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Abstract—Continuous engineering (CE) practices, such as con-
tinuous integration and continuous deployment, have become
key to modern software development. They are characterized by
short automated build and test cycles that give developers early
feedback on potential issues. CE practices help to release software
more frequently, and reduces risk by increasing incrementality.
However, effective use of CE practices in industrial projects
requires making sense of the vast amounts of data that results
from the repeated build and test cycles.

The goal of this paper is to investigate to what extent these
data can be treated more effectively by automatically grouping
logs of runs that failed for the same underlying reasons, and
what effort reduction can be achieved. To this end, we replicate
and extend earlier work on system log clustering to evaluate its
efficacy in the CE context, and to investigate the impact of five
alternative log vectorization techniques.

We built a prototype tool that is used to conduct an empirical
case study on continuous deployment logs provided by our
industrial collaborator. Questions to be answered include: (1)
Can we reduce the effort needed to discover all latent issues
in a set of failing runs? (2) How to best leverage the contrast
between passing and failing runs to increase accuracy? (3) What
trade-offs are there between effort reduction and accuracy? We
present a quantitative and qualitative analysis of the results of
our study. We conclude by evaluating the trade-offs, and give
recommendations for applying this approach in practice.

I. INTRODUCTION

In order to meet rising demands for frequent releases and high

service levels, modern software development sees an increased

adoption Continuous Engineering (CE) practices: Continuous

Integration (CI) aims at automatically building and (unit)

testing software changes multiple times a day, Continuous

Delivery (CDy) extends CI with automated acceptance testing

and quality checking to ensure that a product is ready for

deployment, Continuous Deployment (CDt) adds automatic

deployment to production-like hardware and deployment test-

ing, and Continuous Release (CR) further adds automatically

releasing the new software to the customers.1 When there is

no need to distinguish, we will refer to these practices as CE.

Each of the practices focuses on creating short automated

cycles that give developers early feedback on potential issues

and reduce risk by increasing incrementality. The cycles can

be triggered by new commits to the versioning system, via

periodic scripts, or simply on demand by a developer.

1 There is an ongoing debate on the definitions and boundaries of these
practices, but we will use this incremental CI ⊂ CDy ⊂ CDt ⊂ CR definition.

A frequently reported challenge for the adoption of CE is

the need for systematic analysis of the abundance of data

resulting from the automated build, test, and deployment pro-

cesses [1–6]. Without CE, a developer would manually build,

test or deploy the system, observe the results and immediately

react to them. With CE, an automated cycle is started that

stores its results in a log, the developer switches to a new

tasks, and the log is inspected later. This increases productivity

when the cycles are time-consuming. However, it can also lead

to the accumulation of vast amounts of unprocessed results,

especially when combined with extensive automatic testing.

Goal: We investigate how the analysis of accumulated CE

logs can be automatically supported, and what effort reduction

can be achieved. More specifically, we aim to automatically

group logs of CE runs that failed for the same underlying

reasons. The idea being that automated log clustering enables a

more systematic, coordinated approach where one investigates

a representative for a group of failed runs, instead of having

to investigate all individual results. Moreover, after addressing

the issue that caused failure for a representative of a cluster,

one can reasonably expect that the issues of logs that failed for

corresponding reasons have been accounted for (which will be

checked by following runs).

Contributions: We replicate and extend earlier work by Lin

et al. [7] that proposed automatic clustering for system logs.

Out main contributions are the following: (1) We conduct a

replication study to investigate the efficacy of an approach

developed for identifying problems in system logs in the

context of analyzing CE logs, and the effort reduction that can

be achieved. (2) We extend the original study in two ways:

(2a) we investigate an alternative technique to exploit the

frequency with which events occur in passing and failing logs,

and (2b) we investigate two alternative techniques to exploit

the contrast between events occurring only in failing logs and

events that also occur in passing logs. (3) We empirically

evaluate the impact of the 6 resulting configurations on the

quality of clustering CDt logs provided by our industrial

collaborator. (4) We analyze and discuss how the various

pipelines affect the effort reduction that can be achieved by

clustering CDt logs.

Overview: The remainder of this paper is organized as

follows: Section II discusses Lin’s approach, and Section III

presents the variations that we investigate. Section V describes
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2018-01-16 11:32:57.111 CET: [test-setup] {INFO} Check that system are in the correct default initial state
2018-01-16 11:32:57.113 CET: [test-setup] {INFO} * System check not supported for ce-host, u’vm-ce-host5.qa’
2018-01-16 11:32:58.230 CET: [unfit] {INFO} Test Success get_keys
2018-01-16 11:32:59.108 CET: [unfit] {INFO} Test Success get_platform_sanity
2018-01-16 11:32:59.250 CET: [unfit] {INFO} Test Success get_input_status
2018-01-16 11:32:59.317 CET: [unfit] {INFO} Test Success get_camera_lid_state
2018-01-16 11:32:59.794 CET: [unfit] {INFO} Test Success get_keys
2018-01-16 11:33:00.791 CET: [unfit] {INFO} Test Success get_input_status
2018-01-16 11:33:00.908 CET: [unfit] {INFO} Test Success get_camera_lid_state
2018-01-16 11:33:06.096 CET: [fixture.py] {INFO} Dial reference from testtarget on h323 with callrate 3000

Listing 1. An excerpt from one of the CDt logs of our industrial partner.

our experimental design, whose results are presented and

discussed in Section VI. Section VIII presents related work,

and Section IX provides some concluding remarks.

