<sub>i</sub>}<sup>n</sup><sub>i=1</sub>, construct an approximation X to X;
   ⇒ does not depend on the regularisation method.
   ⇒ require theoretical analysis for different model types.
- Find the optimal parameter  $\hat{\alpha}$  as

$$\hat{\alpha} = \arg\min \widehat{\mathcal{R}}(Y)$$
 and  $\widehat{\mathcal{R}}(Y) = \|Z^{\alpha}(Y) - \widehat{X}\|^2$ 

- ⇒ depends on the regularisation method
- ⇒ require development of efficient numerical methods

Parameter learning under unsupervised machine learning setting

Conclusion: High smoothness does not help!

 $\implies$  Way out: Solutions concentrate around lower dimensional sets (manifolds),  $h \ll d$ .

- Using noisy samples {Y<sub>i</sub>}<sup>n</sup><sub>i=1</sub>, construct an approximation X to X;
   ⇒ does not depend on the regularisation method.
- Find the optimal parameter  $\hat{\alpha}$  as

$$\hat{\alpha} = \arg\min \widehat{\mathcal{R}}(Y) \text{ and } \widehat{\mathcal{R}}(Y) = \|Z^{\alpha}(Y) - \widehat{X}\|^2.$$

- → depends on the regularisation method
- > require development of efficient numerical methods

Parameter learning under unsupervised machine learning setting

Conclusion: High smoothness does not help!

 $\implies$  Way out: Solutions concentrate around lower dimensional sets (manifolds),  $h \ll d$ .

- ▶ Using noisy samples  $\{Y_i\}_{i=1}^n$ , construct an approximation  $\widehat{X}$  to X;
  - ⇒ does not depend on the regularisation method.
  - ⇒ require theoretical analysis for different model types.
- Find the optimal parameter  $\hat{\alpha}$  as

$$\hat{lpha}=rg\min\widehat{\mathbb{R}}(Y)$$
 and  $\widehat{\mathbb{R}}(Y)=\|Z^lpha(Y)-\widehat{X}\|^2$ .

- ⇒ depends on the regularisation method
- ⇒ require development of efficient numerical methods

Parameter learning under unsupervised machine learning setting

Conclusion: High smoothness does not help!

 $\implies$  Way out: Solutions concentrate around lower dimensional sets (manifolds),  $h \ll d$ .

- ▶ Using noisy samples  $\{Y_i\}_{i=1}^n$ , construct an approximation  $\widehat{X}$  to X;
  - $\Longrightarrow$  does not depend on the regularisation method.
  - ⇒ require theoretical analysis for different model types.
- Find the optimal parameter  $\hat{\alpha}$  as

$$\hat{\alpha} = \arg\min \widehat{\mathcal{R}}(Y)$$
 and  $\widehat{\mathcal{R}}(Y) = \|Z^{\alpha}(Y) - \widehat{X}\|^2$ 

- ⇒ depends on the regularisation method
- ⇒ require development of efficient numerical methods

Parameter learning under unsupervised machine learning setting

Conclusion: High smoothness does not help!

 $\implies$  Way out: Solutions concentrate around lower dimensional sets (manifolds),  $h \ll d$ .

- ▶ Using noisy samples  $\{Y_i\}_{i=1}^n$ , construct an approximation  $\widehat{X}$  to X;
  - $\Longrightarrow$  does not depend on the regularisation method.
  - ⇒ require theoretical analysis for different model types.
- Find the optimal parameter  $\hat{\alpha}$  as

$$\widehat{\alpha} = \arg\min \widehat{\mathfrak{R}}(\mathbf{\mathit{Y}}) \text{ and } \widehat{\mathfrak{R}}(\mathbf{\mathit{Y}}) = \|\mathbf{\mathit{Z}}^{\alpha}(\mathbf{\mathit{Y}}) - \widehat{\mathbf{\mathit{X}}}\|^{2}.$$

- ⇒ depends on the regularisation method.
- ⇒ require development of efficient numerical methods.

#### Parameter learning under unsupervised machine learning setting

Conclusion: High smoothness does not help!

 $\implies$  Way out: Solutions concentrate around lower dimensional sets (manifolds),  $h \ll d$ .

