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Abstract. The Object Constraint Language (OCL) is a formal, declarative, 
and side-effect free language, standardized by the Object Management Group, 
for specifying constraints or queries on models specified in the Unified Mod-
eling Language (UML). OCL was designed with the aim to bridge the gap be-
tween natural language and traditional formal languages requiring a strong 
mathematical background to understand and apply. OCL, along with UML, 
have been applied in practice for various purposes such as facilitating auto-
mated model-based testing. In most of such contexts of OCL, engineers with 
software engineering backgrounds specify OCL constraints. However, it is 
still a challenge for constraint authors (e.g., medical coders) who have no 
such background to apply OCL for other purposes (e.g., specifying medical 
rules). In this direction, in our previous work, we proposed a user-interactive 
specification framework, named iOCL, for facilitating OCL constraint speci-
fication and validation. The aim was to ease its adoption in practice in a wider 
application scope. In this paper, we present a pilot experiment that was con-
ducted to assess the practical applicability of iOCL in the Cancer Registry of 
Norway with real users of iOCL in terms of specifying medical cancer coding 
rules with iOCL. Results of the pilot experiment showed that, with iOCL, 
time to specify OCL constraints can be significantly reduced as compared to 
specifying OCL constraints directly without the tool support. In addition, par-
ticipants of the experiment found iOCL easy to use.  

   Keywords. Interactive OCL, Empirical Evaluation, Cancer Registry, Real 
World Application 

1 Introduction 

The Object Constraint Language (OCL) [5] is a standardized and declarative lan-
guage, which is generally used to constrain models, for example, specified in the Uni-
fied Modeling Language (UML) [6]. Even though several tools exist for specifying, 



validating, evaluating, and solving OCL constraints (e.g., Eclipse OCL [8] and 
EsOCL [2]), modelers (researchers and practitioners) find it challenging to use OCL 
for specifying constraints. 

To help the modelers in specifying OCL constraints, we proposed iOCL [10]—an 
OCL specification framework with the tool support that allows a modeler to specify 
constraints interactively. The underlying idea of iOCL is to guide a modeler to specify 
an OCL constraint interactively in the entire process of constraint specification, e.g., 
by presenting only relevant options to select at a given step in specification, pointing 
out problems in a constraint with potential solutions to fix them, and automatically 
correcting syntax errors, to mention but a few. In addition, iOCL integrates with other 
OCL tools including Eclipse OCL [8] for constraint validation and evaluation, and 
EsOCL [2] for solving a specified constraint. With EsOCL [2], a user gets an indica-
tion that whether the constraint specified by the modeler is solvable or not.  

The iOCL tool was developed as part of an ongoing collaboration between Simula 
Research Laboratory [27] and the Cancer Registry of Norway (CRN) [3], where we 
are working together to improve the quality and productivity of cancer-related statis-
tics produced by CRN [12]. We are applying model-based engineering in this project, 
where OCL constraints are used to specify medical cancer coding rules. iOCL was 
developed to help medical coders to specify medical rules. As a first step towards a 
large-scale experiment to assess the applicability of iOCL in the context of health 
registries, we report a pilot experiment that was conducted in CRN with four partici-
pants. We chose 10 medical cancer coding rules (specified in English text) to be de-
fined on a domain model (in UML) and the participants were asked to specify these 
rules (one after another in the order of complexity) as OCL constraints using iOCL—
a web-based application1. The time for specifying each constraint was automatically 
recorded on the server hosting the tool and was used for analyses reported in this pa-
per. Before the experiment, a pre-lab questionnaire was conducted to solicit views of 
the participants about training given to them about iOCL. A post-lab questionnaire 
was conducted to solicit their views about the material used for the experiment and 
understandability/ease of use of iOCL.     

We assessed iOCL from three perspectives: 1) Effort in terms of Time to specify 
OCL constraints, 2) Correlation of the complexity of the constraints (measured based 
on the metrics proposed in [11]) and Time to specify OCL constraints, and 3) Assess-
ment of subjective opinions of the participants collected based on the pre and post-lab 
questionnaires. Based on the results, we can conclude that with iOCL, we can signifi-
cantly reduce time to specify OCL constraints as compared to specifying OCL con-
straints without iOCL. In addition, based on subjective opinions of the participants, 
we can also conclude that they found iOCL easy to use. Moreover, open discussions 
of the experiment helped to improve the applicability and usability of iOCL. 

