Energy Efficient Continuous Multimedia Processing Using
the Tegra K1 Mobile SoC

Kristoffer Robin Stokke, Hakon Kvale Stensland, Carsten Griwodz, Pal Halvorsen
Simula Research Laboratory & University of Oslo, Norway
{krisrst, haakonks, griff, paalh}@ifi.uio.no

ABSTRACT

Energy consumption is an important issue for mobile de-
vices, as the technological development in battery technol-
ogy has not kept pace with the power requirements of mo-
bile hardware. In this paper, we use a video rotation filter
to study the effects of CPU and GPU frequency scaling in
terms of performance and energy. Our platform is the Tegra
K1 mobile processor with a quad-core CPU and a CUDA-
capable GPU. We find that most energy can be saved by
minimising CPU frequency while meeting the filter’s framer-
ate requirement. Interestingly, the frequency scaling affects
GPUs differently, where the best frequency is always moder-
ately higher than the minimum which meets the framerate
requirement. Using these heuristics, it is possible to save up
to 10 % energy compared to the standard Linux frequency
scaling algorithms, which use processor utilisation to adjust
processor frequency.

Categories and Subject Descriptors

C.1.3 [Other Architecture Styles]: Heterogeneous (hy-
brid) systems;

C.1.4 [Parallel Architectures|: Mobile processors;

J.2.0 [Physical Sciences and Engineering]: Electronics

Keywords

Multimedia, Tegra K1, CUDA, energy, performance, CPU-
GPU frequency scaling

1. INTRODUCTION

Battery capacity is a severe limitation of modern mobile
devices. Dynamic Voltage and Frequency Scaling (DVFS) [1]
algorithms minimise power usage of CPUs and GPUs by
lowering operating frequency, and is an effective way to save
energy when full performance is not needed. There have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honoured. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions @acm.org.

MoVid’15, March 18-20 2015, Portland, OR, USA

Copyright 2015 ACM Copyright is held by the owner/author(s). Publication
rights licensed to ACM.

ACM 978-1-4503-3353-5/15/03. .. $15.00
http://dx.doi.org/10.1145/2727040.2727044 ...$15.00.

15

been many proposals from the research community on how
DVEFS can be improved for mobile devices. However, these
consider GPUs that do not support general purpose com-
puting, such as CUDA [5, 4]. Those that consider DVFS for
CUDA-capable GPUs [2] typically target high-performance
applications found in data centres. We argue that common
mobile applications are lighter processes where the goal is
not to finish processing quickly, but to meet application-
specific QoS constraints such as a specific framerate. In this
paper, we consider a video processing filter implemented for
both CPU and GPU, where the goal is to provide an ac-
ceptable video quality of 25 FPS. We study the impact that
CPU and GPU frequency settings have on application per-
formance and energy using a Tegra K1 mobile SoC, and find
that 10 % energy can be saved by using workload specific
frequency settings compared to the standard Linux DVFS
algorithms.

2. SYSTEM SETUP

Our system is based on a Jetson-TK1 mobile development
kit equipped with a custom power measurement sensor. The
workload used in our study is an image rotation filter. The
filter rotates each frame of a 25-FPS video stream by a con-
tinuously increasing angle. Its operations resemble that of
a video stabiliser. The filter has been implemented for both
the CPU and the GPU using CUDA. To study the effects
of frequency scaling we disable the Linux DVFS algorithms
and set CPU and GPU operating frequency manually while
processing frames as follows:

1. While the CPU or the GPU is busy processing a frame,
its respective frequency is set to a higher frequency
which we vary throughout our experiments.

2. If the CPU or GPU processing ends before the frame
deadline (40 ms for 25 FPS), CPU frequency is lowered
to 204 MHz for the CPU and 72 MHz for the GPU.
The CPU sleeps for the remaining time.

It is important to note that the performance of the filter
never exceeds 25 FPS, but that it can be lower than this if
the manually set processing frequencies are too low.

3. EXPERIMENTAL RESULTS

We run our experiments using our setup with three input
resolutions (see Table 1). Each test is run ten times for
each frequency, stopping if the encoding time is longer than
12 s. This is to equalise the energy consumption of idle

Resolution Userspace P-SAV Linux Governor Condemandn) | o= 000
Core | Max Frequency Brorgy Core Encrgy
352x288 CPU 204 MHz (CPU) 9.22 mWh CPU 9.02 mWh -2.2 %
640x480 CPU 304 MHz (CPU) 11.33 mWh CPU 12.86 mWh 11.9 %
1920x1080 GPU 804 MHz (GPU) 26.00 mWh GPU 29.16 mWh 10.8 %

Table 1: The most energy efficient frequency configurations compared with the best Linux DVFS algorithm.