II. BACKGROUND

As in our other work that investigates the impact of dimension-

ality reduction on log clustering [8], the baseline for our inves-

tigation is LogCluster by Lin et al. [7]. We share LogCluster’s

choice of clustering algorithm (Hierarchical Agglomerative

Clustering–HAC) and distance metric (cosine distance), but

investigate variations with respect to the treatment of logs

before clustering. This section explains how logs are treated

in LogCluster and Section III introduces the variations on

LogCluster investigated in this paper.

In essence, LogCluster adopts and adapts the common bag-
of-words approach to document clustering [9] in which every

document is represented as a vector of word frequencies:

If there are n unique words in the set of documents to

be clustered, every document will be represented as an n-
dimensional vector v where each element in the vector tracks

how often a specific word occurs in the document. However,

LogCluster differs from the standard bag-of-words approach

in two important ways: It uses events rather than words as the

fundamental unit of abstraction, a bag-of-events model if you

will, and it applies a weighing scheme that attempts to give

higher significance to events that only occur in failing logs.

Deriving a bag-of-events representation: There are three

steps to deriving a bag-of-events representation. The first step

is to assume that the logs being clustered can be interpreted

as a sequence of events, and that each event in the log can

be delineated by a machine-recognizable pattern. As a running

example, we will use an excerpt from of of the CDt logs of our

industrial collaborator, shown in Listing 1. In the log excerpt

the event delineation pattern is a newline followed by a date,

a time-stamp and a time-zone indicator. The second step is

to perform log abstraction by removing all runtime-specific

information that creates artificial differences between events,

especially dates and timestamps. For example, we would want

the occurrences of Test Success get_keys in Listing 1

to be treated as the same event occurring two times rather than

as two unique events. While the original LogCluster pipeline

uses a log abstraction mechanism by Fu et al. [10], we make

use of a log abstraction tool developed by Cisco Systems

Norway. Finally, the third and last step is to automatically

split each log into events, determine the set of unique events

occurring in the logs, and representing each log as a vector of

event frequencies.

Setting event weights: It is generally assumed in Information

Retrieval that rare words are more informative than common

words. To account for this fact, the inverse document frequency
scheme gives higher weights to rarely occurring words, and

proportionally lower weight to common words [9]. LogCluster

employs an inverse document frequency scheme to assign

higher priority to rarely occurring events such that the weight

wf (e) of an event e is given by: wf (e) = S(log N
ne

) where

N is the number of logs to be clustered, ne is the number of

logs where the event e appears, and S is the Sigmoid function

1/(1+exp[−x]) which normalizes the vector by ensuring that

all values are between 0 and 1.

Furthermore, LogCluster is concerned with effectively clus-

tering production logs by using knowledge of corresponding

laboratory logs: It posits that events that are only observed

in production logs are extra informative, and that the event

weight should reflect this. Lin et al. refer to this technique

as contrast-based event weighing. This is implemented in

LogCluster by computing the set of production-only events

ΔS, and then letting the final weight of the event be set by:

w(e) = 0.5∗wcon(e)+0.5∗wf (e), where wf (e) is the classic

idf weight computed above and wcon(e) is the contrast weight
so that wcon(e) = 1 if e ∈ ΔS and wcon(e) = 0 otherwise.

We adapt this method for our use-case by leveraging the

contrast between passing and failing logs, letting ΔS denote

the set of events unique to failing logs. We investigate alter-

native ways of incorporating the contrast between failing and

passing logs, and will refer to Lin et al.’s concrete strategy as

proportional contrast in the remainder of this paper.

Performing the clustering and selecting representatives:
The clustering is performed by applying Hierarchical Agglom-

erative Clustering (HAC) using cosine distance as distance

metric. The clustering algorithm stops merging subclusters

when the distance between two subclusters exceed a threshold

θ, which LogCluster sets to 0.5. When the clusters have been

computed, the log in each cluster with the smallest average

cosine distance to the other logs in its cluster is extracted as

a representative.

III. VARIATIONS ON LOGCLUSTER

Having described the main tenets of LogCluster, we now

present and motivate the additional variations that we inves-

tigate in this paper. Figure 1 shows a high level overview of

the LogCluster pipeline and our variations.

Alternative event frequency weighting scheme: We investi-

gate whether an improvement can be made by employing a tf-
idf scheme for weighting event frequency vectors. This choice
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Fig. 1. Overview of the LogCluster pipeline (top flow, in bold italic) together
with the additional variations investigated in this paper.

may be more appropriate for CE logs which contain lower

frequencies of repeated events per log than typical system

event logs, a fact which may be successfully exploited by

using tf-idf instead of idf for event frequency weighting. Tf-

idf uses the number of times an event occurs in a log instead

of just whether it occurs or not (as used by idf). The tf-

idf based event frequency weight wf (e) is determined by

wf (e) = tf(e, d) × (log( N+1
ne+1 ) + 1), where N is the number

of logs being clustered, ne is the number of logs where the

event e appears and tf(e, d) denotes the number of times event

e occurs in document d. We add one to the numerator and

denominator in the second term to prevent divisions by zero,

and add one to the second term to ensure that events occurring

in all documents (i.e. for which ne = N ) also get a nonzero

weight. After computing this score for every event in the log,

all the scores are normalized with the L2 (Euclidean) norm to

ensure that all resulting values fall in the interval [0, 1].
Alternative techniques to leverage event contrast: Log-

Cluster’s proportional contrast leverages the contrast between

events that only occur in failing logs and events that occur

in both failing and passing logs. Our work investigates two

alternative techniques to leverage event contrast that we refer

to as pre-filtering and post-filtering.
Pre-filtering: This technique is based on the idea that the

only events that matter for clustering accuracy are the events

that only occur in failing logs (fail-only events). Thus, pre-

filtering removes all events that occur in both failing and

passing logs (co-occurring events) from the failing logs before

feeding them to the event frequency weighting step.