- ▶ Using noisy samples  $\{Y_i\}_{i=1}^n$ , construct an approximation  $\widehat{X}$  to X;
  - $\Longrightarrow$  does not depend on the regularisation method.
  - ⇒ require theoretical analysis for different model types.
- Find the optimal parameter  $\hat{\alpha}$  as

$$\hat{\alpha} = \arg\min \widehat{\mathcal{R}}(Y) \text{ and } \widehat{\mathcal{R}}(Y) = \|Z^{\alpha}(Y) - \widehat{X}\|^2$$

- depends on the regularisation method
- ⇒ require development of efficient numerical methods.

# **Problem setting**

#### **Empirical estimators**

Consider  $Y = AX + \sigma W$  such that

- $X \in \mathbb{R}^d$  has a sub-Gaussian distribution over a linear subspace  $\mathcal{V}$ ,
- ▶ dim  $\mathcal{V}$  = range  $\Sigma(X) = h \ll d$ ,
- ▶ *W* is an independent sub-Gaussian vector with  $\Sigma(W) = \mathbb{I}$ .



- ▶ We define the projection  $\Pi$  onto  $\mathcal{W}$ , where  $\mathcal{W} = A\mathcal{V}$ .
- $\rightarrow$  dim  $\mathcal{W}$  dim  $\mathcal{V}$  h

# **Problem setting**

#### **Empirical estimators**

Consider  $Y = AX + \sigma W$  such that

- lacksquare  $X \in \mathbb{R}^d$  has a sub-Gaussian distribution over a linear subspace  $\mathcal{V}$ ,
- ▶ dim  $\mathcal{V}$  = range  $\Sigma(X) = h \ll d$ ,
- ▶ *W* is an independent sub-Gaussian vector with  $\Sigma(W) = \mathbb{I}$ .



- ▶ We define the projection  $\Pi$  onto  $\mathcal{W}$ , where  $\mathcal{W} = A\mathcal{V}$ .
- $ightharpoonup \dim \mathcal{V} = \dim \mathcal{V} = h.$

Consider  $Y = AX + \sigma W$  such that

- $X \in \mathbb{R}^d$  has a sub-Gaussian distribution over a linear subspace  $\mathcal{V}$ ,
- ▶ dim  $\mathcal{V}$  = range  $\Sigma(X) = h \ll d$ ,
- W is an independent sub-Gaussian vector with  $\Sigma(W) = \mathbb{I}$ .



▶ We define the empirical projection  $\widehat{\Pi}_n$  onto the space spanned by the first h eigenvectors of  $\widehat{\Sigma}(Y) = \frac{1}{n} \sum_{i=1}^{n} Y_i \otimes Y_i$ .

 $\implies$  with high probability  $\Pi_n \sim \Pi$  and is unique for n = O(m) and small  $\sigma$ 

Consider  $Y = AX + \sigma W$  such that

- $X \in \mathbb{R}^d$  has a sub-Gaussian distribution over a linear subspace  $\mathcal{V}$ ,
- ▶ dim  $\mathcal{V}$  = range  $\Sigma(X) = h \ll d$ ,
- ▶ *W* is an independent sub-Gaussian vector with  $\Sigma(W) = \mathbb{I}$ .



- ▶ We define the empirical projection  $\widehat{\Pi}_n$  onto the space spanned by the first h eigenvectors of  $\widehat{\Sigma}(Y) = \frac{1}{n} \sum_{i=1}^{n} Y_i \otimes Y_i$ .
  - $\implies$  with high probability  $\widehat{\Pi}_n \sim \Pi$  and is unique for n = O(m) and small  $\sigma$ .

Consider  $Y = AX + \sigma W$  such that

- lacksquare  $X \in \mathbb{R}^d$  has a sub-Gaussian distribution over a linear subspace  $\mathcal{V}$ ,
- ▶ dim  $\mathcal{V}$  = range  $\Sigma(X) = h \ll d$ ,
- ▶ *W* is an independent sub-Gaussian vector with  $\Sigma(W) = \mathbb{I}$ .



 $\triangleright$  We define the empirical estimators of X and W as

$$\widehat{X} = A^{\dagger} \widehat{\Pi}_n Y$$
 and  $\widehat{W} = (Y - \widehat{\Pi}_n Y)$ ,

which satisfies empirical inverse problem  $A\widehat{X} + Q\widehat{W} = QY$  and  $Q = AA^{\dagger}$ 

Consider  $Y = AX + \sigma W$  such that

- $X \in \mathbb{R}^d$  has a sub-Gaussian distribution over a linear subspace  $\mathcal{V}$ ,
- ▶ dim  $\mathcal{V}$  = range  $\Sigma(X) = h \ll d$ ,
- ▶ *W* is an independent sub-Gaussian vector with  $\Sigma(W) = \mathbb{I}$ .



