
A CP approach of the variability testing
of software product lines

Arnaud Gotlieb
Certus Centre

Simula Research Laboratory
Norway

1/32

Software Validation and
Verification

Hosted by SIMULA

Established and
awarded SFI in Oct. 2011

duration: 8 years

The Certus Centre

www.certus-sfi.no

Cisco Systems Norway

ABB Robotics
Stavanger

Kongsberg Maritime

Norwegian Custom and excise

http://www.certus-sfi.no/

The Validation of CISCO’s Video Conferencing
Product Line

Test cases repository
(~5000 scripts, ~1/2 hour)

In a continuous
integration cycle

1. Test case selection
2. Test suite optimization
3. Test execution scheduling

Test case selection based on feature modelling

Features /
Feature diagram

Test case / Tag features

Test suites

S. Wang, S. Ali, A. Gotlieb, and M. Liaaen. A systematic test case selection methodology for product lines: results and insights from an
industrial case study. Empirical Software Engineering, pages 1–37, 2014.

S. Wang, A. Gotlieb, S. Ali, and M. Liaeen. Automated test case selection using feature model: An industrial case study. In ACM/IEEE 16th Int.
Conf. on Model Driven Eng. Languages and Systems (MODELS'13), Awarded best application paper, Miami, FL, USA, Sep. 2013.

Test suite optimization

Features /
Feature diagram

Test case / Tag features

Test suites

How to select a test set which cover all the features in an acceptable
amount of time (i.e., cost-effective optimization) ?

Agenda

I. Introduction

II. Optimal Test Suite Reduction

III. Multi-objectives Test Suite Reduction

IV. Industrial Application

V. Conclusions and Perspectives

Optimal Test Suite Reduction

Optimal TSR: the core problem

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Optimal TSR: find a minimal subset of TC such that each F is covered at least once
(Practical importance but NP-hard problem!) – An instance of Minimum Set Cover

Optimal TSR

Fi: Features or requirements
TCi: Test case or test script

Constraint Programming

Declarative programming paradigm where relations are modeled
with variables, finite and continuous domains, and constraints

 e.g., arithmetical, X in 13..59, Y in 4..9, Y > 6*Y – X

 e.g., symbolic (terms, string..) t(X, r(3, Y)) = t(p(4), Z)

 e.g., numerical X = sin(Y), X + Y = 0.567898

Global constraint: A constraint which captures a relation over a non-
fixed number of variables and implements a dedicated filtering
algorithm

The nvalue global constraint

nvalue(n, v)
Where:

n is an FD_variable

v = (v1, …, vk) is a vector of FD_variables

n = 𝑐𝑎𝑟𝑑(𝑣𝑖 𝑖 𝑖𝑛 1. . 𝑘
)nvalue(n, v) holds iff

Introduced in [Pachet and Roy’99], first filtering algorithm in [Beldiceanu’01]
Solution existence for nvalue is NP-hard [Bessiere et al. ‘04]

Optimal TSR

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
nvalue(MaxNvalue, (F1, F2, F3)),
label(minimize(MaxNvalue))

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Optimal TSR: CP model with nvalue (1)

The global_cardinality constraint

gcc(t, d, v)
Where

t = (t1, …, tN) is a vector of N variables, each tj in Minj .. Maxj

d = (d1, …., dk) is a vector of k values

v = (v1, …, vk) is a vector of k variables, each vi in Mini..Maxi

∀𝑖 𝑖𝑛 1. . 𝑘,
𝑣𝑖 = 𝑐𝑎𝑟𝑑(𝑡𝑗 = 𝑑𝑖 𝑗 𝑖𝑛 1. . 𝑁)

gcc(t, d, v) holds iff

Filtering algorithms for gcc are based on max flow computations in
a network flow [Regin AAAI’96]

Example

gcc((F1, F2, F3), (1,2,3,4,5,6), (V1,V2,V3,V4,V5,V6))
means that:

In a solution of TSR
TC1 covers exactly V1 requirements in (F1, F2, F3)
TC2 ‘’ V2 ‘’
TC3 ‘’ V3 ‘’
...

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Here, for example, V1 = 1, V2 = 2, V3 = 1, V4 = 0, V5 = 0, V6 = 0 is a feasible solution

Where F1, F2, F3, V1, V2, V3, ... denote finite-domain variables

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
V1 in {0, 1}, V2 in {0, 2}, V3 in {0, 1}, V4 in {0, 1}, V5 in {0, 1}, V6 in {0, 1}

But, not an optimal one!