Post-filtering: This technique is based on the idea that event

frequency can be used to leverage the contrast between events

in failing and passing logs: when the number of passing

logs exceeds the number of failing logs (which is not an

unreasonable expectation), then inverse document frequency

will automatically highlight fail-only events and downplay co-

occurring events. Thus, in post-filtering, both the passing and

failing logs are fed into the event frequency weighting step

and afterward the passing logs are discarded, so that only the

failing logs gets clustered.

IV. RESEARCH QUESTIONS

This paper is concerned with answering the following three

research questions:

RQ1 Can we reduce the effort needed to discover all latent

issues in a set of failing runs?

RQ2 How to best leverage the contrast between passing and

failing runs to increase accuracy?

RQ3 What trade-offs are there between effort reduction and

accuracy?

V. EXPERIMENTAL DESIGN

We answer our research questions by measuring and analyzing

the performance of LogCluster and the variations discussed

in Section III. This section presents the dataset, measures and

statistical procedures used.

A. Datasets

For our empirical evaluation, we use the same dataset as

was used in our investigation of the impact of dimensionality

reduction on log clustering [8]. This dataset was provided by

our industrial partner Cisco Norway, a worldwide leader in

the production of software-intensive embedded systems in the

networking domain. The logs provided were extracted from

recent development activity on their main software product

line for professional video conferencing systems. Cisco uses

continuous deployment: changes committed to the VCS are

automatically integrated, built, and deployed to variants of

their hardware for comprehensive interoperability testing.

Each dataset used in this investigation concerns a specific in-

tegration test, and consists of logs for both failing and passing

runs of the given test. The logs are loosely structured execution

outputs that capture the process of building, deploying and

testing various scenarios, not unlike the output of running a

make command, as can be seen in Listing 1. The eighteen

datasets used in this investigation are summarized in Table I.

The initial dataset was filtered so that every failing run

is associated with one (and only one) known issue. In ear-

lier work, Cisco Norway handcrafted regular expressions to

identify whether a log concerns a known issue. We use these

expressions to establish a ground truth for how the logs should

be clustered together so that each cluster only contains logs

TABLE I
MAIN CHARACTERISTICS OF THE INPUT DATASETS USED.

dataset failing passing distinct fail-only co-occurring ground-truth
logs logs events events events clusters

1 45 4189 220 57 107 7
2 102 4182 308 90 102 13
3 103 1315 6193 271 579 5
4 8 4277 78 2 68 1
5 41 297 138 19 99 3
6 23 2421 1176 109 243 9
7 50 1591 90 15 56 5
8 78 3213 1488 404 201 11
9 52 461 227 57 120 9
10 342 3152 636 105 96 30
11 15 3816 67 1 22 1
12 74 2811 134 73 60 8
13 106 572 253 43 138 12
14 60 613 220 41 121 11
15 140 3247 295 98 106 20
16 132 3238 321 101 112 23
17 36 530 283 68 133 10
18 29 344 249 48 123 8
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concerning the same issue. This allows us to evaluate the

accuracy of clusterings proposed by the various pipelines.

B. Quality Measures

Adjusted Mutual Information: We use Adjusted Mutual
Information (AMI) [11] to measure how well each configura-

tion clusters the datasets in accordance with the ground truth.

While Lin et al. [7] use Normalized Mutual Information [9]

for this purpose, NMI has a systematic bias in favor of

clustering algorithms that group data into many small clusters,

as those are more likely to have many agreements solely due

to chance [11]. The AMI measure corrects for this bias [11].

An AMI score can at most be 1, which indicates a per-

fect correspondence between the proposed clustering and the

ground truth. An AMI score near 0, on the other hand,

indicates that the proposed clustering performs as one would

expect from a solution based on random guessing.2

Homogeneity and Completeness: Homogeneity (H) and

Completeness (C) represent two competing clustering quality

concerns, and are defined in relation to the V-measure, which

is the weighted harmonic mean of the two [12]. Homogeneity

measures the extent to which members of a proposed cluster

come from the same ground-truth cluster, while Completeness

measures the extent to which all members of a given ground-

truth cluster occur in the same proposed cluster. A clustering

algorithm can trivially obtain a perfect Homogeneity score by

putting each log into a one-membered cluster (resulting in one

cluster per log), but such a solution would obtain a very low

Completeness score. On the other hand, a clustering algorithm

can trivially obtain a perfect Completeness score by creating

only one cluster and placing every log in that cluster, but such

a solution would obtain a very low Homogeneity score. Thus,

a well-performing clustering algorithm must strike a good

balance between both Homogeneity and Completeness.

Homogeneity and Completeness scores range from 0 to 1,
where 1 is a perfect score and 0 is the worst possible score.

Effort Reduction: Raw, ideal and scaled: In a perfect world,

our clustering algorithm would only group together logs that

concern the exact same issue. A user would cluster n failing

logs, extract r representatives–one representative per cluster–

and manually inspect r rather than n logs, where r is typically

much smaller than n. In that case, the proportional reduction

in required effort, or simply effort reduction, would be given

by ER = 1− r
n .

However, in an imperfect world, a clustering algorithm

might create too few or too many clusters. To get a sense

of how good the observed effort reduction is, it helps to

know what effort reduction a perfectly accurate algorithm

would achieve. We refer to this as the ideal effort reduction.
Recall that the algorithm produces one representative per

cluster. Therefore, the ideal effort reduction (IER) is given

by IER = 1− distinct ground-truth clusters
n .

2 This has an important implication for interpreting our results: An AMI
score of 0.5 does not correspond to random guessing, as opposed to many
other accuracy measures (e.g., the F1 score).

