
SCALABLE ANALYSIS OF
LARGE-SCALE SYSTEM LOGS
FOR ANOMALY DETECTION

A Dissertation

by

Merve Astekin

Submitted to the
Graduate School of Sciences and Engineering
In Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

in the
Department of Computer Science

Özyeğin University
May 2019

Copyright © 2019 by Merve Astekin

SCALABLE ANALYSIS OF
LARGE-SCALE SYSTEM LOGS
FOR ANOMALY DETECTION

Approved by:

Assoc. Prof. Hasan Sözer (Advisor)
Department of Computer Science
Özyeğin University

Assoc. Prof. Mehmet Sıddık Aktaş
Department of Computer Engineering
Yıldız Technical University

Asst. Prof. İsmail Arı
Department of Computer Science
Özyeğin University

Prof. Selim Akyokuş
Department of Computer Engineering
İstanbul Medipol University

Assoc. Prof. Erhan Öztop
Department of Computer Science
Özyeğin University

Date Approved: 30 May 2019

ABSTRACT

System logs provide information regarding the status of system components and var-

ious events that occur at runtime. This information can support fault detection,

diagnosis and prediction activities. However, it is a challenging task to analyze and

interpret a huge volume of log data, which do not always conform to a standardized

structure. As the scale increases, distributed systems can generate logs as a collection

of huge volume of messages from several components. Thus, it becomes infeasible to

monitor and detect anomalies e�ciently and e↵ectively by applying manual or tradi-

tional analysis techniques.

There have been several studies that aim at detecting system anomalies automat-

ically by applying machine learning techniques on system logs. However, they o↵er

limited e�ciency and scalability. We identified three shortcomings that cause these

limitations: i) Existing log parsing techniques do not parse unstructured log mes-

sages in a parallel and distributed manner. ii) Log data is processed mainly in o✏ine

mode rather than online. That is, the entire log data is collected beforehand, instead

of analyzing it piece-by-piece as soon as more data becomes available. iii) Existing

studies employ centralized implementations of machine learning algorithms. In this

dissertation, we address these shortcomings to facilitate end-to-end scalable analysis

of large-scale system logs for anomaly detection.

We introduce a framework for distributed analysis of unstructured log messages.

We evaluated our framework with two sets of log messages obtained from real sys-

tems. Results showed that our framework achieves more than 30% performance im-

provement on average, compared to baseline approaches that do not employ fully

distributed processing. In addition, it maintains the same accuracy level as those

iv

obtained with benchmark studies although it does not require the availability of the

source code, unlike those studies.

Our framework also enables online processing, where log data is processed pro-

gressively in successive time windows. The benefit of this approach is that some

anomalies can be detected earlier. The risk is that the accuracy might be hampered.

Experimental results showed that this risk occurs rarely, only when a window bound-

ary cross-cuts a session of events. On the other hand, average anomaly detection time

is reduced significantly.

Finally, we introduce a case study that evaluates distributed implementations of

PCA and K-means algorithms. We compared the accuracy and performance of these

algorithms both with respect to each other and with respect to their centralized im-

plementations. Results showed that the distributed versions can achieve the same

accuracy and provide a performance improvement by orders of magnitude when com-

pared to their centralized versions. The performance of PCA turns out to be better

than K-means, although we observed that the di↵erence between the two tends to

decrease as the degree of parallelism increases.

v

ÖZETÇE

Sistem logları (günlükleri), sistem bileşenlerinin durumu ve çalışma zamanında mey-

dana gelen çeşitli olaylar hakkında bilgi sağlamaktadır. Bu bilgi hata tespit, teşhis

ve tahmin faaliyetlerini destekleyebilmektedir. Bununla birlikte, her zaman stan-

dart bir yapıya uymayan geniş ölçekteki log verisinin analiz edilmesi ve yorumlan-

ması oldukça zor bir iş haline gelebilmektedir. Ölçekleri arttıkça, dağıtık sistem-

ler çeşitli bileşenlerinden gelen çok sayıda mesajın bir yığını halinde sistem logları

oluşturabilmektedir. Bu nedenle, manuel veya geleneksel analiz teknikleri bu ölçekteki

sistem loglarının verimli ve etkili bir şekilde izlenmesinde ve anomalilerin tespit edilme-

sinde yetersiz kalmaktadır.

Sistem logları üzerinde makine öğrenme tekniklerini uygulayarak sistem anor-

malliklerini otomatik olarak tespit etmeyi amaçlayan çeşitli çalışmalar yapılmıştır.

Ancak, bu çalışmalar verimlilik ve ölçeklenebilirlik açısından kısıtlı kalmaktadırlar.

Bu kısıtlamalara neden olan üç eksiklik tespit ettik: i) Mevcut log ayrıştırma teknikleri,

yapılandırılmamış log mesajlarını paralel ve dağıtık bir şekilde ayrıştırmamaktadır.

ii) Log verisi genellikle çevrimiçi (akış halinde) değil, çevrimdışı (yığın) modda

işlenmektedir. Diğer bir deyişle, yeni log mesajları geldikçe parça parça işlemek yer-

ine tüm log verisi önceden toplanmış yığın halinde analiz edilmektedir. iii) Mev-

cut çalışmalar, makine öğrenmesi algoritmalarının merkezi uygulamalarını kullan-

maktadır. Bu tezde, anomali tespit için geniş ölçekli sistem loglarının uçtan uca

ölçeklenebilir analizini kolaylaştırmak amacıyla bu eksiklikleri ele alıyoruz.

Öncelikli olarak, yapılandırılmamış log mesajlarının dağıtık analizi için bir çerçeve

sunuyoruz. Çerçevemizi, gerçek sistemlerden elde edilen iki günlük log mesajlarından

oluşan veri kümesi ile değerlendirdik. Sonuçlar, çerçevemizin tümüyle dağıtık işlem

vi

yapmayan temel yaklaşımlara kıyasla, ortalama olarak % 30’dan fazla performans

artışı sağladığını göstermiştir. Ayrıca, çerçevemiz diğer çalışmalardan farklı olarak

kaynak kodun bulunmasını gerektirmeden de, kıyaslama çalışmaları ile elde edilenlerle

aynı doğruluk seviyesini korumaktadır.

İkinci olarak, çerçevemiz sistem log verisinin art arda zaman pencerelerinde aşamalı

olarak işlendiği çevrimiçi işleme altyapısı sağlamaktadır. Bu yaklaşım, bazı anoma-

lilerin daha erken tespit edilebilmesine olanak tanımaktadır. Diğer yandan, çevrimiçi

işleme anomali tespitinde doğruluğun azalması riskini doğurabilir. Deneysel sonuçlar,

bu riskin ancak bir pencere sınırının bir olay oturumunu kestiği zamanlarda nadiren

ortaya çıktığını göstermiştir. Diğer yandan, ortalama anomali tespit süresi önemli

ölçüde kısaltılmıştır.

Bu tezde son olarak, PCA ve K-ortalama algoritmalarının dağıtık uygulamalarını

değerlendiren bir vaka çalışması sunuyoruz. Bu algoritmaların doğruluğunu ve perfor-

mansını, hem birbirine hem de merkezi uygulamalarına göre karşılaştırdık. Sonuçlar,

dağıtık sürümlerin aynı doğruluğa ulaşabileceğini ve merkezi sürümleriyle karşılaştırıl-

dığında onlarca kat performans iyileştirmesi sağladığını göstermiştir. PCA algorit-

masının performansının, K-ortalama algoritmasından daha iyi olduğu, ancak ikisi

arasındaki farkın paralellik derecesi arttıkça düşme eğiliminde olduğu gözlemlenmiştir.

vii

TABLE OF CONTENTS

DEDICATION . iii

ABSTRACT . iv

ÖZETÇE . vi

ACKNOWLEDGEMENTS . viii

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

I INTRODUCTION . 1

1.1 Thesis Scope and Motivation . 3

1.2 Research Questions . 5

1.3 Thesis Contributions and Overview 6

II A FRAMEWORK FOR ANOMALY DETECTION 9

2.1 The Overall Approach and the Software Architecture 10

2.2 Implementation Details . 13

2.2.1 Simulation Environment . 14

2.2.2 Provenance Service . 15

2.2.3 Publish-Subscribe Messaging System 16

2.2.4 Complex Event Processing System 16

2.2.5 Distributed System Processing 18

2.2.6 Self-Healing and Predictive Maintenance Mechanisms 18

2.3 Case Study . 20

2.3.1 Experimental Setup . 21

2.3.2 Results and Discussion . 21

2.4 Related Work and Our Contributions 25

III DISTRIBUTED LOG ANALYSIS 29

3.1 The Overall Approach and the Software Architecture 30

x

3.2 Implementation Details . 32

3.2.1 Log Parser . 32

3.2.2 Feature Extractor . 34

3.2.3 Data Normalizer . 36

3.2.4 Anomaly Detector . 37

3.3 Case Studies . 40

3.3.1 Research Questions . 40

3.3.2 Experimental Setup . 41

3.3.3 Results . 43

3.3.4 Discussion . 49

3.3.5 Threats to Validity and Limitations 52

3.4 Related Work and Our Contributions 52

IV ONLINE LOG ANALYSIS . 56

4.1 The Overall Approach and the Software Architecture 57

4.2 Implementation Details . 58

4.3 Case Study . 62

4.3.1 Research Questions . 62

4.3.2 Experimental Setup . 62

4.3.3 Results . 64

4.3.4 Discussion . 65

4.3.5 Threats to Validity and Limitations 70

4.4 Related Work and Our Contributions 70

V DISTRIBUTED MACHINE LEARNING 73

5.1 The Overall Approach and the Software Architecture 73

5.2 Case Study . 75

5.2.1 Research Questions . 75

5.2.2 Experimental Setup . 76

5.2.3 Results . 77

xi

5.2.4 Discussion . 80

5.2.5 Threats to Validity and Limitations 83

5.3 Related Work and Our Contributions 84

VI CONCLUSIONS . 86

APPENDIX A — SAMPLE LOG DATA 89

APPENDIX B — ANOMALY IN LOG DATA 92

APPENDIX C — SUCCESSIVE SESSIONS IN LOG DATA . . . 104

APPENDIX D — INTERLEAVING SESSIONS IN LOG DATA . 106

REFERENCES . 112

VITA . 119

xii

LIST OF TABLES

1 Formal representation of rules. 13

2 Specification and configuration of the test environment. 21

3 Latency in detecting faulty running behaviour for the two di↵erent
prototypes under 1000 messages/sec message load. 25

4 Analogy between the message count vector and bag-of-words model. . 35

5 Specification of the test environment (pseudo-cluster) used for evalu-
ating the distributed log analysis framework. 43

6 Specification of the test environment (Sahara cluster) used for evalu-
ating the distributed log analysis framework. 43

7 Anomaly detection results of the distributed log analysis framework. . 44

8 Accuracy of anomaly detection results of the distributed log analysis
framework. 44

9 Log parsing results of the distributed log analysis framework. 45

10 Running time of log parsing methods on HDFS dataset. 51

11 Specification of the test environment (Sahara cluster) used for evalu-
ating the online log analysis framework. 64

12 Accuracy of anomaly detection results of the online log analysis frame-
work at the end of the stream. 66

13 Comparison of precision results of the online log analysis approaches. 68

14 Comparison of recall results of the online log analysis approaches. . . 68

15 Specification of the test environment used for distributed machine
learning evaluation. 77

16 Distributed anomaly detection results of PCA implementation. 78

17 Accuracy of distributed anomaly detection results with PCA imple-
mentation. 78

18 Accuracy of distributed anomaly detection results with K-means im-
plementation. 78

xiii

LIST OF FIGURES

1 Major components of our anomaly detection framework and the focus
of each chapter in this thesis. 6

2 Distributed analysis framework and its utilization for runtime verifica-
tion of an IoT system. 10

3 Layered software architecture of the runtime verification mechanism
that is developed as part of the distributed analysis framework. . . . 12

4 Design of the first prototype implementation using Storm and Esper. 22

5 Design of the first prototype implementation using Spark and Drools. 23

6 The average processing times for three stages of the system: Kafka-
Storm, Storm-Esper and Esper-Kafka 24

7 The average processing times for three stages of the system: Kafka-
Spark, Spark-Drools and Drools-Kafka. 24

8 The overall processes and artifacts employed by the distributed log
analysis system. 30

9 Implementation of the distributed log analysis system using state-of-
the-practice technologies. 32

10 An example log line and its decomposition into a log instance. 33

11 An example workflow of log parser. 34

12 Performance of the distributed log analysis framework under original
log file. 46

13 Performance of the distributed log analysis framework under 2x log file. 46

14 Performance of the distributed log analysis framework under 3x log file. 47

15 Performance of the distributed log analysis framework under 4x log file. 47

16 Performance of the distributed log analysis framework under 5x log file. 48

17 Performance of the distributed log analysis framework on the real clus-
ter with original HDFS log file. 48

18 Performance of the distributed log analysis framework on the real clus-
ter with Thunderbird log file. 49

19 The overall processes and artifacts employed by the Online Unsuper-
vised Anomaly Detection system. 57

xiv

20 Implementation of Online Unsupervised Anomaly Detection approach
using state-of-the-practice technologies. 58

21 Accuray of online log analysis approach according to log data (window)
size. 65

22 Accuracy of Xu's approach according to session duration. 67

23 The overall approach for evaluation of distributed machine learning. . 74

24 Performance of the PCA and K-means implementations of the system
under original log file. 79

25 Performance of the PCA and K-means implementations of the system
under 2x log file. 80

26 Performance of the PCA and K-means implementations of the system
under 3x log file. 80

27 Total performance of the PCA and K-means implementations of the
system under original log file. 81

xv

CHAPTER I

INTRODUCTION

In 2003, there were around 6,3 billion people and 500 million devices connected to

the Internet. The number of these devices became approximately 12,5 billion with

the widespread use of smart phones and tablet PCs, while the world population

increased to 6,8 billion in 2010. The number of connected devices per person was

greater than 1 in that year. Cisco predicts 50 billion connected objects by 2020 [1].

Such a world-wide network of distributed and interconnected objects are heading into

a new era of ubiquity, where “users” of the Internet will be counted in billions. In

that era, multiple systems will be able to communicate, share context-related data or

resources and they will empower distributed applications through the aggregation of

various services o↵ered by the environment. In fact, large-scale distributed systems

are already here. They facilitate the development of useful applications in various

domains, including energy, education, transportation and health-care. Reliability is

one of the critical quality attributes for these systems, which should be trustworthy

for millions of users.

System logs are commonly used by developers (and operators) to ensure reliability.

These logs can be collected at various levels of detail. They provide information

regarding the status of system components and various events that occur at runtime.

This information can support fault detection, diagnosis and prediction activities.

However, it is a challenging task to analyze and interpret a huge volume of log data,

which do not always conform to a standardized structure. As the scale increases,

distributed systems can generate logs as a collection of huge volume of messages from

several components. For instance, it is known that Hadoop Distributed File System

1

(HDFS) can create tens of millions of lines of console logs within a couple of days [2].

The size and diversity of such logs can be much more in other application domains such

as the Internet of Things [3]. There can be continuous communication and information

sharing between many components in a large-scale distributed environment. Log data

that is collected by monitoring this environment leads to a “big data” problem, which

poses a challenge for e�cient and scalable processing. Another challenge is regarding

the identification of anomalous or faulty behavior in this huge amount of log data that

reflect complex behavior patterns and variations. There might exist many interactions

among system components, which are all running in parallel. Therefore, it is not

feasible to monitor and detect anomalies e�ciently and e↵ectively in this context by

applying manual or traditional analysis techniques on system logs.

There have been several studies in the last decade [2, 4, 5] that aim at detecting

system anomalies automatically by analyzing system logs. Some of these studies

focus on statistical analysis such as capturing the frequency of occurrence of a single

type of message. However, this type of analysis is not always su�cient and it falls

short to identify the root cause of problems. An abnormal behavior is often revealed

by a sequence of di↵erent types of log messages generated by several components

(subsystems) of a complex, large-scale distributed system. There also exist studies [2,

6] that employ machine learning techniques for anomaly detection. However, they

o↵er limited e�ciency and scalability due to the centralized parsing and analysis of

log files. Moreover, the log data is processed mainly in o✏ine mode rather than online.

That is, the entire log data is collected beforehand, instead of analyzing it piece-by-

piece as soon as more data becomes available. In this dissertation, we address these

shortcomings to facilitate an e�cient and scalable analysis of large-scale system logs

for anomaly detection. In particular, we focus on end-to-end distributed analysis of

unstructured log messages using unsupervised anomaly detection algorithms in both

online and o✏ine modes.

2

In the following sections of this chapter, we first clarify the scope of our studies

and provide motivation for the identified challenges regarding large-scale system log

analysis. Then, we introduce our research questions. We conclude the chapter by

summarizing our contributions and providing an overview regarding the organization

of the dissertation.

1.1 Thesis Scope and Motivation

Prominent studies on log-based anomaly detection [2, 6] employ machine learning

techniques to reveal abnormal behavior by detecting complex correlations among

log messages. They mainly involve four sequential processes: log parsing, feature

extraction, normalization, and machine learning. Firstly, system logs are parsed to

extract information from free text-based log messages. Then, a set of features that can

contribute for revealing various correlations among log messages are extracted from

the parsed log data. These features are represented as numerical vectors. Finally,

machine learning algorithms operate on these vectors. Todays large-scale distributed

systems generate a huge volume of log data. Hence, these processes must be executed

in a parallel and distributed manner to provide high scalability and performance. In

fact, there exist some studies on distributed processing of system logs. However, these

studies only focus on specific processes, such as log parsing only. In this dissertation,

we adopt a holistic approach and propose an end-to-end solution that integrates

all the four processes. We address various shortcomings of existing approaches as

summarized in the following.

Existing log parsing techniques generally utilize static source code analysis. Some

of the previously proposed automated log parsing techniques [2, 7, 8] interpret log

messages by instrumenting source code. There are also methods [9, 10, 11, 12, 13]

that directly process text-based log data. However, these methods are not developed

to support distributed log parsing. There is a need for a distributed log parser that

3

can work on unstructured log messages without requiring the availability of

source code.

Existing log analysis approaches and tools mainly process log data in o✏ine mode.

They perform analysis on batch data that is accumulated while the subject system

runs. This mode can only be e↵ective to detect faulty behaviors and to identify their

root causes long after failures occur. However, anomalies would be detected earlier

if we could enable online anomaly detection by consuming system logs as

streaming data at runtime.

Machine learning techniques [14] that are used for anomaly detection can be cate-

gorized into three types: i) supervised techniques that require a preliminary training

based on a dataset, where each event is labeled as “normal” and “abnormal”, ii) semi-

supervised techniques that typically work with both a small labeled dataset and a

large unlabeled dataset, and iii) unsupervised techniques that do not require labels

and work based on the assumption that dominant components in a dataset represent

the “normal” behavior. Failures in complex real-world systems might take place in

many di↵erent ways. It is not e�cient, if feasible at all, to create labeled datasets that

represent all the usual and unusual behaviors for such complex systems. Therefore,

we focus on the utilization of unsupervised machine learning techniques that

are generally accepted to be more practical due to the lack of need for labeling. They

also leverage better performance for processing large volume of log data [6]. Indeed,

scalability and performance of the machine learning process become critical issues as

the data size increases. Centralized implementations might fall short to address these

issues. Hence, machine learning process can also be implemented in a parallel and

distributed manner.

In the following section, we define our research questions aligned with these ob-

servations.

4

1.2 Research Questions

In the following, we define our research questions that focus our research towards

addressing the problems that are summarized in the previous section.

RQ1: Is it possible to parse and process large-scale unstructured log

data accurately while parallelizing and distributing the process?

RQ2: Is it possible to detect anomalies earlier online by consuming

system logs as streaming data while maintaining the same accuracy

level with the o✏ine approach?

RQ3: How is the runtime performance and accuracy level of unsu-

pervised machine learning algorithms a↵ected by parallelizing and

distributing the process?

We aim at parallelizing and distributing the log parsing and analysis process

without compromising the accuracy of anomaly detection. Our first research question

is regarding the feasibility of this approach. Hereby, our goal is to support the analysis

of unstructured text-based log data as emphasized in the question.

We consider parallel and distributed processing as a means of leveraging e�ciency

and scalability. However, o✏ine detection of anomalies will be delayed until all the log

data is collected even if it is processed in a parallel and distributed manner. Online

detection should be employed to reduce this delay. Operators that are responsible

for large-scale software systems should be notified about the anomalous behaviors at

runtime in order to respond to failures before they lead to extreme hazards. Hence, log

analysis systems have to enable online anomaly detection by consuming system logs as

streaming data at runtime. On the other hand, accuracy should not be compromised

as a result of using partial data for decision making. The second research question is

posed to investigate this trade-o↵.

5

Our last research question focuses on the last process in the anomaly detection

pipeline. Hereby, machine learning algorithms are applied after the log data is parsed

and the corresponding feature vectors are obtained. Even if the log data is parsed and

analyzed in a distributed manner, centralized implementations of machine learning al-

gorithms at the end can hamper the performance of the overall system. Therefore, we

investigate the impact of their distributed implementations on runtime performance

as well as accuracy. We conduct a case study focusing on unsupervised machine

learning techniques in particular.

In the following section, we summarize our contributions and provide an outline

of the remainder of this dissertation.

1.3 Thesis Contributions and Overview

Figure 1 depicts the major components of our anomaly detection framework and data

flow among them. It also shows the scope of each chapter that provides contribu-

tions in the context of various components. In the following, we summarize these

contributions by briefly discussing the content of each chapter.

Distributed Analysis Framework

Distributed
File System

Publish-
Subscribe

Mechanism
Log Parsing

Feature
ExtractionAnomalies

Feature
Vectors

Events
Log

MessagesLog Lines

Anomaly
Detection

Key Data flowArtifactComponent

Figure 1: Major components of our anomaly detection framework and the focus of
each chapter in this thesis.

6

Chapter 2 introduces the overall framework based on an open software platform.

Therefore, its focus encompasses all the framework components. This chapter also

provides background knowledge on tools and techniques employed for the implemen-

tation of these components. Its content is a revised version of the work described

in [15].

Chapter 3 is a revised version of the work described in [16] and it explains

how system logs are analyzed for anomaly detection in a fully distributed manner.

The work described in this chapter builds upon the framework that is introduced

in the previous chapter and it addresses RQ1. The revised framework is used for

parsing and processing unstructured log data, while parallelizing and distributing

the process. It is evaluated using two datasets. The first one contains HDFS log

messages and it was previously used by other studies as a benchmark. The second

one is the Thunderbird supercomputer log dataset acquired from the Computer Fail-

ure Data Repository1. Results showed that our framework achieves more than 30%

performance improvement on average, compared to baseline approaches that do not

employ fully distributed processing. In addition, it maintains the same accuracy level

as those obtained with benchmark studies although it does not require the availability

of the source code, unlike those studies. Results also showed that the analysis time

increases linearly with respect to the log size.