Optimal TSR

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
gcc((F1, F2, F3), (1,2,3,4,5,6), (V1, V2, V3, V4, V5, V6)),
gcc((V1, V2, V3, V4, V5, V6), (0-_), (Max0Req-_)),
label(maximize(Max0Req))

/* search heuristics by enumerating the Vi first */

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Optimal TSR: CP model with two gcc (2)
A. Gotlieb and D. Marijan. Flower: Optimal test suite reduction as a network maximum flow. In Proc. of Int. Symp. on Soft. Testing and
Analysis (ISSTA'14), San José, CA, USA, Jul. 2014.

Optimal TSR

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
gcc((F1, F2, F3), (1,2,3,4,5,6), (V1, V2, V3, V4, V5, V6)),
nvalue(MaxNvalue, (F1, F2, F3),
label(minimize(MaxNvalue))

/* + presolve + labelling heuristics based on max */

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

3. Optimal TSR: CP model Mixt (3)
A. Gotlieb M. Carlsson M. Liaeen D. Marijan A. Petillon. Automated Regression Testing using CP. Under submission 2015

Model comparison on random instances
(Reduced Test Suite percentage in 30sec of search)

Model comparison on random instances
(CPU time to find a global optimum)

Optimal TSR: existing approaches

Minimize 𝑖=1..6 𝑥𝑖
(minimize the number of test cases)

subject to
𝑥1 + 𝑥2 + 𝑥6 ≥ 1
𝑥3 + 𝑥4 ≥ 1
𝑥2 + 𝑥5 ≥ 1

(cover every req. at least once)

- Exact method: ILP formulation [Hsu Orso ICSE 2009] –
MINTS/CPLEX, MINTS/MiniSAT

- Approximation algorithms (greedy) –

R = Set of reqs, Current = Ø
while(Current ǂ R)

Select a test case that covers the most uncovered reqs ;
Add covered reqs to Current ;

return Current 19

Comparison with other approaches
(Reduced Test Suite percentage in 60 sec)

Introducing model presolve

F1 in {1, 2, 6}  F1 = 2 as cov(TC1) = cov(TC6)  cov(TC2)
withdraw TC1 and TC6

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

F3 is covered  withdraw TC5

F2 in {3,4}  e.g., F2 = 3, withdraw TC4

We proposed an iterative algorithm to apply these
preprocessing rules to simplify the problem

Presolve: Experimental results (1)

Presolve: Experimental results (2)

Multi-objectives Test Suite Reduction

Optimal TSR: the core problem

F1

F2

F3

TC1

TC4

TC5

TC6

Requirements coverage
is always a prerequiste
but other criteria than
the size of the test
suite are also sought:

Optimal TSR

Execution time!

TC2

TC3

1 min

5 min

3 min

3 min

1 min

1 min

Optimal TSR: the core problem

F1

F2

F3

TC1

TC4

TC5

TC6

Requirements coverage
is always a prerequiste
but other criteria than
the size of the test
suite are also sought:

Fault revealing capabilities!

TC2

TC3

High priority

Low priority

High priority

Low priority

Low priority

Low priority

Proposed approaches

1. Actual multi-objectives optimization with search-based algorithms (Pareto Front)
S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, and M. Liaaen. Multi-objective test prioritization in software product line
testing: An industrial case study. In Software Product Line Conference (SPLC'14), Florence, Italy, 2014.

Aggregated cost function using RW-algo, URW-algo, and many others
Based on computed values
S. Wang, S. Ali, and A. Gotlieb. Random-weighted search-based multi-objective optimization revisited. In Int. Symp. on Search-Based
Software Engineering (SSBSE'14), Fortaleza, Brazil, 2014.

2. Cost-based single-objective constrained optimization
Based on a CP model with global constraints

No constraint model!

Constrained optimization model!

Flower/C: An extension of Flower with costs

R1,..,Rn: Requirements
t1,..,tm: Test cases - Each test case ti is associated a unitary cost ci

O1,..,Om: Occurrences variables

Minimize TotalCost
s.t

gcc((R1, …, Rn), (t1, …, tm), (O1, …, Om))
for i=1 to m do Bi = (Oi > 0)
scalar_product((B1, …, Bm), (c1, …, cm), TotalCost)

where scalar_product encodes B1*c1 + .. + Bm*cm = TotalCost

Industrial Application

Optimized
(reduced/
prioritized)
test suite

TITAN

Unoptimized
test suite

Diagnostic views, feature coverage

Variability model to
describe a software
product line

30

TITAN

- Reusing Pure::Variants plug-in for feature modelling and editing

- Desktop version + web-based service

- Patent under advisement in the US

- Deployed at Cisco Systems

- Commercial development (funded under the RCN’s FORNY program

Conclusions

• Global constraints and CP can efficiently and effectively tackle difficult software
validation problems – experimental results and initial industrial case studies

• So far, the links between feature modelling and software product line
engineering and software validation has been little studied

• There is room for Research and Innovation in that area!

