NORDUnet Technical Workshop 2015, København

The NorNet Experimentation Platform for Multi-Homed Systems

Thomas Dreibholz

(托马斯博士 توماس ترايبهولس dreibh@simula.no

Simula Research Laboratory

17 September 2015

Contents

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Users and Research
- Conclusion

Overview: Motivation

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Users and Research
- Conclusion

Resilience by Redundancy

Multi-Homing

- Connections to multiple Internet Service Providers (ISP)
- Idea: if one ISP has problems, another connection still works

Research in a realistic Internet testbed is necessary!

Overview: The NorNet Project

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Users and Research
- Conclusion

Goals of the NorNet Project

- Building up a realistic multi-homing testbed
- Wired and wireless
 - Wired → "NorNet Core"
 - Wireless → "NorNet Edge"
- Perform research with the testbed!

How to get a <u>realistic</u> testbed?

Idea: Distribution of NorNet over whole Norway

Challenging topology:

- Large distances
- A few "big" cities, many large rural areas
- Svalbard:
 - Interesting location
 - Many polar research institutions

Deployment:

- Core: 11 sites in Norway and9 in abroad
- Edge: hundreds of nodes in Norway

Overview: NorNet Core

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Users and Research
- Conclusion

Idea for NorNet Core: Tunnelling

- Researchers require control over used ISP interfaces
 - Which outgoing (local site) interface
 - Which incoming (remote site) interface
- Idea: Tunnels among sites
 - Router at site A: IPs A₁, A₂, A₃
 - Router at site B: IPs B₁, B₂

- IP tunnel for each combination:
 A₁↔B₁, A₁↔B₂, A₂↔B₁, A₂↔B₂, A₃↔B₁, A₃↔B₂
- Fully-connected tunnel mesh among NorNet Core sites
- Each site's router (called tunnelbox) maintains the tunnels
 - Static tunnels
 - NorNet-internal addressing and routing over tunnels

Address Assignment

- NorNet-internal address spaces:
 - Private NorNet-internal IPv4 "/8" address space (NAT to outside)
 - Public NorNet-internal IPv6 "/48" address space
- Systematic address assignment:
 - IPv4: 10.
 Provider ID>.<Site ID>.<Node ID>/24 per site
 - IPv6: 2001:700:4100:<PP><SS>::<NN>/64
 (PP=Provider ID; SS=Site ID; NN=Node ID)
- NorNet-internal DNS setup including reverse lookup

Make it as easy as possible to keep the overview!

A NorNet Core Site Deployment

A usual NorNet Core site:

- 1x switch
- 4x server
 - 1x tunnelbox
 - 3x research systems
- At least two ISP connections
 - Research network provider
 - Other providers
- IPv4 and IPv6 (if available)

Additional researcher-provided sites:

- Varying configurations
- VM setups, powerful servers, "retro-style" PCs ...

NorNet Core Site Deployment Status (September 2015)

No.	Site	ISP 1	ISP 2	ISP 3	ISP 4
1	Simula Research Laboratory	Uninett	Kvantel	Telenor	PowerTech
2	Universitetet i Oslo	Uninett	Broadnet	PowerTech	
3	Høgskolen i Gjøvik	Uninett	PowerTech		
4	Universitetet i Tromsø	Uninett	Telenor	PowerTech	
5	Universitetet i Stavanger	Uninett	Altibox	PowerTech	
6	Universitetet i Bergen	Uninett	BKK		
7	Universitetet i Agder	Uninett	PowerTech	_	
8	Universitetet på Svalbard	Uninett	Telenor		
9	Universitetet i Trondheim	Uninett	PowerTech		
10	Høgskolen i Narvik	Uninett	Broadnet	PowerTech	
11	Høgskolen i Oslo og Akershus	Uninett	_		
12	Karlstads Universitet	SUNET			
13	Universität Kaiserslautern	DFN			
14	Universität Duisburg-Essen	DFN	Versatel		
15	Hainan University 海南大学	CERNET	China Unicom		
16	The University of Kansas	KanREN			
17	Korea University 고려대학교	KREONET			
18	National ICT Australia (NICTA)	AARNet			
19	Univ. Federal de São Carlos	RNP			
20	HAW Hamburg	DFN			

IPv4 and IPv6 IPv4 only (ISP without IPv6 support ☺)
ISP negotiation in progress IPv4 only (site's network without IPv6 support)

https://www.nntb.no/pub/nornet-configuration/NorNetCore-Sites.html

Some Site Statistics (September 2015)

https://www.nntb.no/pub/nornet-configuration/NorNetCore-Sites.html

Remote Systems Our servers may be really <u>remote!</u> The "road" to Longyearbyen på Svalbard, 78.2°N