- Let  $\widehat{Z}^{\alpha}(Y) = \arg \min \|Az Qy\| + \alpha J(z)$ . Then  $\widehat{Z}^{\alpha}(Y) = Z^{\alpha}(Y)$ .
- We consider

$$\hat{\alpha} = \min \|Z^{\alpha} - \hat{X}\|^2$$
.

#### Parameter learning under unsupervised machine learning setting

Conclusion: High smoothness does not help!  $\implies$  Way out: Solutions concentrate around lower dimensional sets (manifolds),  $h \ll d$ .

- Using noisy samples {Y<sub>i</sub>}<sup>n</sup><sub>i=1</sub>, construct an approximation X to X;
   ⇒ does not depend on the regularisation method.
   ⇒ require theoretical analysis for different model types.
- Find the optimal parameter  $\hat{\alpha}$  as

$$\widehat{\alpha} = \arg\min \widehat{\mathfrak{R}}(Y) \text{ and } \widehat{\mathfrak{R}}(Y) = \|Z^{\alpha}(Y) - \widehat{X}\|^2.$$

- ⇒ depends on the regularisation method.
- $\Longrightarrow$  require development of efficient numerical methods.

$$\begin{cases} \hat{\alpha}^* = \arg\min \|Z^{\alpha} - \widehat{X}\|^2 \\ \text{s.t. } Z^{\alpha} = \operatorname{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z) \end{cases}$$

- ▶ **Tikhonov:**  $J(z) = ||z||_2^2$ , (Theoretical results)
- ▶ Elastic-net:  $J(z) = ||z||_1 + \epsilon ||z||_2^2$ , (Theoretical results)
- ▶  $\ell_1$ :  $J(z) = ||z||_1$ , (Encouraging numerical results)
- ▶ **TV:**  $J(z) = \int_{\Omega} |\nabla z|$ . (Encouraging numerical results)

$$Z^{t} = \underset{z \in \mathbb{R}^{d}}{\operatorname{argmin}} (t ||Az - Y||^{2} + (1 - t)J(z)), \quad t \in [0, 1]$$

 $\langle - \rangle$ 

$$Z^{\alpha} = \operatorname*{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z), \quad \alpha = (1 - t)/t \in [0, +\infty]$$

$$\begin{cases} \hat{\alpha}^* = \arg\min \|Z^{\alpha} - \widehat{X}\|^2 \\ \text{s.t. } Z^{\alpha} = \operatorname{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z) \end{cases}$$

- ▶ Tikhonov:  $J(z) = ||z||_2^2$ , (Theoretical results)
- ▶ Elastic-net:  $J(z) = ||z||_1 + \epsilon ||z||_2^2$ , (Theoretical results)
- ▶  $\ell_1$ :  $J(z) = ||z||_1$ , (Encouraging numerical results)
- ▶ **TV:**  $J(z) = \int_{\Omega} |\nabla z|$ . (Encouraging numerical results)

$$Z^{t} = \underset{z \in \mathbb{R}^{d}}{\operatorname{argmin}} \left( t \|Az - Y\|^{2} + (1 - t)J(z) \right), \quad t \in [0, 1]$$

 $\Leftrightarrow$ 

$$Z^{lpha} = \mathop{\mathrm{argmin}}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + lpha J(z), \quad lpha = (1 - t)/t \in [0, +\infty]$$

$$\begin{cases} \hat{\alpha}^* = \arg\min \|Z^{\alpha} - \widehat{X}\|^2 \\ \text{s.t. } Z^{\alpha} = \operatorname{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z) \end{cases}$$

- ▶ **Tikhonov:**  $J(z) = ||z||_2^2$ , (Theoretical results)
- ▶ Elastic-net:  $J(z) = ||z||_1 + \epsilon ||z||_2^2$ , (Theoretical results)
- $\ell_1$ :  $J(z) = ||z||_1$ , (Encouraging numerical results)
- **TV:**  $J(z) = \int_{\Omega} |\nabla z|$ . (Encouraging numerical results)

$$Z^{t} = \underset{z \in \mathbb{R}^{d}}{\operatorname{argmin}} \left( t \|Az - Y\|^{2} + (1 - t)J(z) \right), \quad t \in [0, 1]$$

$$Z^{\alpha} = \operatorname*{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z), \quad \alpha = (1 - t)/t \in [0, +\infty]$$

$$\begin{cases} \hat{\alpha}^* = \arg\min \|Z^{\alpha} - \widehat{X}\|^2 \\ \text{s.t. } Z^{\alpha} = \operatorname{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z) \end{cases}$$