This paper is organized as follows: Section 2 presents the background to under-
stand the remaining sections of the paper. Section 3 presents the planning of our em-
pirical evaluation. Section 4 provides results and analyses. Section 5 introduces the 
related work and we concluded the paper in Section 6. 

                                                             
1 http://iocl.zen-tools.com 



2 Background 

In this section, we introduce the background knowledge related to this work, which 
includes: a brief description of the collaboration with CRN (Section 2.1), an introduc-
tion of the iOCL tool (Section 2.2) and an explanation of the metrics used to measure 
the complexity of OCL constraints (Section 2.3).  

2.1 The MBE-CR Project with Cancer Registry of Norway (CRN) 

CRN [3] gathers cancer-related information of cancer patients in Norway (e.g., di-
agnosis, treatment and relapse) from different medical entities (e.g., clinics, hospitals, 
and pathology laboratories) to support cancer research relying on cancer-related data 
and government to articulate public future healthcare policies. To validate the cor-
rectness of collected cancer data, a set of medical cancer coding rules (more than 
1000) have been defined in CRN. At CRN, there are three key roles: 1) Chief Medical 
Officers who define and specify the cancer coding rules based on his/her medical 
domain knowledge; 2) Medical Programmers who are in charge of developing and 
implementing the specified cancer coding rules and 3) Medical Coders who use the 
cancer coding rules to validate the correctness of the collected cancer data.   

A research project named as MBE-CR [12] has been established since 2015 be-
tween Simula Research Laboratory and CRN with the aim at employing model-based 
engineering to continuously improve the quality of the evolving automated cancer 
registry system and statistics it produces. In our previous work [1], we have proposed 
a model-based framework using UML to precisely capture domain knowledge of 
CRN (e.g., cancer patients, cancer messages) and use OCL to formally specify the 
cancer coding rules as constraints. While applying the model-based framework into 
the CRN’s practice, we observed that it was challenging for the medical experts of 
CRN to manually specify the cancer coding rules as OCL constraints from scratch due 
to the lack of sufficient OCL knowledge. Therefore, we designed and developed 
iOCL [10], which will be briefly introduced in Section 2.2. 

2.2 iOCL 

The fundamental belief behind designing iOCL [10] is to interactively guide a 
modeler to specify OCL constraints (for instance, OCL operations) step by step dur-
ing the constraint specification process. Precisely speaking, the core of iOCL includes 
three types of user operations, i.e., selection operation, basic value input operation 
and text input operation. The selection operation means that modelers can simply 
perform a selection from a list of valid options that are dynamically provided by 
iOCL at a given step when specifying a constraint. The basic value input operation 
denotes that modelers can input values of basic types (e.g., Integer, Boolean) based on 
their particular problems when specifying an OCL constraint. The text input operation 
permits to input free text without any restrictions.  

To make the OCL constraint specification process easier and reduce the potential 
possibilities for modelers to make syntactic errors, we designed iOCL to maximize 



the usage of the selection operation and minimize the usage of the basic value input 
operation and text input operation. Notice that the selection operation does not require 
modelers holding OCL knowledge to a large extent since modelers can be always 
recalled and guided by the available valid options (e.g., OCL operations) provided by 
iOCL when specifying OCL constraints. In addition, iOCL is developed as a web 
application on the top of several existing tools, which consists of Eclipse Modeling 
Framework (EMF) [7], Eclipse OCL [8], Eclipse UML2 [9], and EsOCL [2]. More 
details on iOCL are presented in [10]. The key goal of this work is to conduct a pilot 
controlled experiment by involving medical experts from CRN with the aim to evalu-
ate the applicability of iOCL for specifying cancer coding rules as OCL constraints. 

2.3 Metrics to Measure the Complexity of OCL Constraints 

A previous work reported in [11] defines the following four metrics to measure the 
complexity of OCL constraints. The first metric is the maximum number of traversals 
in all the clauses of an OCL constraint (𝑛!"#$%"&#'&) that is defined to measure the 
maximum number of traversals from a context class to the farthest class on whose 
primitive attributes an OCL constraint is specified. The second metric is the number 
of required attribute types (𝑛!"#$%) to measure how many attribute types are required 
to specify an OCL constraint. There are in total four types of primitive attributes in-
cluding Boolean, Enumeration, Integer, and String. The third metric is the order of 
the complexity of the attribute types (𝑂!"#$%&'(#)$*+!"), which orders the complexity 
of the four attribute types, i.e., Boolean, Enumeration, Integer, and String from the 
least complex to the most complex in terms of specifying constraints. The fourth met-
ric is the number of clauses (𝑛!"#$%&%) that measures the total number of clauses re-
quired for specifying an OCL constraint. More details with illustrations of these four 
metrics can be consulted in [11].  