Chapter 4 introduces a further extension of our framework in accordance with

RQ2, which enables online anomaly detection. The original framework processes

all the accumulated log data o✏ine, as it is mainly the case with other existing

approaches and tools proposed so far. In the extended framework, the log data is

processed progressively in successive time windows. The benefit of this approach is

that some anomalies can be detected earlier. The risk is that the accuracy might

be hampered. Experimental results showed that this risk occurs rarely, only when a

1
https://www.usenix.org/cfdr

7

window boundary cross-cuts a session of events. On the other hand, average anomaly

detection time is reduced significantly.

Chapter 5 presents a case study to answer RQ3. It focuses on the last compo-

nent of the framework, which employs unsupervised machine learning algorithms for

anomaly detection. In particular, our case study evaluates distributed implementa-

tions of PCA and K-means algorithms. We compared the accuracy and performance

of these algorithms both with respect to each other and with respect to their cen-

tralized implementations. Results showed that the distributed versions can achieve

the same accuracy and provide a performance improvement by orders of magnitude

when compared to their centralized versions. The performance of PCA turns out to

be better than K-means, although we observed that the di↵erence between the two

tends to decrease as the degree of parallelism increases. This chapter is a revised

version of the work described in [17].

Chapter 6 provides the overall conclusions of the dissertation. The evaluations,

discussions and analysis of related studies regarding various contributions are provided

in the corresponding chapters.

8

CHAPTER II

A FRAMEWORK FOR ANOMALY DETECTION

In this chapter, we introduce a distributed analysis framework for anomaly detection.

The framework provides a common platform that supports all the studies conducted

in the scope of this dissertation. It utilizes a set of tools and technologies as part of

its software architecture for distributed real-time stream processing. We also provide

background knowledge regarding these tools and technologies in this chapter.

We use runtime verification of an Internet of Things (IoT) system as the showcase

for illustrating a possible usage of our framework. In this showcase, the goal is to

provide a mechanism to detect unexpected behavior of elements of the system. This

mechanism monitors real-time events coming from the elements of the IoT system

and triggers self-healing actions if an unexpected behavior of an element is detected.

These elements basically represent various IoT devices like sensors, for which we

constructed a set of rules based on their technical specifications. The verification of

the behavior of an IoT device is performed with respect to its rule-set. In addition

to events, provenance metadata regarding the IoT system is collected and analyzed

as well. Provenance provides complete meta-information on the actions performed

and the artifacts produced by elements of the system. As for provenance information,

we collected the measurement data (such as CPU, memory, battery, and bandwidth

resources) produced by the IoT sensor nodes and the interactions of IoT services.

This chapter is organized as follows. The following section describes the architec-

ture of the proposed framework and its components. The prototype implementations

of the proposed framework with state-of-the-practice technologies is elaborated in

Section 2.2. The evaluation of these implementations are described in Section 2.3.2.

9

2.1 The Overall Approach and the Software Architecture

We designed and built a generic framework for distributed analysis. It can be utilized

for various purposes in various application domains. In the following chapters, we

focus on its utilization for anomaly detection based on large-scale system logs. In this

chapter, we present a showcase that illustrates its usage for runtime verification of

IoT elements (services, devices etc.) and their interactions. The verification process

supports self-healing capabilities as well. Figure 2 depicts the overall application

scenario. Hereby, the distributed analysis framework is highlighted in the middle and

its implementation details will be explained later in this chapter. It interacts with

two external services: a self-healing service and a predictive maintenance service. The

self-healing service is responsible for providing the required level of service for fault

tolerance for the self-healing capability of the IoT system. The predictive maintenance

service is responsible for providing predictive maintenance activities for the Cyber

Physical System (CPS) that is coupled with the IoT system. Real-time data feeds

collected from a simulation environment are provided as input to the framework. The

flow of activities and data involved in this setup is explained next.

Figure 2: Distributed analysis framework and its utilization for runtime verification
of an IoT system.

10

In our application scenario, the life cycle of an event, generated in the IoT do-

main, is as follows. First, an event is generated by the network simulator, modeling

the IoT application scenario. Such an event includes the measurement data obtained

at any IoT device. The event is collected through a real-time data feed (i.e., a restful

Web service). Second, the event data is wrapped within a provenance metadata to

capture the status of IoT devices. We call such an event as a provenance notifica-

tion. Third, provenance notifications are supplied to the publish-subscribe messaging

bus that is part of the distributed analysis framework. Publish-subscribe messaging

paradigm is needed to support one-to-many and many-to-one communication points

and handle large-scale and highly frequent event sets. Fourth, provenance notifica-

tion events are processed for detecting faults. In our application scenario, IoT devices

are coupled with a CPS that comprises a set of chillers deployed in a city. Hence,

detected faults are related to suspicious or alarming problems in this CPS, such as

partial failure or underperformance of the chillers. Detection of such faults triggers

the corresponding methods of the self-healing and predictive maintenance services.

To do this, the framework produces service method invocations that are passed to

the publish-subscribe messaging system targeting at the self-healing and predictive

maintenance services. Fifth, service invocation messages are published via publish-

subscribe messaging bus. As a result, the self-healing mechanism executes methods

to recover the IoT system according to the detected faults. In the mean time, the

predictive maintenance service executes methods that inform human operators for

predictive maintenance actions.

Figure 3 depicts the layered software architecture of the runtime verification mech-

anism that is developed as part of the distributed analysis framework. It employs

Distributed Real-time Processing (DSP) and Complex Event Processing (CEP) en-

gines. The mechanism itself is transparent to the underlying implementations of these

11

engines. This transparency is achieved by utilizing the facade design pattern. Fa-

cade pattern hides the complexities of the sub-system and provides an interface for

accessing it.

The runtime verification mechanism consists of two main modules: Runtime Ver-

ification Module and Rule Action Execution Module. The former module interacts

with a DSP engine for retrieving streaming provenance events and utilizes a CEP

engine to apply complex event processing to search the matched patterns (rules) on

the fixed sized streaming data. The latter module receives action commands implied

in the complex events by interacting with the Runtime Verification Module. This

module executes these actions and produces method invocations to be sent to corre-

sponding Web services (self-healing service or predictive maintenance service). Here,

the Runtime Verification Module utilizes a set of configuration files. These files define

the relevant subsystems and rules to be verified. Rules specify patterns that identify

unexpected behaviors of IoT devices. These patterns are defined based on technical

specifications of devices. Table 1 shows the formal representation of the rules that

were used in our application. We should also note that the proposed framework is

designed for detecting the faults/anomalies in real-time, after-the-fact, just after the

fault occurs in the IoT system.

Figure 3: Layered software architecture of the runtime verification mechanism that
is developed as part of the distributed analysis framework.

12

Table 1: Formal representation of rules.

Rule ID Formal Representations Description

ON PATTERN If a node CPU usage exceeds
Rule 1 (CPU node(�) > ⇣ CPU) threshold value within a specified time period �,

DO ACTION (replicate node) shut down related node, replicate services.
ON PATTERN If a node Memory usage exceeds

Rule 2 (MEM node(�) > ⇣ MEM) threshold value within a specified time period �,
DO ACTION (replicate node) shut down related node, replicate services.

ON PATTERN If a node Battery usage exceeds
Rule 3 (BATT node(�) < ⇣ BATT) threshold value within a specified time period �,

DO ACTION (reconfig simulation) shut down related node,
introduce a new node, replicate services.

ON PATTERN If simulation bandwidth usage exceeds
Rule 4 (max(BAND) threshold value within

simulation (�) > ⇣ BAND)) a specified time period �,
DO ACTION (degrade simulation) degrade simulation speed.

ON PATTERN If disjunction of CPU, Memory and Battery
((CPU node(�) > ⇣ CPU) & usage exceeds threshold value

Rule 5 (MEM node(�) > ⇣ MEM) & within a specified time period �,
(BATT node(�) < ⇣ BATT) shut down related node,

DO ACTION (reconfig simulation) introduce a new node, replicate services.

ON PATTERN If a node CPU usage exceeds
Rule 6 (CPU node(�) > ⇣ CPU) threshold value within a specified time period �,

DO ACTION (replicate node) shut down related node, replicate services.

Rules that are listed in Table 1 define various complex events, which are inferred

from the combination of a set of simple events. Hereby, sequence, aggregation, con-

junction, disjunction, and negation of simple events within a time period lead to

complex event patterns. The notation used in Table 1 is inspired from previously

proposed formal notations [18] used for defining rules. We discuss details regarding

the implementation of the distributed analysis framework and the runtime verification

mechanism in the following section.

2.2 Implementation Details

We selected the most prominent technologies in order to show the usability of the

prototype of the software framework. Contiki Cooja1, which is specifically designed

1
https://contiki-os.org/start.html

13

for wireless sensor networks, is used as a simulation environment for IoT applica-

tion scenarios in the prototype implementations. The Apache Kafka is selected as

the publish-subscribe messaging system to prevent the loss of events flowing through

the distributed environment. Esper-Tech's Esper and Red Hat's Drools Fusion are

preferred as native CEP engine implementations. In order to process events in a dis-

tributed and reliable way, Apache Storm and Apache Spark are selected as the DSP

systems. Provenance-Ontology (PROV-O) specification [19] is used for provenance

data representation based on the recommendation of World Wide Web Consortium

(W3C). We used open-source Komadu Service as an implementation of the Prove-

nance Service. By utilizing these third-party open-source technologies, we tested the

prototype implementation of our proposed framework. We created a public repository

on GitHub to contribute our prototype implementations to open source community2.

Initial results on the performance and the scalability of the prototype implementa-

tions were discussed in [20]. From here on, we discuss these technologies in the same

order as workflow execution explained in the previous section.

2.2.1 Simulation Environment

We exploited Contiki's Cooja network simulator for modelling the IoT test environ-

ment. It simulates networks of Contiki nodes that can be emulated nodes, compiled

and executed with the Contiki code nodes, or re-implemented Java class nodes. The

simulator can log and trace the radio traces. It allows developers to set the number of

nodes, type of nodes, firmware used, location of nodes, time parameters, and simula-

tion speed. In our test environment, RESTful web services were built and run on the

sensor nodes using Erbium Representational State Transfer (REST) engine, which

is a low-power REST Engine for Contiki OS3. The REST engine includes a compre-

hensive embedded CoAP implementation. Constrained Application Protocol (CoAP)

2
https://github.com/merit2017/merit

3
https://people.inf.ethz.ch/mkovatsc/erbium.php

14

is a software protocol that makes it possible to provide resource-constrained devices

with RESTful web service functionalities and to integrate Wireless Sensor Networks

(WSN) and smart objects with the Web [21]. We used the Californium CoAP frame-

work, which is one of the significant Java-based implementations of CoAP for IoT

cloud services [22]. We implemented our own CoAP servers using the Californium

framework. The CoAP resources for our scenario were created and introduced to the

Californium server. To query these Erbium CoAP servers, we used the Java Cali-

fornium CoAP client. The client is connected to a border router. One of the nodes

was selected as the RPL (IPv6 Routing Protocol for Low-Power and Lossy Networks)

border router to route data between an RPL network and an external network4. We

connected to the border router using “tunslip utility”, which creates a bridge between

the RPL network and the local machine. In this way, the data coming from resources

that run on sensor nodes were accessed and collected.

In our system, an event is defined as a “significant happening” at a certain time,

such as reading the resource data from sensor nodes. We categorized the events as

“simple events” and “complex events”. Simple events are the basic and single events

that happen at a particular point in simulation time and are produced by the simu-

lated IoT sensor nodes. They include the metadata about attributes and a timestamp

that records the event occurrence time. The real-time information about battery,

memory usage, CPU usage, and bandwidth usage gathered from the simulated IoT

sensors leads to the simple events in our system.

2.2.2 Provenance Service

We used a Provenance Service for tracking the life cycle and providing backward

traceability of the events in our IoT application. The provenance identifies what,

where, when, how and which of a data object. What kind of actions were applied that

4
https://anrg.usc.edu/contiki/index.php

15

gave a particular state of this data object? How and where have these actions been

implemented? It can be used to identify relationships between objects, to understand

which data objects are most used. The structure of the provenance data is essentially

a directed graph of entities linked by causal dependencies. Semantics is represented

on the basis of two di↵erent specifications; Namely, Open Source Provenance Model

(OPM) [23] and PROV-O [19] are two data models to represent entities and source

relationships.

We used Komadu, an open source implementation of a provenance service. We

implemented an adapter code that converts events to provenance data models using

the ProvToolbox tool which is a Java library for creating and converting PROV data

model representations5. We utilized PROV-O Specification for provenance data rep-

resentation6. Provenance data is sent directly to the publish-subscribe based message

bus to prevent data loss.

2.2.3 Publish-Subscribe Messaging System

We included Apache Kafka as a message broker in the platform7. In distributed IoT

environments that host large-scale streaming events, a message broker is needed as a

bu↵er entity in front of the processing components to query or store large-scale event

sets. In the publish-subscribe mechanism provided by Apache Kafka, there can be

multiple producers that publish messages into an entity, called Topic, and there can

be multiple consumers that subscribe to each topic. Each event stream is matched to

a Kafka topic that is available in the broker tier.

2.2.4 Complex Event Processing System

We utilized the CEP approach for identifying meaningful events that occur in the IoT

environment. In the IoT domain, data coming from real-life applications have time

5
https://lucmoreau.github.io/ProvToolbox

6
https://w3.org/TR/2013/REC-prov-o-20130430

7
https://kafka.apache.org

16

series. This brings about a need for speed and auto correlated data. In addition,

complex IoT use cases create a need for complex operators like time windows and

temporal query patterns. The CEP approach meets these requirements that arise

from the IoT domain.

CEP is an event processing method that infers patterns or events by combining

data from multiple sources in real-time or near real-time [24]. The CEP aims to

create knowledge from meaningful events and produce responses within an accept-

able turnaround time [25]. The two commonly used implementations complex event

processing technique in open source software community are as follows:

• EsperTech’s Esper Native CEP Engine: An open source CEP compo-

nent that presents an Event Processing Language (EPL)8. EPL is a declarative

language which enables to work on high frequency time-based event data.

• RedHat’s Drools Fusion Native CEP Engine: A unified platform, which

enables to combine several modules to create complex behavioral modelling9.

Esper in comparison with Drools Fusion uses SQL-like syntax. This makes it

easier for programmers to learn. Esper contains fewer temporal operators and

may have better performance results within a short period of time [26].

In our study, we utilize CEP engines one layer below the proposed generic software

architecture for the verification of runtime execution behaviors of IoT elements. To

facilitate testing of the proposed software architecture, we implemented two prototype

implementations utilizing both Esper and Drools Fusion CEP Engine technologies.

8
https://espertech.com/esper

9
https://drools.jboss.org/drools-fusion.html

17

2.2.5 Distributed System Processing

Similar to CEP engines, we used two di↵erent DSP software to facilitate testing of

our methodology: Apache Storm10 and Apache Spark11. For both DSP systems,

we integrated them to our simulated application environment to distribute event

streams with the aim of providing scalable solutions. These event processing systems

are needed to fetch the messages coming from the Kafka cluster and process them in

parallel.

2.2.6 Self-Healing and Predictive Maintenance Mechanisms

In order to provide self-healing capabilities and predictive maintenance, individual

dedicated services are required. The predictive maintenance services is responsible for

detecting any suspicious or alarming problems, such as partial failure or underperfor-

mance of the devices. If this happens, it will relay a summary to human operators for

predictive maintenance. As the main focus of this work is to introduce the anomaly

detection framework including a runtime verification mechanism and its prototype

implementation to enable self-healing IoT systems, we consider the implementation

of the predictive maintenance service as out of scope. We only discuss the details of

the capabilities of self-healing service below.

As for the functionalities related to capabilities of the self-healing mechanism, we

consider three capabilities:

• Replication Capability

• Reconfiguration Capability

• Degradation Capability

The self-healing service keeps a service configuration table, which maps active/idle

10
https://storm-project.net

11
https://spark.apache.org

18

services to the IoT nodes. The self-healing service decides which IoT device will run

the service to avoid application failure. If the selected IoT device accomplishes a suc-

cessful action on the IoT application, the service configuration table will be readjusted

automatically according to a new simulation configuration. The capabilities of the

self-healing service is described as follows:

• Replication Capability: In our test environment, every service that runs on

IoT nodes has two types of state information: active and idle. A dependable

IoT application should provide exactly the same number of active services, even

if a node failure is detected. Replication Capability provides feedback to the

IoT application that changes state information of the service by activating idle

service instead of failed service. When a node failure is detected, Replication

Capability selects the best target nodes according to their CPU, memory and

battery usage to wake up replica services. This capability is activated by Rule

1 and Rule 2 (see Table 1).

• Reconfiguration Capability: Based on the aforementioned event patterns,

the simulation environment requires reconfiguration in order to avoid applica-

tion failure. Reconfiguration Capability gives a signal to the IoT environment

to shut down a failed IoT node and introduce a new node into the application.

The new node should run exactly the same services as the failed node. This

capability is activated by Rule 3 and Rule 5 (see Table 1).

• Degradation Capability: In IoT environment, some of the constrained re-

sources, like memory, CPU, or bandwidth, can be exposed to high usage levels

which create bottleneck conditions. These conditions mostly result in applica-

tion failures in IoT environment. Degradation Capability helps the environment

to lighten the resource usage load. It gives a feedback signal to simulation en-

vironment for slowing down simulation speed. If the simulation runs properly

19

during a certain time period after the degradation, then the Degradation Capa-

bility will upgrade simulation speed as before. This capability is activated by

Rule 4 and Rule 6 (see Table 1).

2.3 Case Study

In this section, we consider an IoT scenario to evaluate our framework. In this

scenarios, a company provides services for the predictive maintenance of chillers in a

city. There are several types of chillers and a large number of them in cities; these

must be monitored in near real-time in order to operate and maintain their operations

e�ciently and e↵ectively. The company in question has installed and deployed several

sensors that monitor chiller status and interface with the chillers. Due to the overhead

costs of monitoring, not all sensors are activated and, in addition, their measurement

frequencies are low. Within a building, sensors send monitoring data to a gateway,

which propagates monitoring sensors to a Machine-to-Machine (M2M) cloud platform

in a cloud data center. The M2M cloud platform includes several services, e.g., a CEP

service for handling near real-time events, a NoSQL data-as-a-service for storing all

events, and a data analytics service for o✏ine data analytics. The CEP service and the

o✏ine data analytics continuously analyze the content of the data, and if they detect

any suspicious or alarming problems, such as partial failure or under-performance of

the chillers, they will relay a summary to human operators for predictive maintenance.

When receiving a summary, the CEP service and the o✏ine data analytics can invoke

further analytics by utilizing the o✏ine service analytics, or they can analyze the

problem by examining further events. Based on new data and intensive analytics,

human operators make certain decisions to reconfigure the problematic chillers and/or

to trigger another process that requires on-site engineers to fix the problem. Here,

we consider the case, where human operators decide to increase the measurement

frequency of some existing sensors and to activate new sensors to also monitor other

20

Table 2: Specification and configuration of the test environment.

CPU Intel Xeon 2.40 Ghz
OS Ubuntu 14.04
Java Version 1.8

relevant factors of the chillers.

A key requirement for such an IoT application is a self-healing capability where

the IoT system can be reconfigured (without the need for human operators) in order

to deploy and reconfigure new/existing sensors as well as reconfigure gateways to

handle a faulty running behavior of sensors or to handle additional sensing data.

Such a self-healing capability should provide controlling and managing services on

sensor nodes, reconfiguring these nodes, and degrading the whole system to avoid

system failure. Another key requirement for an IoT application is the capability of

the anomaly detection for better understanding of the running of all elements in the

system and their interactions. This capability will lead to the better and proper

reconfiguration of the system.

2.3.1 Experimental Setup

The analysis was conducted using a test environment as specified in Table 2. The

IoT simulator was running on the workstation, while all the components of the big

data processing framework were running on a virtual machine located in the same

workstation. The size of the provenance metadata was in the order of 1KB.

2.3.2 Results and Discussion

In this section, we present the obtained results based on the selected case study.

We performed load testing on our overall system to understand system performance

and scalability. We followed the load test procedure as described in [27]. Here, we

analyzed how well the system performs and scales as the message rate per second

is increased. To do this, we increased the work load (number of messages sent per

21

second) until the system performance degrades. We conducted our evaluation for the

two aforementioned prototype implementations each using di↵erent big data process-

ing platforms. For the first big data processing framework, we used Apache Storm

as stream processing platform and Esper as CEP Engine, as depicted in Figure 4.

For the second, we used Apache Spark Streaming as distributed real-time stream

processing platform and Drools Fusion as CEP Engine as illustrated in Figure 5.

Figure 4: Design of the first prototype implementation using Storm and Esper.

The results of the average processing time (msec) of events in di↵erent stages

of big data processing framework for varying message rates (message/seconds) are

depicted in Figure 6. X axis indicates the number of messages, while Y axis indicates

the average processing time in millisecond. The results indicate the processing times

for three stages of the system: Kafka-Storm, Storm-Esper and Esper-Kafka.

The results of the average processing time (msec) of events in di↵erent stages

of big data processing framework for varying message rates (message/seconds) are

shown in Figure 7. X axis indicates the number of messages, while Y axis indicates

the average processing time in millisecond. The results indicate the processing times

for three stages of the system: Kafka-Spark, Spark-Drools and Drools-Kafka.

22

Figure 5: Design of the first prototype implementation using Spark and Drools.

The results of the average processing time (msec) for di↵erent message rates (mes-

sage/seconds) are plotted both in Figure 6 and Figure 7. The graph’s columns show

the message rate-average processing time pairs respectively. The results of the tests

conducted on two di↵erent implementations showed that the prototype implemen-

tation of the proposed framework achieves negligible processing overheads when re-

sponding to incoming events. The test results for the both prototypes indicated that

the performance (overhead cost of processing) remains the same up to a high num-

ber of messages, such as 50000 messages. Therefore, we concluded that the system

performed and scales well under increasing message rates. We noted that the average

processing time spent in the publish-subscribe system has the maximum value. This

is because of the queuing mechanism of the messaging bus and the limitations of

the publish-subscribe mechanism. To this end, we conclude that additional publish-

subscribe node should be included into the system in order to avoid the bottlenecks

in message overload. The results also indicate that the processing overhead of the

proposed system is negligible for both two prototype implementations. We argue that

the networking time spent on the message bus does not reflect the usability of the

23

Figure 6: The average processing times for three stages of the system: Kafka-Storm,
Storm-Esper and Esper-Kafka

Figure 7: The average processing times for three stages of the system: Kafka-Spark,
Spark-Drools and Drools-Kafka.

proposed system.