- ▶ Tikhonov:  $J(z) = ||z||_2^2$ , (Theoretical results)
- ▶ Elastic-net:  $J(z) = ||z||_1 + \epsilon ||z||_2^2$ , (Theoretical results)
- $\ell_1$ :  $J(z) = ||z||_1$ , (Encouraging numerical results)
- **TV:**  $J(z) = \int_{\Omega} |\nabla z|$ . (Encouraging numerical results)

$$Z^{t} = \underset{z \in \mathbb{R}^{d}}{\operatorname{argmin}} \left( t \|Az - Y\|^{2} + (1 - t)J(z) \right), \quad t \in [0, 1]$$

$$Z^{\alpha} = \operatorname*{argmin}_{z \in \mathbb{R}^d} \|Az - Y\|^2 + \alpha J(z), \quad \alpha = (1-t)/t \in [0, +\infty]$$

# **Optimal Parameter Choice**

Minimizers

▶ Tikhonov minimizer

$$Z_{\textit{Tik}}^t = \operatorname*{argmin}_{z \in \mathbb{R}^d} \left( t \, \| \textit{Az} - \textit{Y} \|^2 + (1-t) \|z\|^2 \right)$$

- ⇒ close-form solution exists
- Elastic-net minimizer

$$Z_{EN}^{t} = \underset{z \in \mathbb{R}^{d}}{\operatorname{argmin}} \left( t \|Az - Y\|^{2} + (1 - t) \left[ \|z\|_{1} + \epsilon \|z\|^{2} \right] \right)$$

- $\implies$  close form solution exists only when  $A^TA = \mathbb{I}$ ,
- ⇒otherwise, solution is given via soft-thresholding

**Quadratic loss** 

We study the behaviour of the

► True quadratic loss

$$R(t) = ||Z^t - X||^2$$

Empirical quadratic loss

$$\widehat{R}(t) = \|Z^t - \widehat{X}\|^2$$



When *A* is injective  $\hat{t}^* \sim t^*$ 

**Quadratic loss** 

We study the behaviour of the

► True quadratic loss

$$R(t) = ||Z^t - X||^2$$

Empirical quadratic loss

$$\widehat{R}(t) = \|Z^t - \widehat{X}\|^2$$



When A is non injective  $\hat{t}^* \nsim t^*$ 

**Quadratic loss** 

We study the behaviour of the

► True quadratic loss

$$R(t) = ||Z^t - X||^2$$

Empirical quadratic loss

$$\widehat{R}(t) = \|Z^t - \widehat{X}\|^2$$

Projected empirical loss

$$\widehat{R}_{p}(t) = \|PZ^{t} - \widehat{X}\|^{2}, \quad P = A^{\dagger}A$$

Modified projected loss

$$\widehat{R}_m(t) = \|AZ^t - \widehat{\Pi}y\|^2$$



Tikhonov regularisation with  $A = \mathbb{I}$ 

Theorem (De Vito, Fornasier, Naumova)

For  $\tau\geqslant 1$  with probability greater than  $1-6\exp^{-\tau^2}$ 

$$|\hat{t}^* - t^*| \le \frac{1}{\lambda_h} \left( \sqrt{\frac{d}{n}} + \frac{\tau}{\sqrt{n}} + \sigma^2 \right) + \frac{\tau}{d} (\sqrt{h} + \tau)$$

for n = O(d) and  $\lambda_h > 0$  is the smallest non-zero eigenvalue of  $\Sigma(Ax)$ .

Explicit formula for calculating  $\hat{t}^*$ .

Tikhonov regularisation with  $A = \mathbb{I}$ 

Theorem (De Vito, Fornasier, Naumova)

For  $\tau \geqslant 1$  with probability greater than  $1-6 \exp^{-\tau^2}$ 

$$|\hat{t}^* - t^*| \le \frac{1}{\lambda_h} \left( \sqrt{\frac{d}{n}} + \frac{\tau}{\sqrt{n}} + \sigma^2 \right) + \frac{\tau}{d} (\sqrt{h} + \tau)$$

for n = O(d) and  $\lambda_h > 0$  is the smallest non-zero eigenvalue of  $\Sigma(Ax)$ .

Explicit formula for calculating  $\hat{t}^*$ .