In our experiment, we ordered a given set of constraints from the least complex to 
the most complex based on the above-mentioned basic metrics [11]. We first ordered 
the constraints based on 𝑛!"#$%"&#'& and if two constraints have the same 𝑛!"#$%"&#'&, 
we ordered the constraints based on 𝑛!"#$%. When 𝑛!"#$% is equal for two or more 
constraints, we further ordered the constraints based on 𝑂!"#$%&'(#)$*+!" followed by 
using 𝑛!"#$%&%.  

3 Empirical Evaluation Planning 

We present the planning of our pilot experiment in this section. Section 3.1 presents 
the overall objective of our pilot experiment and research questions and Section 3.2 
presents the real-world case study and introduces the participants. Experiment materi-
als are presented in Section 3.3. We present the experiment design in Section 3.4, 
whereas dependent variables are presented in Section 3.5.  

 
 



3.1 Goal and Research Questions 

The goal of our pilot experiment is to assess the practical applicability of iOCL in a 
real-world setting with real users. Accordingly, we would like to answer the following 
research questions. 

RQ1: How much effort in terms of Time is required to specify OCL constraints 
with iOCL?  

RQ2: Does the complexity of OCL constraints impact the time required to specify 
constraints with iOCL?   

With the first research question, we wish to investigate effort in terms of time re-
quired to use iOCL for specifying OCL constraints of varying complexity by different 
users of variable experience and background in CRN. With the second research ques-
tion, we are interested in studying the impact of the complexity of constraints on the 
time taken by users to specify OCL constraints with iOCL.  

It is important to mention that we carefully checked both the syntactic and seman-
tic correctness of the constraints specified by the participants and results show that all 
the participants specified each constraint fully correctly. Therefore, correctness of 
constraints is not considered in the design of the research questions. 

3.2 Case Study and Participants 

Our case study is a real system being implemented at CRN situated in Oslo. As 
part of the project, we have developed a domain model using UML capturing domain 
concepts, such as Cancer Message, Cancer Case, and Cancer Patient. More details 
related to this domain model can be consulted in [1]. We used the same domain model 
in this experiment for specifying medical cancer coding rules as OCL constraints. 

We selected 10 cancer coding rules (written in English) of varying complexity to 
be specified using iOCL and the detailed cancer coding rules are shown in Table 1. 
More specifically, a Cancer Message refers to a medical record for a cancer patient 
from a particular medical entity (e.g., clinic hospitals) and each cancer message con-
sists of a number of fields, e.g., messageType that denotes where a cancer message 
comes from (e.g., pathology laboratories) and basis indicating to what extent a patient 
can be diagnosed for getting a cancer.  

Table 1: Ten Chosen Cancer Coding Rules 

Rule No. Cancer Coding Rules 
1 Only a CancerMessage with its messageType equals to ‘D’ can have its basis equal to 90 
2 If the basis of a CancerMessage is 83, then the messageType of the CancerMessage needs to be 

‘K’ or ‘R’ 
3 The basis of a CancerMessage is from 32 to 39 and the messageType of the CancerMessage is 

‘H’, then the surgery of this CancerMessage should be 96 
4 If the topography of a CancerCase is ’42.0’ then the basis of the CancerCase should be one of 

these values: 33, 38, 45 or 47 
5 If the basis of a CancerCase is 45, 46 or 47, then the surgery of the CancerCase should be 99; 

If the basis of a CancerCase is 2, then the surgery of the CancerCase should not be 10 
6 If the surgery of a CancerCase is 14, 15, 16, 17, 18, 19, 25, 26, 28 or 29, then its topography 

should be 50.X 
7 If the surgery of a CancerMessage is 35, then its basis should be one of these values: 57, 70, 