However, since ER and IER only reflect the number of clus-

ters rather than the cluster contents, we might have clustering

outcomes where ER = IER but where the contents of the

clusters completely deviate from the ground-truth. We there-

fore define scaled effort reduction (SER) as SER = ER ∗ H.

Recall that Homogeneity measures to what extent members of

a cluster come from the same ground-truth cluster. Ideally, we

want every cluster to contain members from only one ground-

truth cluster, so that the cluster representatives genuinely

represent all the logs in the cluster. The Homogeneity score

measures to what extent this is the case. By scaling the effort

reduction with Homogeneity we get a sense of the quality of

the effort reduction achieved as well. In a perfect world we

would obtain SER = ER ∗ H = IER ∗ 1 = IER.

C. Statistical Procedures

To answer RQ2 and RQ3, we are interested in determining

whether there are significant differences between the variations

we consider. In order to do so, we first make use of the non-

parametric Friedman test [13] to establish whether there is

at least one significant difference between the variants.3 If

the Friedman test produces a p-value below or at significance

level α = 0.05, we reject the null hypothesis of no significant

difference between the variants and proceed with a post-hoc

test to pinpoint where the differences lie.

As a post-hoc test, we compare each pair of variants using

two-sided, paired Wilcoxon Signed Rank Tests [15] with the

Pratt-correction [16] to account for ties as conservatively as

possible.4 Since the post-hoc tests cause multiple comparisons,

we use Holm’s procedure [18] to adjust our significance level

α to control the family-wise error rate.

Once we have established which variants are statistically

similar or different, we visualize the pairwise comparisons

with a compact letter display generated by Piepho’s algo-

rithm [19]. If two treatments do not differ in a statistically

significant way, they are given the same letter.

We also record the the Vargha-Delaney A12 and A21 effect

size measures [20]: When comparing a against b, Aab ap-

proximates the stochastic superiority of a over b. For the same

comparison, Aba = 1−Aab measures the stochastic superiority

of b over a. By convention, a VDA of .56 is considered small,
a VDA of .64 is considered medium and VDA of .71 or above

is considered large [20].

For running these statistical tests, we made use of the

stats.wilcoxon and stats.friedmanchisquare proce-

dures from SciPy [21]. The plots are made with ggplot2 [22]

in R [23]. The compact letter displays are generated with

multcompView [24] in R.

3 We refer to Dems̆ar [14] for a treatment on why the non-parametric
Friedman test is to be preferred over parametric approaches such as ANOVA
when comparing algorithms.

4 We refer to Benavoli et al. [17] for an argument for using the Wilcoxon
Signed-Rank test as post-hoc procedure after the Friedman test.
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Fig. 2. Aggregated scores for each variant

VI. RESULTS AND DISCUSSION

A. Overview

Table II and Figures 2 and 3 summarize our results, and we

refer to these tables and figures extensively in the following

discussion. Table II summarizes the median performance of all

variants on AMI, Homogeneity, Effort Reduction, and Scaled

Effort Reduction. The spread of these values is illustrated

with boxplots in Figure 2. Moreover, Figure 3 shows the

performance of the variants per dataset, and highlights how

well the effort reduction scores fare against the ideal effort

reduction score.

B. Baseline performance

Since LogCluster by Lin et al. [7] serves as a baseline for

our study, we first concentrate on the exact performance of

this algorithm on our dataset. Recall that LogCluster implies

using the proportional contrast in conjunction with the idf
weighing scheme discussed in Section II.

TABLE II
MEDIAN PERFORMANCE OF ALL VARIANTS ON AMI, HOMOGENEITY,

EFFORT REDUCTION, AND SCALED EFFORT REDUCTION

freq. contrast median median median median
weighting leverage AMI ER SER H

idf proportional 0.5094 0.8495 0.5874 0.7150
tf-idf proportional 0.4537 0.7399 0.6209 0.9634
idf pre-filter 0.4295 0.7002 0.6119 0.9516
tf-idf pre-filter 0.4060 0.6504 0.5715 0.9670
idf post-filter 0.3141 0.9206 0.4200 0.4569
tf-idf post-filter 0.4551 0.8332 0.5129 0.6336

The exact performance of LogCluster is shown in Table III:

For ER and scaled ER, we report the difference from IER in

parentheses. A negative result indicates that the effort reduc-

tion is lower than ideal. A positive effort reduction, moreover,

means that the raw effort reduction exceeds the ideal effort

reduction, which implies that the clustering algorithm has

produced fewer clusters than the ground truth. The Clusters-

column shows how many clusters LogCluster produced, with

the number of clusters an ideal algorithm would produce

TABLE III
RESULTS ON LOGCLUSTER’S EXACT PERFORMANCE

Dataset AMI H C ER SER Clusters

1 0.383 0.775 0.537 0.733 (-0.111) 0.568 (-0.276) 12 (7)
2 0.673 0.853 0.747 0.853 (-0.02) 0.727 (-0.145) 15 (13)
3 0.201 0.676 0.251 0.883 (-0.068) 0.597 (-0.354) 12 (5)
4 1.0 1.0 1.0 0.875 (=) 0.875 (=) 1 (=)
5 0.085 0.171 0.135 0.927 (=) 0.159 (-0.768) 3 (=)
6 0.211 0.327 1.0 0.87 (+0.261) 0.284 (-0.324) 3 (9)
7 0.676 0.705 1.0 0.92 (+0.02) 0.649 (-0.251) 4 (5)
8 0.341 0.722 0.494 0.808 (-0.051) 0.583 (-0.276) 15 (11)
9 0.623 0.708 0.815 0.846 (+0.019) 0.599 (-0.228) 8 (9)
10 0.569 0.645 0.677 0.936 (+0.023) 0.604 (-0.309) 22 (30)
11 1.0 1.0 1.0 0.933 (=) 0.933 (=) 1 (=)
12 0.453 0.734 0.574 0.797 (-0.095) 0.586 (-0.306) 15 (8)
13 0.2 0.539 0.317 0.887 (=) 0.478 (-0.409) 12 (=)
14 0.263 0.562 0.445 0.817 (=) 0.459 (-0.357) 11 (=)
15 0.734 0.855 0.808 0.836 (-0.021) 0.714 (-0.143) 23 (20)
16 0.565 0.734 0.722 0.803 (-0.023) 0.589 (-0.236) 26 (23)
17 0.628 0.78 0.796 0.722 (=) 0.563 (-0.159) 10 (=)
18 0.281 0.607 0.506 0.759 (+0.034) 0.461 (-0.264) 7 (8)

