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1 Introduction
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The history of cardiac research dates back to ancient times and is at least as
old as Emperor Huang Ti’s ‘Canon of Internal Medicine’, said to have been writ-
ten in 2600 BCE. In more recent times, the development of mathematical models
in biology and electronic computers has led to the field of computational cardiac
modelling. This field is an exciting mix of biology, computer science, engineer-
ing, mathematics and medicine, which aims to reproduce the complex processes
of the heart inside a computer model. This approach is complementary to tradi-
tional experimentation on physical cardiac tissue and clinical trials, and allows for
simulated experiments to be performed that would be unethical or prohibitively
expensive in real life. Additionally, computer models allow for information from
a variety of sources to be combined with basic physical principles. This leads
to potentially new insights from existing data, which increases the efficiency of
cardiac research, and allows for the possibility of in-silico diagnosis and therapy
planning tools.

In recent years there has been great interest in the creation of personalised
cardiac models, reflecting the state of a specific patient’s heart. Such models
have powerful prognostic potential, allowing for therapies to be tried out on the
virtual heart non-invasively, at low cost, and with no risk to the patient. For such
a powerful model to be realized, it is of paramount importance that the model
captures the key features of the patient’s condition. This is typically accomplished
by adjusting the parameters of the model in order to match the model’s outputs to
clinical measurements of the patient, a process which is often referred to as data
assimilation.

A simple approach to data assimilation is to define a functional which quanti-
fies the mismatch between model outputs and clinical measurements. Minimiza-
tion of this functional accomplishes the data assimilation and leads to a set of
parameters that best matches the patient’s condition. Information regarding the
gradient of the mismatch functional with regards to model parameters can be po-
tentially very useful. The negative gradient points in the direction of greatest de-
crease of the functional, and this can be used to guide an optimization and thereby
greatly improve its efficiency.

In cardiac mechanics, model equations typically take the form of variational
principles based on continuum approximations of matter. Such equations often
cannot be solved by closed form mathematical expressions, and instead require
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numerical methods and software implementation. Similarly to the model equa-
tions, evaluation of mismatch functional gradients also requires software. Re-
cently a new software tool for the automatic derivation of adjoint equations has
been developed [10]. Via the adjoint-gradient formula, this tool also automates
calculation of functional gradients, which can be obtained efficiently with a cost
nearly independent of the number of model parameters i.e. gradient size. This
opens up new possibilities for creating personalized mechanics models with high
spatial resolution of model parameters. The development of such personalized
models has been a major driver for this thesis, which has the following goals:

• Create adjoint-gradient based methods for the personalization of passive
tissue properties and muscle contraction in a computational model of ven-
tricular mechanics.

• Develop an algorithm that compute a personalized load-free reference ge-
ometry of a patient’s ventricles and simultaneously estimates passive tissue
properties.

• Exploit the computational efficiency of the adjoint-gradient formula in or-
der to incorporate mechanical heterogeneities into personalized models of
ventricular mechanics under pathological circumstances.

The rest of this thesis introduction is organized as follows. We explain ba-
sic cardiac anatomy and pumping function in Section 1.1, and then move on to
mathematical modeling in Section 1.2 where we introduce the important concepts
of strain, stress and hyperelasticity. The section ends with a brief overview of
the Holzapfel-Ogden mechanics model, which is used extensively in this thesis.
In Section 1.3 we present the basic concepts behind variational data assimilation,
and give a brief overview of the literature on data assimilation in cardiac mechan-
ics. We summarize the three articles of this thesis in Section 1.4 and provide
conclusions and an outlook for the future in Section 1.5.

1.1 Heart Pumping Mechanics
The heart is a muscular pump that is responsible for the flow of blood throughout
the body, and is essential to keeping the body alive. During a day of an average

3



person’s life, it beats around 100,000 times and pumps about 7,200 liters of blood
[13]. The structure of this remarkable organ is presented in Figure 1.1. Oxygen-
poor blood from the body flows into the right side of the heart, and is pumped
through the pulmonary artery to the lungs, where it picks up oxygen. It then
enters the left side of the heart and is pumped through the aorta back into the rest
of the body. The outer surface of the heart, which is in contact with the body, is
called the epicardium. The inner surface, which is in contact with blood, is called
the endocardium.

Figure 1.1: Anatomical view of the human heart showing the principle chambers
and valves. Source: http://www.hopkinsmedicine.org.

Four chambers of the heart are used to pump blood. The bottom chambers
are the ventricles. Each ventricle has two sets of valves, one for blood flowing
in and one for blood flowing out. By restricting the direction of flow, the valves
are essential to maintaining the correct pressure in the ventricles. Pressure must
be high when pumping out and low when filling. The left ventricle is the largest
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of the two ventricles, and has thicker walls required for the heavy job of push-
ing blood through the systemic circulation system. Being easier to image and of
vital importance, the left ventricle is the focus of many computational modelling
studies.

The top two chambers of the heart are the atria, which function as primer
pumps. They inject extra blood into the ventricles and thereby increase ventric-
ular function. Under normal circumstances, when the atria squeeze they fill the
ventricles in two ways. Firstly atrial squeezing causes a pressure gradient across
the mitral and tricuspid values, thereby causing flow of blood. Secondly the walls
of the atria shorten and pull up on the valves mentioned above. This elongates the
ventricles and increases their volume.

Figure 1.2: Classical Wiggers diagram showing mechanical and electrical events
that occur in a typical heartbeat in the left side of a healthy human heart. Source:
Wikimedia Commons: Wiggers Diagram.svg
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The classical Wiggers diagram, Figure 1.2, shows the sequence of phases and
corresponding pressure-volume relations of a single beat in the left side of the
heart. All of the phases can be roughly divided into two events, systole and dias-
tole. In systole the ventricle contracts, and in diastole it expands.

In the first phase, isovolumic contraction, the muscles of the left ventricle be-
gin to contract with both valves closed. This causes the ventricular pressure to
rapidly increase until it exceeds the aortic pressure. The reversal of the pressure
gradient opens the aortic valve and the ejection phase begins. In this phase the
ventricular volume decreases as blood is forced into the aorta. Consequently the
pressure in the ventricle drops until it is lower than that of the aorta. The iner-
tia of flowing blood briefly holds the aortic valve open and then the valve closes,
beginning the isovolumic relaxation phase. In this phase the muscles in the ven-
tricle release their tension, causing the blood pressure to drop further. Once the
ventricular pressure drops below that of the atrium the mitral valve opens and the
ventricle rapidly beings to fill with blood. This increases the ventricular volume
during the rapid inflow phase. During the next phase, diastasis, the heart is at
rest. Depending upon the heart-rate, this phase can be long or short, with faster
heart-rates leading to a shorter diastasis phase. Finally, in the atrial systole phase,
the ventricles are further filled by the contracting atria. This causes a rise in both
ventricular pressure and volume.

The mechanics of the heart are coordinated by the heart’s electrical activity.
This activity is classically measured by the electrocardiogram, shown in green in
the Wiggers diagram. The bottom curve, the phonocardiogram, shows the timing
of sounds related to the opening and closing of valves.

1.2 Computational Mechanics

Mathematical models of the mechanics of cardiac tissue are often formulated
within the general framework of continuum mechanics. In this framework the
effects of detailed physical structures such as atoms, molecules and biological
cells, are considered in an average sense. Matter is represented as existing in a
homogenized continuum. This simplification allows for the computer simulation
of tissues and organs, without having to deal with the details of smaller scale
structures.
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Fundamental to continuum mechanics is the Lagrangian description of mo-
tion. In this description we consider a body Ω which deforms over time to take
the time-dependent shape ω(t). Each material point is tracked in the Lagrangian
description, so that for every X ∈ Ω we can find a corresponding x(t) ∈ ω(t)

which tracks the movement of X throughout the deformation. Out of computa-
tional convenience, we most often consider the displacement map

u(t) = x(t)−X. (1.1)

1.2.1 Strain

Differences in the motion of matter lead to strain. Intuitively, strains are changes
in the relative motion of particles throughout a deformation. Just like displace-
ments, strains need to be measured with respect to a reference. Many measure-
ments for strain exist. A simple one dimensional measure is the engineering strain

ε =
l − L
L

, (1.2)

which is simply defined as the difference between deformed length l and reference
length L divided by reference length. This measure of strain is popular in the field
of speckle-tracking echocardiography, and provides a simple and effective way of
describing length changes in the tissue of the heart.

For the purposes of mathematical modelling, more complicated measures of
strain are used. The basis for all such measures is the displacement gradient,
which is a rank 2 tensor whose components are defined as

Graduij =
∂ui
∂Xj

. (1.3)

Diagonal components of this tensor measure changes in length and are called nor-
mal strains. Off diagonal components measure changes in angle, and are referred
to as shear strains.

The engineering strain linearly approximates a normal component of the dis-
placement gradient. To see this consider a 1-D line of length L deformed by the
linear map u(X) = l−L

L
X. The length of such a line after deformation will be

7



u(XL) + L = l, where XL is the end-point of the line. By Equation 1.2 the engi-
neering strain for this deformation will be l−L

L
, which is exactly the derivative of u.

Using this approximation property it is possible to relate engineering strains from
speckle tracking echocardiography to strains from continuum mechanics models
given by the displacement gradient.