72, 74, 75, 76, 79 or 98 
8 If the surgery of a CancerMessage is 7 and its messageType is ‘O’ or ‘R’, then its basis should 

be one of those values: 0, 10, 20, 29, 30, 31, 40 or 72 
9 If the basis of a CancerMessage is among {57, 60, 70, 74, 75, 76, 79} and its messageType is 

‘H’, then its surgery should neither be 96 nor 99 
10 If the basis of a CancerMessage is among {33, 34, 35} then the messageType should be ‘K’, 

‘R’ or ‘H’; 
If the basis of the CancerMessage is 98 then its messageType should be ‘H’ or ‘O’; 
If the basis of the CancerMessage is 22 or 72, then the messageType should only be ‘K’ 

 
Four participants (the real users) participated in the experiment including a manag-

er from CRN with 5-10 years of experience (P1), two medical coders (one with 2-5 
years of experience (P2) and one with less than 1 year of experience (P3), and one 
medical programmer with 2-5 years of experience (P4).  

In addition, several researchers were involved throughout the design, execution, 
and analyses of the results including a Chief Research Scientist (R1), a Senior Re-
search Scientist (R2), Two Post-Doctoral fellows (R3 and R4), and a Research Engi-
neer—the lead developer of iOCL (R5). 

3.3 Experiment Materials 

For the experiment, the ten medical cancer coding rules (as shown in Table 1) were 
presented to the participants right before the constraint specification task (Section 3.4) 
and in total, one hour was provided to the participants for specifying the ten cancer 
coding rules using iOCL. These constraints were further ordered based on their com-
plexity (Section 2.3).  

Furthermore, each participant used his/her own laptop, where he/she accessed the 
iOCL tool online. Time taken by each participant to write a constraint was automati-
cally recorded on the server hosting iOCL and was used for analysis in this paper. At 
the beginning of the experiment, a pre-lab questionnaire was distributed to collect 
necessary background of each participant. At the end of the experiment, a post-lab 
questionnaire was distributed to collect subjective feedback of each participant about 
the experiment, their experience of using iOCL, and understandability/ease of its use. 
Responses to the questions of the pre- and post-questionnaires were solicited on the 5-
point Likert scale. The constraints (in English) to be specified and the two question-
naires were on printed papers and handed to the participants. 

3.4 Design of the Experiment 

The design of the experiment is shown in Table 2, which shows that we had in total 
five rounds. In the first round, training was given to the participants by the research-
ers. The training included introducing the domain model and the iOCL tool. The first 
round lasted for 20 minutes. In the second round, a pre-lab questionnaire was distrib-
uted (10 minutes) to solicit views of the participants (P1-P4) about their experience 
and training of the domain model and iOCL. The third round included specification of 
the ten cancer coding rules in iOCL. In total, this round lasted for 60 minutes. In the 
fourth round, a post-lab questionnaire was distributed (10 minutes), with which we 



solicited the views of the participants about their understanding of the materials used, 
experiment itself, and understandability/ease to use of iOCL. Finally, an open discus-
sion took place between the researchers and participants of the experiment about the 
use of iOCL, training of the experiment, and other open discussion related to iOCL. 
This round lasted for about 20 minutes. 

Table 2: Design of the Experiment 

Round Task Participants Time (minutes) 

1 Training of iOCL R1-R3, R5, P1-P4 20 
2 Pre-Lab Questionnaire P1-P4 10 
3 Specification of constraints (1-10) 60 
4 Post-Lab Questionnaire 10 
5 Open Discussion R1-R5, P1-P4 20 

3.5 Dependent Variables  

The following two dependent variables are defined to analyze results of the exper-
iment: 1) Time to specify a constraint (i.e., a cancer coding rule) in iOCL, 2) Com-
plexity Order (CO) to indicate the position of a given constraint within a constraint set 
based on the complexity. Recall that the constraints were ordered based on the four 
metrics described in Section 2.3. For instance, a CO value of 2 for a constraint means 
the constraint is the second least complex constraint in a given constraint set.    

4 Results and Analysis 

In this section, we present the results and analyses corresponding to each research 
question. 

4.1 Time Analysis (RQ1)  

Table 3 presents the descriptive statistics for the mean time in seconds per con-
straint for the four participants. As it can be seen in Table 3, the first constraint (i.e., 
the simplest one) took on average 75 seconds, whereas the last constraint (i.e., the 
most complex one) took on average 499 seconds. For all the constraints specified by 
all the participants, mean time is 259.9 seconds. 

