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Motivation, Goal, and Tools

» Motivation: Data from many real-life acquisitions (signals, images,
etc.) are affected by noise of various distribution and intensity.
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describes the relation between special features of the data and the
optimal regularization parameter from a number of given examples.
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Motivation, Goal, and Tools

» Motivation: Data from many real-life acquisitions (signals, images,
etc.) are affected by noise of various distribution and intensity.

» Methods: Regularization-based approaches balance the
discrepancy between data and complexity of the solution, measured
by some norm (total variation, £{-norm etc.), depending on so-called
regularization parameter(s).

» Problem: To find appropriate regularization parameter in a fast way
is difficult.

» Goal: To learn the nonlinear function defined in high dimension that
describes the relation between special features of the data and the
optimal regularization parameter from a number of given examples.

» Tools: regularization methods, statistical learning theory, data
representation, probability theory, sparsity.
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Introduction

Problem Statement

Consider a linear inverse problem Y = AX + oW/, where

X € R?is the quantity of interest (e.g., ground truth image),

» A c R™is a measurement operator (e.g., convolution, mask),
» W € R"is arandom variable / noise,

» Y € R™is the observed quantity (e.g., noisy image).

v
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Problem Statement

Consider a linear inverse problem Y = AX + oW/, where
» X € R%is the quantity of interest (e.g., ground truth image),
» A c R™is a measurement operator (e.g., convolution, mask),
» W € R"is arandom variable / noise,
» Y € R™is the observed quantity (e.g., noisy image).

We consider regularization approaches, where the regularized solution
is given as the result of minimizing functionals of the type

Z% = argmin ||[Az — Y| + ad(2).

zeRY
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Introduction

Problem Statement

Consider a linear inverse problem Y = AX + oW/, where

X € RY is the quantity of interest (e.g., ground truth image),

A € R™9 is a measurement operator (e.g., convolution, mask),
W € R™is a random variable / noise,

» Y € R™is the observed quantity (e.g., noisy image).

We consider regularization approaches, where the regularized solution
is given as the result of minimizing functionals of the type

vV vy

Z% = argmin ||[Az — Y| + ad(2).

zeRY
» Tikhonov regularization: J(z) = ||z||3,
» Elastic-net regularlzatlon J( =|1z|ls + €| 2|3,
» (y—regularization: J(z) = ||z||1,
» TV- regularization: J(z) = [ Vz],
>
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Introduction

What about « choice?

» The optimal regularization parameter is given as

o = argminge o 1o0) 1 2% = X
s.t. Z% = argmin,cpa [|Az — Y| + ad(2)
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Introduction

What about o« choice?
» The optimal regularization parameter is given as

ot = argming e (o .00 12% — X|[?
s.t. Z% = argmin,cpa [|Az — Y| + ad(2)

However, both X and o are unknown.
» Techniques for regularization parameter choice:

» A priori choice rules based on the noise level and some knowledge
about the solution.

» A posteriori choice rules based on the datum Y and the noise level:
Examples: discrepancy principle, L-curve, balancing principle,
MSE-based methods, etc.

» Heuristic choice rules based on the datum Y:

Examples: quasi-balancing principle, quasi-optimality criterion,
generalized cross validation, etc.
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Introduction

What about o« choice?
» The optimal regularization parameter is given as

ot = argming e (o .00 12% — X|[?
s.t. Z% = argmin,cpa [|Az — Y| + ad(2)

However, both X and o are unknown.
» Techniques for regularization parameter choice:

» A priori choice rules based on the noise level and some knowledge
about the solution.

» A posteriori choice rules based on the datum Y and the noise level:
Examples: discrepancy principle, L-curve, balancing principle,
MSE-based methods, etc.

» Heuristic choice rules based on the datum Y:

Examples: quasi-balancing principle, quasi-optimality criterion,
generalized cross validation, etc.