To better understand the e↵ectiveness of the proposed approach, for the both

prototype implementations (i.e. prototypes using Storm-Esper and Spark-Drools Fu-

sion), we investigated the latency between the time when an event was generated and

the time when the complex event, matching to a rule, was generated. We conducted

the test when the system was under 1000 messages/second message-load. For each

test, we generated 30 simple event sequence matching the Rules while the system was

under 1000 events per second. We injected the selected event sequences into the mes-

sage load. Then, we measured the time taken between the event was generated and

the time when a Rule is triggered and complex event was generated. We computed

the average time and standard deviation over the times spent for each individual event

24

Table 3: Latency in detecting faulty running behaviour for the two di↵erent proto-
types under 1000 messages/sec message load.

Average Processing Time Average Processing Time
Rule ID with Storm-Esper (in sec) with Spark-Drools (in sec)

Rule 1 2.821 9.780
Rule 2 2.802 9.792
Rule 3 2.915 9.788
Rule 4 2.901 9.797
Rule 5 2.849 9.786
Rule 6 2.845 9.790

that trigger its corresponding rule. The results are given in Table 3. The results rep-

resent the latency under ideal network conditions where the measurements are taken

within a local area network. These results indicate that the proposed approach is

capable of detecting the anomalies that match to the rules with a negligible latency.

2.4 Related Work and Our Contributions

There exists some previous studies that apply complex event processing on di↵erent

IoT application domains. For example, Chen et al. proposes a distributed (client-

server based) CEP architecture for smart building with building automation sys-

tem [28]. In another study, Wang introduces a proactive CEP architecture and a

method for transportation IoT by processing large scale data [29]. In addition, Wang

and Cao discuss a performance context aware CEP architecture for IoT applications

in [30]. Apart from these previous works, our study introduces a software architecture

that is not dependent on the underlying complex event processing engine implemen-

tations to support a runtime verification mechanism. The proposed architecture can

detect whether the predefined unexpected running patterns are encountered in real-

time streaming data. In the cases of unexpected running behaviors, the proposed

verification mechanism triggers the self-healing actions to enable self-healing IoT sys-

tems.

The processing of the distributed streams involves processing the data before

25

storing. A processing unit in a distributed flow engine is generally referred to as a

processing element. Each processing element receives input from its input queues,

performs some computation on the input using its local state, and outputs its output

queues. Stream processing engine creates a logical network of stream processing ele-

ments connected in a directed acyclic graph. DSP solutions, such as Apache Samza,

Spark, Storm, or S4, represent general purpose streaming platforms. They do not

provide a native CEP engine. These solutions bring scalability and the opportunity

to add the necessary CEP logic to address various types of streams processing related

problems. The DSPs can be merged with native CEP solutions such as Esper or

Drools Fusion to deploy comprehensive, distributed, scalable CEP solutions. In our

study, we introduce a software architecture that is transparent to any DSP implemen-

tations. The proposed software architecture is designed to provide anomaly detection

including runtime verification capability independent of the implementation of the

DSP itself. To facilitate testing of the generic software architecture, we implemented

two prototype implementations using both Storm and Spark DSP technologies.

Various real-time streaming applications were introduced in di↵erent application

domains such as audio-video streaming [31], geographical information systems [32, 33].

These studies provide solutions to the metadata management requirement, however

they do not address the runtime verification of the web services that are part of

the application. Our work di↵ers from such studies, since we focus on metadata

of execution traces, i.e. provenance metadata, to detect anomalous behavior of the

running IoT devices to achieve runtime verification capability.

In IBM's “Autonomic computing: IBMs perspective on the state of information

Technology” manifesto, the concept of self-management properties is proposed as

follows: self-configuration, self-optimization, self-healing and self-protection. In this

manifesto, they indicates that complex systems requires autonomic properties [34].

In the IoT application domain, there are several self-healing studies. The need of

26

self-healing capabilities for critical and life-saving IoT applications is presented in

[35]. In this study, the components of IoT application are independent and capable of

taking self-healing decisions. However, this study does not provide self-healing mech-

anism for entire IoT applications. An architecture with the self-healing capability

for IoT applications is proposed in [36]. This study focuses on protecting the system

from security attacks using self-healing capabilities. A framework that provides self-

configuration and self-adaption in IoT applications is presented in [37]. This study

focuses on self-management mechanism with regard to configuration and resource

utilization of IoT nodes. However, in this study degradation capability and service

replication capability were not taken into consideration. Our study primarily focuses

on designing and developing a generic framework for anomaly detection based on

runtime verification mechanism to support self-healing IoT applications. We show

that self-healing actions can be activated through a runtime verification mechanism

by detecting complex event patterns in the running patterns of an IoT system.

Hai Zhuge describes a self-organizing, self-managing, and scalable system, de-

signed to support the development of diverse distributed and intelligent information,

knowledge, and computing services in [38]. However, our work focusses on anomaly

detection of running elements of IoT devices to enable self-healing IoT systems. In

our work, we only focus on the mechanisms that can lead to run IoT systems in deploy

once and run forever manner. Another study by Zhuge introduces a methodology on

diverse spaces (spaces for cyber physical-socio intelligence) that will emerge, evolve,

compete and cooperate with each other to extend machine intelligence and human

intelligence [39]. In our work, we are mainly interested in a verification based mecha-

nism that detects unexpected running behavior of elements of IoT systems and that

triggers self-healing actions to enable self-healing IoT systems.

Dillon et al. describes a unified framework integrating Web of Things and Cyber-

Physical Systems [40]. Their work addresses a requirement of connecting abstract

27

computational artifacts with the physical world. Our work focuses on another re-

quirement of Web of Things. In our study, we introduce a software architecture

that can verify the running behavior of Internet of Things that are put together for

monitoring Cyber-Physical Systems.

Data lineage and monitoring of events through data have been a major research

activity for some time provenance domain [41, 42, 43]. Various studies have been

conducted on the use of provenance metadata, created based on a provenance spec-

ification. For an example, Aktas et al. focused on temporal representation of the

OPM compatible data provenance [44]. In this study, we use PROV-O Speciation for

representing the provenance, i.e. measurements data, collected from elements of IoT

systems. Provenance representation provides the ability to determine attribution and

to identify relationships between IoT system devices.

In summary, we make the following contributions in this chapter:

• We propose a distributed analysis framework built on top of real-time big data

processing frameworks and illustrate its usage for runtime verification in the

IoT domain.

• We define provenance representation for the monitoring events and interactions

of IoT elements. We also define verification rules for each IoT device based

on their technical specifications. Each rule is designed to trigger a self-healing

actions to support the self-healing capability in the IoT environment.

• We introduce the details of the two prototype implementations of the proposed

framework based on alternative technologies and present the performance and

scalability test results of these implementations.

28

CHAPTER III

DISTRIBUTED LOG ANALYSIS

In this chapter, we introduce a distributed log analysis approach for anomaly de-

tection in large-scale software systems. We designed and implemented our system

as an open source infrastructure that integrates several sub-systems for log parsing,

feature extraction and (unsupervised) machine learning. In this chapter, we discuss

the software architecture and an implementation of it. In particular, we developed

a distributed log parser that employs text mining techniques on unstructured log

messages.

Some of the previously proposed automated log parsing techniques [2, 7, 8] require

the availability of source code to be able to interpret these messages. There are

also methods [9, 10, 11, 12, 13] that directly process text-based log data. However,

these methods are not developed to support distributed log parsing. We propose a

distributed implementation to provide scalability.

We evaluated our system using two datasets. The first one contains HDFS log

messages that are labeled with known anomalies and previously used by other stud-

ies as a benchmark. The second one is the Thunderbird supercomputer log dataset

acquired from the Computer Failure Data Repository. We conducted controlled ex-

periments with both datasets under increasing degrees of parallelism. Experiments on

the first benchmark showed that our system can achieve more than 30% performance

improvement on average as the system scales, compared to baseline approaches that

do not employ fully distributed processing. Our system also maintains the accuracy

of anomaly detection to that of benchmark studies, while parallelizing and distribut-

ing the entire analysis process. Furthermore, log parsing accuracy remains the same

29

although our system does not require the availability of the source code, unlike ex-

isting studies. The second dataset is not labeled. We evaluated the scalability of our

system with this dataset, which is almost 20 times larger than the HDFS dataset.

Experiment results showed that the analysis time increases linearly with respect to

the log size.

The chapter is organized as follows. The following section introduces our ap-

proach. In Section 3.3, we explain the prototype implementation of our approach in

the context of two case studies and present the evaluation and results based on the

specified research questions. We review the related work in Section 3.4 and conclude

the chapter.

3.1 The Overall Approach and the Software Architecture

We designed and built a generic framework for end-to-end distributed runtime anal-

ysis of large-scale system logs. The overall processes and artifacts employed by the

framework are depicted in Figure 8. The architecture comprises four processes: log

parsing, feature extraction, normalization and machine learning as described in the

following.

Figure 8: The overall processes and artifacts employed by the distributed log analysis
system.

30

• Log Parsing: First, the log file located in a distributed file system is opened.

Each line of log file is read by the Log Parser to be parsed as a log instance.

In the rest of chapter, we call such a log instance as an “event”. An event is

a record about an interaction that have occurred during a system operation

among its components. It can include a time stamp that identifies when the

event happened, an identifier for the thread that generated the logging event, a

logging level indicator, a class name of the caller issuing the logging event, an

identifier to pinpoint the object manipulated by the program, a text part that

consists of constant strings in the log event, a numeric part that has multiple

attributes regarding the log event.

• Feature Extraction: Second, the event data is converted to a set of selected

features. Features are selected as the most relevant attributes that can con-

tribute to the analysis for anomaly detection in the machine learning process.

Features that reveal correlations among events are extracted from the event

data, and constructed as numerical feature vectors.

• Normalization: Third, the extracted feature vectors are pre-processed with

normalization methods in order to improve the machine learning accuracy by

emphasizing di↵erences among feature vectors.

• Machine Learning: Fourth, an unsupervised machine learning algorithm is

applied on the normalized feature vectors to detect any unusual behavior or

anomaly. In this technique, there is no need for prior input or training data. It

takes the whole set of feature vectors and chooses automatically the dominant

components that best represent the original data. This part is considered as

“normal” events that represent the system behavior under normal conditions.

When the dominant components are filtered out, it becomes easier to detect rare

outliers in the remainder. According to a proper threshold, the remainder part

31

is marked as “abnormal” events that exemplify deviations from normal system

behavior. In this way, each feature vector is labeled as normal or abnormal.

Abnormal events are detected as anomalies in the log files.

In the following section, we introduce a concrete implementation of this framework

by integrating a set of state-of-the-practice technologies.

3.2 Implementation Details

We implemented our end-to-end distributed analysis architecture using the most

prominent open source technologies as shown in Figure 9. In the following, we explain

our implementation based on these technologies in detail, in the same order as the

flow depicted in Figure 9. We created a public repository on GitHub to contribute

our prototype implementations to the open source community 1.

Figure 9: Implementation of the distributed log analysis system using state-of-the-
practice technologies.

3.2.1 Log Parser

Our log parser implementation focuses on the analysis of free-form (unstructured)

log messages in text format. It transforms such messages into structured & featured

1
https://github.com/merveast/DILAF

32

events. The tool opens the log data located in the distributed file system. It reads

the log data line by line, and parses each line as a log instance. It handles the log

lines in two standard parts, the regex and the featured message. The regex (regular

expression) part conforms to a custom log format as defined by the domain experts,

while a featured message part includes all the textual and numeric information specific

to the execution of the system.

It has been previously shown that preprocessing logs with simple domain knowl-

edge can improve parsing accuracy [45]. Hence, every log line is preprocessed using a

simple regex which represents the basic components such as a time stamp, a logging

level indicator, a class name of the caller issuing the logging event, an identifier to

pinpoint the object manipulated by the program. The tool preprocesses a log line

with the regex and then, extracts the remaining part that is not matched with regex

as a featured message. A featured message contains a text part that comprises con-

stant strings in the log message, and a numeric part that consists of multiple variables

of the log message. An example log line and its decomposition into a log instance are

depicted in Figure 10.

Figure 10: An example log line and its decomposition into a log instance.

The tool mines a featured message, which is assumed to be composed of the mes-

sage type and the message variables. The constant text part represents the message

33

type, while the numeric part symbolizes the message variables in Xu's study [2]. In

Figure 10, the featured message example comprises a string part that presents the

message type and * symbols which are the place holder for the message variables of

a log instance.

The log parser neither purely uses regular expressions, nor involves any manual

e↵ort. It employs a combination of regex and text mining techniques. First, each line

of the log is preprocessed with regex for analyzing the structured part of the text.

Then, the remaining part is extracted by using text mining techniques. An example

workflow of log parser is depicted in Figure 11.

Figure 11: An example workflow of log parser.

Apache Hadoop Distributed File System (HDFS) 2 is selected in conjunction with

other related techniques to store the large-scale and raw log dataset. Apache Spark is

integrated into this tool to support distributed processing in a fault-tolerant manner.

3.2.2 Feature Extractor

After parsing log data, we constructed numerical feature vectors, on which Anomaly

Detector can apply machine learning. We created one and primary feature “Message

Count Vector” utilizing the identifier and the message type information, which are

2
https://hortonworks.com/apache/hdfs/

34

Table 4: Analogy between the message count vector and bag-of-words model.

Bag-of-words Model Message Count Vector

Document Identifier
Term Message type

Term frequency Number of appearances of the corresponding message types

extracted by the Log Parser.

Message count vectors pinpoint to the anomalous behaviors of the system related

to individual operations [2]. For example, a file system generates a lot of log messages

about a block such as when the block is allocated, written, replicated, or deleted.

Grouping these messages provides information about the execution flow regarding

this specific block. In this example; the id of this block is an identifier which is the

object manipulated by the program, while processes such as allocation, replication

are the distinct message types that indicate what kind operation performed on this

object.

We grouped the message types according to the identifiers, and constructed a

vector for each identifier. Each dimension of the vector corresponds to a di↵erent

message type, while the value of the dimension states the number of appearances of

the messages type for this identifier. This feature has analogous structure with the

bag of words model in information retrieval domain [2]. Bag-of-words model records

the count of words that appear in each document of a collection [46]. Table 4 shows

the analogy between message count vector and the bag-of-words model.

We adapted Apache Spark's CountVectorizer model in order to extract the fea-

tures. CountVectorizer converts a collection of identifiers to vectors of message type

counts 3. CountVectorizer model constructs the feature vector in Algorithm 1:

We collected all the message count vectors and construct the Message Count

Matrix Y . This m ⇥ n matrix has m rows, each of which is a message count vector

3
https://spark.apache.org/docs/latest/ml-features.html

35

Algorithm 1 Feature vector construction

1: procedure FeatureConstructionProcedure(Identifier, LogInstances)
2: n: number of message types
3: yinumber of appearances of the message type i for identifier y
4: Find all identifiers reported in LogInstances
5: Group message types by these identifiers
6: for Each identifier y do
7: Create a message count vector y = [y1, y2, y3, . . . , yn], i = 1, . . . , n
8: end for
9: end procedure

and represents an identifier. On the other hand, n columns correspond to n message

types.

3.2.3 Data Normalizer

We normalized the Message Count Matrix in order to improve the accuracy of anomaly

detection. We applied Term Frequency/Inverse Document Frequency (TF/IDF) tech-

nique to normalize the matrix. This technique measures the importance of a term to a

document in a collection of corpus [47]. TF is the frequency of a term (message type)

in a document (for an identifier). If TF is large for a specific term, this term is more

important to the document. IDF is the frequency of documents (identifiers) that con-

tain a specific term (in a specific message type). If a term exists in a more number of

documents, then Document Frequency becomes larger and so, IDF becomes smaller.

This means that this term is non-informative for classifying the documents. IDF is

calculated as follows 4:

IDF (t,D) = log
| D | +1

DF (t,D) + 1
(1)

where t is a term, d is a document, D is the corpus, and |D| is the total number of

documents in the corpus. If TF (t, d) is defined as the number of times that term t

appears in document d, while document frequency DF (t,D) is the number of docu-

ments that contains term t. The TF � IDF measure is defined as the product of TF

4
https://spark.apache.org/docs/latest/ml-features.html

36

and IDF:

TFIDF (t,D) = TF (t, d)⇥ IDF (t,D) (2)

The Feature Extractor generates term frequencies (TF) by utilizing the CountVec-

torizer model. The Data Normalizer uses Apache Spark's IDFModel, which takes

feature vectors from the Feature Extractor and scales each column representing mes-

sage types. IDFModel down-weights the common message types, which appear for

most of the identifiers. The reason is that common message types can be considered

less likely to show anomalous behaviors. We also applied mean normalization for

each column using column summary statistics5. Column mean is subtracted from the

feature matrix before moving on to the machine learning process.

3.2.4 Anomaly Detector

We applied Principal Component Analysis (PCA) as recommended in Xu's study [2].

Xu et al. investigated several alternative techniques for dimension reduction such as

Support Vector Machine (SVM), mixture models. They found that PCA gives suc-

cessful results when combined with term-weighting techniques and it is suitable for

uncovering the intrinsic low dimension features hidden in a high dimension dataset as

such in log dataset [2]. PCA is a machine learning technique which emphasizes vari-

ation and reveals strong patterns in high-dimensional datasets [48]. This technique

is used for dimension-reduction. It reduces a large set of possibly correlated variables

to a small set that still contains most of the information in high-dimensional dataset.

This small set of values is linearly uncorrelated variables called principal components

that capture covariation between original dataset. We exploited from PCA in order

to filter the repeating patterns of feature matrix. In this way, it becomes easier to

find rare, possibly anomalous, patterns.

The Anomaly Detector finds k-principal components in n-dimensional original

5
https://spark.apache.org/docs/2.2.0/mllib-statistics.html

37

space and construct a k-dimensional normal subspace Sd that is spanned by the top

k principal components. The remainder (n�k) represents the abnormal subspace Sa.

The distance between a vector y of the feature matrix and the normal subspace is

used to determine whether a vector y is abnormal or normal by calculating Squared

Prediction Error (SPE). SPE equals to the squared length of ya where ya is the

projection of y onto the abnormal space Sa.

SPE =k ya k2 (3)

ya is calculated as follows:

ya = (I � PP T)y (4)

where P = [v1, v2, . . . , vk] is the projection matrix by the first k principal components.

A vector y is marked as abnormal if SPE > Qa where Qa is the threshold statistic for

the SPE residual function at the (1� ↵) confidence level. The confidence parameter

is determined as ↵ = 0.001 that were recommended in Xu's study [2]. We used the

manually labeled dataset to validate our results. The labeling was done by Xu et

al, consulting with local Hadoop experts [2]. Our Anomaly Detector compares the

results with this labeled dataset, and calculates precision, recall and F measure using

the following formulas:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
(5)

F = 2⇥ Precision⇥Recall

Precision+Recall
(6)

According to these formulas, log events are categorized as true negative (TN),

true positive (TP), false negative (FN) and false positive (FP) based on the following

definitions that we use throughout the chapter:

38

• TN: An anomalous log event does not exist, and the framework did not report

an anomaly.

• TP: An anomalous log event exists, and the framework reported an anomaly

for this log event.

• FN: An anomalous log event exists, but the framework did not report it.

• FP: An anomalous log event does not exist, but the framework reported an

anomaly for this log event.

We implemented the anomaly detection algorithms utilizing Spark MLlib that is

Apache Spark's scalable machine learning library. Spark MLlib is selected due to the

compatibility with the distributed memory-based Spark architecture.

A distributed implementation of the process might jeopardize the accuracy of

anomaly detection due to load imbalance, latencies and concurrency/synchronization

issues. It was shown that some of the parallelization strategies possibly introduce

inconsistencies, and might only provide an approximation of the desired outcome [49].

In our work, we employed the so-called Bulk Synchronous Parallel (BSP) computa-

tion model for parallelizing the machine learning process. BSP algorithms distribute

the workload among participating processes, each of which performs local compu-

tations. When a process completes its task and reaches to a barrier, it waits until

all the others reach the same barrier for synchronization. We implemented PCA by

using the BSP model. In particular, computing the covariance matrix and applying

singular value decomposition on this matrix fit well to this model since they involve

tasks that can be separated and executed in parallel.

We also employed state-of-the-art tools to ensure accuracy even in the presence

of faults. In particular, we used Apache Spark’s Resilient Distributed Datasets

(RDDs) [50], which enable a controlled partitioning of storage. Each task works

on a partition and it is reassigned when any crash occurs. The particular partition

39

can be recovered and the other tasks can proceed on it. Hence, RDDs provide fault

tolerance and prevent data loss.

In the following section, we evaluate this implementation of our approach based

on the two case studies.

3.3 Case Studies

In this section, we evaluated our approach based on two prominent case studies from

the distributed system domain. Firstly, we identified our research questions. Second,

we specified the experimental setup including used dataset and test environment.

Later, we represented the evaluation results according to the overall accuracy and

running time for di↵erent execution phases. Finally, we assessed validity threats

regarding our benchmark studies.

3.3.1 Research Questions

Our first concern is the applicability of the log parser design on free text-based log

in our system. If the log parser can work with unstructured log data, access to the

source code is not required and the framework can run as black box. Our second

concern is to maintain the overall accuracy while paralleling and distributing the

anomaly detection process comparing to benchmark studies [2, 51]. In addition to

parallelizing and distributing the whole processes, our log parser design is di↵erent

from the benchmark studies and could be a factor a↵ecting the accuracy of the results.

Our final concern is the running time of the four processes: log parsing, feature

extraction, normalization and machine learning. Our system is designed to process

millions of log lines. Therefore, the performance and scalability of the framework play

a key role as the work load is increased.

We defined the following three research questions based on these concerns:

• RQ1: Is it possible to parse and process unstructured log data accurately

without the need of source code analysis or instrumentation?

40

• RQ2: Does our system maintain the same accuracy level with existing tools,

while parallelizing and distributing the entire analysis process?

• RQ3: To what extent does our system improve performance with respect to

increasing load of log data and degree of parallelization?

3.3.2 Experimental Setup

3.3.2.1 Dataset

We performed our experiments with two datasets. The first one is Hadoop Dis-

tributed File System (HDFS) log dataset, which is labelled with known anomalies

and previously used by other studies as a benchmark [2]. The HDFS dataset contains

11.175.629 lines of log with 29 types of messages and 575.061 identifiers. Sample log

lines from the HDFS dataset are presented in Appendix A. A label that is augmented

to each record indicates whether a block behaves abnormally in the associated log

message. There are 16.838 such anomaly cases whose examples are shown in Ap-

pendix B from the dataset. In HDFS, there are multiple log messages about a block

when the block is allocated, written, replicated, or deleted. In this dataset, identifier

is defined as block id as in Xu's study [2]. Approximately 50% of log messages in

HDFS include block id.