Table 3: Mean Time (in Seconds) per Constraint for all the Participants 

Constraint ID 1 2 3 4 5 6 7 8 9 10 
Mean Time 75 154 217 192 260 436 238 224 304 499 

On average for the 10 constraints, P1 took 157 seconds, P2 took 273 seconds, P3 
took 351 seconds, and P4 took 254 seconds (not shown in the figure). Figure 1 shows 
the time taken by each participant for the 10 constraints. Notice that there are two data 
points missing in Figure 1 (i.e., P4 for the constraint 6 and P3 for the constraint 8) 
since the corresponding participants failed to specify the constraints during the exper-



iment process. As it can be seen from the figure, constraint 1 was easy to specify by 
all the participants, whereas constraint 10 was the most difficult to specify since all 
the participants used more time. An exception can be seen from constraint 6, where 
the average time by the four participants is 436 second (Table 3). We cannot conclude 
based on the current result why this particular participant performed worse on this 
particular constraint. More rigorous experiment is definitely required in the future. 

 
Figure 1. Time taken by each participant for the 10 constraints 

In addition, we compare the participants in terms of time taken by them to specify 
constraints using iOCL. First, we tested the sample for normality using the Shapiro-
Wilk W Test [13]. The test revealed a p-value of 0.0002, suggesting that the sample 
departs strongly from normality. Based on this, we chose the Kruskal-Wallis test 
[14][15], which is a non-parametric test for distributions that are not normal, to com-
pare the four samples of time for the 10 constraints corresponding to each participant. 
The test revealed a p-value of 0.02, meaning that there are significant differences 
among the four participants in terms of time taken to specify constraints. 

Based on this result, we compared each pair of participants with the Wilcoxon 
Signed Rank test [13][15], a non-parametric test that was chosen since our samples 
depart strongly from normality. The results are summarized in Table 4. The first two 
columns show the IDs of the participants being compared. The third column shows 
the mean difference values. A positive value means the first participant took more 
time, whereas a negative value means vice-versa, and a value of 0 means no differ-
ence. The last column shows the p-values. A p-value less than 0.05 (chosen confi-
dence level) denotes a significant difference. 

As shown in Table 4, we observed significant differences between P3 and P1, P2 
and P1, P4 and P1 whereas P1 took significantly less time than P3, P2 and P4 (positive 
MD values). This could be due to the reason that P1 has much more practical experi-
ence than P2, P3 and P4 as discussed in Section 2.3. 



Table 4: Comparison of Time across the participants* 

PID1 PID2 MD (PID1-PID2) p-value 

P3 P1 6.86 0.008 
P2 P1 5.30 0.0452 
P4 P1 4.75 0.0357 
P3 P2 3.48 0.1779 
P4 P2 0.53 0.8383 
P4 P3 -3.11 0.2164 

*MD: Mean Difference, PD: Participant ID 

4.2 Complexity and Time Analysis (RQ2) 

We studied the correlation of complexity of constraints (measured as CO, Section 
3.5) with time. We used the Spearman's rank correlation coefficient that is a non-
parametric test [13] to study such correlation between the CO and Time required to 
specify the corresponding constraints. This test outputs two values, i.e., ρ (correlation 
coefficient) and a p-value. A value of ρ greater than 0 means positive correlation, 
whereas as a value less than 0 means a negative correlation. For p-value, we chose a 
significance level of 0.05, i.e., a value less than 0.05 means statistically significant 
(positive/negative) correlation. We obtained ρ of 0.697 indicating a positive correlation 
and a p-value <0.0001 indicating that the complexity of constraints and time are signif-
icantly positive correlated.  

Moreover, we studied the correlation of CO with Time for each participant and re-
sults are summarized in Table 5. For all the participants (P1-P4), all the correlations 
are positive since all ρ are greater than 1 and all the correlations are statistically sig-
nificant since the p-values are less than 0.05. This implies that the time taken to speci-
fy each constraint is strongly and positively correlated to the complexity of the con-
straint for all the participants. 

Table 5: Correlation Analyses of Complexity and Time 

Participant ρ p-value 

P1 0.752 0.0001 
P2 0.707 0.008 
P3 0.713 0.0001 
P4 0.886 0.0001 

4.3 Additional Analyses based on Questionnaires 

Responses to the pre and post-lab questionnaires were collected on a 5-point Likert 
scale, where 1 means Strongly Agree and 5 means Strongly Disagree. As it can be 
seen in Figure 2 that P1-P3 agreed that sufficient training was provided to them, 
whereas P4 neither agreed nor disagreed (score of 3). 