Median 0.509 0.715 0.700 0.850 0.587 -
Mean 0.494 0.689 0.657 0.845 0.579 -
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16  (failing=132, passing=3238) 17  (failing=36, passing=530) 18  (failing=29, passing=344)

13  (failing=106, passing=527) 14  (failing=60, passing=613) 15  (failing=140, passing=3247)

10  (failing=342, passing=3152) 11  (failing=15, passing=3816) 12  (failing=74, passing=2811)

7  (failing=50, passing=1591) 8  (failing=78, passing=3213) 9  (failing=52, passing=461)

4  (failing=8, passing=4277) 5  (failing=41, passing=297) 6  (failing=23, passing=2421)

1  (failing=45, passing=4189) 2  (failing=102, passing=4182) 3  (failing=103, passing=1315)
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Fig. 3. Per-test performance

indicated in parentheses.

Overall, the raw effort reduction is roughly 5 to 25 percent

below the ideal rate. This can also be seen visually in Figure 3,

where the ER mark for LogCluster is close-to, but not on, the

red line indicating the IER for that test. On datasets 6,7,9, 10

and 18 the ER exceeds IER, and for these cases the Clusters

column shows us that LogCluster has produced fewer clusters

than the ideal solution would.

Datasets 5, 13, 14 and 17 demonstrates the importance

of having a Homogeneity-scaled effort reduction measure:

While LogCluster produces the same number of clusters as

the ideal solution, these clusterings range from the severely

(5) to somewhat (17) inaccurate, as indicated by the AMI and

H scores. The scaled Effort Reduction score incorporates this

nicely by reporting a very low score for pathological cases

(dataset 5) and a moderately penalized score where the number

of clusters are the same as in the ground truth, but where the

cluster contents differ somewhat (dataset 17).

While LogCluster achieves a perfect ER and SER score

on datasets 4 and 11, these are the two smallest datasets and

only require the algorithm to lump all logs into one cluster to

achieve a perfect score. This does not imply that the dataset

is trivial, however, since the algorithm must still identify that

the correct action is to create a single cluster. As is shown in

Figure 3 not all variants do this correctly for dataset 4.

C. Performance of all variants

Figure 3 shows the performance of each variant on each

individual test. Overall, we see that the ideal effort reduction

IER is typically above .75 for all datasets, except dataset 6

where it is .60 and datasets 17 and 18 where it is .72. The

variants score an ER close to the IER on datasets 3,4, 7, 10, 11,

13 and 14. On datasets 1,2,8,9,15,16,17 and 18, however, the

majority of variants score an ER systematically below the IER.

The post-filtering variants achieve a higher ER on datasets 6

and 12 than the other variants, but unfortunately also attain

very low AMI and SER on those same datasets.

In terms of Homogeneity, Proportional contrast with tf-idf

and the two pre-filtering variants attain higher Homogeneity

scores than other variants on all datasets except 1,4,7,11, and

12. However, we see that these variants score a proportionally

lower ER score than other variants on dataset 5,6,8,15,16,17

and 18, suggesting that the variants have an inherent bias for

preferring small homogeneous clusters.

For about half of the datasets, we see that AMI and SER

scores are similar. On datasets 1,3,4,5,8,13 and 14, however,

AMI and SER visibly diverge. An interesting example is

dataset 4, where the correct answer is to put all logs in a single

cluster. Proportional contrast with tf-idf and the pre-filtering

variants create two rather than one cluster, obtaining perfect

Homogeneity and a high effort reduction but gets heavily
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TABLE IV
SUMMARY OF AMI COMPARISONS

a b p-value wilcox VDA12 VDA21

idf + prop idf + pre 0.7439 78 0.5216 0.4784
idf + prop idf + post 0.0018 14 0.6420 0.3580
idf + prop tf-idf + prop 0.4204 67 0.4799 0.5201
idf + prop tf-idf + pre 0.6165 74 0.5370 0.4630
idf + prop tf-idf + post 0.1024 48 0.5849 0.4151
idf + pre idf + post 0.0311 36 0.6296 0.3704
idf + pre tf-idf + prop 0.0096 26 0.4444 0.5556
idf + pre tf-idf + pre 0.0123 28 0.5278 0.4722
idf + pre tf-idf + post 0.0936 47 0.5617 0.4383
idf + post tf-idf + prop 0.0139 29 0.3611 0.6389
idf + post tf-idf + pre 0.0582 42 0.3920 0.6080
idf + post tf-idf + post 0.0096 26 0.4198 0.5802
tf-idf + prop tf-idf + pre 0.0108 27 0.5648 0.4352
tf-idf + prop tf-idf + post 0.0156 30 0.5941 0.4059
tf-idf + pre tf-idf + post 0.2485 59 0.5370 0.4630

p-values that are significant after Holm correction in bold,
medium effect size in italics, large effect size in bold

penalized in terms of AMI.