In addition to the strain measures mentioned above, relative deformation can
also be measured by the so called deformation gradient

F = u + I. (1.4)

This measure has a multiplicative decomposition property for deformations through
an intermediate configuration. Assume there is a point in the reference configu-
ration X, with corresponding point in the intermediate configuration x1 and cor-
responding point in the final configuration x2. Furthermore define the total dis-
placement u(X) = u2 ◦ u1, where u2(x1) = x2 − x1 and u1(X) = x1 −X. By
definition

u(X) = u2(u1(X) + X) + u1(X) + X, (1.5)

and by taking derivatives with respect to X and applying the chain rule one arrives
at

F = F2F1, (1.6)

where F2 = Gradu2 + I, F1 = Gradu1 + I, and F = Gradu + I.
The multiplicative decomposition property of F is useful for comparing strains

measured in-vivo to those of a continuum mechanics model. The reference config-
uration required for the Lagrangian description of motion is assumed to be load-
free in hyperelastic theory. This is an assumption which cannot be made for an
image based cardiac geometry, as there is always some blood pressure inside the
heart. By considering the image based geometry to be an intermediate configura-
tion, deformations measured in-vivo can be related to those given by Lagrangian
mechanics. Furthermore, the multiplicative decomposition property is also used
in the so-called active strain framework. This framework combines active muscle
shortening with elastic deformation, and can account for whole-cycle motion of
the heart. In active strain, shortening of muscles results in an intermediate con-
figuration with deformation gradient Fa from which elastic forces are calculated.
This results in an elastic deformation with deformation gradient Fe. The total
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deformation is then simply
F = FeFa. (1.7)

1.2.2 Stress

Strains in materials typically lead to states of stress. Stresses are defined as inter-
nal forces which act to maintain a material’s deformed shape, and are defined as
force per unit area. More specifically, if we consider a plane inside a deformed
body, than the force exerted by the material on the plane can be represented by a
vector quantity t in the deformed configuration and T in the reference configu-
ration. By Cauchy’s stress theorem [page 111 of [15]] there exist unique tensor
fields σ and P such that

t(x, t,n) = σ(x, t)n

T(X, t,N) = P(X, t)N,
(1.8)

where n and N are outward normals of the plane in deformed and reference con-
figuration respectively. The tensors σ and P are the Cauchy and 1st Piola Kirch-
hoff stress tensors. By employing Nanson’s formula it is possible to relate σ and
P, and thereby stresses in the deformed and reference configurations

P = JσF−T , (1.9)

where we have introduced the volume ratio J = detF. The mapping of stresses
allows us the convenience of performing computer simulations in a reference con-
figuration, which can be represented by an unchanging geometry throughout the
entire simulation.

1.2.3 Hyperelasticity

Mathematical models of elasticity represents idealized materials which always re-
turn to their original shape when all external loads are removed. For situations
in which deformations are large, such as in the heart, finite elasticity theory and
hyperelastic models are required. Energy which is used to deform a hyperelastic
model is stored in the material. This stored energy is typically given by a strain en-
ergy density function ψ, whose derivative with respect to the deformation gradient
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gives the first Piola-Kirchhoff stress P

P =
∂ψ

∂F
. (1.10)

As cardiac tissue contains a large amount of water, incompressible variational
principles are often employed for the calculation of model deformations. One
such variational principle is the principle of stationary potential energy [Chapter
8.3 of [15]] which states that the total potential energy of a mechanical system
is stationary when the system is at an equilibrium. Mathematically, internal and
external energies, Πint and Πext, are combined into a total energy functional Π,
depending upon the deformation u, and in the fully incompressible case an addi-
tional hydrostatic pressure field p

Π(u, p) = Πint(u, p) + Πext(u). (1.11)

For an incompressible hyperelastic material the internal energy can be written as

Πint(u, p) =

∫
Ω

p (J − 1) + ψ(u) dV. (1.12)

In this functional p acts as a Lagrange multiplier enforcing the incompressibility
constraint J − 1 = 0. If the potential energy is differentiable, stationarity is
equivalent to the first variation of the functional being equal to 0. We now define
the Gateaux differential

Dxf(x)[δx] ≡ ∂

∂ε
f(x + ε δx)

∣∣∣
ε=0
, (1.13)

which is presented for an abstract functional f in the direction x. The energy
(1.11) is then stationary if

0 = Dδu,δpΠint[δu, δp] +Dδu,δpΠext[δu, δp], (1.14)

where we have slightly expanded the notation (1.13) to indicate simultaneous vari-
ation of two variables. The equation (1.14) is also known as the principle of virtual
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work, for which the internal work, δWint, can be written as

δWint(u, p, δu, δp) = Dδu,δpΠint[δu, δp]

=

∫
Ω

(
P + pJF−T

)
: Gradδu + (J − 1)δp dV.

(1.15)

We have so far not specified any external energies or work terms. These terms
depend upon the specific mechanical situation being modelled. For the case of
left ventricular mechanics pressure loading of blood on the endocardium often
plays an important role. If we denote the blood pressure by pblood, the deformed
endocardial surface by ∂ωendo, and the reference endocardial surface by ∂Ωendo,
then the virtual work of the pressure load, δWpress, can be written as

δWpress = −pblood

∫
∂ωendo

n· δu ds = −pblood

∫
∂Ωendo

JF−TN· δu dS, (1.16)

where the second equality follows from Nanson’s formula.

1.2.4 The Holzapfel-Ogden Model

In the previous section a general framework for modelling incompressible hyper-
elastic materials was presented. In order to specify the framework to a specific
material, such as cardiac tissue, a constitutive equation must be employed. In the
case of hyperelasticity, such equations take the form of strain energy density func-
tions. Furthermore, hyperelastic theory requires that such functions be invariant
under rotation of the object that is being modelled. This motivates the formulation
of the Right Cauchy-Green tensor

C = FTF. (1.17)

By the polar decomposition theorem F can be decomposed into a rotation R and
stretch U so that

C = FTF = UTRTRU = UTR−1RU = UTU, (1.18)
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and we can see that C measures only the stretching component of F. Rotation
invariance of a strain energy function can be achieved by limiting the function
arguments to a scalar set of invariants [page 215 of [15]].

In 2009 a model for the mechanical properties of cardiac tissue was pro-
posed [14], which was based upon invariants. This model, often referred to as
the Holzapfel-Ogden law, is orthotropic, with the myocardial micro-structure of
fibers and sheets providing local axes of anisotropy. The two anisotropic axes are
often referred to as the fiber, ef , and sheet, es axes. The invariants upon which
the Holzapfel-Ogden law is based upon are

I1 = tr (C),

I4f = ef ·Cef ,

I4s = es·Ces,

I8fs = ef ·Ces,

(1.19)

with the first invariant capturing the isotropic response of the material and the last
three the anisotropic response of the material. The Holzapfel-Ogden law depends
upon a set of 8 material parameters, of which 4 are linear and 4 are exponential.
The strain energy of this model is

ψ(C, a, b, af , bf , as, bs, afs, bfs) =
a

2b

(
eb(I1(C)−3) − 1

)
+
∑
i=f,s

ai
2bi

(
ebi(I4i(C)−1)2+ − 1

)
+

afs
2bfs

(
ebfsI

2
8fs(C) − 1

)
.

(1.20)
Here the symbol + is the positive restriction (· )+ = max(· , 0), which models
the heart muscle fibers as resisting extension but not compression. For studies
involving clinical data, a reduced transversely isotropic form of (1.20) is often
employed

ψ(C, a, b, af , bf ) =
a

2b

(
eb(I1(C)−3) − 1

)
+

af
2bf

(
ebf (I4f (C)−1)2+ − 1

)
. (1.21)

This model has 4 fewer parameters than the orthotropic Holzapfel-Ogden law,
making it easier to identify the parameters from potentially sparse and or noisy
clinical data.
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1.3 Data Assimilation

In this section we discuss data assimilation, that is the process of adjusting a com-
putational model’s parameters in order to match the model output to physical mea-
surements. Applied to cardiac mechanics, a successful data assimilation results in
a personalized model which reflects the state of a patient’s heart.

1.3.1 The Least Squares Variational Approach

The least squares variational approach is a simple way to formulate a data assimi-
lation problem. In this approach we have a set of observations of a system i.e. data
points odata. We also have a mathematical model from which we can derive model
based observations omod. These model based observations can be tuned by a set
of parameters m so that omod depends upon m. In order to quantify the quality of
a fit of model and data we introduce the classical least squares functional

I(m) = |omod(m)− odata|2 . (1.22)

The data assimilation problem consists of finding the set of optimal parameters
m∗ which minimize I(m).

In the case of cardiac mechanics, our mathematical models consist of vari-
ational equations implemented as finite element software, which can take any-
where from minutes to days in order to run. For models with longer run-times,
it is advantageous to use gradient-based optimization methods in order to mini-
mize (1.22), as such algorithms tend to use fewer evaluations of the model than
gradient-free methods. However, if the number of components of m is large, than
calculating the gradient of (1.22) can be challenging. A classical finite difference
approach involves evaluating the model with as many perturbations as there are
parameters in order to approximate the gradient. This can greatly increase the
number of model evaluations needed for an optimization. The adjoint gradient
formula on the other hand can calculate the gradient of (1.22) with a computa-
tional cost nearly independent of the size of m. For an introduction to the adjoint
gradient formula we refer the reader to Section 2.4 of the first article in this the-
sis, and also to [10], which describes the principles behind the automatic adjoint
derivation software dolfin-adjoint.