The second dataset contains the event log messages collected from Thunderbird

supercomputer cluster at Sandia National Laboratories, acquired from the Computer

Failure Data Repository. This log dataset contains 211.212.192 lines of log that

include alert and non-alert messages identified by alert category tags. In particular,

we evaluated the scalability of the framework based on this dataset, which is almost

20 times larger than the HDFS dataset. However, we were not able to evaluate

the accuracy, because of the fact that the available datasets were not labeled for

validating the detected anomalies. They included records regarding to only particular

types of system failures such as software failures, hardware failures, network failures,

41

and failures due to environmental problems etc. But the data was not labeled with

anomalies that cause these failures, those that lead to other types of failures or those

anomalies that do not come to surface as a failure at all.

3.3.2.2 Test Environment

We evaluated the overall accuracy and running time (scalability) of our framework for

each of the phases; log parsing, feature extraction, normalization and machine learn-

ing. Firstly, we validate the accuracy of anomaly detection process of our framework

with the HDFS dataset. We compared our anomaly detection results on this dataset

with respect to results obtained with the same dataset in [2] and in another study [6].

However, we were not able to evaluate accuracy using Thunderbird log dataset be-

cause of the fact that it was not labeled for validating the detected anomalies.

Secondly, we tested the performance and scalability of the framework based on

both HDFS and Thunderbird datasets. We increased the degrees of parallelism until

the running time saturates. To do this, we established two test environments. One of

them is a pseudo-cluster running on a single machine. The other one is a real cluster

that can incorporate many nodes. We were able to complete the tests on the HDFS

dataset by using a pseudo-cluster. Hereby, we increased the degree of parallelization

(number of threads) on a single machine until the running time saturates. The real

cluster was necessary to conduct analysis on the Thunderbird dataset, which is almost

20 times larger than the HDFS dataset.

The details of the test environment, on which the HDFS dataset is analyzed, is

specified in Table 5.

We built the real cluster on top of OpenStack cloud infrastructure as a Sahara

cluster6. Sahara enables users to easily provision and manage clusters with Hadoop,

Spark and other data processing frameworks on OpenStack by specifying several

6
https://docs.openstack.org/sahara/pike/intro/overview.html

42

Table 5: Specification of the test environment (pseudo-cluster) used for evaluating
the distributed log analysis framework.

CPU Intel(R) Core(TM) i7-7700
CPU @ 3.60 GHz, cores=4, threads=8

Memory 24 GB
OS Ubuntu 16.04
Java Version 1.8

Table 6: Specification of the test environment (Sahara cluster) used for evaluating
the distributed log analysis framework.

Type of Node master worker
Number of Nodes 3 10
Number of vCPUs 8 4
Memory 16 GB 8 GB
Disk 80 GB 80 GB
OS Centos 7 Centos 7

parameters such as the version, cluster topology, hardware node details. The per-

formance analysis on the Thunderbird dataset was conducted on a Sahara cluster as

specified in Table 6.

3.3.3 Results

In this section, we present the obtained results.

3.3.3.1 Accuracy

We validated the overall accuracy of our framework utilizing HDFS dataset and its

manually labeled benchmark data. We compared the results with this labeled data

based on precision, recall and F-measure metrics. We detected 11.195 of 16.838

actual anomalies. We can see in Table 7 that our framework detects a large part of

the anomalies located in HDFS log dataset. Even if we process the increasing load of

log data and execute tasks in a distributed and parallel manner, we can achieve over

99.8% accuracy for anomaly detection. This means that our system maintains the

accuracy of anomaly detection while parallelizing and distributing the entire analysis

43

Table 7: Anomaly detection results of the distributed log analysis framework.

Number of detected anomalies 11.473
Number of actual anomalies 16.838
Number of true anomalies 11.195

Table 8: Accuracy of anomaly detection results of the distributed log analysis frame-
work.

Precision 0.97577
Recall 0.66487
F-measure 0.79086

process, compared to the existing studies.

We further tested the accuracy of our log parser. We performed our experiment

utilizing the HDFS dataset. Our experiment showed that we can achieve the same

parsing accuracy level as the existing studies. Table 9 shows that the log parser can

detect all the 29 out of 29 actual message types when the selected identifier is block id

according to the defined regex. Our log parser that employs text mining techniques

successfully extracts message types and message variables.

3.3.3.2 Running Time (Scalability)-Performance

In order to evaluate the performance and scalability of our system, we measured the

running time of the four processes under increasing load (number of log lines to be

processed) and by increasing parallelization degree. We followed a test procedure as

listed in Algorithm 2 as pseudo-code. Hereby, the parameters MAXP and MAXLF

represent the maximum parallelization and the maximum load factor, respectively.

We first set the input parameters as follows:

• L= HDFS Log Dataset

• MAXP = 8

• MAXLF = 5

44

Table 9: Log parsing results of the distributed log analysis framework.

Log size 11.175.629
Selected identifier block id
Number of detected message types 29
Number of actual message types 29

Algorithm 2 Performance test procedure

1: procedure TestProcedure(L,MAXP,MAXLF)
2: m: multiplication factor
3: n: number of threads
4: L: input log dataset
5: Lm L
6: m 1
7: while m MAXLF do
8: for n = 1 to MAXP do
9: Execute the system in n-thread mode with Lm file
10: Measure the running time of each processes:
11: log parsing, feature extraction, normalization and machine learning
12: end for
13: m m+1
14: Lm Copy L file by m-factor
15: end while
16: Postprocess test results and visualize as charts
17: end procedure

We first executed the framework in single-thread mode using the original HDFS

log dataset, and measured the running time of each processes: log parsing, feature

extraction, normalization and machine learning. We increased degree of paralleliza-

tion (number of threads) from 1 to 8 when the input L is original HDFS log dataset.

Later, we copied HDFS log dataset by a factor of 2, and executed the framework for

increasing degree of parallelization, from 1 to 8. We repeated these steps until HDFS

log dataset has been copied five times.

The size of the log dataset was increased from 1 to 5 times, while the degree of

parallelization was increased from 1 to 8 for each size of HDFS log dataset. The results

of the running time (msec) of each processes for increasing degree of parallelization

(number of threads) under increasing work load are plotted in Figure 12, Figure 13,

45

Figure 14, Figure 15, Figure 16. The figures are di↵erentiated by size (load) of

log dataset. The graph's lines show the degree of parallelization-running time pairs

respectively.

Figure 12: Performance of the distributed log analysis framework under original log
file.

Figure 13: Performance of the distributed log analysis framework under 2x log file.

We further investigated our system on a real cluster with additional number of

nodes in terms of performance and scalability. First, we executed the framework using

the original HDFS log dataset on two instances with 7 cores for each one (2-threads

for each core), and measured the running time of each processes: log parsing, feature

extraction, normalization and machine learning. We increased the number of nodes

46

Figure 14: Performance of the distributed log analysis framework under 3x log file.

Figure 15: Performance of the distributed log analysis framework under 4x log file.

to 3, 6 and 9. When 7 cores are selected for analysis on each node, we executed 2

threads on each core. There exists 14 threads for analysis on each node. The degree of

parallelization (number of threads) is increased by including additional nodes to the

cluster. The result of the running time (msec) for increasing degree of parallelization

by including additional nodes on the real cluster is plotted in Figure 17.

We also conducted controlled experiments with Thunderbird dataset, which is

almost 20 times larger than the HDFS dataset. We first executed our system in

pseudo-cluster mode on a single machine using the Thunderbird log dataset. We saw

47

Figure 16: Performance of the distributed log analysis framework under 5x log file.

Figure 17: Performance of the distributed log analysis framework on the real cluster
with original HDFS log file.

that analysis cannot be successfully completed for the specific processes: normaliza-

tion and machine learning, where the matrix operations are performed on at least

5000x10000 dimensions. The analysis is conducted on the real cluster with additional

nodes in terms of performance and scalability. First, we executed the framework us-

ing the Thunderbird log dataset on two instances with 7 cores for each one (2-threads

for each core), and measured the running time of each processes: log parsing, feature

extraction, normalization and machine learning. We increased the number of nodes

from 2 to 9. When there exists 14 threads for analysis on each node, we reached 126

48

as the maximum degree of parallelism. The result of the running time (msec) for

increasing degree of parallelization by including additional nodes on the real cluster

is plotted in Figure 18.

Figure 18: Performance of the distributed log analysis framework on the real cluster
with Thunderbird log file.

In the following section, we discuss the obtained results and provide answers for

our research questions.

3.3.4 Discussion

In this section, we elaborate on the obtained results and provide answers for our

research questions. First of all, we can answer RQ1 positively. Xu's log parser [2]

requires access to the source code by means of instrumentation. Although our system

works on free text log messages, it achieves the same log parsing accuracy. We saw

that our system can detect all the message types and achieve 100% parsing accuracy

on the benchmark HDFS dataset. POP [45] can work on unstructured log data

as well; however, it provides a log parsing solution only. Our system provides an

end-to-end solution for the overall analysis processes including log parsing, feature

extraction, normalization and machine learning. It also achieves a better performance

as summarized in Table 10 and discussed later in this section.

49

Results showed that the accuracy of our system is the same when compared with

existing, non-distributed log analysis frameworks. The precision, recall and F-measure

values obtained with the non-distributed implementation of PCA-based anomaly de-

tection were reported as 0.98, 0.67 and 0.79, respectively [6, 2] for the HDFS bench-

mark dataset. We can see in Table 8 that these values are the same when our system

is applied on the same dataset. Our system distributes and parallelizes the entire

analysis processes including anomaly detection. Yet, we can answer RQ2 positively;

it still maintains the same level of accuracy while providing significant performance

improvements as discussed in the following.

Figure 12 summarizes the results for the application of our system on the original

HDFS log dataset. Here, we can see that the running time of the Log Parsing process

is about 100 seconds with a single thread. It decreases to 35 seconds (by 65%) when

the number of threads increases to 8. Likewise, the running time of the Machine

Learning process is 140 seconds with a single thread. However, it decreases to ap-

proximately 40 seconds (by 71%) as the number of threads increases up to 8. The

results are similar when the experiment is repeated with the HDFS log data that is

replicated 5 times. We can see in Figure 16 that the running time of the Log Parsing

process is about 460 seconds with a single thread. It decreases to 140 seconds (by

69%) when the number of threads increases to 8. The running times measured for

the Machine Learning process are the same (i.e., 140 seconds with a single thread and

40 seconds with 8 threads). This is an expected result since the number of unique

blocks (i.e., 575.061) and the number of message types (i.e., 29) do not change as the

number of log events increases. Although the data to be processed by the Log Parser

is increasing in size by replicating the input data, the Machine Learning process con-

tinues to work on a matrix with the same dimensions. However, we should note that

this is not the case for all other alternative implementations. For instance, it was

reported that POP takes linearly more time for this analysis process as the log size

50

Table 10: Running time of log parsing methods on HDFS dataset.

Method Running Time (sec)

Xu's log parser ⇠ 180
POP 100.58
Our system 35

increases [51].

Table 10 compares the performance of our log parser with those of previous stud-

ies [2, 45]. Our system completes the Log Parsing process on 10 million log lines of

HDFS log dataset within 35 seconds. POP and Xu's log parser complete this process

in 100 seconds [45] and approximately 3 minutes [2] on the same dataset, respectively.

We observed that the improvement in running time saturates after the degree of

parallelization becomes 4. One can relate this observation to the fact that these ex-

periments were conducted on a pseudo-cluster deployed on a single physical machine

with 4-cores. Therefore, additional experiments were performed on a physical cluster

to observe the improvement in scalability for higher degrees of parallelization. How-

ever, results showed that the use of a real cluster did not make a di↵erence regarding

the saturation point for analyzing the HDFS dataset. Results also turned out to be

similar for the Thunderbird log dataset, which comprises 211 million log lines. This

is almost four times larger than the HDFS dataset. Our system reduced the running

time of the Log Parsing process from 900 to 600 seconds (by 33%) as the degree of

parallelization increases. Although the percentage of performance improvement seems

to be less, the minimum running time that is achieved on a real cluster is the same.

For instance, the running time of the Log Parsing process stabilized at approximately

40 seconds on the original HDFS dataset, which is aligned with the results obtained

on a pseudo-cluster.

Overall, we can conclude for RQ3 that our system achieves more than 30% im-

provement in running time.

51

3.3.5 Threats to Validity and Limitations

In this section, we discuss possible validity threats [52] regarding our experimenta-

tions. Our evaluation is subject to external validity threats since a single labeled

dataset is used as benchmark. Still, we used two datasets to evaluate the perfor-

mance and scalability attributes of the framework, and saw that our framework is

applicable to any other log data. More benchmark datasets, preferably on labeled

datasets obtained from industrial systems, can be conducted in order to generalize

the results of our study.

The internal validity of our study could be threatened by the choice of the ↵

value that is the confidence parameter. Other values might lead to di↵erent accuracy

results. To eliminate any bias in this respect, we used the same ↵ value that has

been used and recommended in previous studies published in the literature [2, 6, 45].

We also kept the system unchanged throughout the experiments to mitigate other

internal validity threats.

To mitigate construct validity threats, the experiment has been repeated with

samples of benchmark dataset [2, 6, 45] that is commonly used in previously published

studies and well-known in the research domain. The labeling was done by Xu et al.

by consulting Hadoop experts [2].

We use a set of external tools, which might be considered as a threat to the

reliability of our studies. The current implementation of our system utilizes a set of

open source technologies. Alternative implementations can be provided by replacing

one or more of these with alternatives.

In the following section, we provide related studies and our contributions.

3.4 Related Work and Our Contributions

Huge volume of log data are being collected from distributed systems that are widely

used in critical application domains. Such large-scale log data have been used for

52

program verification [53, 54], performance monitoring [55], failure analysis [56, 57],

and security audits [58, 59], as well as for detecting anomalies that occur in these

systems [2, 4, 5].

There are several studies on log parsing, which is a crucial step of log analysis.

The main challenge of this step is to interpret data that is recorded in an unstructured

text format. Xu et al. addressed this challenge by extracting templates regarding

log messages by analyzing the source code [2]. This approach leads to a high level

of accuracy; however, it requires the availability of the source code. SherLog [7] and

CSight [8] are recent log parser tools that also use static code analysis techniques. Our

log parser performs analysis on text-based system log files in production environment,

and extracts message templates using text mining techniques. Hence, it does not

require the availability of source code and yet, maintains the same accuracy level

with the existing tools.

Some other studies utilize data-driven techniques for log parsing [9, 10, 11, 12,

13, 45]. Synoptic [53], SLCT [9], IPLoM [10], LogSig [11], LKE [12] and POP [45]

do not require source code to analyze log messages. Synoptic aims to generate a

finite state machine that models runtime behavior of running system [53]. One of the

prominent log parsers is SLCT that do not utilize any machine learning algorithm in

parallel manner in a distributed environment [9]. IPLoM [10], LogSig [11], LKE [12]

and LogCluster [13] focuses on clustering log events using data mining techniques.

He et al. reviewed and evaluated state-of-the-art log-based anomaly detection tech-

niques including prominent log parsing tools such as SLCT, IPLoM, LogSig and LKE,

and anomaly detection approaches such as Logistic Regression, SVM, Log Clustering

and PCA [6]. They reimplemented Xu's PCA-based anomaly detection approach on

HDFS dataset employed in Xu's study. They showed that log parsing and anomaly

detection methods may not scale well on large-scale log dataset and as such, there

is a need for performance improvement for processing large volume of log data. We

53

address this issue in our work. We propose a distributed log analysis framework to

analyze large-scale log data for anomaly detection with parallel processing. There

are other studies that evaluated PCA. The main di↵erence among these studies is

regarding the purpose for using PCA. For instance, Chuah et al. applies PCA on a

resource usage profile to detect unusual workload patterns as anomalies. Then, sys-

tem message logs are analyzed to pinpoint event sequences that possibly cause these

anomalies [60]. We apply PCA directly on message logs for anomaly detection.

The research and development activities gained more traction in recent years, He

et al. proposed a parallel log parser, POP, to handle large-scale log data [45]. POP

has only been used for log parsing, it does not o↵er an end-to-end solution. Luo et al.

proposed a scalable and distributed approach using Hadoop MapReduce [61]. They

aim to infer software behavioral models from execution logs. We focused on detecting

anomalies from log data in a parallel and distributed manner.

Splunk 7 is a commercial log management solution. This solution requires com-

plex application-specific configurations defined in the form of regular expressions,

customized rules, metrics and thresholds for log parsing and statistical analysis. Our

framework does not require such configurations and it employs open source technolo-

gies only.

DeepLog has been proposed as an architecture for online log anomaly detection

and diagnosis using a deep neural network based approach [62]. Our framework

aims at parallel running on o✏ine (batch) data and performance improvement on

an unsupervised machine learning algorithm in a distributed environment. Spell

is an unsupervised streaming parser that parses incoming log entries in an online

fashion based on the idea of LCS (longest common subsequence) [63]. While this tool

only focuses on log parsing, our framework presents an end-to-end solution on o✏ine

(batch) data.

7
http://www.splunk.com

54

In summary, we provide the following contributions in this chapter:

• We introduce a distributed log analysis framework that provides a scalable and

end-to-end solution including both log parsing and machine learning features.

We suggest an open software platform and propose a realization of it by inte-

grating state-of-the-art tools.

• We propose a log parsing approach that can work on unstructured log data

without requiring the availability of source code. Previous approaches perform

source code analysis/instrumentation to derive the implicit structure in log data.

Our system maintains the same accuracy level with respect to these approaches.

• We evaluate our system on two datasets with increasing levels of parallelism

and demonstrate a performance improvement by orders of magnitude.

55

CHAPTER IV

ONLINE LOG ANALYSIS

In this chapter, we introduce an extension of our distributed log analysis framework,

which enables online anomaly detection. Hereby, we process the log data progres-

sively in successive time windows. As an advantage, some anomalies can be detected

earlier. As a disadvantage, the accuracy might turn out to be low at the beginning,

although one would expect that it should improve as the log data accumulates. We

conducted controlled experiments based on a benchmark dataset to evaluate the ef-

fectiveness of our approach. We repeated our experiments with various window sizes

that determine the frequency of analysis as well as the size of the data processed in

each window. Results showed that our online analysis can improve anomaly detec-

tion time significantly while keeping the accuracy level same as that is obtained with

the o✏ine approach. The only exceptional case, where the accuracy is compromised,

rarely occurs when the log data associated with a session of events does not coincide

with the boundaries of windows.

This chapter is organized as follows. The following section introduces our online

analysis approach and its impact on the overall framework. In Section 4.2, we discuss

the implementation details. In Section 4.3, we present a case study for evaluating

the approach. In particular, we compare online and o✏ine analysis with respect to

anomaly detection accuracy and average anomaly detection time. Finally, we review

the related studies in Section 4.4 and conclude the chapter.

56

4.1 The Overall Approach and the Software Architecture

We designed and built an extension of our distributed log analysis system [16] as

described in Chapter 3. While that system performs distributed analysis of large-

scale log data o✏ine, our extension enables online analysis of streaming log data. The

extension also provides an end-to-end solution involving publish-subscribe messaging,

log parsing, feature extraction, normalization and unsupervised machine learning

techniques.

The overall processes and artifacts employed by the extended system are depicted

in Figure 19. Hereby, the major di↵erence from the system that was introduced

in Chapter 3 is the addition of the publish-subscribe messaging process, which is

highlighted in the figure.

Figure 19: The overall processes and artifacts employed by the Online Unsupervised
Anomaly Detection system.

The system involves five processes in total: publish-subscribe messaging, log pars-

ing, feature extraction, normalization and machine learning. The basic processes of

the log analysis including log parsing, feature extraction, normalization and machine

learning are the same as explained for o✏ine approach in Section 3.1. The newly

addedpublish-subscribe messaging process facilitates online analysis.

In Publish-Subscribe Messaging process, the log file located in a distributed

57

file system is first accessed by a Publish-Subscribe Messaging mechanism. This mech-

anism publishes each line of log file as a “log message” to the consumers. Any log

message published to a specified topic is consumed by the subscribers (consumers) to

the topic. Each log message published by the Publish-Subscribe Messaging mecha-

nism is consumed by the Log Parser to be parsed as a log instance (“log event”). The

execution flow of the remainder processes is the same in o✏ine approach as described

in Section 3.1. However, the implementation of these processes in online mode di↵ers

from o✏ine framework.

In the following section, we introduce a concrete implementation of this online

analysis framework by integrating a set of state-of-the-practice technologies.

4.2 Implementation Details

Figure 20 depicts our online end-to-end distributed analysis architecture together with

open source technologies that are employed in its implementation. In the following,

these technologies and implementation details are explained, in the same order as

their appearance in the flow depicted in Figure 20.

Figure 20: Implementation of Online Unsupervised Anomaly Detection approach
using state-of-the-practice technologies.

• Publish-Subscribe Messaging System: This messaging system provides

58

a scalable, parallelizable, fault-tolerant and asynchronous communication be-

tween publisher and subscriber components with ordering and windowing fea-

tures on large-scale and highly frequent messages. There three main concepts in

this mechanism: Publisher/Producer, Subscriber/Consumer and Topic. Pub-

lishers/Producers generate messages and publish them to Topics. Topics are the

logical categorization of messages. Subscribers/Consumers subscribe to Top-

ics. They consume messages coming from Topics and process them for further

analysis. We selected Apache Kafka1 as the publish-subscribe messaging sys-

tem in online architecture to broadcast the stream log data without losing any

event processing through the distributed environment. Kafka acts as a bu↵er to

handle large-scale streaming log lines that will be processed by other analysis

components. We utilized two core APIs of Kafka: Producer API and Consumer

API. The Producer API provides publishing a stream of log messages into an

entity that represents category, called Topic. We used this API to publish the

log data located in the HDFS. The Consumer API enables subscribing to the

Topic and processing the stream. We used this API to consume and analyze

the streaming log data by Apache Spark.

• Log Parser: Our log parser implementation extends the log parser design

of our previously introduced Distributed Log Analysis System in Section 3.2.

It transforms streaming unstructured log messages into structured & featured

events. The tool parses each streaming log message as a log instance, also called

log event. It handles the log messages in two standard parts as the regex and the

featured message. We exploited from Apache Spark Streaming2 to process the

streaming log data from log parsing to machine learning stages in a distributed

manner.

1
https://kafka.apache.org

2
https://spark.apache.org/streaming/

59

• Feature Extractor: We constructed feature vectors using log events which

are extracted by the Log Parser. We created one and primary feature “Mes-

sage Count Vector” that pinpoints an anomalous execution flow of the system

related to individual operations [2]. We utilized the identifier and the message

type information as introduced in Section 3.2. We grouped the log messages

according to the message types and constructed a vector for each identifier.