» (Unsupervised) data-driven method for parameter selection.
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Introduction

Parameter learning under supervised machine learning setting

» Assume we are provided with {(Xj, Y;)}7_.
» We can compute the optimal parameters

(X1, Y1) — o = argmin [[Z%(Y1) — X
x€(0,+00)

(Xn, Yn) — o= argmin [|Z%(Y,) — Xal|

o€ (0,+00)
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» We can compute the optimal parameters

(X1, Y1) — of = argmin [|[Z%(Y1) — Xi]]
x€(0,400)

(Xn, Yn) — o= argmin [|Z%(Y,) — Xal|

o€ (0,+00)

» We want to compute « for previously unseen data: (??,Y) — &
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Introduction

Parameter learning under supervised machine learning setting
» Assume we are provided with {(Xj, Y;)}7_.
» We can compute the optimal parameters

(X1, Y1) — of = argmin [|[Z%(Y1) — Xi]]
x€(0,400)

(Xn, Yn) — o= argmin [|Z%(Y,) — Xal|

o€ (0,+00)

» We want to compute « for previously unseen data: (??,Y) — &
— We want to find the regression function

R:Y—=a:=R(Y) :Jooocdu(ocl Y),
0

w is the (unknown) joint distribution of (Y, &), ..., (Yn, o),
w(- | Y) is its conditional distribution, very much concentrated.
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Introduction

Parameter learning under supervised machine learning setting

» We want to find an approximation R to the regression function R
using only (a small number of) samples n.
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» We do not know the conditional distribution (- | Y).
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Introduction

Parameter learning under supervised machine learning setting

» We want to find an approximation R to the regression function R
using only (a small number of) samples n.

» We do not know the conditional distribution (- | Y).

» The problem is known to be intractable (Novak & Wozniakowski '09)
even for infinitely differentiable functions.

» The number of training points must grow exponentially in m.
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Introduction

Parameter learning under unsupervised machine learning setting

Conclusion: High smoothness does not help!
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Parameter learning under unsupervised machine learning setting

Conclusion: High smoothness does not help!

— Way out: Solutions concentrate around lower dimensional sets
(manifolds), h < d.
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» Using noisy samples {Y;}7_,, construct an approximation X to X;

simula - by thinking constantly about it



Introduction

Parameter learning under unsupervised machine learning setting

Conclusion: High smoothness does not help!
— Way out: Solutions concentrate around lower dimensional sets
(manifolds), h < d.
Method idea:
» Using noisy samples {Y;}7_,, construct an approximation X to X;
— does not depend on the regularisation method.
= require theoretical analysis for different model types.
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Parameter learning under unsupervised machine learning setting

Conclusion: High smoothness does not help!

— Way out: Solutions concentrate around lower dimensional sets
(manifolds), h < d.

Method idea:
» Using noisy samples {Y;}7_,, construct an approximation X to X;
— does not depend on the regularisation method.
= require theoretical analysis for different model types.
» Find the optimal parameter & as

& =argminR(Y) and R(Y) = [|Z%(Y) — X||?.

—> depends on the regularisation method.
= require development of efficient numerical methods.
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Parameter learning under unsupervised machine learning setting

» Using noisy samples {Y;}7_,, construct an approximation Xto X;
— does not depend on the regularisation method.
= require theoretical analysis for different model types.
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Problem setting

Empirical estimators

Consider Y = AX + oW such that
» X € R? has a sub-Gaussian distribution over a linear subspace V,
> dimV =range X (X) = h< d,
» W is an independent sub-Gaussian vector with X (W) = 1.
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Problem setting

Empirical estimators

Consider Y = AX + oW such that
» X € R? has a sub-Gaussian distribution over a linear subspace V,
> dimV =range X (X) = h< d,
» W is an independent sub-Gaussian vector with X (W) = 1.

» We define the projection TT onto W, where W = AV.
> dimW =dimV = h.
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Empirical estimators

Consider Y = AX + oW such that
» X € R? has a sub-Gaussian distribution over a linear subspace V,
» dimV =range X (X) = h< d,
» W is an independent sub-Gaussian vector with (W) = IL.

> We define the empirical projection T, onto the space spanned by the first h
eigenvectors of Z(Y) =157 Vi ® Y.
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Empirical estimators

Consider Y = AX + oW such that
» X € R? has a sub-Gaussian distribution over a linear subspace V,
» dimV =range X (X) = h< d,
» W is an independent sub-Gaussian vector with (W) = IL.

> We define the empirical projection T, onto the space spanned by the first h
eigenvectors of Z(Y) =157 Vi ® Y.