13



1.3.2 Review of data assimilation in cardiac mechanics

The design and use of mathematical models of cardiac mechanics has been an
ongoing process over the last 4 decades. In the 1980’s biaxial loading tests were
performed on samples of ex-vivo canine myocardial tissue [7, 28]. The results
of these experiments were used to fit coefficients of exponential stress-strain re-
lations. Further tissue testing was performed in 2002, this time with porcine my-
ocardium and simple shear deformations [8]. These experiments showed that the
mechanical response of myocardium can be orthotropic, with the local myocar-
dial fiber and sheet orientations providing orthogonal axes of anisotropy. Based
on this data the Holzapfel-Ogden strain energy law was developed [14]. More
recently, the porcine shear experiments [8] have been repeated with 24 specimens
of human ventricular myocardium obtained very shortly after death [23]. An or-
thotropic response similar to the porcine experiments [8] was obtained.

A comparison of passive myocardial mechanics models was performed by
assuming homogeneous shear angles [20, 22] and also with finite element methods
which allowed for more flexible deformations [19, 21]. In these comparisons
models were fitted to porcine shear data [8], and showed that the Costa Law [5]
was best suited to forward simulation and inverse parameter estimation.

For clinical use determining material properties by tissue testing is unfeasible
due to the destructive nature of the tests. Therefore there has been a lot of interest
in using observations of whole organ behaviour for inverse material parameter
determination. In 2005 such an organ scale parameter estimation was performed
on ex-vivo dog hearts which were passively inflated [2]. The method proposed
in this paper was based on tagged MRI images, and was validated with a gel
phantom. Following this study the determination of material properties from in-
vivo data was only a step away. In 2009 Wang et al. [25] used in-vivo MRI data
of a dog heart, together with pressure data from a catheter, to identify parameters
of the transversely isotropic Guccione Law [11].

More recently, analysis of MRI images has enabled the study of material prop-
erties of infarcted tissue in sheep hearts [16, 18]. These studies introduced the
genetic algorithm optimization technique to cardiac mechanics. This technique
is a global optimization method that uses successive generations of material pa-
rameters in order to search the parameter space and find the best minimum. For
low-dimensional parameter sets it is a computationally expensive but effective
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method that avoids getting trapped in suboptimal minima.

Over the past couple of years there has been a push to translate computational
modelling techniques of cardiac mechanics to everyday clinical practice. Such
translational research has given rise to several studies in which data assimilation
is carried out for clinical data from human patients. In 2015 contractility param-
eters were estimated for 17 AHA zones using a derivative free subplex algorithm
for 3 patients and 3 healthy volunteers [26]. A synthetic data test confirmed the
accuracy of the technique. Such global optimizations with high dimensional pa-
rameter spaces are computationally very expensive, and for clinical applications
computational times need to be kept at a minimum. Two recent studies [1, 12]
have attempted to address this need by considering simplified models with few
parameters which are personalized by a parameter sweep technique. Furthermore
it was shown in [12] that the a-type linear parameters of the Holzapfel-Ogden law
are structurally identifiable. This means that it is possible to uniquely determine
the parameters, given sufficient information about deformation states of the heart
which can be reproduced by the mathematical model. This result is an impor-
tant first step towards a mathematical understanding of the conditions necessary
for a unique parameter estimate obtainable from clinical data. Another simplified
model, whose properties were personalized to echocardiography data, was pro-
posed in [9]. A single parameter of this model was adjusted to fit measured LV
volumes and the adjusted parameter was shown to be significantly different for
healthy and infarcted hearts.

A popular approach to parameter estimation that has arisen in recent years is
reduced order Unscented Kalman Filtering (rUKF). This approach estimates pa-
rameters sequentially, that is by considering one state of deformation at a time,
and updates the parameters after each deformation state is assimilated. This is
in contrast to variational approaches, such as the one described in Section 1.3.1,
which assimilate all the data at once. For lower dimensional parameter sets the
Kalman Filtering approach is computationally efficient and generates an estimate
of the covariance matrix of the parameters that were estimated. This matrix pro-
vides useful information about the uncertainty of the parameter estimates, and also
about possible linear coupling amongst parameters. The rUKF technique was in-
troduced in the seminal paper [17], and tested on an example of data assimilation
in cardiac biomechanics. Follow up studies showed its efficiency in a synthetic
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data test with regional AHA stiffness parameters [27], and in the estimation of
regional contractility in a model of a pig heart with a myocardial infarction [3].

Variational approaches to data assimilation using adjoint-gradients are an at-
tractive way to handle models with high dimensional parameters, as the evaluation
of the adjoint-gradient only requires a single forward and a single backward solve
of the model, regardless of the number of parameters that need to be optimized.
Pioneering work on applying this approach to cardiac mechanics was carried out
in 2009 with a simple linear viscoelastic model used to reconstruct motion from
cine-MRI images [24]. Further work was carried out in 2011 on the estimation of
contractility in scarred and healthy regions using electrophysiology and cine-MRI
data of three patients [6]. The models used in the two studies above were linear.
This linearity greatly simplifies the implementation of an adjoint solver, which
can be obtained by matrix-transposition of the original forward system. For more
realistic nonlinear models of cardiac mechanics the implementation of an adjoint
solver is more complex, requiring the solution of a separate linearized adjoint sys-
tem. The derivation and software implementation of this adjoint system has been
automated in the software dolfin-adjoint [10], which facilitates the use of adjoint
models of nonlinear mechanics in this thesis.

In this review only a small part of the field of data assimilation in cardiac
mechanics is covered. For a more comprehensive review the reader is referred to
the excellent summary provided in [4].

1.4 Summary of Papers

The work of this thesis is divided into three papers, each of which is described in
this section. In the first paper an adjoint-gradient technique is developed for the
estimation of model parameters in cardiac mechanics. In the next two papers the
adjoint-gradient methods are applied to the problems of estimating heterogeneities
in passive and active properties of in-vivo myocardial tissue.
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1.4.1 Paper I: Adjoint Multi-Start Based Estimation of Car-
diacy Hyperelastic Material Parameters using Shear Data

A method for estimating material parameters of cardiac hyperelastic models is
proposed. The method combines efficient adjoint gradient calculations as part
of a local search using a sequential quadratic programming algorithm. This lo-
cal search is embedded in a multi-start procedure; that is local optimizations are
started from many initial points in the parameter space in order to explore a va-
riety of minima. The new method is tested by estimating the parameters of the
Holzapfel-Ogden law [14] by fitting a finite element model to shear data collected
from porcine tissue samples [8]. This extends the previous work of Schmidt et al.
[19, 21] to the Holzapfel-Ogden law. The results of the study show good model-
data fits using our method, and that our adjoint-gradient implementation reaches
theoretically optimal efficiency for larger system sizes. Finally, we demonstrate
that the multi-start procedure is able to generate globally optimal minima in the
absence of a good initial guess for the local search.

1.4.2 Paper II: High Resolution Data Assimilation of Cardiac
Mechanics

In this work the adjoint-gradient methods developed in the previous paper are
used to capture spatial variations in contraction in a patient-specific model of a
dyssynchronous left ventricle. Regional strain measurements from 3-D echocar-
diography as well as pressure data from a catheter make up the clinical data of the
study. These data show great regional variation in the timing and magnitude of
wall motion, as can be expected in a dyssynchronous heart.

Adjoint-gradient based data assimilation is employed to estimate a piecewise
linear contraction field whose spatial resolution is the same as the computational
mesh representing the patient’s ventricular geometry. In total 2661 control vari-
ables are optimized. This provides the highest level of detail to date in a personal-
ized model of ventricular contraction. The simulated strains from the personalized
model match very closely to the measured strains observed in-vivo. The accuracy
and efficiency of our method opens up new possibilities for extending the capa-
bilities of medical imaging, for example by providing a simulated patient-specific
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stress field, and or a local contractility estimate.

1.4.3 Paper III: Data Assimilation of Cardiac Elastic Hetero-
geneity in an Infarcted Human

Following a myocardial infarction, patients who survive the acute effects are still
at risk of experiencing adverse ventricular remodelling and eventual heart failure.
The material properties of the patient’s ventricular tissue play a role in determining
the outcome. Overly stiff tissues resist stretching in diastole, which can impair
filling function. Conversely, overly compliant but non-contracting tissue can be
stretched in systole, thereby wasting energy which could otherwise have been used
to pump blood.

In this article we further extend our adjoint-gradient based data assimilation
to cover spatial variations in passive material properties, with the goal of creat-
ing high resolution models of infarcted hearts. Furthermore, a novel combined
pressure-free geometry and material parameter estimation algorithm is developed
in order to ensure that model strains and pressures are consistent with those ob-
served in-vivo. Our methods are applied to the case of a patient with a severe my-
ocardial infarction. Good matches to measured regional strain data are obtained
in the personalized model.

1.5 Perspectives and Future Work

The two pathologies considered in this thesis, dyssynchrony and myocardial in-
farction, can lead to large heterogeneities in ventricular tissue properties which
are highly specific to a patient. Personalized models of cardiac mechanics should
incorporate these heterogeneities in order to make model-based predictions as rel-
evant as possible. In this thesis my coauthors and I have shown that adjoint-
gradient based data assimilation methods are able to efficiently and accurately
incorporate tissue heterogeneities into personalized ventricular mechanics mod-
els. These methods were tested on clinical data from two patients, each of which
is representative of one of the two pathologies mentioned above.