These observations are substantiated in the boxplots in

Figure 2: Proportional contrast with tf-idf and the pre-filtering

variants attain very high Homogeneity scores, while the post-

filtering variants attain very high raw ER scores.

D. Statistical Analysis

As discussed in the experimental design (Section V), we

consider a total of 6 different vectorization strategies. With 18

datasets, we thus have 6 different treatments being measured

on 18 different blocks.
We run three statistical tests with corresponding post-hoc

procedures. Each test targets a specific quality measure. The

quality measures considered are AMI, ER and SER.

AMI: The Friedman test yields a test statistic of 18.6806
at a p-value of 0.0022. We thus reject the null hypothesis of

equal performance for all configurations at significance level

α = 0.05, and continue with the pairwise post-hoc tests.

The post hoc-tests are summarized in Table IV. Our in-

vestigation found only one significant difference between the

variants: idf and proportional contrast was found to perform

significantly better than idf and post-filtering, with a Vargha-

Delaney effect size of 0.6420. According to the convention

of interpreting Vargha-Delaney scores this is interpreted as a

medium effect size. The mean, median, max and min AMI

scores for each variant are listed in Table V.

ER: Our Friedman test results in a test statistic of 76.9308 at a

p-value of 3.6769e−15, leading us to reject the null hypothesis

TABLE V
SUMMARY OF AMI PERFORMANCE PER VARIANT

group freq. contrast median mean max min
weighting leverage AMI AMI AMI AMI

a idf proportional 0.5094 0.4937 1.0000 0.0854
ab tf-idf post-filtering 0.4551 0.4076 1.0000 0.0000
ab tf-idf proportional 0.4537 0.4905 1.0000 0.0000
ab idf pre-filtering 0.4295 0.4562 1.0000 0.0000
ab tf-idf pre-filtering 0.4060 0.4364 1.0000 0.0000
b idf post-filtering 0.3141 0.3775 1.0000 0.0285

TABLE VI
SUMMARY OF ER COMPARISONS

a b p-value wilcox VDA12 VDA21

idf + prop idf + pre 0.0002 0 0.8457 0.1543
idf + prop idf + post 0.0002 0 0.1821 0.8179
idf + prop tf-idf + prop 0.0002 0 0.7870 0.2130
idf + prop tf-idf + pre 0.0002 0 0.8549 0.1451
idf + prop tf-idf + post 0.4997 70 0.5556 0.4444
idf + pre idf + post 0.0002 0 0.0756 0.9244
idf + pre tf-idf + prop 0.0002 0 0.4275 0.5725
idf + pre tf-idf + pre 0.0002 0 0.5694 0.4306
idf + pre tf-idf + post 0.0002 0 0.2099 0.7901
idf + post tf-idf + prop 0.0002 0 0.9213 0.0787
idf + post tf-idf + pre 0.0002 0 0.9275 0.0725
idf + post tf-idf + post 0.0002 0 0.8380 0.1620
tf-idf + prop tf-idf + pre 0.0002 0 0.6235 0.3765
tf-idf + prop tf-idf + post 0.0002 0 0.2747 0.7253
tf-idf + pre tf-idf + post 0.0002 0 0.1867 0.8133

p-values that are significant after Holm correction in bold,
medium effect size in italics, large effect size in bold

of equal performance for all configurations at significance level

α = 0.05 and proceed with the post-hoc tests. The post-hoc

tests are summarized in Table VI, and the group memberships

and summarizing statistics are shown in Table VII. As seen

in Table VI, all except one comparison yielded a statistically

significant difference. Post-filtering with idf obtains the highest

median and mean ER scores and is significantly different from

all other variants in this regard. Proportional contrast with idf

and post-filtering with tf-idf share second place.

Scaled ER: Once again we run the Friedman test, resulting

in a test statistic of 33.1469 at a p-value of 3.5189e− 06, and
so we reject the null hypothesis of equal performance for all

configurations at significance level α = 0.05. The post-hoc

tests are summarized in Table VIII, with group memberships

and key summary statistics listed in Table IX. Only six out of

fifteen comparisons found a statistically significant difference.

When corroborated with the summary statistics in Table IX,

we see that the significant comparisons (and correspondingly

large effect sizes) concern comparisons where one of the low-

performing post-filtering variants is compared against one of

the better performing variants. Indeed, the clearest signal from

this test is that post-filtering should not be preferred when

optimizing for SER.

E. Response to research questions

RQ1: Can we reduce the effort needed to discover all
latent issues in a set of failing runs? – We see that the

LogCluster baseline achieves a considerable raw median effort

TABLE VII
SUMMARY OF ER PERFORMANCE PER VARIANT

group freq. contrast median mean max min
weighting leverage ER ER ER ER

a idf proportional 0.8495 0.8447 0.9357 0.7222
a tf-idf post-filtering 0.8332 0.8255 0.9333 0.6667
b idf pre-filtering 0.7002 0.6865 0.9333 0.4348
c idf post-filtering 0.9206 0.9162 0.9766 0.8500
d tf-idf proportional 0.7399 0.7217 0.9333 0.5172
e tf-idf pre-filtering 0.6504 0.6504 0.9333 0.3478
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TABLE VIII
SUMMARY OF SCALED ER COMPARISONS

a b p-value wilcox VDA12 VDA21

idf + prop idf + pre 0.2860 61 0.4306 0.5694
idf + prop idf + post 0.0003 3 0.7315 0.2685
idf + prop tf-idf + prop 0.0936 47 0.3796 0.6204
idf + prop tf-idf + pre 0.8789 82 0.4892 0.5108
idf + prop tf-idf + post 0.0038 19 0.6327 0.3673
idf + pre idf + post 0.0009 9 0.7793 0.2207
idf + pre tf-idf + prop 0.0854 46 0.4614 0.5386
idf + pre tf-idf + pre 0.0050 21 0.5509 0.4491
idf + pre tf-idf + post 0.0084 25 0.7191 0.2809
idf + post tf-idf + prop 0.0006 7 0.1960 0.8040
idf + post tf-idf + pre 0.0065 23 0.2731 0.7269
idf + post tf-idf + post 0.0108 27 0.3441 0.6559
tf-idf + prop tf-idf + pre 0.0386 38 0.5880 0.4120
tf-idf + prop tf-idf + post 0.0004 4 0.7577 0.2423
tf-idf + pre tf-idf + post 0.1701 54 0.6605 0.3395

p-values that are significant after Holm correction in bold,
medium effect size in italics, large effect size in bold