—> with high probability M, ~TTandis unique for n = O(m) and small o.
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Empirical estimators

Consider Y = AX + oW such that
> X € R? has a sub-Gaussian distribution over a linear subspace V,
» dimV =range X (X) = h< d,
» W is an independent sub-Gaussian vector with * (W) = 1.

> We define the empirical estimators of X and W as
X =AY and W=(Y—Ti,Y),
which satisfies empirical inverse problem AX + QW = QY and Q = AAT
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Empirical estimators

Consider Y = AX + oW such that
> X € RY has a sub-Gaussian distribution over a linear subspace V,
» dimV =range X (X) = h< d,
» W is an independent sub-Gaussian vector with X (W) = 1.

> Let Z%(Y) = argmin ||Az — Qy|| + aJ(z). Then Z%(Y) = Z%(Y).
»  We consider R
& = min ||Z% — X||2.
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Introduction

Parameter learning under unsupervised machine learning setting

» Find the optimal parameter & as

& =argminR(Y) and R(Y) = [|Z%(Y) — X||2.

—> depends on the regularisation method.
— require development of efficient numerical methods.
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Parameter learning for different regularisation

&* = argmin ||Z* — X2
s.t. Z% = argmin,cga [|Az — Y|> + od(2)
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Parameter learning for different regularisation

&* = argmin ||Z* — X2
s.t. Z% = argmin,cga [|Az — Y|> + od(2)

» Tikhonov: J(z) = ||z||3, (Theoretical results)
» Elastic-net: J(z) = ||z||y + €||z||3, (Theoretical results)
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Parameter learning for different regularisation

&* = argmin || Z* — X|?
s.t. Z% = argmin,cga [|Az — Y|> + od(2)

» Tikhonov: J(z) = ||z||§ (Theoretical results)

» Elastic-net: J(z) = ||z||1 + €]|z||5, (Theoretical results)
> L J(2) =zl ( Encouraglng numerical results)

» TV: J(z ) | o IVz|. (Encouraging numerical results)
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Parameter learning for different regularisation

&* = argmin || Z* — X|?
s.t. Z% = argmin,cga [|Az — Y|> + od(2)

» Tikhonov: J(z) = ||z||§ (Theoretical results)

» Elastic-net: J(z) = ||z||1 + €]|z||5, (Theoretical results)
> L J(2) =zl ( Encouraglng numerical results)

» TV: J(z ) | o IVz|. (Encouraging numerical results)

Z' =argmin (t|Az— Y|P+ (1—t)J(2)), te(0,1]
zERd
<

Z% =argmin [|[Az — Y|+ ad(2), o= (1—1)/t€ [0, +od]

zeRY
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Optimal Parameter Choice

Minimizers

» Tikhonov minimizer
Zt, = argmin (t|Az— Y|? + (1 — 1)||z||?)
zeRd
— close-form solution exists
» Elastic-net minimizer

zL, = argmdin (t||Az=Y[2+ (1 =) ||zl + €l|z]]%])
zeR

— close form solution exists only when ATA =1,
=—otherwise, solution is given via soft-thresholding
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Optimal Parameter Choice

Quadratic loss

We study the behaviour of the

» True quadratic loss

R(t) =z - X| -
» Empirical quadratic loss
R(t) = [|Z' = X|?

projected loss ﬁp(t)
=+ true loss R(t)

0.0 0.2 0.4 0.6 08 10
t

When Ais injective t* ~ t*
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Optimal Parameter Choice

Quadratic loss

We study the behaviour of the

» True quadratic loss
R(t) = 12" = X|}? B
» Empirical quadratic loss

R(t) = ||Z' — X|]?

—— empirical loss R(t) \ 1
0501 == true loss R() N/

0.0 0.2 0.4 0.6 08 10
t

When A is non injective #* » t*
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Optimal Parameter Choice

Quadratic loss

We study the behaviour of the

» True quadratic loss

R(t) =Z' - X]? -

» Empirical quadratic loss

R(1) = (|12' = X|1 1 P
true loss R(t) \-:.