Each dimension of the vector corresponds to a di↵erent message type, and the

value of the dimension states the number of appearances of the messages type

for this identifier. We updated the feature vector regarding to the identifier of

the current event as new log events arrive. We incremented the value in the

index for the message type of the current event by 1 in the feature vector. We

utilized Spark Streaming's Update function to update the previous state of all

the feature vectors with the new value on the continuous stream.

• Data Normalizer: We normalized the Message Count Vectors in order to im-

prove the accuracy of anomaly detection. We standardize features by removing

the mean to normalize each feature vector. The Data Normalizer uses Apache

Spark Streaming's StandardScaler. Mean is subtracted from the feature vectors

before moving on to the machine learning process.

• Anomaly Detector: We applied an unsupervised machine learning algorithm

on the normalized feature vectors. We selected K-means clustering technique

in particular to reveal natural groupings in data [64]. In fact, we previously

evaluated both PCA and K-means algorithms for this purpose [17]. We found

out that K-means clustering leads to more accurate results for uncovering the

faulty behaviors hidden in the analyzed log dataset. This algorithm3 tries to

3https : //en.wikipedia.org/wiki/K �meansclustering

60

build k clusters by grouping similar samples in the dataset. In our anomaly de-

tection approach, the algorithm is utilized to separate the normal and abnormal

feature vectors that represent the normal and anomalous behaviors recorded in

system logs, respectively.

Our anomaly detector updates the machine learning model according to the new

feature vectors that are recalculated as new data arrive. In streaming K-means

implementation of the anomaly detector, new cluster centers are computed and

clusters are dynamically estimated for each new data augmented, using the

following formulas:

ct+1 =
ct ⇤ nt ⇤ ↵ + xt ⇤mt

nt ⇤ ↵ +mt
(7)

nt+1 = nt +mt (8)

where ct is the previous center of the cluster, nt is the number of the feature

vectors that have been assigned to this cluster so far. xt is the new cluster center

of the event set in the current time window, mt is the number of the feature

vectors added to the cluster in the current time window. ↵ is the decay factor

that is used to forget/remember the past. In our experimental setup, the decay

factor is set as ↵ = 1 to use all the data from the beginning of the stream.

We utilized the previously prepared, manually labeled benchmark log dataset

to validate our results [2]. Results are compared with respect to existing labels to

calculate precision, recall and F-measure (See Equations 5 and 6). We implemented

the K-means clustering algorithm utilizing Spark Streaming MLlib that is Apache

Spark's scalable machine learning library.

In the following section, we explain the experimental setup we used for evalua-

tion. Then, we present and discuss the obtained results for addressing the research

61

questions. We also evaluate our approach using the case study as a running example.

4.3 Case Study

In this section, we present an evaluation of our approach. Hereby, we used the

HDFS benchmark log dataset, which is also utilized for the evaluation of the approach

introduced in the previous chapter. Firstly, we define our research questions in the

following. Secondly, we introduce the experimental setup and the test environment.

Later, we present the evaluation results according to the overall accuracy and the

window size. Finally, we assessed validity threats regarding our benchmark study.

4.3.1 Research Questions

We defined the following three research questions:

• RQ1: Is it possible to analyze unstructured log messages using unsupervised

anomaly detection algorithms in online mode, while parallelizing and distribut-

ing the entire analysis process?

• RQ2: Does our online system maintain the same accuracy level with o✏ine

approach, while consuming system logs on a continuous stream?

• RQ3: To what extent can our system improve the detection time of anomalies

with respect to the di↵erent window size of streaming log data?

4.3.2 Experimental Setup

4.3.2.1 Dataset

We performed our experiments with Hadoop Distributed File System (HDFS) log

dataset, which we introduced in detail in the previous chapter’s section 3.3.2.1. The

benchmark data is same with the labeled data that is used for evaluation of the o✏ine

approach.

62

We compared the results with the labeled data based on accuracy metrics in-

cluding precision, recall and F-measure. We made this comparison throughout a

continuous stream of log data, where our framework processed the data incremen-

tally as it accumulates in time. We measured the accuracy metrics for increasing size

of window. Window size implies the interval of time for how much historical data

should be collected before processing. We determined di↵erent scales of window size

that contains di↵erent number of log messages. We expanded the windows sizes to

include increasing number of log lines. We executed the system for increasing size

of window, and calculated the accuracy metrics at each step. For lower scales, we

increased the resolution in order to see the e↵ect of windows sizes at small steps.

We expanded the window size from 100 to 500000 at 10 steps. At first, we triggered

the anomaly detection process when the system collects 100 log messages. Then,

we kicked this process at the size of 500, 1000, 2000, 5000, 10000, 50000, 100000,

200000, 500000 respectively. For larger scales, we defined a specific window size that

contains half of a million log messages. The system process the data at these window

sizes, extracts feature vectors from the current amount of log messages, then detects

anomalies for the current scale, and calculates the accuracy metrics.

4.3.2.2 Test Environment

We evaluated the overall accuracy of our framework and detection time of the anoma-

lies. Firstly, we validate the accuracy of anomaly detection process of our framework.

We increased the size of the window containing streaming data to analyze whether

the system reaches the same accuracy level with the o✏ine mode. We compared our

anomaly detection results with respect to those obtained with the same dataset by

previous studies [2, 6, 17].

Secondly, we tested the detection time of the anomalies. To do this, we established

a large-scale and highly powerful test environment that can incorporate many nodes.

63

Table 11: Specification of the test environment (Sahara cluster) used for evaluating
the online log analysis framework.

Type of Node master worker
Number of Nodes 3 10
Number of vCPUs 24 24
Memory 64 GB 64 GB
Disk 160 GB 160 GB
OS Centos 7 Centos 7

Such a scale was necessary to perform “update” operations on the whole outputs of

each processes from log parsing to machine learning as new data arrives. This can be

extremely time-consuming activities on clusters at smaller scales.

The analysis on the HDFS dataset was conducted on a Sahara cluster as specified

in Table 11.

4.3.3 Results

In this section, we present the obtained results. Since our approach based on message

count vectors extracted from di↵erent scale of streaming log messages, we consider

that we can determine a vector for an identifier as anomaly if and only if it contains

at least one abnormal trace for this identifier. This allows us to utilize original labels

in online analysis as recommended in Xu's approach [65].

We detected 14.817 of 16.838 actual anomalies eventually, when the window size

reached its maximum value such that the whole data in the HDFS log dataset is

processed. We can see in Figure 21 that our framework detects a large part of the

anomalies for each window size. Even if we process the increasing size of window on a

continuous stream of log data and execute tasks in a distributed and parallel manner,

we can achieve over 97% accuracy for anomaly detection. This means that our system

maintains the accuracy of anomaly detection while parallelizing and distributing the

entire analysis process, compared to the o✏ine studies.

We further validated the accuracy of our online log parser utilizing the HDFS

64

Figure 21: Accuray of online log analysis approach according to log data (window)
size.

dataset. Our experiment showed that we can achieve the same parsing accuracy level

as the existing studies [2, 16]. Our online log parser can detect all the 29 out of 29

actual message types at the end of the stream (for the whole of log dataset) when the

selected identifier is block id.

4.3.4 Discussion

In this subsection, we discuss the obtained results and provide answers for our research

questions. To address the first research question, we introduce an end-to-end solution

for the online log analysis. Our solution works on unstructured log messages without

requiring access to the entire dataset or the source code. While Xu's online log

analysis solution [65] requires access to the source code in order to parse accurately

the log dataset, our system can detect all the message types for each log messages on

the continuous stream of free text log messages. We saw that our system can achieve

100% parsing accuracy on the benchmark HDFS dataset. Our system provides an

end-to-end online solution for unstructured log messages using unsupervised anomaly

detection algorithms while parallelizing and distributing the all analysis processes

including log parsing, feature extraction, normalization and machine learning. Hence,

65

Table 12: Accuracy of anomaly detection results of the online log analysis framework
at the end of the stream.

Precision 0.97078
Recall 0.88755
F-measure 0.92730

we can answer RQ1 positively.

We observed that our online system ultimately achieves the same accuracy level

when compared with o✏ine log analysis frameworks. The precision, recall and F-

measure values obtained with the o✏ine implementation of K-means based anomaly

detection were reported as 0.97, 0.88 and 0.92, respectively [17] for the HDFS bench-

mark dataset. Table 12 shows that these accuracy results are the same as our online

system when we reach the end of the stream of the same dataset. Therefore, we can

answer RQ2 positively; our system maintains exactly the same level of accuracy at

last while consuming system logs on a continuous stream and providing improvements

on detection time of anomalies as discussed in the following.

Our online anomaly detection approach is based on “Message Count Vector”s

(MCVs) as in Xu's online study [65]. In Xu's approach, the MCV were used to

represent a “session” instead of the entire dataset that is not possible to access all

in an online mode. Sessions were considered as a subset of an event trace that is

representing a single logical operation in the system and have predictable bound in

its duration [65]. An example for two successive sessions from the HDFS dataset is

shown in Appendix C.

In our approach, the MCVs are calculated for the specific amount of data (window

size) on the continuous stream as shown in X-axis of Figure 21. We updated the MCVs

regarding to the identifiers of the current window as new log events of the window

arrive, and recalculated the accuracy metrics according to the dynamically estimated

clusters. We determined the size of the window by expanding the last window in order

to contain more log messages starting from the initial message of stream. Therefore,

66

our MCVs represent the entire dataset at the end of the stream, unlike Xu's session

approach. We can see their accuracy results in Figure 22.

Figure 22: Accuracy of Xu's approach according to session duration.

Their precision and recall were insensitive to the time windows for a specific range

between 30 and 120 sec. Time windows that are out of this range adversely a↵ect the

accuracy metrics. When the time window is too small, sessions may be cut o↵, or

when it is too large, irrelevant sessions may be combined into the same MCV, leading

to too much noise. In our approach, we design our feature vector more similar to the

o✏ine implementation of the MCV [16], which incrementally aggregates log events

beginning from the initial message of the stream. Hence, our design of the MCV

remembers a longer history, gives lower false positive rates compared to the Xu's

online design. In fact, our approach was proposed as a future research direction by

Xu [65] but not studied until now.

Our approach shows higher precision from the beginning of the stream comparing

to the Xu's approach. We can also see that their overall precision is not perfect due

to high number of false positives in Table 13. We compared our accuracy results with

their results in Table 13 and Table 14. To do this, we calculated the approximate

amount of log messages corresponding to the relevant time window. For instance,

67

Table 13: Comparison of precision results of the online log analysis approaches.

Time window Number of log messages Xu's Precision Our Precision
(sec) (app. # of lines)

15 500 0.9570 0.9868
30 1000 0.8603 0.9793
60 2000 0.8603 0.9768
120 5000 0.8603 0.9743
240 10000 0.8644 0.9763

Table 14: Comparison of recall results of the online log analysis approaches.

Time window Number of log messages Xu's Recall Our Recall
(sec) (app. # of lines)

15 500 0.1697 0.9740
30 1000 1.0 0.9895
60 2000 1.0 0.9947
120 5000 1.0 0.9967
240 10000 0.8414 0.9979

a 15-second time window contains around 500 log messages. So, we considered the

first 500 messages in the stream for the 15-second time window. It would be right

to compare the first messages as our data window keeps an increasing number of log

messages while the stream continues.

We can detect the anomalies as those detected by Xu's study. Their recall values

are higher than ours for a specific time window. The reason is that their approach

was based on individual sessions rather than whole traces, and this causes less noisy

data sent to the anomaly detector.

We also observed that there is a decrease in the accuracy for the data windows

between 2-5.5M as shown in the Figure 21. We concluded that this is because there are

many interleaving operations across the corresponding lines of log data. These lines

include successive log messages regarding “Deleting block” operations for di↵erent

blocks as can be seen in Appendix D. The interleaving operations on di↵erent blocks

can change the MCVs for the specific data window, thus the form of clusters.

We calculated average anomaly detection time using Equation 9 to provide an

68

answer for RQ3.

tavg =

Pn
i=1 ti ⇤ xi

X
(9)

Hereby, n is the total number of windows, ti is the duration of the ith time window,

xi is the number of true anomalies that are newly detected in the ith time window, X

is the total number of true anomalies detected by the system from the beginning of

the stream. The total number of the windows n is determined for varying scales. It is

selected as increasing at small steps to see the initial e↵ect. Then, a specific window

size that contains half of a million log messages is defined for larger scales.

In this study, the total number of windows n is selected as 30. We summed up

the anomaly detection times from the first window to the 30th time window. Then,

we calculated the total anomaly detection time for the entire dataset as in the o✏ine

mode. We detected 14.817 of 16.838 actual anomalies eventually, thus our X is

14.817. This calculation indicates that the average anomaly detection time is 100.079

seconds in online mode. On the other hand, this value is 138.555 seconds for the

o✏ine mode. Here, we can see that the average anomaly detection time decreases to

100.079 seconds (approximately by 28%) in the online mode.

The processing overhead of the online mode is negligible for the HDFS dataset.

While the data collection time is 48 hours for this dataset, the whole analysis takes

4-5 minutes in our test environment.

Throughly, we can conclude for RQ3 that our system achieves a significant im-

provement in detection time and can precisely detect 97% of actual anomalies from

the very beginning of the log stream.

As our future work, we are planning to redesign our MCVs to collect log messages

by considering successive “session”s. Windows sizes can be expanded to include in-

creasing number of sessions which can contain di↵erent number of log messages. This

may prevent the interrupted operations and improve the accuracy of our approach.

69

We also plan to perform further experiments to analyze the e↵ect of window sizes at

di↵erent scales, which might a↵ect the resulting accuracy values.

4.3.5 Threats to Validity and Limitations

Our study is subject to an external validity threat [52] since it is based on a single

case study. The experiment can be replicated using more benchmark datasets to

be able to generalize the results. Internal validity threats of our study could be

threatened by the choice of the window sizes. Di↵erent size of windows might lead

to di↵erent accuracy results at each step. To eliminate any bias in this respect, we

calculated the approximate amount of log messages corresponding to the relevant

time window that has been used in a previous study [2]. Construct validity threats

are mitigated by repeating the experiment with various samples of the benchmark

dataset [2, 6, 45] that is commonly utilized in previous studies and well-known in

the research domain. The dataset was labeled by Xu et al. by consulting Hadoop

experts [2]. We implemented our system utilizing a set of open source technologies.

These external tools might be considered as a threat to the reliability. Alternative

implementations can be introduced using one or more of these with alternatives.

In the following section, we briefly explain related studies and our contributions.

4.4 Related Work and Our Contributions

There have been many empirical studies on automated log analysis. These studies

have been proposed for various application domains such as program verification [53,

54], performance monitoring [55], failure analysis [56, 57], and security audits [58, 59]

as well as anomaly detection for these application domains [2, 4, 5]. Besides, there

are many tools such as IPLoM [10], LogSig [11], LKE [12] and LogCluster [13] which

use data mining techniques for log analysis. Machine learning techniques have been

also utilized for anomaly detection based on systems logs [2, 4, 5]. The research

and development activities regarding large-scale log analysis gained a momentum in

70

recent years. It was also previously shown that the traditional implementation of

machine learning techniques may not scale well on a large-scale log dataset [6]. He

et al. proposed a parallel log parser to handle large-scale log data [45]. Luo et al.

proposed a scalable and distributed approach using Hadoop MapReduce [61]. They

aim to infer software behavioral models from execution logs. We applied unsupervised

machine learning techniques directly on large-scale system log messages for anomaly

detection and we distributed the entire analysis processes. The underlying approach

for distributed processing [16] was explained in the previous chapter.

There have been recent studies on analyzing system logs in real-time [65, 66, 67,

68, 69, 70, 71, 72, 73]. Weigert et al. worked on distributed graphs using graph-

mining techniques to detect anomalies in near real time [66]. However, we utilize

unsupervised machine learning techniques on unstructured log data. Bai et al. in-

troduced a real-time search methodology for large-scale log data based on HBase

and ElasticSearch [67]. We process the large-scale log data for anomaly detection

in real time. Juvonen et al. proposed a framework for online anomaly detection on

HTTP logs [68]. They compared the total execution time of di↵erent dimensionality

reduction techniques for anomaly-based intrusion detection. Since the datasets are

not presented, we can not replicate and compare their results with respect to ours.

He et al. proposed an online method for log analysis, but they only focused on the

log parsing process [70]. Besides, their method is based on a directed acyclic graph

model unlike our parsing approach. While Das et al. aimed at predicting node failures

for supercomputing systems [71], Robberechts et al. presented an anomaly detection

system that is specific for the DNS tra�c nature [72]. Borghesi et al. presented an

automated method for anomaly detection in HPC systems domain [73]. Unlike our

approach, they utilize neural networks, i.e., autoencoders.

Debnath et al. also presented a real-time log analysis system called LogLens [69].

They employ a log sequence based anomaly detection algorithm that discovers log

71

patterns automatically using a finite state automaton based model. We also utilized

an unsupervised machine learning technique for anomaly detection, but our technique

is based on clustering. Debnath et al. only showed sample logs from their datasets

but exact sources were not presented and accessible. Therefore, we can not replicate

and compare their accuracy results with respect to ours.

Xu et al. proposed an online approach and validated the accuracy utilizing the

HDFS dataset. Their approach uses feature vectors each of which represents a “ses-

sion”. Sessions were considered as a subset of an event trace representing a single

logical operation in a bounded time period [65]. Our approach calculates feature

vectors for the specific amount of data (window size) and updates them as new data

arrives. Hence, our design remembers a longer history, gives lower false positive rates

compared to the Xu's online approach. In fact, our contributions in this respect were

mentioned as possible future directions in Xu's study [65].

DeepLog has been proposed for online log anomaly detection exploiting a deep

neural network based approach [62]. Our approach is based on unsupervised machine

learning algorithm in a distributed environment. Spell parses streaming log data in

an online mode [63]. However, it only focuses on log parsing, and does not consider

the entire analysis processes.

In summary, we provide the following contributions in this chapter:

• We introduce an online, distributed, and unsupervised log analysis framework for

anomaly detection. To the best of our knowledge, there is no other log analysis

approach or tool that combines all these 3 features for anomaly detection in a

distributed manner, and evaluates the accuracy with those of other alternatives.

• We evaluate our approach on a prominent dataset with various window sizes and

analyze the trade-o↵ between the accuracy and the average anomaly detection

time.

72

CHAPTER V

DISTRIBUTED MACHINE LEARNING

In this chapter, we present an evaluation of two unsupervised machine learning algo-

rithms for anomaly detection on a benchmark dataset. In particular, we evaluated

PCA and K-means algorithms, of which implementations are available as part of the

Apache Spark engine. We compared the accuracy and performance of these algorithms

both with respect to each other and with respect to their centralized implementations.

To the best of our knowledge, distributed unsupervised machine learning algorithms

have not been evaluated in terms of accuracy and performance in the context of

anomaly detection before.

Results showed that the distributed versions can achieve the same accuracy and

provide a performance improvement by orders of magnitude when compared to their

centralized versions. The performance of PCA turns out to be better than K-means,

although we observed that the di↵erence between the two tends to decrease as the

degree of parallelism increases.

The chapter is organized as follows. In the following section, we describe our

approach. In Section 5.2, we explain the prototype implementation of our approach

in the context of one prominent case study and present the evaluation and results

based on the specified research questions. We review the related work in Section 5.3

and conclude the chapter.

5.1 The Overall Approach and the Software Architecture

We exploited the end-to-end distributed log analysis system introduced in Chapter

3. We rearranged the system to support three basic processes: log parsing, feature

extraction and machine learning. In the following, we explain our implementation

73

based on these processes, in the same order as the flow depicted in Figure 23.

Figure 23: The overall approach for evaluation of distributed machine learning.

• Log Parsing: This process is executed in the same flow described in Section 3.1.

Firstly, each line of log file is read from HDFS and parsed as a log instance

(event). Log events comprise of two parts, the regex and the featured message.

The featured message part contains all the textual and numeric information

about the execution of the system.

The Log Parser introduced in Section 3.2 is used as is. It stores the log dataset

in Apache HDFS, and process it distributedly via Apache Spark.

• Feature Extraction: The second process is to convert the parsed log data

(the events) to a set of numerical features in order to contribute to the anomaly

detection process. We used the identifier and the message type information

from the parsed log data to construct “Message Count Vector” that gives clue

about the execution flow of the program as described in Section 3.2. We created

a message count vector for each identifier. While each dimension of the vector

indicates a specific message type, the value of the dimension corresponds the

number of the messages type for this identifier. We also normalized the mes-

sage count vectors by removing the mean. The Feature Extractor described in

Section 3.2 is used as is.

74

• Anomaly Detection: Last process is to apply an unsupervised machine learn-

ing algorithm on the extracted feature vectors. Our system supports two un-

supervised machine learning algorithms, Principal Component Analysis (PCA)

and K-means Clustering. PCA algorithm that is utilized for filtering the dom-

inant patterns in dataset is explained in Section 3.2, while K-means clustering

algorithm that is utilized to separate the normal and abnormal feature vectors

into clusters is defined in Section 4.2.

We utilized the manually labeled data to validate our results [2]. The results

are compared with this labeled data, and precision, recall and F measure are

calculated using the formula 5 and formula 6.

In the following section, we evaluate these implementations of the system based on a

case study.

5.2 Case Study

In this section, we evaluated two implementations of our system based on a case

study. First, we defined our research questions. Secondly, we described the experi-

mental setup including used dataset and test environment. Later, we presented the

evaluation results according to the overall accuracy and running time for di↵erent

machine learning algorithms. Finally, we addressed validity threats.

5.2.1 Research Questions

Our first concern is the comparison of the overall accuracy while paralleling and dis-

tributing the two implementations of the anomaly detection process. Our second

concern is the running time of the basic three processes: log parsing, feature extrac-

tion and and especially anomaly detection process with two di↵erent unsupervised

machine learning algorithms, and also the running time of the entire analysis. Our

system is implemented to process millions of log lines. Therefore, the performance

75

and scalability of the implementations play a key role as the work load is increased.

We defined the following three research questions based on these concerns:

• RQ1: How is the accuracy level of PCA and K-means machine learning al-

gorithms for anomaly detection, while parallelizing and distributing the entire

analysis process?

• RQ2: To what extent do PCA and K-means machine learning algorithms a↵ect

the performance of the anomaly detection process under increasing load degree

of parallelization?

5.2.2 Experimental Setup

5.2.2.1 Dataset

We performed our experiments with Hadoop Distributed File System (HDFS) log

dataset, which is used and described in previous section, Section 3.3.2.1. We utilized

block id as the identifier for this dataset in same with benchmark [2].