 
Figure 2. Results for Pre-Lab Questionnaire* 

Q1: I have received sufficient training to understand the Cancer Registry domain model (UML Class Diagram) 

(Training). 

Q2: I have received sufficient training regarding the tasks (Training) 

Q3: I have received sufficient training about the iOCL tool (Training). 

 
 

Figure 3. Results for Post-Lab Questionnaire* 
Q1: The instruction of the tasks was perfectly clear to me (Material).  

Q2: I had plenty of time to finish the tasks. (Experiment).   

Q3: I fully understood the Cancer Registry domain model I was provided (Material). 

Q4: I fully understood the constraints in English I was provided. (Experiment). 

Q5: I fully understood how iOCL works (Understandability).   

Q6: It was easy for me to use iOCL to specify the constraints (Ease to Use).  



As shown in Figure 3, Q1-Q4 were related to experiment (experiment and its mate-
rial). For all these questions, all the participants Strongly Agreed (1)/Agreed (2) ex-
cept for P4, who neither agreed nor disagreed (score of 3). Question 5 was specifical-
ly designed to solicit views of the participants related to understanding iOCL. As we 
can see from the results, all the four participants agreed that they fully understood 
how iOCL worked. The last question was specifically designed to solicit views about 
Ease of Use of iOCL and all the four participants agreed that it was easy for them to 
use iOCL (score of 2).  

4.4 Summary and Discussions 

Based on the results reported in the previous sections, we can conclude that experi-
ence (in terms of the number of years of working in CRN) impacted the performance 
of a participant to specify constraints using iOCL. This was concluded based on the 
observation that P1 took significantly less time than P2, P3 and P4 since P1 has more 
practical work experience in CRN.  Based on the results reported in Section 4.2, we 
conclude that irrespective of experience or background, time to specify constraints 
increased as the complexity of constraints to be specified was increased. Based on 
Section 4.3, we conclude that all the participants understood iOCL fully and found 
iOCL easy to use. 

Prior to this experiment, we conducted another pilot experiment, where we studied 
specification of OCL constraints without using iOCL in CRN. We used four OCL 
constraints of varying complexity with three participants in CRN. On average, each 
participant took 600 seconds to correctly specify these four constraints with pens and 
papers. As discussed in Section 4.1, with iOCL, mean time to specify all the con-
straint was 259.9 seconds. Thus, we compared the results of not using iOCL with the 
results of using iOCL, by conducting the Wilcoxon Signed Rank test [13][15]. The 
result of the test revealed a p-value less than 0.0001, meaning that using iOCL to 
specify constraints can significantly reduce time as compared to not using iOCL. 
However, more systematic experiments are required to be conducted to confirm these 
results. 

As shown in Table 2, the last round of the experiment is the open discussion ses-
sion. During that session, we informally asked questions about the overall experience 
of using iOCL, and their expectations on the adoption of iOCL in their current prac-
tice. Two important aspects that were raised by the participants are that iOCL needs to 
be tailored to better accommodate the domain specific requirements and improve the 
usability of the tool. The current online version of iOCL has accommodated the issues 
raised in the open discussion session. 

4.5 Threats to Validity 

Conclusion validity threats are related to the factors that can affect the conclusions 
derived from the results of experiments [17]. In our case, the main threat is related to 
the sample size used to derive conclusions. We had roughly 10 data points per partici-
pant (four in total) for time to specify 10 constraints in iOCL and in total 38 data 



points. Two data points were missing due to the fact that the participants failed to 
specify the constraints. Indeed, we need more participants to further increase the sam-
ple size to strengthen our conclusions. In addition, we used appropriate statistical tests 
based on the analysis of sample relying on the guidelines proposed in [16][17]. 

The internal validity threats are related to the internal factors [16][17] that can pos-
sibly affect the outcomes of results. In our case, each participant worked on his/her 
own constraint independent of the other participants and thus didn’t impact the per-
formance of each participant. 