Furthermore we have developed an algorithm for computing a personalized
reference geometry that matches an intermediate configuration to one observed
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in-vivo. This leads to a personalization of passive tissue properties which gives
left ventricular cavity pressures and wall strains that are consistent with their cor-
responding in-vivo measurements.

Further work is required to establish the utility of the adjoint-gradient based
methods for clinical purposes. Firstly, more clinical cases need to be considered
in order to establish a method that is widely applicable. Secondly, the information
provided by the personalized models needs to be tested to see if it can improve
the diagnosis and or treatment of cardiac diseases. Finally, the resolution of the
heterogeneous parameter fields should be optimized. Higher resolutions can po-
tentially capture more of the details of a patient’s specific mechanical situation.
Lower resolutions on the other hand can potentially result in simpler optimization
problems with less iterations needed to find a minimum, and fewer minima that
need to be explored.
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Abstract: Cardiac muscle tissue during relaxation is commonly modelled as a hy-
perelastic material with strongly nonlinear and anisotropic stress response. Adapt-
ing the behavior of such a model to experimental or patient data gives rise to a
parameter estimation problem which involves a significant number of parameters.
Gradient-based optimization algorithms provide a way to solve such nonlinear pa-
rameter estimation problems with relatively few iterations, but require the gradient
of the objective functional with respect to the model parameters. This gradient has
traditionally been obtained using finite differences, the calculation of which scales
linearly with the number of model parameters, and introduces a differencing error.
By using an automatically derived adjoint equation, we are able to calculate this
gradient more efficiently, and with minimal implementation effort. We test this
adjoint framework on a least squares fitting problem involving data from simple
shear tests on cardiac tissue samples. A second challenge which arises in gradient-
based optimization is the dependency of the algorithm on a suitable initial guess.
We show how a multi-start procedure can alleviate this dependency. Finally, we
provide estimates for the material parameters of the Holzapfel and Ogden strain
energy law using finite element models together with experimental shear data.

26



2.1 Introduction

The personalization of computational models in cardiology is a key step towards
making models useful in clinical practice and cardiac surgery. A computational
model, once properly calibrated, has the potential to forecast cardiac function
and disease, and can aid in planning treatments and therapies. To describe the
mechanical function of the heart, the passive elasticity of the muscle tissue needs
to be represented. Personalizing the effects of this elasticity in a computational
model is typically accomplished by tuning a set of material parameters so that the
output of the model fits observed data. Gradient-based optimization algorithms
have successfully been used in the past to automatically perform the parameter
tuning at an organ scale [2, 28]. In these studies, the gradient of the objective
functional is approximated using one-sided finite differences.

Compared to using a global optimization method, local gradient-based meth-
ods have the advantage of using relatively few optimization iterations. This is
an important consideration when optimizing organ scale finite element models,
for which running a single forward model can take hours or days. On the other
hand, a disadvantage of using local optimization methods is the fact that they can
converge to local, globally suboptimal, minima. One way to combine the speed
of a local optimization with the robustness of a global optimization is to use the
multi-start method. In this method, many local optimizations are run starting from
various points in parameter space and the best fitting solution of the group is taken
to be the global optimum.

Another popular approach to parameter fitting is the reduced order unscented
Kalman filter. This approach was successfully used to fit a transversely isotropic
passive mechanics model to synthetic data [30], to partially calibrate a multi-
physics model [20], and to estimate regional contractility parameters [5]. Note
however that the use of both unscented Kalman filtering and finite differences
carries a computational cost that increases with the number of model parameters.

Assuming there are k parameters to be estimated, an unscented Kalman filter
with a minimal sigma-point configuration requires k + 1 model evaluations at a
single time level for each assimilated data point. An evaluation of a finite differ-
ence derivative on the other hand requires k + 1 runs of the model throughout the
full span of model configurations considered.
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In contrast to these two techniques, the adjoint approach computes the objec-
tive functional gradient via the solution to an adjoint equation, which involves
only a single solve of a linearized system for any number of model parameters.
Thus, for models involving many parameters, either due to model complexity or
spatiotemporal parameter variation, the adjoint approach offers a computationally
attractive approach for parameter estimation.

There are some previous results involving adjoint equations and cardiac elas-
ticity. Sundar et al. (2009) developed a framework for the estimation of wall
motion based on cine-MRI images and adjoint inversion [25], and Delingette et
al. (2012) used an adjoint equation to estimate contractility para meters [7]. How-
ever, both of these studies involve linear and isotropic elasticity models, which
represent a significant simplification of the orthotropic and highly nonlinear be-
havior reported in the contemporary cardiac mechanics literature [6, 8, 15].

One reason why it is difficult to use an adjoint equation with modern nonlinear
anisotropic models is the complexity required in deriving and implementing code
for the solution of the adjoint problem. In order to resolve this issue, we make
use of an automatic framework for generating adjoint code [9]. Here, we use this
adjoint framework to estimate the material parameters of an invariant-based or-
thotropic myocardial strain energy law (the Holzapfel-Ogden model) [15]. This
law is embedded here in an incompressible finite element framework, and we use
the raw data from a simple shearing experiment [8] as a target for optimization.
These data have previously been used to estimate material parameters for a va-
riety of other strain energy functions using a finite element framework, but with
a gradient obtained using finite differences [23, 24]. The material parameters of
the particular strain energy density that we are using have also been previously
estimated using digitized data based on Figure 6 of [8], and a homogeneous de-
formation model [12, 15, 27]. Our study is however the first to use the adjoint
approach for the estimation of cardiac hyperelasticity parameters and the first to
provide optimized material parameters for the incompressible Holzapfel-Ogden
model for non-homogeneous deformations.

The rest of this paper is organized as follows. In Section 2.2 we describe
the variational formulation of the elasticity model, the optimization problem for
identifying the material parameters, and how the adjoint gradient formula can be
used to calculate a functional gradient. In Section 2.3 we describe the verification
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of the forward and inverse solvers, present timings to show the efficiency of the
adjoint method, and show the results of parameter estimations. Finally, we test a
multi-start optimization method in order to reduce the dependence of the gradient-
based algorithm on the choice of initial parameter set. We conclude by discussing
our findings in Section 2.4, and drawing some conclusions in Section 2.5.

2.2 Mathematical models and methods
We shall use the notion of the directional derivative frequently throughout. For
a functional f : Y → R for some vector space Y , we define the directional
derivative of f with respect to the argument named y in the direction δy

Dyf(y)[δy] ≡ ∂

∂ε
f(y + ε δy)

∣∣∣
ε=0
.

Furthermore we denote the total derivative by the usual notation Df
Dy

to mean the
derivative of f with respect to all arguments depending on y.

2.2.1 Hyperelasticity model

Let Ω ⊂ R3 be an open and bounded domain with coordinates X and boundary
∂Ω, occupied by an incompressible hyperelastic body. We consider the quasi-
static regime of a body undergoing a large deformation x = x(X) and are inter-
ested in finding the displacement u = u(X) = x−X and the hydrostatic pressure
p = p(X) that minimize the incompressible strain energy Π = Π(u, p,m):

Π(u, p,m) =

∫
Ω

ψ(C,m) + p(J − 1) dx (2.1)

over the space of admissible displacements and pressures satisfying any given
Dirichlet boundary conditions. In (2.1), m is a set of material parameters, J =

detF, where F = Gradx = Gradu+ I denotes the deformation gradient, I is the
identity tensor in R3, C = J−

2
3FTF denotes a volume-preserving right Cauchy-

Green tensor, and ψ denotes an isochoric strain energy density.
The incompressible Holzapfel and Ogden hyperelasticity model [15] describes

large deformations and stresses in cardiac tissue via the following energy density
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ψ:
ψ(C,m) =

a

2b

(
exp

[
b(I1(C)− 3)

]
− 1
)

+
∑
i=f,s

h(I4i(C))ai
2bi

(
exp

[
bi(I4i(C)− 1)2

]
− 1
)

+
afs
2bfs

(
exp

[
bfsI

2
8fs(C)

]
− 1
)
.

(2.2)

Here f, s denote fiber and sheet directions, respectively; h(x) is a Heaviside func-
tion with a jump at x = 1, and the material parameters are

m = (a, b, af , bf , as, bs, afs, bfs). (2.3)

Moreover, I1, I4s, I4f , I
2
8fs are rotation invariant functions given by

I1(C) = trC
I4i(C) = ei·Cei i = f, s

I8fs(C) = es·Cef

(2.4)

where tr denotes the tensor trace and ef , es denote unit vectors pointing in the
local myocardial fiber and sheet directions [15]. The strain energy density ψ is
rotation-invariant, and polyconvex if m > 0 [15].

The Euler-Lagrange equations for the minimizing displacement u and pressure
p of (2.1) read: for given m, find w = (u, p) such that

R(w,m; δw) ≡ Du,pΠ(u, p,m)[δu, δp] = 0, (2.5)

for all admissible virtual variations δw = (δu, δp). Inserting the total potential
energy from (2.1) and taking the directional derivatives, we obtain

Du,pΠ(u, p,m)[δu, δp] =

∫
Ω

((
∂ψ(C,m)

∂F
+ pJF−T

)
: Gradδu + (J − 1)δp

)
dx.