7

6

5 | — 1092 MHz
= | — 2014 MHz
%44‘?\
22

5 10 15 20 25 30 35 0
Time [ms]

Figure 1: A single CPU frame encoding snapshot for differ-
ent operating frequencies.

components from each run. The framerate and total energy
usage for CPU- and GPU-execution can be seen in Figure 2.
The best frequencies are marked with red. As expected, we
see that higher frequencies increase the framerate. For the
CPU, the best frequency is very close to the point where the
25 FPS requirement is reached. After this, increasing the
operating frequency further only increases the total energy
usage on the CPU. A likely reason for this observation is
that a doubling in frequency effectively doubles the power
usage of the processor [1], but does not reduce the frame
encoding time by a corresponding amount, which can be
seen in Figure 1.

The GPU experiments show a different trend than that of
the CPU. For the mid-resolution video, 25 FPS is reached at
72 MHz. The best frequency is four frequency steps above,
at 324 MHz, reducing the energy usage by 23 %. In other
words, the frequency should not be minimised as for the
CPU. The effect is similar, but not as clear, for the high- and
low-resolution videos. However, we have run other types of
video filters which confirm this observation. Unfortunately,
we could not include them here due to space restrictions.

We also run the experiments with the standard Linux
DVFS algorithms [3], where the CPU and GPU operat-
ing frequencies are automatically adjusted in response to
changes in processor utilisation. There is only one GPU
DVEFES algorithm, but of the four CPU algorithms, the “on-
demand” algorithm was consistently better. Compared to
these, up to 10 % energy can be saved by using workload-
specific frequencies (see Table 1).

4. CONCLUSION

In this paper, we study the impact of CPU and GPU fre-
quency settings on a mobile processor. Our workload is a
video rotation filter implemented for both the CPU and the
GPU using CUDA. We find that up to 10 % energy can be
saved by minimising CPU frequency such that a framerate
of 25 FPS is met generally saves energy over the standard
Linux DVFS algorithms. It is clear that the standard Linux
DVFS governors, which change processor frequency in re-
sponse to changes in utilisation [3], can be improved if QoS
requirements such as framerate were considered. The effect
of DVFS is different for the GPU, where the best frequency

16

Rotation - CPU

7!

[S10 Y e Rt I R s s s R s I s s s [R R R 25-2
50 208
H * |7 a
E40 B ot e
5 RIS -
530, o ow ¥ ®
2 e P 100
020 = % o =

g k¥ o -gpoao E E ° 5 ©

10§§ﬁﬁDEQEoooo0600~' o

*
B N R VS IR ER SR N SO
CPU Max Frequency [MHz]

7 Rotation - GPU

600 0 o 0 B B OO g e s w8 @ 82
— *]
£50 e 209
E40 # P
=~ * 158
g:’;o : . % ¥ ® ¥ ok —k— Y% 10$
G20 % %

W3 388 @eooB8CscBBEEEsL

0
2P A g5 b P (P PO N P 2P AR P S B
GPU Max Frequency [MHz]

* 1920x1080 [| 640x480 (O)352x288
I oy FPS

Figure 2: Frequency scaling experiments. The frequencies
shown correspond to the one used while the CPU or GPU
is actively processing a frame.

tends to lie moderately above the minimum which achieves
25 FPS. As this is work-in-progress, we do not yet know the
exact reasons behind this observation. For future work, it
would be interesting to see if existing GPU DVFS algorithm
proposals [4, 5] can be improved for our platform.

5. REFERENCES

[1] A. Castagnetti, C. Belleudy, S. Bilavarn, and

M. Auguin. Power consumption modeling for DVFS
exploitation. In Proc. of Euromicro DSD-AMT, pages
579-586, 2010.

R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher,
and Z. Zong. Effects of dynamic voltage and frequency
scaling on a k20 gpu. In Proc. of ICPP, pages 826-833,
2013.

V. Pallipadi and A. Starikovskiy. The ondemand
governor. In Proc. of the Linuz Symposium, volume 2,
pages 215-230, 2006.

A. Pathania, Q. Jiao, A. Prakash, and T. Mitra.
Integrated cpu-gpu power management for 3d mobile
games. In Proc. of the 51st Annual Design Automation
Conference, pages 1-6, 2014.

D. You and K. Chung. Quality of service-aware
dynamic voltage and frequency scaling for embedded
gpus. IEEE Computer Architecture Letters, 2013.