TABLE IX
SUMMARY OF SER PERFORMANCE PER VARIANT

group freq. contrast median mean max min
weighting leverage SER SER SER SER

ab idf proportional 0.5874 0.5794 0.9333 0.1588
ab tf-idf proportional 0.6209 0.6416 0.9333 0.4968
a c idf pre-filtering 0.6119 0.6243 0.9333 0.4212
b d tf-idf pre-filtering 0.5715 0.6011 0.9333 0.3478
cd tf-idf post-filtering 0.5129 0.5335 0.9333 0.1192
d idf post-filtering 0.4200 0.4481 0.9333 0.0607

reduction score of .8495. However, scaling this number by

the Homogeneity of the obtained clusters, we obtain a scaled

effort reduction score of .5874. So while the effort reduction

can be considerable, the user should not exclusively rely upon

this tool when troubleshooting issues, as there is a chance for

false positives.

RQ2: How to best leverage the contrast between passing and
failing runs to increase accuracy? – Our experiments could not

determine any significant difference between the considered

variations in terms of AMI. However, if one interprets SER

as an alternative form of accuracy measure, our tests advice

against using the post-filtering strategy and rather preferring

the proportional contrast or pre-filtering strategies.

RQ3: What trade-offs are there between effort reduction
and accuracy? – While the post-filtering strategies attain a

very high ER scores (see Table VII), they perform very

poorly in terms of AMI and SER. This suggests that there

indeed is a trade-off between "brute force" effort reduction

and accuracy, and highlights the importance of having effort

reduction measures like the SER that incorporates a notion of

cluster quality (Homogeneity in our case).

VII. THREATS TO VALIDITY

Construct Validity: The ground truth (i.e., log labels) that

we used to evaluate our clusters was created using regular

expressions that our industrial collaborator currently uses to

identify whether a log concerns a known issue. A potential

threat to construct validity is that these patterns do not cover

all issues encountered in the full dataset (which also motivates

our research). We mitigated this threat by creating a ground

truth from the subset of available data that is fully covered by

the patterns. A second threat is that we can not guarantee

or check the absence of matching errors in these patterns.

This is, to some extent, mitigated by the fact that the patterns

have been used to satisfaction by our partner. A last threat to

construct validity is that we employ a hard clustering approach

that assigns each log to exactly one cluster that groups all

logs sharing the same characteristics. This means the approach

cannot distinguish between individual issues in log files that

contain multiple issues, but will create new cluster for all logs

that share the same set of issues. We mitigate this threat by

limiting the dataset to logs that match with only one issue.

Internal Validity: First, finding subtle differences between

six treatments with only 18 observations per treatment is dif-

ficult. A larger dataset, ideally obtained from diverse sources,

could help identify finer distinctions between the variants.

In particular, for the Wilcoxon Signed-Rank test as imple-

mented in stats.wilcoxon, it is recommended (though not

mandatory) to have at least twenty observations whereas we

have eighteen. Second, all algorithms and statistical procedures

were implemented in Python and R with the help of widely

used libraries such as NumPy and SciPy, and they were thor-

oughly tested. Nevertheless, we can not guarantee the absence

of implementation errors that could have affected our results.

Finally, a source of variability when comparing log clustering

approaches is the log abstraction mechanism used. Our study

does not assess the performance of the log abstraction tool

provided by Cisco Norway against an automated abstraction

mechanism as the one developed by Fu et al. [10].

External Validity: Our study evaluates LogCluster and its

variations on log files that result from CDt activities at our

industrial partner. These logs vary considerably in size and

events covered, and should therefore provide a realistic picture

of the behavior that can be expected in various contexts. Nev-

ertheless, these logs likely do not cover all possible variation,

so we cannot rule out that different logging practices in other

systems or organizations would lead to different results.

VIII. RELATED WORK

This work replicates and extends Lin et al’s LogCluster

study [7] in the context of CE logs, as explained in Sections II

and III. One of our other recent papers also takes LogCluster

as a starting point, but differs in objectives from this paper

in that it investigates whether either applying dimensionality

reduction or selecting a different cluster merge criteria gives

better results [8]. It also investigates the performance stability
of each configuration to variations in two hyperparameters:

the clustering algorithm’s stopping threshold θ and a hyperpa-

rameter γ that decides the proportional weighing of an event’s

inverse document frequency weight and the contrast weight

(see Section II) by making the final event weight w(e) the

result of w(e) = γ ∗ wcon(e) + (1− γ) ∗ wf (e) [8].

Shang et al. [25] attempt to reduce the effort needed

to investigate errors in logs obtained from large Big Data
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program runs. Their approach partitions a monolithic log into

event sequences associated with a given subtask, abstracts

each event sequence so that runtime- and substask-specific

aspects are suppressed, and then group subtasks with identical

abstracted event sequences together. These steps are performed

for both development and production runs of the program

being tested, and event sequences that do not appear in both

environments are highlighted to the user. While this approach

is similar to that of Lin et al. in the use of log abstraction and in

leveraging the difference between development and production

settings, it differs in only grouping together abstracted event

sequences that are identical: This makes it reduce less effort

than LogCluster, as documented by Lin et al [7].