(2.6)
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2.2.2 Parameter estimation as a PDE-constrained optimization
problem

In the general case, the passive material parameters m entering the constitutive
relationship (2.2) are not known. In order to estimate these parameters from data,
we propose to use a numerical approximation in combination with a gradient-
based optimization algorithm in which the gradients are computed via an adjoint
model. The optimization algorithm seeks to minimize the misfit between model
output and observations. Denoting the misfit functional by I = I(w(m),m), the
optimization problem reads:

min
m

I(w(m),m) subject to R(w,m; δw) = 0 ∀δw ∈ W, (2.7)

together with suitable Dirichlet boundary conditions on w. We also require that
m > 0 to ensure the functional (2.1) is polyconvex [15]. For notational conve-
nience we will sometimes use the reduced formulation of the misfit functional and
its gradient with respect to the material parameters m. In particular, we introduce
the reduced functional Î

Î(m) ≡ I(w(m),m). (2.8)

In our numerical experiments we use Sequential Least Squares Programming
(SLSQP) as implemented in [? ] and wrapped in the package SciPy [17] in order
to solve (2.7).

2.2.3 Multi-start Optimization

A common challenge with gradient-based algorithms is that the solution obtained
depends on the choice of initialization point for the algorithm. Moreover, the
optimized solution may be a local minimum only and not necessarily a global
minimum. One way to attack these issues is to run many optimizations from
randomly chosen initial parameter points, and to chose the resulting optimized
material parameter set that gives the best fit. This method is often referred to
as multi-start optimization [4] and is an example of combining global and local
optimization.

Due to the presence of exponential functions in the strain energy (2.2), it is
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possible for calculated stresses to become very large, which may result in con-
vergence issues for the numerical solution of the Euler-Lagrange equation (2.5).
This can easily occur if several material parameters have large values. In order
to minimize this problem we have designed a procedure to generate random ini-
tial guesses which limits the number of large material parameter values while still
allowing for a large range of initial possible values for each parameter. The pro-
cedure works as follows: first set a maximum parameter value Pmax. Then choose
N (with N = 8 in our case) points pi, i ∈ {1, 2, 3...n}, from a uniform distribu-
tion defined over the interval [0, Pmax] and let p0 = 0. The parameter values mi

are then set to be the distances between successive randomly drawn points, that is
mi = pi − pi−1.

2.2.4 Computing the functional gradient via the adjoint solu-
tion

Gradient-based optimization algorithms in general, and the SLSQP algorithm in
particular, rely on the total derivative of the objective functional (2.8). By intro-
ducing an adjoint state variable, this derivative may be computed efficiently. We
summarize this result below. Our presentation is based on [14], and is adapted
here to the solid mechanics setting.

We define three abstract spaces W , M , and Φ, where W is the space of all
possible solutions to the variational equation (2.5) which also satisfy any given
Dirichlet boundary conditions, M is the material parameter vector space, and Φ is
the space of virtual variations. The Lagrangian L : W ×M × Φ → R is defined
as:

L(w,m, φ) = I(w,m)−R(w,m;φ). (2.9)

For all m ∈M , w ∈ W solving the state equation (2.5), we have

D

Dm
R(w(m),m;φ) = 0,

such that the total derivatives of I and L coincide,

D

Dm
I(w(m),m) =

D

Dm
L(w(m),m, φ). (2.10)
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If we choose φ ∈ Φ such that

DwL(w,m, φ)[δw] = 0 (2.11)

for all δw ∈ W , which in particular includes δw = Dmw(m)[δm], the total
derivative of L with respect to m in the direction δm simplifies as follows using
the chain rule:

D

Dm
L(w(m),m, φ) = DwL(w,m, φ)[Dmw(m)[δm]] +DmL(w,m, φ)[δm]

= DmL(w,m, φ)[δm]

(2.12)

Then, for any infinitesimal variation in the material parameters δm, combin-
ing (2.10), (2.12), and (2.9) yields an efficient evaluation formula, not requiring
derivatives of the state variable w with respect to the material parameters m, for
the total derivative of I:

D

Dm
I(w(m),m) = DmI(w,m)[δm]−DmR(w,m, φ)[δm]. (2.13)

We still need to compute φ. By defining the form Rw and its adjoint R∗w,

Rw(w,m; δw, φ) ≡ DwR(w,m;φ)[δw],

R∗w(w,m;φ, δw) ≡ Rw(w,m; δw)[φ],

we can rewrite (2.11) as

DwL(w,m, φ)[δw] = DwI(w,m)[δw]−R∗w(w,m;φ, δw) = 0,

and thus recognize the adjoint equation: given m, w, find φ ∈ Φ such that

R∗w(w,m;φ, δw) = DwI(w,m)[δw] (2.14)

for all δw ∈ W .

In summary, the adjoint-based gradient evaluation formula is: given m, first
compute w by solving the state equation (2.5), next compute φ by solving (2.14),
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and finally evaluate (2.13).

2.2.5 Description of shearing experiments

We aim to optimize the material parameters of the Holzapfel-Ogden model (2.2)
with respect to target experimental data, in particular data resulting from an earlier
set of simple shearing experiments [8]. In these experiments, 6 pig hearts were
extracted. From each heart, three adjacent 3mm×3mm×3mm cubic blocks were
cut in such a way that the sides of the cubes were aligned with the local myocardial
fiber and sheet directions. A device held two opposing faces of each cube between
two plates using an adhesive. The top plate was displaced in order to put each
specimen in simple shear. For each specimen 6 different modes of shear were
tested. These modes are described using the F, S,N coordinate system, which
refer to the myocardial fiber, sheet and sheet normal directions, respectively. Each
mode is denoted by two letters, where the first defines the normal of the face of the
cube that is being displaced, and the second refers to the direction of displacement.
These 6 modes are FS, FN, SF, SN,NF,NS.

In order to remove the effects of strain softening, preliminary displacements
were applied to the tissue samples until no further softening was observed. After
that, displacements were once again applied, and the forces in the shear direction
were measured on the top plate. These measurements were taken for circa 200−
250 various states of shear per mode.

In Figure 2.1 we display the stress-strain relations for positive displacements
that were obtained from the shearing experiments [8]. As can be seen in Figures
4 and 6 of [8] the experimentally obtained curves contain a high degree of sym-
metry through the line y = −x. We can expect the same symmetry in the stresses
computed by finite element models which use the strain energy (2.2) since chang-
ing the sign of the displacement map will change the sign of the resulting stresses
but preserve their magnitude. In the previous studies [15], [12], and [27], only the
data for positive shear displacements were used. For the sake of comparability,
we restrict our data in the same way.

In our numerical experiments we use two data sets with reference to the num-
bering of [8]. The first is Data Set 6, and the second data is Data Set 2 with the
SF and SN curves swapped. This swap and the choice of data sets are discussed
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Figure 2.1: Stress-strain relations, numbered 1 through 6, obtained from simple
shearing experiments performed on 3mm × 3mm × 3mm cubes of myocardium
extracted from 6 porcine hearts. The modes are ordered from highest to lowest
stiffness in each experiment. The data originates from the study [8], but were not
published in the subsequent article. In Experiment 4 the data for one of the NS-NF
curves was copied into the other before we received it, so the two curves lie here
on top of one another.
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further in Section 2.4. For clarity, we shall refer to Data Set 6 as "transversely
isotropic" and Data Set 2 with the swap as "orthotropic", as the respective stress-
strain curves are typical of materials of these types. For each mode, the prescribed
shear displacement is modelled as a Dirichlet boundary condition for the displace-
ment on the respective top and bottom faces in the respective direction.

2.2.6 Choice of objective functional

In order to estimate the passive material parameters of the Holzapfel-Ogden model,
we make use of a least squares objective functional. This functional defines a dis-
tance from the model output to the data points of the shearing experiment, and
we seek the material parameter set m that minimizes this. Before introducing our
objective functional, we define the set of directions D = {F, S,N}, referring to
fiber, sheet and sheet normal directions. We also use the notation (i, j) to refer to
a mode, with the index i referring to the normal of the face that is shifted, and j
to the direction in which the shift occurs.

Our fit function is similar to that used in [22], and is given by

Î(m)2 =
∑
i∈D

∑
j∈D

G∑
k=1

ωk
(
ti,jmodel(ck,m)− ti,jexper(ck)

)2
(2.15)

In (2.15), ti,jexper is the force measured during the experiment, and ti,jmodel is the force
generated by the finite element model at each prescribed shear displacement ck ∈
[0, Ci,j], where Ci,j is the maximal prescribed displacement of the mode (i, j)

in the experiment. Each ck is chosen to be a Gauss point of a G-point Gauss
integration rule defined over [0, Ci,j], and ωk is the value of the Gauss weight
related to ck. Explicitly, for mode (i, j) with top face ∂Ωi, t

i,j
model is given by

ti,jmodel(ck,m) =

∫
∂Ωi

∂ψ(u(ck),m)

∂Fi,j

dS, (2.16)

where Fi,j = ei·Fej is a shear component of the deformation gradient.
Evaluating the inner loop of Î requires solving (2.5) once for each given shear

displacement ck. The motion given by the calculated displacements is then a
quasi-static approximation of the motion undergone by the corresponding tissue
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in the shearing experiment.
Following [22], we evaluate the least squares fit (2.15) at G Gauss integration

points, rather than for all 250 recorded points for each shear mode, in order to
greatly reduce the computational expense of evaluating Î . At each Gauss point
we obtain the corresponding shear stress by linearly interpolating between the
two neighbouring stresses which were recorded in the experiments of Dokos et
al. [8].