5.2.2.2 Test Environment

We evaluated the overall accuracy and running time (scalability) of our system with

the implementations of two di↵erent machine learning algorithms. We first validate

the accuracy of anomaly detection process for both PCA and K-means clustering

algorithms with the HDFS dataset. We compared our anomaly detection results

for PCA algorithm on this dataset with respect to results obtained with the same

algorithm and dataset in [2] and in another study [6].

In particular, we tested the performance and scalability for the two aforementioned

prototype implementations each using di↵erent machine learning algorithms. For the

first implementation, we utilized PCA as machine learning algorithm. For the second,

we used K-means clustering as machine learning algorithm. We conducted controlled

experiments based on HDFS dataset. We increased the degrees of parallelism until

76

Table 15: Specification of the test environment used for distributed machine learning
evaluation.

Type of Node Master Worker
Number of Nodes 3 10
Number of vCPUs 8 4

Memory 16 GB 8 GB
Disk 80 GB 80 GB
OS Centos 7 Centos 7

the running time saturates. These analyses were conducted using a test environment

as specified in Table 15.

We established a test cluster on top of OpenStack cloud infrastructure as a Sahara

cluster1.

5.2.3 Results

In this section, we present the obtained results.

5.2.3.1 Accuracy

We validated the overall accuracy of two implementations of the system using HDFS

dataset and its labeled benchmark data. We evaluated the results with this labeled

data based on precision, recall and F-measure metrics for the implementations of two

di↵erent machine learning algorithms.

In PCA implementation of the system, we detected 11.195 of 16.838 actual anoma-

lies as shown in Table 16. The results are same with the results in Table 7 in Sec-

tion 3.3.3. Even if we feed the system with the increasing load of log data and execute

analysis tasks in a distributed and parallel manner, we can achieve over 99.8% accu-

racy for anomaly detection as seen in Table 17.

In K-means implementation of the system, we detected 14.817 of 16.838 actual

anomalies. In Table 18, we can see that our implementation detects many of the

1
https://docs.openstack.org/sahara/pike/intro/overview.html

77

Table 16: Distributed anomaly detection results of PCA implementation.

Number of detected anomalies 11.473
Number of actual anomalies 16.838
Number of true anomalies 11.195

Table 17: Accuracy of distributed anomaly detection results with PCA implementa-
tion.

Precision 0.97577
Recall 0.66487

F-measure 0.79086

anomalies in HDFS log dataset.

Table 18: Accuracy of distributed anomaly detection results with K-means imple-
mentation.

Precision 0.97078
Recall 0.88755

F-measure 0.92730

5.2.3.2 Running Time (Scalability) - Performance

In order to evaluate the performance and scalability of our system with two di↵erent

machine learning algorithms, we measured the running time of the basic processes

under increasing load (number of log lines to be processed) and by increasing paral-

lelization degree (number of threads). We executed the test procedure described in

Algorithm 2.

Hereby, we first set the input parameters which are MAXP and MAXLF repre-

senting the maximum parallelization and the maximum load factor as follows:

• L= HDFS Log Dataset

• MAXP = 10

• MAXLF = 3

78

At first, we executed the system in single-thread mode using the original HDFS log

dataset, and measured the running time of basic processes for two implementations:

log parsing, feature extraction and anomaly detection. We increased degree of paral-

lelization from 1 to 10 for two implementations when the input L is original HDFS

log dataset. Later, we copied HDFS log dataset by a factor of 2 and 3 respectively,

and executed the system for increasing degree of parallelization, from 1 to 10 again

on both PCA and K-means implementation. We executed each test three times and

considered the averages.

The size of the log dataset was increased from 1 to 3 times, while the degree of

parallelization was increased from 1 to 10 for each size of log dataset on both PCA

and K-means implementations of the system. The results of the running time (msec)

of basic processes for increasing degree of parallelization (number of threads) under

increasing work load are depicted in Figure 24, Figure 25, Figure 26.

Figure 24: Performance of the PCA and K-means implementations of the system
under original log file.

We also measured the total running time of the system with the implementations

of two di↵erent machine learning algorithms.

In the following section, we discuss the obtained results and provide answers for

our research questions.

79

Figure 25: Performance of the PCA and K-means implementations of the system
under 2x log file.

Figure 26: Performance of the PCA and K-means implementations of the system
under 3x log file.

5.2.4 Discussion

In this section, we elaborate on the two research questions based on the obtained

results:

• RQ1: We observed that the accuracy of the system with both implementations

of anomaly detection processes on di↵erent machine learning algorithms does

not change while parallelizing and distributing the entire analysis process. We

also saw that the accuracy of the system with PCA implementation is the same

on the same benchmark dataset when compared to non-distributed log analysis

frameworks [6, 2]. The anomalies detected by the system di↵ers according

to used machine learning algorithm on the same benchmark dataset. In PCA

80

Figure 27: Total performance of the PCA and K-means implementations of the system
under original log file.

implementation of the system, we detected the majority of the anomalies located

in HDFS log dataset. Even if we feed the system with the increasing load of

log data and execute the tasks by increasing degree of parallelization, we can

achieve over 97% accuracy for anomaly detection. In K-means implementation

of the system, we also detected many of the anomalies in HDFS log dataset.

The system can precisely detect 97% of actual anomalies.

• RQ2: Experiment results showed that the both implementations of the system

achieves minimum 30% improvement in running time, as the degree of paral-

lelization (number of threads) increases from 1 to 10. As Figure 12 presents the

results for the both PCA and K-means implementations of the system on the

original HDFS log dataset;

– The running time of the Log Parsing process is about 165 seconds with a

single thread, while it decreases by 80% to 35 seconds when the number

of threads increases to 10.

– Similarly, the running time of the PCA execution process is 195 seconds

with a single thread, when the number of threads goes up to 10, it decreases

by 73% to app. 55 seconds.

– Comparably, the running time of the K-means execution process is 115

81

seconds with a single thread, when the number of threads goes up to 10,

it decreases by 53% to app. 55 seconds.

As Figure 14 depicts the results for the both PCA and K-means implementations

of the system on the HDFS log data that is replicated 3 times;

– The running time of the Log Parsing process is about 455 seconds with a

single thread, while it decreases by 85% to 65 seconds when the number

of threads increases to 10.

– The running time of the PCA execution process is 155 seconds with a

single thread, when the number of threads goes up to 10, it decreases by

75% to app. 40 seconds.

– Comparably, the running time of the K-means execution process is 470

seconds with a single thread, when the number of threads goes up to 10,

it decreases by 80% to app. 85 seconds.

As Figure 27 depicts the results of the entire analysis processes for both PCA

and K-means implementations of the system on the original HDFS log data;

– The total running time of the entire analysis process with PCA implemen-

tation of the system is 400 seconds with a single thread, when the number

of threads goes up to 10, it decreases by 75% to app. 100 seconds.

– Comparably, the total running time of the entire analysis process with K-

means implementation of the system is 300 seconds with a single thread,

when the number of threads goes up to 10, it decreases by 75% to app. 80

seconds.

We should note that the average running times spent in the Log Parsing and

K-means processes has the maximum value except the experiment with orig-

inal load in Figure 12. This is because, the increasing number of log events

82

directly a↵ects raw load that log parser and K-means anomaly detector should

handle. The running time of the K-means anomaly detection process increases

as the number of log event increases when compared to PCA implementation

of the system. Since the PCA anomaly detector process runs on preprocessed

data, its running time is less a↵ected by the increasing load. While the data

to be processed in the log parsing and K-means anomaly detection processes

is increasing in size by replication, the matrix that PCA machine learning al-

gorithm should handle continues with the same dimensions. The total number

of block � ids and message types do not change as the number of log events

increases by replication.

Results showed that the performance (running time under increasing load) im-

proves by an average 75% up to a certain degree of parallelization for each

process under all work loads. The running time of all processes saturates at

4-degree of parallelization. Therefore, we concluded that the system performs

and scales well up to 4-threads under increasing load.

5.2.5 Threats to Validity and Limitations

In this section, we discuss possible validity threats [52] for our experimentations.

Our evaluation is subject to external validity threats since a single labeled dataset is

utilized for benchmarking. More benchmark datasets, preferably on labeled datasets

obtained from industrial systems, can be conducted in order to address concerns

regarding the generalisability of the study.

To mitigate construct validity threats, the experiment has been performed with

benchmark dataset [2, 6] that is commonly used and well-known in this research

domain. The labeling was done by Xu et al. by consulting local Hadoop experts [2].

We use a set of external tools, which might be considered as a threat to the

reliability of our studies. The current implementations of the system exploit a set of

83

open source technologies. Alternative implementations can be built with one or more

of alternatives.

5.3 Related Work and Our Contributions

Automated analysis of large-scale log data have been studied for various purposes such

as program verification [53, 54], performance monitoring [55], failure analysis [56, 57],

and security audits [58, 59]. There are many tools such as IPLoM [10], LogSig [11],

LKE [12] and LogCluster [13] that use data mining techniques for clustering log

events. It was also previously shown that machine learning techniques can be utilized

for anomaly detection based on console logs of systems [2, 4, 5]. He et al. reviewed and

evaluated several such techniques including Logistic Regression, SVM, Log Clustering

and PCA [6]. They also reimplemented the PCA-based anomaly detection approach

proposed by Xu et al. [2]. They showed that the traditional implementation of these

techniques may not scale well on a large-scale log dataset. We aim at addressing this

issue in our work. We apply PCA and K-means directly on message logs for anomaly

detection and we distribute the entire processes.

The research and development activities regarding distributed approaches gained

more traction in recent years. In particular, Luo et al. proposed a scalable and

distributed approach using Hadoop MapReduce [61]. They aim to infer software

behavioral models from execution logs. We focused on detecting anomalies from log

data in a parallel and distributed manner.

Splunk 2 is a commercial log management tool. This tool also supports anomaly

detection and provides a toolkit for using machine learning models. In our case

study, we used open source technologies only. In particular, we used Apache Spark3

to perform our tests.

DeepLog has been proposed as an architecture for online log anomaly detection

2
http://www.splunk.com

3
https://spark.apache.org/

84

and diagnosis using a deep neural network based approach [62]. They employ super-

vised learning techniques, while we focused on unsupervised learning techniques in

this study.

In summary, we provide the following contributions in this chapter:

• We introduce two realizations of a distributed log analysis system with two dif-

ferent machine learning algorithms for anomaly detection process by integrating

open-source and state-of-the-art tools.

• We evaluate two implementations on a benchmark data set with increasing

levels of parallelism and demonstrate a performance improvement by orders of

magnitude.

85

CHAPTER VI

CONCLUSIONS

In this dissertation, we introduced methods and tools for scalable analysis of large-

scale system logs for anomaly detection. In particular, we focused on end-to-end

distributed analysis of unstructured log messages by employing unsupervised ma-

chine learning algorithms in both online and o✏ine modes. We aimed at addressing

the following three issue in this context to leverage scalability: i) existing anomaly

detection techniques do not employ parallel and distributed processing for parsing un-

structured log data. ii) log data is processed mainly as batch in o✏ine mode rather

than as stream in online mode. iii) existing studies employ centralized implementa-

tions of machine learning algorithms.

To address the first issue, we presented a framework for distributed analysis of

large-scale system logs for anomaly detection. We also introduced an implementation

of the proposed framework to demonstrate its generic properties and applicability.

To the best of our knowledge, our framework is the first end-to-end approach that

is designed for parallel and distributed analysis of large-scale log data with machine

learning techniques. We observed that anomaly detection accuracy is the same when

results of our framework is compared with those obtained with a non-distributed

version based on a benchmark dataset. We also observed that log parsing accuracy

of our framework on unstructured log data is the same as tools that make use of

the source code to interpret the log data. In addition, our framework improves the

overall performance by more than 30% on average as the system scales by increasing

the degree of parallelization.

To address the second issue, we introduced an extension of our framework that

86

enables online anomaly detection. While the original framework processes all the

accumulated log data o✏ine, our extension makes it able to process log messages

progressively in successive time windows. Hence , the extended framework facilitates

online, distributed, and unsupervised log analysis. To the best of our knowledge,

there is no other log analysis approach or tool that combines all these three features

for anomaly detection and evaluates the accuracy of this combination with respect

to other alternatives. We observed that our online approach ultimately achieves

the same accuracy level in detecting anomalies when compared with o✏ine analysis.

The accuracy of the framework is hampered rarely throught the process, only when

window boundaries cross-cut sessions of events. On the other hand, results showed

that our approach achieves a significant improvement in anomaly detection time and

can precisely detect the majority of anomalies earlier.

To address the third issue, we introduced distributed implementations of two

unsupervised machine learning algorithms as part of our framework. In particular, we

used PCA and K-means algorithms and evaluated their distributed implementations

in terms of accuracy and performance. Results showed that the distributed versions

can achieve the same accuracy with respect to those obtained with their centralized

versions. On the other hand, we observed that running time under increasing load

improves by 75% on average up to a certain degree of parallelization under all work

loads. Runtime performance varies among the machine learning algorithms although

this variation tends to decrease as the degree of parallelism increases.

As future work, we plan to redesign our feature vector to collect log messages

based on starting and ending times of successive sessions to further improve the

accuracy of online log analysis. In this session-based approach, window boundaries

can be adapted automatically to include log data regarding a number of sessions in

a sequence. This would prevent cross-cutting window boundaries on a sequence of

sessions and improve the overall accuracy. Another future direction is to experiment

87

with various parallelized implementations of alternative machine learning techniques

other than PCA and K-means for both o✏ine and online modes of our framework.

Also, further experiments can be conducted if alternative large-scale log datasets

become available together with labels for anomalies.

88

APPENDIX A

SAMPLE LOG DATA

Listing A.1 presents 20 sample log lines from the HDFS dataset. The first part of each

of these log lines indicates the date of the corresponding log message. For instance,

“081109” represents the date of November 09, 2008, which is the same for all the log

lines listed here. This part is followed by information regarding the time of the day.

For example, the times of the log messages listed here vary between 20:35:20 and

20:35:21.

1 081109 203520 142 INFO df s . DataNode$DataXceiver : Rece iv ing block

blk 7503483334202473044 s r c : /10 . 251 . 215 . 16 : 55695 dest :

/10 . 251 . 215 . 16 : 50010

081109 203520 145 INFO df s . DataNode$DataXceiver : Rece iv ing block

blk 7503483334202473044 s r c : /10 . 250 . 19 . 102 : 34232 dest :

/10 . 250 . 19 . 102 : 50010

3 081109 203520 26 INFO df s . FSNamesystem : BLOCK∗ NameSystem . a l l o c a t eB l o ck :

/mnt/hadoop/mapred/ system/ job 200811092030 0001 / job . s p l i t .

b lk 7503483334202473044

081109 203521 143 INFO df s . DataNode$DataXceiver : Received block blk

�1608999687919862906 s r c : /10 . 251 . 215 . 16 : 52002 dest :

/10 . 251 . 215 . 16 : 50010 o f s i z e 91178

5 081109 203521 143 INFO df s . DataNode$DataXceiver : Rece iv ing block blk

�1608999687919862906 s r c : /10 . 251 . 215 . 16 : 52002 dest :

/10 . 251 . 215 . 16 : 50010

081109 203521 144 INFO df s . DataNode$DataXceiver : Rece iv ing block

blk 7503483334202473044 s r c : /10 . 251 . 71 . 16 : 51590 dest :

/ 10 . 251 . 71 . 16 : 50010

89

7 081109 203521 145 INFO df s . DataNode$DataXceiver : Rece iv ing block blk

�3544583377289625738 s r c : /10 . 250 . 19 . 102 : 39325 dest :

/10 . 250 . 19 . 102 : 50010

081109 203521 145 INFO df s . DataNode$PacketResponder : PacketResponder 1

f o r b lock blk 7503483334202473044 terminat ing

9 081109 203521 145 INFO df s . DataNode$PacketResponder : Received block

blk 7503483334202473044 o f s i z e 233217 from /10 . 251 . 215 . 16

081109 203521 146 INFO df s . DataNode$PacketResponder : PacketResponder 0

f o r b lock blk 7503483334202473044 terminat ing

11 081109 203521 146 INFO df s . DataNode$PacketResponder : Received block

blk 7503483334202473044 o f s i z e 233217 from /10 . 251 . 71 . 1 6

081109 203521 147 INFO df s . DataNode$DataTransfer : 1 0 . 2 5 0 . 1 4 . 2 2 4 : 5 0 0 10 :

Transmitted block blk �1608999687919862906 to /10 . 251 . 215 . 16 : 50010

13 081109 203521 147 INFO df s . DataNode$DataXceiver : Received block blk

�1608999687919862906 s r c : /10 . 250 . 14 . 224 : 35754 dest :

/10 . 250 . 14 . 224 : 50010 o f s i z e 91178

081109 203521 147 INFO df s . DataNode$DataXceiver : Rece iv ing block blk

�1608999687919862906 s r c : /10 . 250 . 14 . 224 : 35754 dest :

/10 . 250 . 14 . 224 : 50010

15 081109 203521 148 INFO df s . DataNode$PacketResponder : PacketResponder 2

f o r b lock blk 7503483334202473044 terminat ing

081109 203521 148 INFO df s . DataNode$PacketResponder : Received block

blk 7503483334202473044 o f s i z e 233217 from /10 . 250 . 19 . 102

17 081109 203521 19 INFO df s . DataNode : 10 . 250 . 14 . 224 : 50010 S ta r t i ng thread

to t r a n s f e r b lock blk �1608999687919862906 to 10 . 2 51 . 215 . 1 6 : 5 0010 ,

10 . 251 . 71 . 193 : 50010

081109 203521 19 INFO df s . FSNamesystem : BLOCK∗ ask 10 . 250 . 14 . 224 : 50010

to r e p l i c a t e blk �1608999687919862906 to datanode (s)

10 . 251 . 215 . 16 : 50010 10 . 251 . 71 . 193 : 50010

19 081109 203521 27 INFO df s . FSNamesystem : BLOCK∗ NameSystem . addStoredBlock

: blockMap updated : 10 . 251 . 106 . 10 : 50010 i s added to

blk 7503483334202473044 s i z e 233217

90

081109 203521 29 INFO df s . FSNamesystem : BLOCK∗ NameSystem . a l l o c a t eB l o ck :

/mnt/hadoop/mapred/ system/ job 200811092030 0001 / job . xml . b lk

�3544583377289625738

Listing A.1: 20 sample log lines from the HDFS dataset.

91

APPENDIX B

ANOMALY IN LOG DATA

Listing B.1 presents an example list of log messages that are associated with nor-

mal system behavior. BlockId of 3974948352784823938 In this example, the block

with the ID blk3974948352784823938 is sent from the server to the clients (DataN-

ode, DFSClient). The remaining operations that are looged are about sending and

receiving packets at DataNodes. There is a DataXceiver thread accompanying Pack-

etResponder for the block, which holds the socket for communication at the server

side. Skeptically, we can see several log messages in the form “Got Exception while

serving” as part of this example snippet of log data. This exception was reported on

Apache Issue Tracking System (JIRA) with ID HADOOP � 3678, and stated as a

normal behavior of HDFS by the experts. DataNode generates this exception when

the block is not yet finished and so, it is not available to the readers. Traditional

grep-based log analysis methods can flag these messages as errors. Our approach

avoids such false positives.

081109 203531 144 INFO df s . DataNode$DataXceiver : Rece iv ing block

blk 3974948352784823938 s r c : /10 . 251 . 125 . 193 : 54957 dest :

/10 . 251 . 125 . 193 : 50010

2 081109 203531 146 INFO df s . DataNode$DataXceiver : Rece iv ing block

blk 3974948352784823938 s r c : /10 . 251 . 125 . 193 : 39521 dest :

/10 . 251 . 125 . 193 : 50010

081109 203531 26 INFO df s . FSNamesystem : BLOCK∗ NameSystem . a l l o c a t eB l o ck :

/ user / root / rand/ temporary / task 200811092030 0001 m 000112 0 /part

�00112. blk 3974948352784823938

92

4 081109 203534 152 INFO df s . DataNode$DataXceiver : Rece iv ing block

blk 3974948352784823938 s r c : /10 . 251 . 91 . 32 : 52452 dest :

/ 10 . 251 . 91 . 32 : 50010

081109 203634 149 INFO df s . DataNode$PacketResponder : PacketResponder 1

f o r b lock blk 3974948352784823938 terminat ing

6 081109 203634 149 INFO df s . DataNode$PacketResponder : Received block

blk 3974948352784823938 o f s i z e 67108864 from /10 . 251 . 125 . 193

081109 203634 152 INFO df s . DataNode$PacketResponder : PacketResponder 2

f o r b lock blk 3974948352784823938 terminat ing

8 081109 203634 152 INFO df s . DataNode$PacketResponder : Received block

blk 3974948352784823938 o f s i z e 67108864 from /10 . 251 . 125 . 193

081109 203634 155 INFO df s . DataNode$PacketResponder : PacketResponder 0

f o r b lock blk 3974948352784823938 terminat ing

10 081109 203634 155 INFO df s . DataNode$PacketResponder : Received block

blk 3974948352784823938 o f s i z e 67108864 from /10 . 251 . 91 . 3 2

081109 203634 26 INFO df s . FSNamesystem : BLOCK∗ NameSystem . addStoredBlock

: blockMap updated : 1 0 . 2 51 . 9 1 . 3 2 : 5 0010 i s added to

blk 3974948352784823938 s i z e 67108864

12 081109 203634 31 INFO df s . FSNamesystem : BLOCK∗ NameSystem . addStoredBlock

: blockMap updated : 1 0 . 2 50 . 5 . 2 37 : 5 0010 i s added to

blk 3974948352784823938 s i z e 67108864

081109 203635 26 INFO df s . FSNamesystem : BLOCK∗ NameSystem . addStoredBlock

: blockMap updated : 10 . 251 . 125 . 193 : 50010 i s added to

blk 3974948352784823938 s i z e 67108864

14 081109 203931 13 INFO df s . DataBlockScanner : V e r i f i c a t i o n succeeded f o r

blk 3974948352784823938

081109 205436 13 INFO df s . DataBlockScanner : V e r i f i c a t i o n succeeded f o r

blk 3974948352784823938

16 081109 213714 13 INFO df s . DataBlockScanner : V e r i f i c a t i o n succeeded f o r

blk 3974948352784823938

93

081109 214003 2527 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 2 5 . 1 93 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 3974948352784823938 to

/ 1 0 . 2 5 1 . 3 9 . 2 0 9 :

18 081109 214331 2638 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 2 5 . 1 93 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 3974948352784823938 to

/10 . 2 5 1 . 1 9 9 . 2 2 5 :

081109 214336 2704 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 0 . 5 . 2 3 7 : 5 0 0 1 0 : Got

except ion whi l e s e rv i ng blk 3974948352784823938 to / 1 0 . 2 5 1 . 7 3 . 2 2 0 :

20 081109 214340 2603 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 9 1 . 3 2 : 5 0 0 1 0 : Got

except ion whi l e s e rv i ng blk 3974948352784823938 to / 1 0 . 2 5 1 . 6 6 . 1 9 2 :