An often pursued goal in log analysis is anomaly detection.

Xu et al. [26] demonstrate a technique for automatically iden-

tifying anomalous events in large system logs. The anomalous

events are presented to the user with decision trees that show

why the event was flagged as anomalous. He et al. [27]

present an experience report on using system log analysis for

anomaly detection. They describe six state-of-the-art log-based

anomaly detection methods but do not draw conclusions on

which method performs best. We do not focus on anomaly

detection in this paper, but on aiding troubleshooting by

grouping together logs that fail for the same underlying issues.

Oliner et al. [28] give a general overview of challenges

and advances in log analysis. They point out the difficulty

of deriving actionable insights from statistical log analysis–a

topic we wish to return to in future work (see Section IX-B).

Several works investigate techniques for aiding the analy-

sis of Continuous Engineering information. SQA-mashup by

Brandtner et al. [3] is a tool for visualizing and summarizing

Continuous Engineering information, especially metrics such

as test coverage. SQA-mashup generates views that can be

adapted to the needs of different users, and SQA-profiles [4]

investigates automatically deriving project-agnostic user pro-

files from version control and issue tracking data that can be

used to tailor the data presentation. CIViT [29, 30] is a method

for visualizing the overall testing activities of an organization

in order to prioritize Continuous Engineering efforts better.

It shows the testing coverage, degree of automation and test

frequency employed in various parts of the system from

individual components to full product releases. CIViT is also

used in Cinders [31], an extended modeling technique that

adds extra viewpoints illuminating the causal relationships

between the modules in the system (i.eḣow a successful build

can trigger a test suite run) at various levels of abstraction. We

see these techniques for modelling and visualizing CE data as

complementary to our work, as the selected log representatives

can be fed as input to these models.

Overall, the literature on adopting CE practices frequently

alludes to the need for systematic analysis of the data gener-

ated in CE [1–6], with analysis of test results considered one

of the most critical issues by practitioners [1]. Indeed, Shahin

et al. [32] identify the lack of transparency and awareness re-

garding buid and test results as a main barrier to adopting CDy

practices, together with the need for tools to help developers

coordinate their debugging efforts. This need for debugging

assistance is also highlighted by Hilton et al. [2]. Similar

concerns came up in our in discussions with Cisco Norway,

which led us to investigate methods for complementing and

extending their existing regular expression-based methods with

automatic clustering.

IX. CONCLUDING REMARKS

A. Contributions

Making sense of failing test run logs as effectively as possible

is essential for expediently correcting software errors. To this

end, we have looked at the technique of clustering failing

test run logs together, so that operators can save time by

inspecting a single representative log from each cluster rather

than all logs. The starting point for our investigation has been

a replication and extention of earlier work on system log

clustering by Lin et al. [7]. Our extensions have investigated

whether variations in either the event frequency weighing

scheme or the method for leveraging differences between

failing and passing logs could yield more accurate clusterings

and a higher effort reduction. To this end, we have empirically

investigated the performance of a total of six variants including

the variant proposed by Lin et al. [7] on a dataset provided

by our industrial collaborator Cisco Norway. Our study has

focused on three research questions:

(1) Can we reduce the effort needed to discover all latent

issues in a set of failing runs?

(2) How to best leverage the contrast between passing and

failing runs to increase accuracy?

(3) What trade-offs are there between effort reduction and

accuracy?

The results allow us to answer these questions as follows:

(A1) The LogCluster baseline achieves a raw median effort

reduction score of .8495. Scaling this number by the

Homogeneity of the obtained clusters, we obtain a

scaled effort reduction score of .5874. So while the

effort reduction can be considerable, the user should

not exclusively rely upon this tool when troubleshooting

issues, as there is a chance for false positives.

(A2) Using Adjusted Mutual Information (AMI) as qual-

ity measure, our experiments could not determine any

significant difference between the proposed variants.

However, when using scaled effort reduction as quality

measure, our tests suggests that the post-filtering variant

performs significantly worse than the other variants.

(A3) There are clear trade-offs between the raw effort re-

duction (ER) measure and accuracy (AMI and H). In

our tests, this is clearly seen by how the post-filtering

variants are clear winners on raw effort reduction, but

clear losers on the other quality measures. This also

highlights the importance of adjusting the recorded effort

reduction by the quality of the resulting clusters.

Conclusion: We conclude that problem identification via

automated log clustering in a continuous engineering context is

viable and promises a significant effort reduction. Moreover,
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the alternative clustering pipelines investigated do not yield

significant advantages over the original LogCluster pipeline.

B. Future work

There are several directions in which our work can be ex-

tended. The most important is the evaluation of these tech-

niques on a wider range of case studies. A challenge in

that respect is obtaining a solid ground truth for evaluating

the results, as fully labelled collections of log files are rare.

One way to address this challenge is to programmatically

synthesize labeled log files with known characteristics.

A second direction concerns understanding the issue that is

captured by a cluster of log files. In LogCluster this is based

on selecting a representative log for each cluster. However,

such a representative log may still be considerably long and

difficult to diagnose. We want to investigate summarization

techniques that use information from the logs in a cluster to

create a concise summary of the issue captured by that cluster.

Last but not least, a hard clustering approach like LogClus-

ter cannot distinguish between multiple issues in a log file,

as discussed in the threats to validity. It would be interesting

to investigate how well soft/fuzzy clustering approaches, that

allow a log to become a member of several clusters, can be

adopted for clustering-based problem identification of CE logs.
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