~— empirical loss R(t)

» Projected empirical loss 030] —-. modified loss R,,(f)

..... projected loss 1, (t)

ﬁp(t) = ||PZt_3\(||2, P — ATA ’ 00 02 04 06 08 - 10

» Modified projected loss

Rm(t) = |AZ! —Tiy|]?
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Optimal Parameter Choice

Tikhonov regularisation with A = [

Theorem (De Vito, Fornasier, Naumova)

Fort > 1 with probability greater than1 — 6 exp™ "

ﬁ*—t*\\;h (\/g+\[+0>+;(ﬁ+’t)

forn = 0O(d) and A\, > 0 is the smallest non-zero eigenvalue of Z(Ax).
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Optimal Parameter Choice

Tikhonov regularisation with A = [

Theorem (De Vito, Fornasier, Naumova)

Fort > 1 with probability greater than 1 — 6 exp™™

N 1 d T T
P < — . o 0-2 -
=< An (\/; Vvn ) d(ﬁ ™)

forn = 0O(d) and A\, > 0 is the smallest non-zero eigenvalue of Z(Ax).

» Explicit formula for calculating #*.
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Optimal Parameter Choice

Elastic-net with A = I and Bernoulli noise

Theorem (De Vito, Kereta, Naumova)
Fort > 0 with probability of at least1 —2exp™ "

ne el M h+Tt+02m h+7t+0°m h
|t — ] < — | + +oy/—
An n n m

forn = O(h+ m) and Ay > A, > 0 is the largest and the smallest
non-zero eigenvalue of Z(Ax).
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Optimal Parameter Choice

Elastic-net with A = I and Bernoulli noise

Theorem (De Vito, Kereta, Naumova)
Fort > 0 with probability of at least1 —2exp™ "

ne o M h+T+02m h+T1+ 0?m h
=t < — | + + 04/ —
An n n m

forn = O(h+ m) and Ay > A, > 0 is the largest and the smallest
non-zero eigenvalue of Z(Ax).

» Existence and uniqueness results for bounded noise.
» OPptEN Algorithm for finding #* using a line search method.
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Numerical Examples

Parameter learning for Tikhonov regularization

Data:
> {(X;, Y)Yy, n = 50.

» X; € R'90 Y, c RS and o = 0.06.
» X € VforV =span{es, e,..., 65}

Figure: EmEiricaI distribution of the optimal parameters t* (left) and the learned
parameter t* (right), n = 1000.
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Numerical Examples

Parameter learning for Elastic-net

Data:
» {(X, Y}y, n=50.

i=1

> X; € R0 Y, ¢ RS0 and o € [0.1,0.5)].
» X € VforV =span{es, es,...,e10}.

Compare with state-of-the-art parameter
choice methods

> discrepancy principle (dp)
> balancing principle (bp)

> non-linear generalised
cross-validation (ngcv)

> ..
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Numerical Examples

Image denoising using Elastic-net

noiseless noisy dp bp

space shuttle

cherries

H
2
o
3
E 8
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Numerical Examples

Image denoising using Elastic-net

mud flow cat cherries space shuttle

IHC

OptEN delivers the best PSNR and SSIM for all images for various noise levels
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Numerical Examples

Image denoising using TV

Original Noisy
Estimated parameter Optimal parameter
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Numerical Examples

Image denoising using TV

Original Noisy
=
Estimated parameter Optimal parameter
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Conclusion and Future Directions

Conclusion:
» Unsupervised machine learning approach for optimal regularization:

» Theoretical results for data-driven parameter learning in Tikhonov and
Elastic-net;
» Practical implementation of the method;

» Promising numerical results for TV-regularization.

> The approach determines the parameter that allows for achievement of the same
quality of reconstruction in terms of PSNR and visual quality as the optimal parameter.
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Conclusion and Future Directions

Conclusion:
» Unsupervised machine learning approach for optimal regularization:

» Theoretical results for data-driven parameter learning in Tikhonov and
Elastic-net;
> Practical implementation of the method;

» Promising numerical results for TV-regularization.

> The approach determines the parameter that allows for achievement of the same
quality of reconstruction in terms of PSNR and visual quality as the optimal parameter.

Future direction:
» Theoretical results for 'V being a lower-dimensional nonlinear manifold;
» Theoretical results when X belongs to unions of linear subspaces;
> Consider different noise models (results of J. C. Reyes and C. Schénlieb '13, '16);
>

Applicability of the method for practical problems.
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