081109 214347 2653 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 2 5 . 1 93 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 3974948352784823938 to

/ 1 0 . 2 5 1 . 2 9 . 2 3 9 :

22 081109 214354 2613 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 9 1 . 3 2 : 5 0 0 1 0 : Got

except ion whi l e s e rv i ng blk 3974948352784823938 to /10 . 2 5 1 . 1 0 9 . 2 3 6 :

081109 214401 2720 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 0 . 5 . 2 3 7 : 5 0 0 1 0 : Got

except ion whi l e s e rv i ng blk 3974948352784823938 to / 1 0 . 2 5 1 . 3 8 . 5 3 :

24 081109 214405 2723 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 0 . 5 . 2 3 7 : 5 0 0 1 0 : Got

except ion whi l e s e rv i ng blk 3974948352784823938 to /10 . 2 5 1 . 2 1 4 . 1 1 2 :

081109 214407 2620 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 9 1 . 3 2 : 5 0 0 1 0 : Got

except ion whi l e s e rv i ng blk 3974948352784823938 to / 1 0 . 2 5 1 . 3 9 . 2 4 2 :

26 081109 214408 2669 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 2 5 . 1 93 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 3974948352784823938 to

/ 1 0 . 2 5 1 . 9 1 . 2 2 9 :

081109 214411 2728 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 0 . 5 . 2 3 7 : 5 0 0 1 0 : Got

except ion whi l e s e rv i ng blk 3974948352784823938 to / 1 0 . 2 5 0 . 5 . 2 3 7 :

28 081109 214414 2625 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 9 1 . 3 2 : 5 0 0 1 0 : Got

except ion whi l e s e rv i ng blk 3974948352784823938 to /10 . 2 5 1 . 1 2 5 . 2 3 7 :

081109 214416 2673 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 2 5 . 1 93 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 3974948352784823938 to

/10 . 2 5 1 . 1 2 5 . 1 9 3 :

94

30 081109 214417 2660 INFO df s . DataNode$DataXceiver : 10 . 251 . 125 . 193 : 50010

Served block blk 3974948352784823938 to /10 . 251 . 125 . 193

081109 214438 2686 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 2 5 . 1 93 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 3974948352784823938 to / 1 0 . 2 5 1 . 2 6 . 8 :

32 081109 214441 2690 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 2 5 . 1 93 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 3974948352784823938 to

/ 1 0 . 2 5 1 . 7 5 . 1 6 3 :

081110 103055 30 INFO df s . FSNamesystem : BLOCK∗ NameSystem . d e l e t e :

blk 3974948352784823938 i s added to i n v a l i d S e t o f 1 0 . 2 50 . 5 . 2 37 : 5 0010

34 081110 103055 30 INFO df s . FSNamesystem : BLOCK∗ NameSystem . d e l e t e :

blk 3974948352784823938 i s added to i n v a l i d S e t o f

10 . 251 . 125 . 193 : 50010

081110 103055 30 INFO df s . FSNamesystem : BLOCK∗ NameSystem . d e l e t e :

blk 3974948352784823938 i s added to i n v a l i d S e t o f 1 0 . 2 51 . 91 . 3 2 : 5 0010

36 081110 103627 19 INFO df s . FSDataset : De l e t ing block

blk 3974948352784823938 f i l e /mnt/hadoop/ d f s /data/ cur rent /

blk 3974948352784823938

081110 103654 18 INFO df s . FSDataset : De l e t ing block

blk 3974948352784823938 f i l e /mnt/hadoop/ d f s /data/ cur rent /

blk 3974948352784823938

38 081110 104235 19 INFO df s . FSDataset : De l e t ing block

blk 3974948352784823938 f i l e /mnt/hadoop/ d f s /data/ cur rent /

blk 3974948352784823938

Listing B.1: A sample list of log messages associated with normal system behavior.

95

Listing B.2 shows another example list of log messages from the HDFS dataset.

This time, log messages indicate an actual anomalous behavior of the system. In this

example, the block with the ID blk872694497849122755 is stored in BlockMap. After

a number of operations, NameNode receives a “addStoredBlock message”, specifying

that this block does not belong to a file. Log messages at lines 38 and 39 are regarding

redundant “addStoredBlock” operations performed while deleting blocks.

081109 203536 160 INFO df s . DataNode$DataXceiver : Rece iv ing block

blk 872694497849122755 s r c : /10 . 251 . 106 . 10 : 34395 dest :

/10 . 251 . 106 . 10 : 50010

2 081109 203536 29 INFO df s . FSNamesystem : BLOCK∗ NameSystem . a l l o c a t eB l o ck :

/ user / root / rand/ temporary / task 200811092030 0001 m 000191 0 /part

�00191. blk 872694497849122755

081109 203537 153 INFO df s . DataNode$DataXceiver : Rece iv ing block

blk 872694497849122755 s r c : /10 . 251 . 203 . 149 : 48351 dest :

/10 . 251 . 203 . 149 : 50010

4 081109 203537 154 INFO df s . DataNode$DataXceiver : Rece iv ing block

blk 872694497849122755 s r c : /10 . 251 . 106 . 10 : 36242 dest :

/10 . 251 . 106 . 10 : 50010

081109 203629 154 INFO df s . DataNode$PacketResponder : PacketResponder 0

f o r b lock blk 872694497849122755 terminat ing

6 081109 203629 154 INFO df s . DataNode$PacketResponder : Received block

blk 872694497849122755 o f s i z e 67108864 from /10 . 251 . 203 . 149

081109 203629 155 INFO df s . DataNode$PacketResponder : PacketResponder 1

f o r b lock blk 872694497849122755 terminat ing

8 081109 203629 155 INFO df s . DataNode$PacketResponder : Received block

blk 872694497849122755 o f s i z e 67108864 from /10 . 251 . 106 . 10

081109 203629 163 INFO df s . DataNode$PacketResponder : PacketResponder 2

f o r b lock blk 872694497849122755 terminat ing

10 081109 203629 163 INFO df s . DataNode$PacketResponder : Received block

blk 872694497849122755 o f s i z e 67108864 from /10 . 251 . 106 . 10

96

081109 203629 27 INFO df s . FSNamesystem : BLOCK∗ NameSystem . addStoredBlock

: blockMap updated : 10 . 251 . 203 . 149 : 50010 i s added to

blk 872694497849122755 s i z e 67108864

12 081109 203629 32 INFO df s . FSNamesystem : BLOCK∗ NameSystem . addStoredBlock

: blockMap updated : 10 . 251 . 106 . 10 : 50010 i s added to

blk 872694497849122755 s i z e 67108864

081109 203629 33 INFO df s . FSNamesystem : BLOCK∗ NameSystem . addStoredBlock

: blockMap updated : 1 0 . 2 50 . 7 . 2 30 : 5 0010 i s added to

blk 872694497849122755 s i z e 67108864

14 081109 204029 13 INFO df s . DataBlockScanner : V e r i f i c a t i o n succeeded f o r

blk 872694497849122755

081109 204725 13 INFO df s . DataBlockScanner : V e r i f i c a t i o n succeeded f o r

blk 872694497849122755

16 081109 210518 13 INFO df s . DataBlockScanner : V e r i f i c a t i o n succeeded f o r

blk 872694497849122755

081109 214017 2436 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 0 6 . 1 0 : 5 0 0 10 :

Got except ion whi l e s e rv i ng blk 872694497849122755 to

/ 1 0 . 2 5 1 . 1 0 6 . 1 0 :

18 081109 214542 2724 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 0 . 7 . 2 3 0 : 5 0 0 1 0 : Got

except ion whi l e s e rv i ng blk 872694497849122755 to / 1 0 . 2 5 1 . 1 1 0 . 6 8 :

081109 214552 2566 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 0 6 . 1 0 : 5 0 0 10 :

Got except ion whi l e s e rv i ng blk 872694497849122755 to

/ 1 0 . 2 5 1 . 7 4 . 2 2 7 :

20 081109 214614 2733 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 0 . 7 . 2 3 0 : 5 0 0 1 0 : Got

except ion whi l e s e rv i ng blk 872694497849122755 to /10 . 2 5 1 . 1 9 4 . 2 4 5 :

081109 214614 2734 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 0 . 7 . 2 3 0 : 5 0 0 1 0 : Got

except ion whi l e s e rv i ng blk 872694497849122755 to / 1 0 . 2 5 1 . 1 2 3 . 3 3 :

22 081109 214615 2581 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 0 6 . 1 0 : 5 0 0 10 :

Got except ion whi l e s e rv i ng blk 872694497849122755 to

/ 1 0 . 2 5 1 . 1 1 1 . 8 0 :

081109 214615 2829 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 2 0 3 . 1 49 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 872694497849122755 to / 1 0 . 2 5 1 . 2 6 . 8 :

97

24 081109 214620 2584 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 0 6 . 1 0 : 5 0 0 10 :

Got except ion whi l e s e rv i ng blk 872694497849122755 to

/ 1 0 . 2 5 1 . 9 1 . 2 2 9 :

081109 214622 2587 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 0 6 . 1 0 : 5 0 0 10 :

Got except ion whi l e s e rv i ng blk 872694497849122755 to

/ 1 0 . 2 5 1 . 1 0 6 . 1 0 :

26 081109 214623 2833 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 2 0 3 . 1 49 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 872694497849122755 to

/ 1 0 . 2 5 1 . 7 1 . 1 4 6 :

081109 214624 2739 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 0 . 7 . 2 3 0 : 5 0 0 1 0 : Got

except ion whi l e s e rv i ng blk 872694497849122755 to / 1 0 . 2 5 1 . 3 1 . 5 :

28 081109 214625 2835 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 2 0 3 . 1 49 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 872694497849122755 to / 1 0 . 2 5 0 . 1 4 . 3 8 :

081109 214629 2832 INFO df s . DataNode$DataXceiver : 10 . 251 . 203 . 149 : 50010

Served block blk 872694497849122755 to /10 . 251 . 203 . 149

30 081109 214635 2597 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 0 6 . 1 0 : 5 0 0 10 :

Got except ion whi l e s e rv i ng blk 872694497849122755 to

/10 . 2 5 1 . 1 2 1 . 2 2 4 :

081109 214636 2839 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 2 0 3 . 1 49 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 872694497849122755 to

/ 1 0 . 2 5 1 . 6 5 . 2 0 3 :

32 081109 214702 2619 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 0 6 . 1 0 : 5 0 0 10 :

Got except ion whi l e s e rv i ng blk 872694497849122755 to

/ 1 0 . 2 5 1 . 1 0 6 . 1 0 :

081110 103056 30 INFO df s . FSNamesystem : BLOCK∗ NameSystem . d e l e t e :

blk 872694497849122755 i s added to i n v a l i d S e t o f 10 . 2 50 . 7 . 2 30 : 5 0010

34 081110 103056 30 INFO df s . FSNamesystem : BLOCK∗ NameSystem . d e l e t e :

blk 872694497849122755 i s added to i n v a l i d S e t o f 10 . 251 . 106 . 10 : 50010

081110 103056 30 INFO df s . FSNamesystem : BLOCK∗ NameSystem . d e l e t e :

blk 872694497849122755 i s added to i n v a l i d S e t o f

10 . 251 . 203 . 149 : 50010

98

36 081110 103524 19 INFO df s . FSDataset : De l e t ing block

blk 872694497849122755 f i l e /mnt/hadoop/ d f s /data/ cur rent /

blk 872694497849122755

081110 103619 19 INFO df s . FSDataset : De l e t ing block

blk 872694497849122755 f i l e /mnt/hadoop/ d f s /data/ cur rent /

blk 872694497849122755

38 081110 104629 27 INFO df s . FSNamesystem : BLOCK∗ NameSystem . addStoredBlock

: addStoredBlock reque s t r e c e i v ed f o r blk 872694497849122755 on

10 . 251 . 106 . 10 : 50010 s i z e 67108864 But i t does not belong to any f i l e

.

081110 104629 27 INFO df s . FSNamesystem : BLOCK∗ NameSystem . addStoredBlock

: blockMap updated : 10 . 251 . 106 . 10 : 50010 i s added to

blk 872694497849122755 s i z e 67108864

40 081110 105225 19 INFO df s . FSDataset : De l e t ing block

blk 872694497849122755 f i l e /mnt/hadoop/ d f s /data/ cur rent /

blk 872694497849122755

Listing B.2: A sample list of log messages associated with anomalous system behavior

for the BlockId of 872694497849122755.

99

Listing B.3 shows another example list of log messages that represents anomalous

behavior. The log message at line 38 indicates the occurence of an exception while

deleting a block. Hereby, the NameNode asks all the three DataNodes to delete a block

upon a delete request. However, a delete request is received before the NameNode

updates itself. As a result, a DataNode gets the delete request twice. The system

tries to delete a block that no longer exists at the DataNode. Subsequently, the

second request for this DataNode fails as indicated by the content of the log message:

“BlockInfo not found in volumeMap”. This problem takes place when the NameNode

is not updated timely after deleting the block.

081109 203532 147 INFO df s . DataNode$DataXceiver : Rece iv ing block

blk 7956543127401791181 s r c : /10 . 251 . 203 . 246 : 34121 dest :

/10 . 251 . 203 . 246 : 50010

2 081109 203532 147 INFO df s . DataNode$DataXceiver : Rece iv ing block

blk 7956543127401791181 s r c : /10 . 251 . 203 . 246 : 51209 dest :

/10 . 251 . 203 . 246 : 50010

081109 203532 35 INFO df s . FSNamesystem : BLOCK∗ NameSystem . a l l o c a t eB l o ck :

/ user / root / rand/ temporary / task 200811092030 0001 m 000017 0 /part

�00017. blk 7956543127401791181

4 081109 203534 166 INFO df s . DataNode$DataXceiver : Rece iv ing block

blk 7956543127401791181 s r c : /10 . 251 . 195 . 70 : 54371 dest :

/10 . 251 . 195 . 70 : 50010

081109 203623 152 INFO df s . DataNode$PacketResponder : Received block

blk 7956543127401791181 o f s i z e 67108864 from /10 . 251 . 203 . 246

6 081109 203623 170 INFO df s . DataNode$PacketResponder : PacketResponder 0

f o r b lock blk 7956543127401791181 terminat ing

081109 203623 170 INFO df s . DataNode$PacketResponder : Received block

blk 7956543127401791181 o f s i z e 67108864 from /10 . 251 . 195 . 70

8 081109 203623 29 INFO df s . FSNamesystem : BLOCK∗ NameSystem . addStoredBlock

: blockMap updated : 10 . 251 . 111 . 209 : 50010 i s added to

blk 7956543127401791181 s i z e 67108864

100

081109 203623 33 INFO df s . FSNamesystem : BLOCK∗ NameSystem . addStoredBlock

: blockMap updated : 10 . 251 . 195 . 70 : 50010 i s added to

blk 7956543127401791181 s i z e 67108864

10 081109 203624 151 INFO df s . DataNode$PacketResponder : PacketResponder 2

f o r b lock blk 7956543127401791181 terminat ing

081109 203624 151 INFO df s . DataNode$PacketResponder : Received block

blk 7956543127401791181 o f s i z e 67108864 from /10 . 251 . 203 . 246

12 081109 203624 152 INFO df s . DataNode$PacketResponder : PacketResponder 1

f o r b lock blk 7956543127401791181 terminat ing

081109 203624 30 INFO df s . FSNamesystem : BLOCK∗ NameSystem . addStoredBlock

: blockMap updated : 10 . 251 . 203 . 246 : 50010 i s added to

blk 7956543127401791181 s i z e 67108864

14 081109 204319 13 INFO df s . DataBlockScanner : V e r i f i c a t i o n succeeded f o r

blk 7956543127401791181

081109 204953 13 INFO df s . DataBlockScanner : V e r i f i c a t i o n succeeded f o r

blk 7956543127401791181

16 081109 204959 13 INFO df s . DataBlockScanner : V e r i f i c a t i o n succeeded f o r

blk 7956543127401791181

081109 213949 2631 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 9 5 . 7 0 : 5 0 0 10 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/ 1 0 . 2 5 1 . 1 9 5 . 7 0 :

18 081109 214046 2659 INFO df s . DataNode$DataXceiver : 1 0 . 251 . 195 . 70 : 50010

Served block blk 7956543127401791181 to /10 . 251 . 195 . 70

081109 214128 2669 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 9 5 . 7 0 : 5 0 0 10 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/ 1 0 . 2 5 1 . 1 9 5 . 7 0 :

20 081109 214129 2600 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 2 0 3 . 2 46 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/10 . 2 5 1 . 1 9 9 . 1 5 0 :

081109 214129 2667 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 1 1 . 2 09 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/ 1 0 . 2 5 1 . 1 2 3 . 2 0 :

101

22 081109 214131 2668 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 1 1 . 2 09 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/ 1 0 . 2 5 1 . 2 0 3 . 8 0 :

081109 214133 2602 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 2 0 3 . 2 46 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/ 1 0 . 2 5 1 . 3 8 . 2 1 4 :

24 081109 214133 2670 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 1 1 . 2 09 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/ 1 0 . 2 5 0 . 1 1 . 1 9 4 :

081109 214138 2676 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 1 1 . 2 09 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/10 . 2 5 1 . 1 0 9 . 2 0 9 :

26 081109 214139 2610 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 2 0 3 . 2 46 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/10 . 2 5 1 . 2 0 3 . 2 4 6 :

081109 214139 2678 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 1 1 . 2 09 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/ 1 0 . 2 5 0 . 5 . 2 3 7 :

28 081109 214153 2619 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 2 0 3 . 2 46 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/ 1 0 . 2 5 0 . 1 4 . 3 8 :

081109 214155 2621 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 2 0 3 . 2 46 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/10 . 2 5 1 . 2 0 3 . 2 4 6 :

30 081109 214203 2689 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 1 1 . 2 09 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/ 1 0 . 2 5 1 . 2 0 3 . 8 0 :

081109 214208 2692 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 1 1 1 . 2 09 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/10 . 2 5 1 . 1 9 3 . 2 2 4 :

102

32 081109 214211 2634 WARN df s . DataNode$DataXceiver : 1 0 . 2 5 1 . 2 0 3 . 2 46 : 5 0 010 :

Got except ion whi l e s e rv i ng blk 7956543127401791181 to

/10 . 2 5 1 . 1 9 9 . 1 5 9 :

081110 103053 30 INFO df s . FSNamesystem : BLOCK∗ NameSystem . d e l e t e :

blk 7956543127401791181 i s added to i n v a l i d S e t o f

10 . 251 . 111 . 209 : 50010

34 081110 103053 30 INFO df s . FSNamesystem : BLOCK∗ NameSystem . d e l e t e :

blk 7956543127401791181 i s added to i n v a l i d S e t o f

10 . 251 . 195 . 70 : 50010

081110 103053 30 INFO df s . FSNamesystem : BLOCK∗ NameSystem . d e l e t e :

blk 7956543127401791181 i s added to i n v a l i d S e t o f

10 . 251 . 203 . 246 : 50010

36 081110 103132 19 INFO df s . FSDataset : De l e t ing block

blk 7956543127401791181 f i l e /mnt/hadoop/ d f s /data/ cur rent /

blk 7956543127401791181

081110 103724 19 INFO df s . FSDataset : De l e t ing block

blk 7956543127401791181 f i l e /mnt/hadoop/ d f s /data/ cur rent /

blk 7956543127401791181

38 081110 103730 19 WARN df s . FSDataset : Unexpected e r r o r t ry ing to d e l e t e

b lock blk 7956543127401791181 . BlockIn fo not found in volumeMap .

081110 103812 19 INFO df s . FSDataset : De l e t ing block

blk 7956543127401791181 f i l e /mnt/hadoop/ d f s /data/ cur rent /

blk 7956543127401791181

Listing B.3: A sample list of log messages associated with anomalous system behavior

for the BlockId of 7956543127401791181.

103

APPENDIX C

SUCCESSIVE SESSIONS IN LOG DATA

Listing C.1 presents an example snippet of log data from the HDFS dataset, where log

messages represent two successive sessions. The boundary between the two sessions

can be recognized by the time gap among log messages. We see that there is a gap

of approximately one hour between the log messages at lines 12 and 13. The corre-

sponding timestamps are highlighted for the BlockID of blk�3544583377289625738.

1 081109 203539 225 INFO df s . DataNode$DataXceiver : 1 0 . 250 . 11 . 100 : 50010

Served block blk �3544583377289625738 to /10 . 251 . 25 . 237

081109 203539 226 INFO df s . DataNode$DataXceiver : 1 0 . 250 . 11 . 100 : 50010

Served block blk �3544583377289625738 to /10 . 250 . 6 . 2 23

3 081109 203539 227 INFO df s . DataNode$DataXceiver : 1 0 . 250 . 11 . 100 : 50010

Served block blk �3544583377289625738 to /10 . 251 . 29 . 239

081109 203539 228 INFO df s . DataNode$DataXceiver : 1 0 . 250 . 11 . 100 : 50010

Served block blk �3544583377289625738 to /10 . 251 . 203 . 80

5 081109 203539 229 INFO df s . DataNode$DataXceiver : 1 0 . 250 . 11 . 100 : 50010

Served block blk �3544583377289625738 to /10 . 251 . 199 . 86

081109 203540 231 INFO df s . DataNode$DataXceiver : 1 0 . 250 . 11 . 100 : 50010

Served block blk �3544583377289625738 to /10 . 251 . 203 . 179

7 081109 203540 232 INFO df s . DataNode$DataXceiver : 10 . 251 . 197 . 226 : 50010

Served block blk �3544583377289625738 to /10 . 251 . 127 . 47

081109 203541 233 INFO df s . DataNode$DataXceiver : 10 . 251 . 197 . 226 : 50010

Served block blk �3544583377289625738 to /10 . 250 . 7 . 2 30

9 081109 203544 234 INFO df s . DataNode$DataXceiver : 1 0 . 250 . 11 . 100 : 50010

Served block blk �3544583377289625738 to /10 . 250 . 6 . 2 14

081109 203544 235 INFO df s . DataNode$DataXceiver : 1 0 . 250 . 11 . 100 : 50010

Served block blk �3544583377289625738 to /10 . 251 . 198 . 33

104

11 081109 203545 237 INFO df s . DataNode$DataXceiver : 1 0 . 250 . 11 . 100 : 50010

Served block blk �3544583377289625738 to /10 . 250 . 14 . 3 8

081109 203616 250 INFO df s . DataNode$DataXceiver : 10 . 251 . 197 . 226 : 50010

Served block blk �3544583377289625738 to /10 . 251 . 202 . 134

13 081109 213809 32 INFO df s . FSNamesystem : BLOCK∗ NameSystem . d e l e t e : b lk

�3544583377289625738 i s added to i n v a l i d S e t o f 10 . 250 . 11 . 100 : 50010

081109 213809 32 INFO df s . FSNamesystem : BLOCK∗ NameSystem . d e l e t e : b lk

�3544583377289625738 i s added to i n v a l i d S e t o f 10 . 251 . 197 . 226 : 50010

15 081109 213809 32 INFO df s . FSNamesystem : BLOCK∗ NameSystem . d e l e t e : b lk

�3544583377289625738 i s added to i n v a l i d S e t o f 10 . 251 . 39 . 179 : 50010

081109 213811 19 INFO df s . FSDataset : De l e t ing block blk

�3544583377289625738 f i l e /mnt/hadoop/ d f s /data/ cur r ent / blk

�3544583377289625738

17 081109 213811 19 INFO df s . FSDataset : De l e t ing block blk

�3544583377289625738 f i l e /mnt/hadoop/ d f s /data/ cur r ent / blk

�3544583377289625738

081109 213835 19 INFO df s . FSDataset : De l e t ing block blk

�3544583377289625738 f i l e /mnt/hadoop/ d f s /data/ cur r ent / blk

�3544583377289625738

19 081109 213838 19 WARN df s . FSDataset : Unexpected e r r o r t ry ing to d e l e t e

b lock blk �3544583377289625738. BlockIn fo not found in volumeMap .