Virtualisation

"Anything that can go wrong, will go wrong." [Murphy's law]

- Experimentation software is experimental
- How to avoid software issues making a remote machine unusable?
- Idea: virtualisation
 - Lightweight, stable software setup:
 Ubuntu Server 12.04 LTS
 - VirtualBox 4.3
 - Other software runs in VirtualBox VMs:
 - Tunnelbox VM on physical server #1
 - 2 LXC-based research node VMs on physical servers #2 to #4

In case of problem: manual/automatic restart or reinstall of VM

Research Software Status

- Basic research node software:
 - Based on PlanetLab/OneLab, with NorNet customisations
 - Kernel 3.14 with Linux MPTCP 0.89.4 → soon 0.89.5 (or already 0.90?)
 - Production nodes: still Fedora Core 18
 - Experimental builds for Fedora Core 21 and 22 (see http://benlomond.nntb.no for nightly builds)
- Custom VMs for special requirements
 - MPTCP tests with custom kernels
 - FreeBSD experiments → CMT-SCTP and FreeBSD MPTCP from CAIA
- Virtualisation:
 - VirtualBox 4.3 (with VNC patch) or VMware
 - Some test systems already run KVM → enhanced flexibility

Overview: NorNet Edge

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Users and Research
- Conclusion

NorNet Edge Nodes

Solution: embedded systems instead of servers!

Ufoboard:

- Custom-made for NorNet
- Based on off-the-shelf smartphone board (Samsung Galaxy S)
- 1 GHz ARM Cortex-A8 CPU
- 512 MiB RAM
- 16-32 GB disk (SD card)
- 7 USB ports + Ethernet port
- Debian Linux 7.6 ("Wheezy")

The NorNet Edge Box: Ready for Deployment

Box contents:

- Ufoboard
- Up to 4x USB UMTS or LTE:
 - Telenor, NetCom,
 - Network Norway, Tele2
- 1x ICE CDMA mobile broadband
- 1x Ethernet
- 1x WLAN (optional)
- Power supplies
- Handbook

Live Visualisation of NorNet Edge (1)

Live Visualisation of NorNet Edge (2): Real-Time Data and Statistics Database

See http://robustenett.no/map!

Software for NorNet Edge Experiments

Currently:

- Uses get exclusive access to selected nodes
- SSH login
- Nodes are just normal Linux machines (ARM-based, memory size restrictions)
- Data amount restriction:
 ISP connections have a monthly restriction on full-speed data (1 GiB to a few GiB). After that: speed limit to max. 64 Kbit/s!
- Mostly manual user management

Future:

Improved, mostly automatic user management

Overview: Users and Research

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Users and Research
- Conclusion

Users and Research

"The road to hell is paved with unused testbeds."

[James P. G. Sterbenz]

- We already got some users!
- Examples:
 - Multi-Path Transport (Simula, UDE, UiO, HU, etc.)
 - VoIP Misuse Detection (UDE)
 - Application Server Availability (NTNU)
 - Balia Congestion Control (Bell Labs in South Korea)
 - IPv4/IPv6 Performance Comparison (Simula)
 - ...

See https://www.nntb.no/projects/ for further projects using NorNet!

Collaborations

- PlanetLab/OneLab
 - Development and testing of the research software
 - URLs: https://www.planet-lab.org, https://www.onelab.eu

- Connectivity and reachability measurements
- URL: https://atlas.ripe.net
- Node deployed at site in Longyearbyen
- Seattle
 - Open Peer-to-Peer Computing, project at NYU
 - URL: https://seattle.poly.edu
 - Running inside NorNet Core slice
- ToMaTo
 - <u>Topology Management Tool</u>
 - URL: http://tomato-lab.org
 - Part of the G-Lab testbed

Overview: Conclusion

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Users and Research
- Conclusion

Conclusion and Future Work

- NorNet is working
 - Nice testbed size (19+ sites for Core, hundreds for Edge)
 - We have a slowly growing number of users and sites
 - International visibility

- Future work:
 - To further extend NorNet's scope beyond multi-path transport topic
 - Software-Defined Networking (SDN)?
 - Network Function Virtualisation (NFV)?
 - Cloud Computing and applications?

To be discussed!

Any Questions?

Visit https://www.nntb.no for further information!