The use of Gauss integration is based on the observation that Î(m) is an ap-
proximation to the following expression(∑

j∈D

∑
i∈D

∫ Ci,j

0

(
ti,jmodel(c,m)− ti,jexper(c)

)2

dc

) 1
2

. (2.17)

By setting ti,jmodel = 0 and approximating the integral by the midpoint rule ap-
plied to the full dataset we can determine the quality of the Gauss approximation.
In order to do this we define the relative error

εrel =

∣∣∣∣∣ Î − ÎmidÎmid

∣∣∣∣∣ , (2.18)

where Imid is the midpoint rule approximation of (2.17) evaluated over the full
data, and I , given by (2.15), is evaluated at a reduced set of Gauss points. We
noticed that 9 Gauss points are sufficient to reduce εrel to less than 0.01. However,
in our numerical experiments we use G = 40 Gauss points as this guaranteed
small enough changes in the solution of the Euler-Lagrange equation (2.5) from
one Gauss point to the next, so that our Newton’s method solution of (2.5) always
converged.

2.2.7 Finite element discretization of the hyperelasticity equa-
tions

We represent each tissue sample of the shearing experiments by a three-dimensional
cube Ω = [0, 3]3 (mm3). AnN×N×N mesh of this cube was constructed by uni-
formly dividing the mesh into N ×N ×N boxes and then subdividing the boxes
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into tetrahedra. The local myocardial fiber and sheet orientations were represented
as spatially constant vectors aligned with the coordinate axes.

On these geometries, we solve (2.5) and its adjoint, using a Galerkin finite
element method with the Taylor-Hood finite element pair [16]; e.g. a continuous
piecewise quadratic vector field for the displacement and a continuous piecewise
linear scalar field for the pressure. For the solution of the nonlinear system of
equations, we use a Newton trust region method. The absolute tolerance of the
nonlinear solver was set to 10−10 in the numerical experiments below. Linear
systems are solved by LU factorization.

Additionally, we model the case of a homogeneous deformation which cor-
responds to a linear displacement with a constant shear angle throughout the do-
main. Such a model can be represented by discretizing the cubes with a single
layer of linear finite elements: the resulting displacement is completely deter-
mined by the prescribed boundary conditions. Figure 2.2 illustrates the two kinds
of deformations on cube meshes.

0.1 0.2 0.3 0.4 0.5

Shear Strain

0.00359 0.545

Figure 2.2: Finite element representation of cubes of cardiac tissue undergoing
simple shear in the NS mode. The bottom of the cube is fixed and the top dis-
placement is given. Left: homogeneous deformation with a constant shear angle.
Right: finite element solution on a 6 × 6 × 6 mesh. The plot shows the value of
the NS-component of the right Cauchy Green tensor C.
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The discrete variational formulation of the Euler-Lagrange equations is imple-
mented using the FEniCS Project software [1, 19] and dolfin-adjoint [9]. From a
FEniCS forward model, dolfin-adjoint automatically generates the symbolic ad-
joint system of equations and computes the functional gradient (2.13) using the
adjoint solution. The FEniCS framework automatically generates and compiles
efficient C++ code for the assembly of the relevant linear systems from the sym-
bolic representations of both forward and adjoint equations, and solves the non-
linear and linear systems using e.g. PETSc [3]. With this setup, we observed that
a typical solution of the Euler-Lagrange equation (2.5) takes 6 Newton iterations.

2.3 Numerical Results

2.3.1 Verification

Each of the finite element, adjoint, and optimization solvers have been carefully
verified, separately and combined, as follows:

(i) The finite element solver was verified by the method of manufactured so-
lutions [21]. Following this method we chose an analytic expression for the dis-
placement and pressure fields

u =
(
tx3, y

(
1

3tx2+1
− 1
)
, 0
)

p = 0.
(2.19)

Here x, y refer to Cartesian coordinates and t is a scaling parameter which we
set to t = 0.2. Using this analytic expression we derived Dirichlet boundary
conditions over a unit cube, and a loading term f which satisfied a pointwise form
of equation (2.6)

∂ψ(C,m)

∂F
+ pJF−T = f in Ω. (2.20)

Note that the chosen displacement field satisfies the incompressibility constraint
J − 1 = 0. We then computed finite element approximations to (2.19) and ob-
served the expected second-order convergence of the displacement gradient to the
analytical displacement gradient [16].

(ii) We verified the computation of stresses in the finite element model by
prescribing a homogeneous deformation and comparing the resulting numerically
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integrated top face shear stress values to analytically computed values. The an-
alytic values were based on the calculations found in [15, Section 5a] and the
numerical values were observed to match closely.

(iii) We confirmed the correctness of the adjoint gradients by considering the
linearization of the functional Î(m) around m with perturbation ∆m and using
Taylor’s theorem: the expression

Î(m)− Î(m + ∆m) +
DÎ(m)

Dm
(∆m) = O(∆m2) (2.21)

converged to 0 at a rate of 2 as ∆m −→ 0, which can only be expected if DÎ(m)
Dm

is computed accurately.

2.3.2 Parameter estimation with synthetic data

Additionally, we verified the optimization solver by performing a synthetic data
test. In this test we chose a target set of material parameters, Table 2.1, 2nd line,
and used them to compute synthetic integrated stress values for all 6 shear modes
of the tissue experiment [8]. These synthetic stresses were then matched by an
optimization starting from material parameter values 25% higher than the target.

We performed this test using our two models for deformation. The first model
assumed a homogeneous shear angle through the material and the second model
was a finite element model with a 1× 1× 1 mesh. Since the displacement field of
the finite element model was element-wise quadratic, it allowed for more flexibil-
ity in the deformation field. The results of this synthetic data test are presented in
Table 2.1 and show that the optimization algorithm was able to closely match the
target material parameters.

2.3.3 Parameter estimation with experimental stress data

In the following, we present the results of fitting the Holzapfel-Ogden strain en-
ergy law (2.2) using the objective function (2.15) and a SLSQP optimizer with
bound constraints. The SLSQP algorithm makes use of the gradient of the objec-
tive functional which we obtain using the adjoint gradient formula (2.13).
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Table 2.1: Synthetic data test results. The first row (Initial) contains the material
parameter values used to initialize the algorithm, while the second row (Target)
contains the parameters that were used to generate the synthetic stresses. The
rows marked ’Homogeneous’ and ’Finite Element’ contain optimized parameter
values coming from homogeneous deformation and finite element models. These
optimized values are matched perfectly by the optimized homogeneous model and
very closely by the finite element model.

a b af bf as bs afs bfs I
(kPa) (kPa) (kPa) (kPa) (mN)

Initial 0.059 8.023 18.472 16.026 2.481 11.120 0.216 11.436
Target (80%) 0.047 6.418 14.778 12.821 1.985 8.896 0.173 9.149
Homogeneous 0.047 6.418 14.778 12.821 1.985 8.896 0.173 9.149 4.611 ×10−8

Finite Element 0.047 6.406 14.778 12.821 1.983 8.938 0.173 9.155 0.00082

As the numerical solution of the nonlinear Euler-Lagrange equation (2.5) eas-
ily fails to converge when a material parameter becomes too small, we set a lower
bound of 1.0 × 10−2 on the components of m while optimizing finite element
models. This bound was not necessary for the homogeneous deformation models
as no Euler-Lagrange equation is solved. All optimizations were carried out until
the optimizer was unable to further reduce the objective functional or an absolute
tolerance of 1.0× 10−6 in the 2-norm of the functional gradient was reached.

Material parameter estimation using a priori knowledge

The material parameters of the Holzapfel-Ogden model have previously been es-
timated using a homogeneous deformation model (Table 1, 2nd row in [15]). We
first used these values as the initial values for optimization of our homogeneous
model targeting the transversely isotropic and orthotropic data sets. The optimized
results are listed in Table 2.2 with the label Homogeneous.

We next consider finite element models that allow for heterogeneous shear dis-
placements. Beginning with a 1× 1× 1 cube and the optimal material parameters
from the homogeneous model as initial values, we computed optimal values for
the 1 × 1 × 1 case. This procedure was repeated for N × N × N cubes with
N = 2, 4, 6, 8, using the results of the previous optimization as the initial condi-
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tion for the next case. The resulting parameter values are presented in Table 2.2,
and the corresponding optimal stress-strain curves are shown in Figure 2.3.

We note that going from N = 8 to N = 10 using both the transversely
isotropic and the orthotropic data does not change the material parameters rounded
to two 2 significant digits, and therefore consider our finite element models to be
sufficiently refined at this resolution. We also note that the fit values, I , decreased
with mesh refinement up to about 2 digits accuracy. We expect this decrease since
increased mesh refinement gives more flexibility in the deformation field of the
finite element model.

Material parameter estimation using multi-start optimization

In this section, we present the results of using the multi-start method to estimate
the optimal material parameters, rather than relying on a good initial guess. For
the calculation of random initial guesses we set Pmax = 40, cf. Section 2.2.3. This
value is close to the largest material parameter found in Table 2.2. Note that this
choice gives a conservative set of initial parameters for the optimization algorithm
(low initial values) which in turn enhances the robustness of the procedure. We
also set 60 as an upper bound for each material parameter value during the opti-
mization. Without this upper bound we observed that many optimizations crashed
or converged to suboptimal local minima.