Listing C.1: A sample list of log messages associated with two successive sessions for

the BlockId of -3544583377289625738.

105

APPENDIX D

INTERLEAVING SESSIONS IN LOG DATA

Listing D.1 shows an example list of log messages that are associated with interleaving

sessions. These messages take place around line 2.5 million in the overall log data

and they are all related to “Deleting block” operations. Each line of log message in

Listing D.1 is prepended with the actual line number of the message in the log data.

For instance, we can see that the log message listed in line 1 is actually taking place

in line 2499953 in the original log stream. Although the type of operation is the same

in all the log messages here, we can notice that BlockID values are di↵erent from each

other. Hence, they correspond to multiple interleaving sessions running in parallel.

1 2499953 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5216421352320869306 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir21 /

blk 5216421352320869306

2499954 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5217325095968925205 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir56 /

blk 5217325095968925205

3 2499955 081110 103716 19 INFO df s . FSDataset : De l e t ing block blk

�5218627463673454683 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r0 / blk

�5218627463673454683

2499956 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5219326160511009644 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir31 /

blk 5219326160511009644

5 2499957 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5221510399983835440 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir26 /

blk 5221510399983835440

106

2499958 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5226989030815972852 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir55 /

blk 5226989030815972852

7 2499959 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5231495098398081081 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdi r5 /

blk 5231495098398081081

2499960 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5233964770665361344 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir29 /

blk 5233964770665361344

9 2499961 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5235568354882201157 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir17 /

blk 5235568354882201157

2499962 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5240763898460438597 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir28 /

blk 5240763898460438597

11 2499963 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5241166726929317430 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdi r4 /

blk 5241166726929317430

2499964 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5244386758390326957 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir33 /

blk 5244386758390326957

13 2499965 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5246075575272082850 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir60 /

blk 5246075575272082850

2499966 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5251962096670339623 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdi r8 /

blk 5251962096670339623

15 2499967 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5261864227005793315 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir34 /

blk 5261864227005793315

107

2499968 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5265760605723528262 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir18 /

blk 5265760605723528262

17 2499969 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5268420434203606205 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdi r8 /

blk 5268420434203606205

2499970 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5271509496797320414 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir16 /

blk 5271509496797320414

19 2499971 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5273343903602642810 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdi r5 /

blk 5273343903602642810

2499972 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5281661567549593245 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir29 /

blk 5281661567549593245

21 2499973 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5283547885258036055 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir62 /

blk 5283547885258036055

2499974 081110 103716 19 INFO df s . FSDataset : De l e t ing block

blk 5286210386048273157 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir10 /

blk 5286210386048273157

23 2499975 081110 210509 19 INFO df s . FSDataset : De l e t ing block

blk 259932392123029431 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdi r30 /

blk 259932392123029431

2499976 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2600826002055213678 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r11 / blk

�2600826002055213678

25 2499977 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2600826002055213678 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r59 / blk

�2600826002055213678

108

2499978 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2603632531243296621 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r48 / blk

�2603632531243296621

27 2499979 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2603632531243296621 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r59 / blk

�2603632531243296621

2499980 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2604633580945613522 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r1 / blk

�2604633580945613522

29 2499981 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2611959672347776838 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r53 / blk

�2611959672347776838

2499982 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2614356646939272513 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r15 / blk

�2614356646939272513

31 2499983 081110 210509 19 INFO df s . FSDataset : De l e t ing block

blk 261764249216715022 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdi r52 /

blk 261764249216715022

2499984 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2619401441196869445 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r14 / blk

�2619401441196869445

33 2499985 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2624502702177470868 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r34 / blk

�2624502702177470868

2499986 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2624502702177470868 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r42 / blk

�2624502702177470868

35 2499987 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2626285863432181760 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r14 / blk

�2626285863432181760

109

2499988 081110 210509 19 INFO df s . FSDataset : De l e t ing block

blk 2626520497226528277 f i l e /mnt/hadoop/ d f s /data/ cur rent / subdir16 /

blk 2626520497226528277

37 2499989 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2628142747555531712 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r10 / blk

�2628142747555531712

2499990 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2630329234692416544 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r0 / blk

�2630329234692416544

39 2499991 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2630936687655304811 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r37 / blk

�2630936687655304811

2499992 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2631726283737168014 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r59 / blk

�2631726283737168014

41 2499993 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2632636110720530940 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r35 / blk

�2632636110720530940

2499994 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2634419312109294982 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r19 / blk

�2634419312109294982

43 2499995 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2634488662668945491 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r0 / blk

�2634488662668945491

2499996 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2635435956285042472 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r38 / blk

�2635435956285042472

45 2499997 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2639350856610539201 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r62 / blk

�2639350856610539201

110

2499998 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2639488638595398072 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r33 / blk

�2639488638595398072

47 2499999 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2640543295914001117 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r52 / blk

�2640543295914001117

2500000 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2642156372297610838 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r51 / blk

�2642156372297610838

49 2500001 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2644822248819175766 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r23 / blk

�2644822248819175766

2500002 081110 210509 19 INFO df s . FSDataset : De l e t ing block blk

�2647058832919634552 f i l e /mnt/hadoop/ d f s /data/ cur r ent / subdi r2 / blk

�2647058832919634552

Listing D.1: A sample list of log messages associated with interleaving sessions.

111

Bibliography

[1] D. Evans, “The Internet of Things - How the Next Evolution of the Internet
is Changing Everything,” Tech. Rep. 10.1109/IEEESTD.2007.373646, CISCO,
2011.

[2] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting large-scale
system problems by mining console logs,” in Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles (SOSP ’09), (Big Sky, Mon-
tana, USA), pp. 117–132, 2009.

[3] P. Patel and D. Cassou, “Enabling high-level application development for the
internet of things,” Journal of Systems and Software, vol. 103, pp. 62 – 84, 2015.

[4] S. Banerjee, H. Srikanth, and B. Cukic, “Log-based reliability analysis of Soft-
ware as a Service (SaaS),” in Proceedings - International Symposium on Soft-
ware Reliability Engineering (ISSRE), Proceedings - International Symposium
on Software Reliability Engineering (ISSRE), 2010.

[5] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining Invariants from Console
Logs for System Problem Detection,” USENIX Annual Technical Conference,
pp. 77–82, 2010.

[6] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience Report: System Log Analysis
for Anomaly Detection,” in Proceedings of the IEEE 27th International Sympo-
sium on Software Reliability Engineering (ISSRE), pp. 207–218, 2016.

[7] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “SherLog:
error diagnosis by connecting clues from run-time logs,” ACM SIGPLAN Notices,
vol. 45, no. 3, p. 143, 2010.

[8] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “Inferring models
of concurrent systems from logs of their behavior with CSight,” No. Section 6 in
Proceedings of the 36th International Conference on Software Engineering (ICSE
2014), pp. 468–479, 2014.

[9] R. Vaarandi, “A Data Clustering Algorithm for Mining Patterns From Event
Logs,” in Proceedings of the IEEE Workshop on IP Operations and Management,
pp. 119—-126, 2003.

[10] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering event logs
using iterative partitioning,” Proceedings of the 15th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining - KDD ’09, p. 1255,
2009.

[11] L. Tang, T. Li, and C.-S. Perng, “LogSig: Generating system events from raw
textual logs,” Proceedings - ACM International Conference on Information and
Knowledge Management, CIKM, pp. 785–794, 2011.

112

[12] Q. Fu, J. G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in dis-
tributed systems through unstructured log analysis,” Proceedings - IEEE Inter-
national Conference on Data Mining, ICDM, pp. 149–158, 2009.

[13] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering based prob-
lem identification for online service systems,” Proceedings of the 38th Interna-
tional Conference on Software Engineering Companion - ICSE ’16, pp. 102–111,
2016.

[14] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
Computing Surveys (CSUR), vol. 41, no. September, pp. 1–58, 2009.

[15] M. S. Aktas and M. Astekin, “Provenance aware run-time verification of things
for self-healing Internet of Things applications,” Concurrency Computation,
vol. 31, no. 3, 2017.

[16] M. Astekin, H. Zengin, and H. Sozer, “DILAF: A framework for distributed
analysis of large-scale system logs for anomaly detection,” Software Practice and
Experience, vol. 49, no. 2, pp. 153–170, 2018.

[17] M. Astekin, H. Zengin, and H. Sözer, “Evaluation of distributed machine learning
algorithms for anomaly detection from large-scale system logs: A case study,” in
IEEE International Conference on Big Data, Big Data 2018, Seattle, WA, USA,
December 10-13, 2018, pp. 2071–2077, 2018.

[18] O. Saleh, F. Gropengießer, H. Betz, W. Mandarawi, and K. Sattler, “Monitoring
and Autoscaling IaaS Clouds: A Case for Complex Event Processing on Data
Streams,” in 2013 IEEE/ACM 6th International Conference on Utility and Cloud
Computing, pp. 387–392, dec 2013.

[19] L. Moreau, P. Missier, K. Belhajjame, R. B. Far, J. Cheney, S. Coppens, S. Cress-
well, Y. Gil, P. Groth, G. Klyne, T. Lebo, J. Mccusker, S. Miles, J. Myers,
S. Sahoo, and C. Tilmes, “PROV-DM: The PROV Data Model,” no. April 2013,
pp. 1–48, 2013.

[20] B. Dundar, M. Astekin, and M. S. Aktas, “A Big Data Processing Framework
for Self-Healing Internet of Things Applications,” Proceedings - 2016 12th Inter-
national Conference on Semantics, Knowledge and Grids, SKG 2016, pp. 62–68,
2017.

[21] W. Colitti, K. Steenhaut, and N. D. Caro, “Integrating Wireless Sensor Networks
with the Web,” pp. 2–6, 2011.

[22] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: Scalable cloud services
for the Internet of Things with CoAP,” in 2014 International Conference on the
Internet of Things, IOT 2014, pp. 1–6, 2014.

113

[23] L. Moreau, B. Cli↵ord, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska,
S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, and J. V.
den Bussche, “The Open Provenance Model core specification (v1.1),” Future
Generation Computer Systems, vol. 27, no. 6, pp. 743–756, 2011.

[24] V. Akila, V. Govindasamy, and S. Sandosh, “Complex event processing over un-
certain events: Techniques, challenges, and future directions,” 2016 International
Conference on Computation of Power, Energy, Information and Communication,
ICCPEIC 2016, pp. 204–221, 2016.

[25] D. Bhattacharya and M. Mitra, Analytics on Big Fast Data Using Real Time
Stream Data Processing Architecture. EMC Corporation, 2013.

[26] B. I. Žáková, Drools Fusion and Utilization of Complex Event Processing in Web
Applications. Master’s thesis, Masaryk University, Faculty of Informatics, Brno,
2013.

[27] M. S. Aktas and M. Pierce, “High-performance hybrid Information Service Ar-
chitecture,” Concurrency Computation Practice and Experience, vol. 22, no. 15,
pp. 2095–2123, 2010.

[28] C. Y. Chen, J. H. Fu, T. Sung, P. F. Wang, E. Jou, and M. W. Feng, “Complex
event processing for the Internet of Things and its applications,” IEEE Inter-
national Conference on Automation Science and Engineering, vol. 2014-Janua,
pp. 1144–1149, 2014.

[29] Y. Wang, “A Proactive Complex Event Processing Method for Intelligent Trans-
portation Systems,” Lecture Notes on Information Theory, vol. 1, no. 3, pp. 109–
113, 2013.

[30] Y. Wang and K. Cao, “Context-aware complex event processing for event cloud in
internet of things,” 2012 International Conference on Wireless Communications
and Signal Processing, WCSP 2012, 2012.

[31] G. C. Fox, M. S. Aktas, G. Aydin, H. Bulut, S. Pallickara, M. Pierce, A. Sa-
yar, W. Wu, and G. Zhai, “Real Time Streaming Data Grid Applications,” in
Distributed Cooperative Laboratories: Networking, Instrumentation, and Mea-
surements, pp. 253–267, 2006.

[32] G. Aydin, A. Sayar, H. Gadgil, M. S. Aktas, G. C. Fox, S. Ko, H. Bulut, and
M. E. Pierce, “Building and applying geographical information system Grids,”
Concurrency Computation Practice and Experience, vol. 20, no. 14, pp. 1653–
1695, 2008.

[33] M. E. Pierce, G. C. Fox, M. S. Aktas, G. Aydin, H. Gadgil, Z. Qi, and A. Sa-
yar, “The quakesim project: Web services for managing geophysical data and
applications,” Pure and Applied Geophysics, vol. 165, no. 3-4, pp. 635–651, 2008.

114

[34] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of Information
Technology,” Computing Systems, vol. 2007, no. Jan, pp. 1–40, 2001.

[35] R. Angarita, “Responsible objects: Towards self-healing internet of things appli-
cations,” Proceedings - IEEE International Conference on Autonomic Comput-
ing, ICAC 2015, pp. 307–312, 2015.

[36] F. M. de Almeida, A. d. R. L. Ribeiro, and E. D. Moreno, “An Architecture for
Self-healing in Internet of Things,” Ubicomm 2015, no. c, p. 89, 2015.

[37] A. Athreya, B. DeBruhl, and P. Tague, “Designing for Self-Configuration and
Self-Adaptation in the Internet of Things,” 2013.

[38] H. Zhuge, “The future interconnection environment,” Computer, vol. 38, no. 4,
pp. 27–33, 2005.

[39] H. Zhuge, “Semantic linking through spaces for cyber-physical-socio intelligence:
A methodology,” Artificial Intelligence, vol. 175, no. 5-6, pp. 988–1019, 2011.

[40] T. S. Dillon, H. Zhuge, C. Wu, J. Singh, and E. Chang, “Web-of-things frame-
work for cyber-physical systems,” Concurrency Computation Practice and Expe-
rience, vol. 23, no. 9, pp. 905–923, 2011.

[41] P. Chen, B. Plale, and M. S. Aktas, “Temporal representation for scientific data
provenance,” 8th International Conference on E-Science (e-Science2012), pp. 1–
8, 2012.

[42] S. Jensen, B. Plale, M. S. Aktas, Y. Luo, P. Chen, and H. Conover, “Provenance
capture and use in a satellite data processing pipeline,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 51, no. 11, pp. 5090–5097, 2013.

[43] M. S. Aktas, B. Plale, D. Leake, and N. K. Mukhi, “Unmanaged workflows: Their
provenance and use,” Studies in Computational Intelligence, vol. 426, pp. 59–81,
2013.

[44] P. Chen, B. Plale, and M. S. Aktas, “Temporal representation for mining scien-
tific data provenance,” Future Generation Computer Systems, vol. 36, pp. 363–
378, 2014.

[45] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards Automated Log Parsing for
Large-Scale Log Data Analysis,” IEEE Transactions on Dependable and Secure
Computing, pp. 1–1, 2017.

[46] G. Salton and M. J. McGill, Introduction to modern information retrieval.
McGraw-Hill, 1983.

[47] R. Feldman and J. Sanger, “The text mining handbook: advanced approaches
in analyzing unstructured data,” Imagine, vol. 34, p. 410, 2007.

115

[48] I. T. Jolli↵e, Principal Component Analysis. Springer, 2002.

[49] E. P. Xing, Q. Ho, P. Xie, and D. Wei, “Strategies and Principles of Distributed
Machine Learning on Big Data,” Elsevier Journal of Engineering, vol. 2(2),
pp. 179–195, 2016.

[50] M. Zaharia, M. Chowdhury, T. Das, and A. Dave, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” Nsdi, 2012.

[51] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on log parsing
and its use in log mining,” Proceedings - 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2016, pp. 654–661, 2016.

[52] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wesslen, Exper-
imentation in Software Engineering. Berlin, Heidelberg: Springer-Verlag, 2012.

[53] I. Beschastnikh, J. Abrahamson, Y. Brun, and M. D. Ernst, “Synoptic: Studying
Logged Behavior with Inferred Models,” Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software En-
gineering, pp. 448–451, 2011.

[54] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and P. Mar-
tin, “Assisting developers of big data analytics applications when deploying on
Hadoop clouds,” Proceedings - International Conference on Software Engineer-
ing, pp. 402–411, 2013.

[55] X. Chen, C. D. Lu, and K. Pattabiraman, “Predicting job completion times
using system logs in supercomputing clusters,” Proceedings of the International
Conference on Dependable Systems and Networks, 2013.

[56] L. Mariani and F. Pastore, “Automated identification of failure causes in system
logs,” Proceedings - International Symposium on Software Reliability Engineer-
ing, ISSRE, pp. 117–126, 2008.

[57] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. K. Iyer, “Improving Log-based
Field Failure Data Analysis of multi-node computing systems,” Proceedings of
the International Conference on Dependable Systems and Networks, pp. 97–108,
2011.

[58] A. Oprea, Z. Li, T. F. Yen, S. H. Chin, and S. Alrwais, “Detection of Early-Stage
Enterprise Infection by Mining Large-Scale Log Data,” vol. 2015-September of
Proceedings of the International Conference on Dependable Systems and Net-
works, pp. 45–56, 2015.

[59] Z. Gu, K. Pei, Q. Wang, L. Si, X. Zhang, and D. Xu, “LEAPS: Detecting
Camouflaged Attacks with Statistical Learning Guided by Program Analysis,”
vol. 2015-September of Proceedings of the International Conference on Depend-
able Systems and Networks, pp. 57–68, 2015.

116

[60] E. Chuah, A. Jhumka, S. Narasimhamurthy, J. Hammond, J. C. Browne, and
B. Barth, “Linking resource usage anomalies with system failures from cluster
log data,” Proceedings of IEEE International Symposium on Reliable Distributed
Systems, 2013.

[61] C. Luo, F. He, and C. Ghezzi, “Inferring software behavioral models with MapRe-
duce,” Science of Computer Programming, vol. 145, pp. 13–36, 2017.

[62] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection and
diagnosis from system logs through deep learning,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, pp. 1285–1298,
2017.

[63] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in Proceedings
of the IEEE International Conference on Data Mining, pp. 859–864, 2017.

[64] S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Transactions on In-
formation Theory, 1982.

[65] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online system problem
detection by mining patterns of console logs,” in Proceedings - IEEE Interna-
tional Conference on Data Mining, ICDM, 2009.

[66] S. Weigert, M. Hiltunen, and C. Fetzer, “Mining large distributed log data in
near real time,” in Proceedings of the Managing Large-scale Systems via the
Analysis of System Logs and the Application of Machine Learning Techniques,
pp. 5:1—-5:8, 2011.

[67] J. Bai, “Feasibility analysis of big log data real time search based on Hbase and
ElasticSearch,” in Proceedings - International Conference on Natural Computa-
tion, 2013.

[68] A. Juvonen, T. Sipola, and T. Hämäläinen, “Online anomaly detection using di-
mensionality reduction techniques for HTTP log analysis,” Computer Networks,
2015.

[69] B. Debnath, M. Solaimani, M. A. G. Gulzar, N. Arora, C. Lumezanu, J. Xu,
B. Zong, H. Zhang, G. Jiang, and L. Khan, “LogLens: A real-time log analysis
system,” in Proceedings - International Conference on Distributed Computing
Systems, 2018.

[70] P. He, J. Zhu, P. Xu, Z. Zheng, and M. R. Lyu, “A directed acyclic graph
approach to online log parsing,” CoRR, vol. abs/1806.04356, 2018.

[71] A. Das, F. Mueller, P. Hargrove, E. Roman, and S. Baden, “Doomsday: Predict-
ing which node will fail when on supercomputers,” in Proceedings - International
Conference for High Performance Computing, Networking, Storage, and Analy-
sis, SC 2018, 2019.

117

[72] P. Robberechts, M. Bosteels, J. Davis, and W. Meert, “Query Log Analysis:
Detecting Anomalies in DNS Tra�c at a TLD Resolver,” 2019.

[73] A. Borghesi, A. Libri, L. Benini, and A. Bartolini, “Online anomaly detection in
HPC systems,” CoRR, vol. abs/1902.08447, 2019.

[74] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst, “Leveraging
existing instrumentation to automatically infer invariant-constrained models,”
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering - SIGSOFT/FSE ’11, p. 267,
2011.

[75] G. Salton and C. Buckley, “Term-weighting approaches in automatic text re-
trieval,” Information Processing and Management, vol. 24, no. 5, pp. 513–523,
1988.

[76] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen, “LogMine:
Fast Pattern Recognition for Log Analytics,” in Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowledge Management - CIKM
’16, 2016.

118

VITA

Merve Astekin holds B.Sc. and M.Sc. degrees received from the Department of Com-

puter Engineering at Istanbul Technical University, in 2010 and 2012, respectively.

She is currently a chief researcher and department manager at Cloud Computing

and Big Data Research Laboratory (B3LAB), TUBITAK BILGEM. She has been

working at Scientific and Technological Research Council of Turkey, Informatics and

Information Security Research Center (TUBITAK BILGEM) since 2010. Here, she

has undertaken managerial and technical expert roles in large-scale software projects

related to the fields of software testing & quality, data mining, big data analytics,

distributed systems, simulation systems and air tra�c controller systems. She has

managed software development and test activities performed by internal teams as

well as sub-contractors. Recently, she was the head of the Software Testing and

Quality Evaluation Laboratory that carries the responsibility of validation and verifi-

cation of mainly mission-critical governmental projects by ensuring their compliance

to the international software and safety standards. Currently, she is responsible for

administrative, technical and scientific management, planning, requirements analysis,

systems engineering, dissemination and business development phases of both national

and international projects undertaken by B3LAB.

119