In our pilot, there are some possible construct validity threats. For example, in this 
experiment, we didn’t study all the possible constructs of OCL specifications and 
much larger number of constraints is required to study all the constructs of the OCL 
specification. However, notice that our constraints are real-world constraints and they 
reflect the complexity of real medical rules at CRN. 

In terms of external validity threats, like any other experiment [16][17], we need 
more case studies to generalize the results. Conducting experiments with additional 
constraints in CRN is our near future work. In addition, we are also planning to con-
duct a large-scale controlled experiment with students to assess the applicability of 
iOCL. This is mainly due to the reason that conducting experiments in a real setting is 
very expensive. 

5 Related Work 

There are several existing tools for OCL constraint specification, evaluation and 
validation, e.g., 1) IBM RSA [24] and Papyrus [23] that provide an integrated model-
ing environment for modelers to specify constraints in UML models using various 
languages (e.g., OCL and Java); 2) Eclipse OCL [8] that was designed to specify, 
validate and evaluate OCL constraints and 3) EsOCL [2] that was developed to auto-
matically generate model instances that comply with the specified OCL constraints 
using search algorithms. As compared with the existing tools related with OCL, iOCL 
poses two key differences, which include: 1) the focus is different, i.e., iOCL is main-
ly designed for easing the process of OCL constraint specification by providing mod-
elers with runtime guidance in an interactive manner; and 2) iOCL integrates several 
existing OCL tools and supports their functionalities, i.e., OCL constraint evaluation 
and validation provided by Eclipse OCL [8] and automatic generation of model in-
stances that meet a given set of OCL constraints provided by EsOCL [2] to assess 
whether the specified constraint can be solved. 

Recall that OCL is based on first-order logic and set theory, which has been widely 
applied as a standard language for specifying various constraints on UML models [5]. 
The state-of-the-art has shown promising results in terms of applying OCL to solve 
different industrial problems [4][20]-[22], e.g., model-based test case generation [20]. 
The existing literature has conducted several controlled experiments with the aim of 
evaluating the potential benefits of applying OCL [11][18][19] [25][26]. For instance, 
to collect the evidence of the applicability of OCL, Yue et al. [11] involved 29 trained 
graduate students and conducted a controlled experiment by comparing OCL and Java 



in terms of specifying constraints on UML models. Results of the experiment showed 
that 1) OCL managed to achieve equivalent performance for constraint specification 
with respect to completeness, conformance, and redundancy; and 2) OCL scaled well 
even for specifying constraints with high complexity, which was not the case for Java. 
Briand et al. [18][19] performed a controlled experiment to evaluate the impact of 
applying OCL in UML-based development from the perspective of model compre-
hension and maintainability. Their results show that practitioners usually require a 
learning curve to acquire sufficient knowledge of OCL for gaining benefits when 
using OCL for constraint specification on UML diagrams. Correa et al. [25] conduct-
ed and reported a controlled experiment in terms of evaluating the impact of OCL 
refactoring with respect to the understandability. Their results show that most of the 
refactoring operators were able to significantly improve the understandability of OCL 
specifications. 

As compared with the existing work related to the controlled experiments of OCL, 
the main difference is that we focus on evaluating the applicability of iOCL into prac-
tice to ease constraint specification. In particular, we assessed its applicability in the 
CRN domain with four medical experts from CRN (i.e., healthcare domain) for the 
experiment.  

6 Conclusion and Future Work 

In the past, we were frequently challenged by the applicability of the Object Con-
straint Language (OCL) in practice. Evidence from the literature has shown that OCL 
is easy to apply in certain contexts and it is also well recognized in the community 
that tool support is considered as a very important factor to foster the adoption of 
OCL in practice. In our context of applying OCL in the Cancer Registry of Norway 
(CRN) for specifying medical cancer coding rules, we also faced the challenges of 
introducing OCL to their practice, which inspired us to design a user-friendly OCL 
specification, validation and evaluation tool (coined as iOCL). To ensure the applica-
bility of iOCL in CRN, we conducted a pilot experiment to obtain the initial observa-
tions, together with the real future users of the tool, i.e., the experiment participants 
who play as medical experts in CRN. The participants were also positive about the 
adoption of iOCL in their practice.  

In the future, we plan to conduct more rigorous experiments to evaluate the ap-
plicability of iOCL in other practical contexts. We also plan to conduct controlled 
experiments in an academic setting for the purpose of evaluating the applicability of 
iOCL in a general context. 
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