In each multi-start experiment, 30 random starting points were used. The mesh
fineness was set to the level of N = 8, which was sufficient to give converged ma-
terial parameter sets when using a priori knowledge in Section 2.3.3. In Table 2.3
we present the best fitting results of the multi-start experiments and note that they
are very close to those obtained with a priori knowledge in Table 2.2.

Objective functional values for alternative material parameters

Several other studies [12, 15, 27] have used of the Dokos et al. 2002 shear data [8]
to calibrate the Holzapfel and Ogden strain energy (2.2). These studies used ho-
mogenized deformation models for the optimization. In Table 2.4 we list the
computed objective functional value of parameter sets originating from previous
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Figure 2.3: Comparison of optimized model stress-strain curves with experimen-
tal data. The dots are interpolated experimental data at Gauss points, the solid
lines show the output of the finite element models with N = 8 elements per edge
of the cube.
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Table 2.3: Results of fitting material parameters to the transversely isotropic and
orthotropic data sets using the multi-start method. The rows labeled ’Best Mul-
tistart’ correspond to the optimizations with the lowest misfit value I . The rows
labeled ’N = 8’ are copied from Table 2.2 for reference.

a b af bf as bs afs bfs I
(kPa) (kPa) (kPa) (kPa) (mN)

Transversely
Isotropic

N = 8 0.784 6.973 21.149 40.584 0.010 0.010 0.145 16.401 2.815
Best Multistart 0.795 6.855 21.207 40.545 0.010 0.010 0.130 17.446 2.802

Orthotropic
N = 8 0.962 7.510 28.649 15.806 2.044 0.010 0.122 23.027 3.899
Best Multistart 0.964 7.510 28.654 15.791 2.051 0.010 0.118 23.230 3.959

studies using the orthotropic dataset and finite element model (N = 8). The
results indicate that our parameter set fits these data better than the previously
computed ones.

We also note that our finite element parameter set with finite element model
has a better fit value than the homogeneous parameter set with the homogeneous
model. Indeed we expect the finite element fit to be at least as good as the ho-
mogeneous fit, as the finite element model allows for greater flexibility in the the
deformation field, above and beyond that of the homogeneous model.

2.3.4 Computational efficiency of the adjoint-based functional
gradient

Adjoint solver efficiency may be measured by comparing the runtime of the ad-
joint and forward solves. Here, we examine the overall gradient efficiency in a
similar manner. We consider the evaluation of the gradient of the objective func-
tional (2.15), though in a reduced case with only a single shear mode included
in the sum and a reduced forward solve consisting of a single nonlinear solver
iteration. In this case, the forward and adjoint models each consist of a single
linear solve in addition to a number of residual evaluations. For larger linear
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Table 2.4: Holzapfel-Ogden law parameter estimates from this and previous stud-
ies. Ifem indicates the value of the fit function (2.15) with model stresses from a
finite element model (N = 8), and Ihom the value of the same fit function but with
model stresses computed with a homogeneous deformation model. The material
parameters of the last two rows originate from homogeneous and finite element
model fits respectively in Table 2.2. Note that objective functional (I-) values for
parameter sets from other studies are obtained using the orthotropic data used in
this study (experimental data), and not the data used in the studies the parameter
sets originate from (digitized data).

Source a b af bf as bs afs bfs Ihom Ifem
(kPa) (kPa) (kPa) (kPa) (mN) (mN)

1 0.059 8.023 18.472 16.026 2.481 11.120 0.216 11.436 36.143 36.825
2 0.496 7.209 15.193 20.417 3.283 11.176 0.662 9.466 28.583 29.480
3 0.2362 0.810 20.037 14.154 3.7245 5.1645 0.4108 11.300 33.271 34.195
4 0.556 7.940 33.366 14.224 2.804 0.0001 0.587 8.216 6.804 9.653
5 0.962 7.510 28.649 15.806 2.044 0.010 0.122 23.027 41.622 3.899

1 Holzapfel and Ogden 2009 2 Goektepe et al 2011 3 Wang et al 2013 4 cur-
rent (hom) 5 current (fem).
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system sizes, the runtime of a linear solve is expected to dominate the runtime
of assembly, and thus these forward and adjoint models are of roughly the same
computational expense.

For this reduced case, we evaluated the adjoint-based gradient for a range of
linear system sizes. For each system size, we calculated the gradient runtime ratio;
that is, the runtime used by the evaluation of the gradient divided by the runtime
of the forward solve. The resulting ratios are plotted in Figure 2.4. The curve
indicates that the gradient run-time ratio gets close to the theoretically optimal
value of 1 as we increase the system size.
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Figure 2.4: Gradient efficiency: ratio of gradient evaluation runtime over single
Newton iteration runtime for increasing linear system sizes.
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2.4 Discussion

2.4.1 Choice of shearing experiment datasets

Of the six shearing experiment datasets, cf. Figure 2.1, we have used two for
parameter estimation. One of the reasons for this choice is an incompatibility of
most of the datasets with assumptions made in the design of the strain energy
functional (2.2). In particular, the strain energy (2.2) dictates an ordering of the
shear mode stiffnesses in the case of a homogeneous shear displacement. We can
see this by adapting the analysis that leads to equations (5.23) – (5.28) of [15].
In this analysis a parameter γ is introduced to represent the amount of simple
shear displacement present in a homogeneous deformation. For example for the
FS mode

F =

1 γ 0

0 1 0

0 0 1

 . (2.22)

Using this deformation gradient, and the respective deformation gradients of the
other modes, the shear component of the Cauchy stress σ in the shearing direction
can be calculated for each mode. If we consider the same invariants as in (2.2),
that is I1, I4f , I4s, I8fs, and use the notation ψi = ∂ψ

∂Ii
, we arrive at the following

equations for shear stress as a function of shear displacement

(FS): σFS = 2(ψ1 + ψ4f )γ + ψ8fs,

(FN): σFN = 2(ψ1 + ψ4f )γ,

(SF): σSF = 2(ψ1 + ψ4s)γ + ψ8fs,

(SN): σSN = 2(ψ1 + ψ4s)γ,

(NF): σNF = 2ψ1γ,

(NS): σNS = 2ψ1γ.

(2.23)

For further details regarding the derivation of these equations we refer the reader
to [15]. The simple shear stresses (2.23) reveal two assumptions built into the
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design of (2.2), namely for homogeneous simple shear deformations

σFS ≥ σFN ≥ σNF ,

σSF ≥ σSN ≥ σNF .
(2.24)

Out of the six datasets, only one is consistent with these orderings, namely
the 6th one, which was used here under the label transversely isotropic. In this
dataset the stress-strain relationship is typical of a transversely isotropic material
with a stiffer fiber direction. In several other cardiac mechanics simulation stud-
ies [10, 11, 18], the Holzapfel and Ogden energy functional (2.2) has been sim-
plified to model transversely isotropic behavior by removing the terms involving
the invariants I4s, I8fs. For such a simplified model one could use the parameter
estimates for a, b, af , bf that we obtained from the Transversely Isotropic dataset.

However, the Holzapfel and Ogden model was originally proposed to model
orthotropic behavior. This motivates also targeting a dataset displaying fully or-
thotropic properties. In particular, dataset 2 in Figure 2.1 is such and compares
well with Figure 6 of [8] and Figure 2 of [15]. By switching the SF and SN
curves of Dataset 2 we were able to reinterpret this data in a way that is consistent
with the interpretation in [15], and the shear stiffness orderings (2.24).

2.4.2 Discussion of optimal material parameter values

We have obtained two sets of material parameters: one corresponding to an or-
thotropic case and one corresponding to a transversely isotropic case. We observe
that for both sets of material parameters, the bs parameter essentially vanishes.
For the Transversely Isotropic case, both as and bs essentially vanish, which is
in excellent agreement with the transversely isotropic stress-strain pattern. Fur-
thermore we note that the magnitude of both as and bs parameters in the best
fitting parameter sets presented in Table 2.3 are very small. In light of the shear
stress calculations (2.23) we can see that the as and bs parameters are related to
the degree of extra stiffness in the sheet direction over the sheet normal direction.
Indeed when we examine the shear data, Figure 2.3, we can see that the SN−SF
curves are only slightly stiffer than the NF −NS curves, which explains why the
optimal values of as and bs are so small.
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Comparing the orthotropic material parameter values to the previously pub-
lished values in Table 2.4, we observe that the fit of our material parameters is
better. This was expected since we used a finite element model which did not
include a homogeneous shearing angle assumption and hence was able to more
realistically model the motion of the cubes in the shearing experiment. We note
that our material parameters differ from those previously published, and also that
there is a significant variability in the parameter values previously reported. Some
of this variability is most likely due to the differences in the selection of points
during the digitization of [Figure 2 of [15]], which was done in the studies whose
material parameter sets we compare in Table 2.4. By using original data from the
shearing experiment, we were able to remove the uncertainty due to digitization
in our parameter estimates. Finally we note that even after the SF-SN curves are
swapped in Dataset 2 of Figure 2.1, there are still minor differences when com-
pared to [Figure 7 of [15]] and [Figure 3 of [12]] and [Figure 4 of [27]]. This
also explains why our parameter sets differ from those calculated in the previous
studies.