Elastic-net with  $A = \mathbb{I}$  and Bernoulli noise

Theorem (De Vito, Kereta, Naumova)

For  $\tau > 0$  with probability of at least  $1 - 2 \exp^{-\tau}$ 

$$|\hat{t}^* - t^*| \leqslant \frac{\lambda_1}{\lambda_h} \left( \sqrt{\frac{h + \tau + \sigma^2 m}{n}} + \frac{h + \tau + \sigma^2 m}{n} \right) + \sigma \sqrt{\frac{h}{m}}$$

for n = O(h + m) and  $\lambda_1 > \lambda_h > 0$  is the largest and the smallest non-zero eigenvalue of  $\Sigma(Ax)$ .

- Existence and uniqueness results for bounded noise
- ▶ OptEN Algorithm for finding  $\hat{t}^*$  using a line search method

Elastic-net with  $A = \mathbb{I}$  and Bernoulli noise

Theorem (De Vito, Kereta, Naumova)

For  $\tau > 0$  with probability of at least  $1 - 2 \exp^{-\tau}$ 

$$|\hat{t}^* - t^*| \leqslant \frac{\lambda_1}{\lambda_h} \left( \sqrt{\frac{h + \tau + \sigma^2 m}{n}} + \frac{h + \tau + \sigma^2 m}{n} \right) + \sigma \sqrt{\frac{h}{m}}$$

for n = O(h + m) and  $\lambda_1 > \lambda_h > 0$  is the largest and the smallest non-zero eigenvalue of  $\Sigma(Ax)$ .

- Existence and uniqueness results for bounded noise.
- **OptEN Algorithm** for finding  $\hat{t}^*$  using a line search method.

Parameter learning for Tikhonov regularization

### Data:

- $(X_i, Y_i)_{i=1}^n, n = 50.$
- $X_i \in \mathbb{R}^{1000}, Y_i \in \mathbb{R}^{60}, \text{ and } \sigma = 0.06$ .
- $X \in \mathcal{V}$  for  $\mathcal{V} = span\{e_1, e_2, \dots, e_5\}$ .



Figure: Empirical distribution of the optimal parameters  $t^*$  (left) and the learned parameter  $\hat{t}^*$  (right), n = 1000.

Parameter learning for Elastic-net

### Data:

- $(X_i, Y_i)_{i=1}^n, n = 50.$
- $X_i \in \mathbb{R}^{100}, Y_i \in \mathbb{R}^{500}, \text{ and } \sigma \in [0.1, 0.5].$
- $ightharpoonup X \in \mathcal{V} ext{ for } \mathcal{V} = span\{e_1, e_2, \dots, e_{10}\}.$

Compare with state-of-the-art parameter choice methods

- discrepancy principle (dp)
- balancing principle (bp)
- non-linear generalised cross-validation (ngcv)
- **...**



Image denoising using Elastic-net



Image denoising using Elastic-net



OptEN delivers the best PSNR and SSIM for all images for various noise levels

Image denoising using TV

Original



**Estimated parameter** 



Noisy



**Optimal parameter** 



Image denoising using TV

Original



**Estimated parameter** 



Noisy



**Optimal parameter** 



## **Conclusion and Future Directions**

### Conclusion:

- Unsupervised machine learning approach for optimal regularization:
  - Theoretical results for data-driven parameter learning in Tikhonov and Elastic-net;
  - Practical implementation of the method;
  - ► Promising numerical results for TV-regularization.
- The approach determines the parameter that allows for achievement of the same quality of reconstruction in terms of PSNR and visual quality as the optimal parameter.

#### **Future direction:**

- lacktriangle Theoretical results for  ${\mathcal V}$  being a lower-dimensional nonlinear manifold
- Theoretical results when X belongs to unions of linear subspaces
- Consider different noise models (results of J. C. Reyes and C. Schönlieb '13, '16);
- Applicability of the method for practical problems

## **Conclusion and Future Directions**

#### Conclusion:

- Unsupervised machine learning approach for optimal regularization:
  - Theoretical results for data-driven parameter learning in Tikhonov and Elastic-net;
  - Practical implementation of the method;
  - ► Promising numerical results for TV-regularization.
- The approach determines the parameter that allows for achievement of the same quality of reconstruction in terms of PSNR and visual quality as the optimal parameter.

### **Future direction:**

- ightharpoonup Theoretical results for  $\mathcal V$  being a lower-dimensional nonlinear manifold;
- Theoretical results when X belongs to unions of linear subspaces;
- Consider different noise models (results of J. C. Reyes and C. Schönlieb '13, '16);
- Applicability of the method for practical problems.