2.4.3 Computing functional gradients in cardiac mechanics

Figure 2.4 demonstrates that the computational cost of the adjoint gradient com-
putation is comparable to that of a single iteration of the nonlinear solution al-
gorithm of (2.5) for larger system sizes. For smaller system sizes, the cost of
symbolic computation and the cost of residual and Jacobian assembly contribute
significantly yielding higher ratios – as expected. Wang et al.’s 2013 simulations
of a human left ventricle in diastole use system sizes of approximately 100 000

degrees of freedom [27]. Given the trend in Figure 2.4, we can expect that the
adjoint method and solver implemented in this work will continue to be efficient
at this scale and beyond.

Comparatively, assuming the use of Newton’s method for the solution of non-
linear systems, the evaluation of a finite difference gradient requires a linear sys-
tem assembly and solve for each Newton iteration, and one nonlinear solve is re-
quired per component of the gradient. Counting the 8 parameters in the Holzapfel-
Ogden model (2.2), and assuming a typical solution of the Euler-Lagrange equa-
tion (2.5) takes 6 Newton iterations, we can expect the computational cost of finite
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difference gradient evaluation to be circa 48 times greater than that of the adjoint
method.

In the optimization results of Table 2.2, we observed iteration counts of up to
44 for the optimization of 8 parameters using our gradient-based method. This
compares favorably with the circa 7000 iterations needed to estimate 9 parameters
using a global method in [Figure 5 of [29]].

2.4.4 Implications for organ-scale image-based parameter es-
timation with spatially resolved material parameters

Although we have tested our adjoint-based multi-start optimization method on
the 2002 shear data of Dokos et al [8], we believe our methods will provide the
biggest advantage in the case of optimizing cardiac model parameters in high
spatial resolution at the organ scale to MRI or echocardiographic image data. In
this case the high spatial resolution would allow for detailed modelling of regional
differences in tissue stiffness, which is for example present in patients with post-
infarct fibrosis.

In such an application a model parameter could be represented as a finite el-
ement function similarly to the displacement or hydrostatic pressure fields (u, p).
Doing this would increase the number of components of the gradient DÎ

Dm
by the

number of degrees of freedom needed to spatially represent the parameter of inter-
est. Using a finite difference or reduced order Kalman filter approach in this case
would require an additional evaluation of the Euler-Lagrange equation (2.5) for
each degree of freedom introduced, whereas the adjoint gradient formula (2.13)
only needs to be calculated once regardless of the number of additional degrees of
freedom. In the current study the adjoint gradient is estimated to be

(number of model parameters)× 6 = 48

times faster than finite differencing. In the case of a spatially varying model pa-
rameter the speedup is potentially a lot more significant.

When fitting material parameters to the Dokos experiment data, we were able
to generate good initial guesses for the local optimization by progressively refining
the mesh and using the optimal results from the previous coarser refinement level
as an initial guess in the successive finer level. It would be more challenging to
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apply this technique using image based ventricular geometries, due to the problem
of accurately representing the geometry with few elements. As an alternative we
propose the multi-start approach, which we have shown here to be accurate and
viable using the Dokos experiment data.

One issue that would arise in using the multi-start approach with image based
geometries would be the choice of the number of multi-start points; using less
points is more computationally efficient, while using more is potentially more
robust. Possible solutions are the use of optimal stopping criteria [4] or more
sophisticated local-global searches [13, 26].

2.5 Conclusions
In this work, we have presented a new application of efficient gradient-based op-
timization methods in the context of estimating cardiac hyperelastic material pa-
rameters from experimental data. In particular, we have demonstrated how an
adjoint solution can greatly speed up the evaluation of functional gradients. These
methods have produced two new sets of material parameter values that yield sim-
ulated stress-strain curves that fit closely to orthotropic and transversely isotropic
shear data. For future parameter estimation studies using image based geometries
and a local search algorithm, multi-start or a similar method should be used in
order to avoid suboptimal minima.
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Abstract: Computational models of cardiac mechanics, personalized to a patient,
offer access to mechanical information and tissue biomarkers above and beyond
direct medical imaging. Additionally, such models can be used to optimize and
plan therapies in-silico, thereby reducing risks and improving patient outcome.
Model personalization has traditionally been achieved by data assimilation, which
is the tuning or optimization of model parameters to match patient observations.
Current data assimilation procedures for cardiac mechanics are limited in their
ability to efficiently handle high dimensional parameters. This restricts parameter
spatial resolution, and thereby the ability of a personalized model to account for
heterogeneities that are often present in a diseased or injured heart. In this paper
we address this limitation by proposing an adjoint-gradient based data assimi-
lation method that can efficiently handle high-dimensional parameters. We test
this procedure on a synthetic data set, and then provide a clinical example with a
dyssynchronous left ventricle with highly irregular motion. Our results show that
the method efficiently handles a high dimensional optimization parameter, and
produces an excellent agreement for personalized models to both synthetic and
clinical data.

0Gabriel Balaban and Henrik Finsberg contributed equally to this work.
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3.1 Introduction

Computational cardiac mechanics models are potentially a powerful aid in the di-
agnosis and treatment of cardiac disease. By relating image based observations to
fundamental physical properties, models can provide analysis and tissue biomark-
ers beyond what can be observed by medical imaging. Furthermore, computa-
tional models offer cost and safety advantages over in-vivo experimentation and
testing, so that they can be used to plan and optimize therapies before any invasive
surgeries are undertaken.

A key step in making such a clinically useful cardiac mechanics model is
proper data assimilation from patient observations into a fit model. This involves
the optimization, or tuning, of individual model parameters in order to make the
model match the observations of the patient’s heart. A successful data assimilation
calibrates the model so that it can be used to make predictions relevant to the
patient’s condition.

Over the last decade several data assimilation methods have been proposed for
the creation of patient-specific cardiac mechanics models from clinical data. The
earliest studies employed gradient based optimization in order to minimize the
discrepancy between model-derived data and clinical observations. The gradients
necessary for these optimizations were calculated using direct differentiation [36]
or finite differencing [2, 15, 39]. More recent efforts include the use of global
optimization methods: in particular genetic algorithms [31, 37], a Monte Carlo
method [33], subplex algorithm [40], and parameter sweeps [1, 19]. Finally, re-
duced order unscented Kalman filtering has also been successfully applied as a
data assimilation tool for patient-specific model creation [10, 30, 41].

However, the computational expense of the techniques mentioned above scale
badly with the number of model parameters. In the case of the Kalman filtering
strategies, at least one extra evaluation of the model is required per additional
model parameter to be optimized. The calculation of model-data mismatch gradi-
ents by finite differencing or direct differentiation suffers from the same limitation.
Global methods on the other hand are affected by the curse of dimensionality; that
is, a rapid expansion of the space of parameters that must be searched as the num-
ber of dimensions increases. For high dimensional problems the run-time needed
to carry out a global search can be computationally prohibitive.
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In contrast to the previously mentioned techniques the calculation of a func-
tional gradient by the adjoint formula is nearly independant of the number of
optimization parameters. The requirements of this formula are a forward and
backward adjoint solve of the mathematical model. The forward solve is typi-
cally needed to evaluate the functional, so that the evaluation of the gradient at the
same point requires only an additional backward solve of the adjoint system. This
backward solve is linear, and therefore slightly cheaper than the forward solve.
Adjoint-based data assimilation techniques have previously been employed for
cardiac mechanics using linear elastic models and clinical data [11, 38], and also
a nonlinear model with experimental data [4].

Our example of improved data assimilation is demonstrated by optimizing a
mechanical contraction parameter in high spatial resolution to patient data. This
leads to a high dimensional optimization problem that can be efficiently solved
using an adjoint gradient based technique, which was described in detail in our
previous work [4]. We demonstrate our method on the pathological case of a
dyssynchronous left ventricle, which has a complex and irregular motion, as well
as on a synthetic case consisting of data generated by our mechanical model.

This study is to the best of our knowledge the first to use adjoint-based data
assimilation for nonlinear cardiac mechanics with clinical data, and the first to
consider the resolution of a parameter at the same scale as the discretization of the
cardiac geometry.

The rest of this paper is organized as follows: In Section 3.2 we present a
mathematical model that accounts for the three main drivers of ventricular me-
chanics; blood pressure, tissue elasticity and muscle contraction. Furthermore,
we describe two datasets: one clinical case exhibiting dyssynchrony, and one syn-
thetic. We also describe our data assimilation procedure for fitting the model.
The numerical results are presented in Section 3.3, and discussed in Section 3.4.
Finally, we provide some concluding remarks in Section 3.5.
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3.2 Materials and Methods

3.2.1 Wall motion modelling

In order to estimate the position of the myocardial walls through the cardiac cy-
cle we adopt a continuum mechanics description of cardiac wall motion. In this
description we consider a fixed left ventricular reference geometry Ω, with endo-
cardial boundary ∂Ωendo, and basal boundary ∂Ωbase.

Our fundamental quantity of interest is the vector valued displacement map
u(X), where X ∈ Ω. At any given point in time in the cardiac cycle, u(X) relates
the current geometry ω to the reference geometry by

X + u(X) = x, x ∈ ω, X ∈ Ω. (3.1)

Assuming that the cardiac walls are in equilibrium, it is possible to determine
the value of u from the principle of virtual work

δW (u) = 0, (3.2)

which states that the virtual work, δW (u), of all forces applied to a mechanical
system vanishes in equilibrium. For our ventricular wall motion model, the virtual
work δW (u), is given by

δW (u) =

∫
Ω

P : Grad δu dV +

∫
Ω

(J − 1)δp+ pJF−T : Grad δu dV

+ pblood

∫
∂Ωendo

JF−TN· δu dS +

∫
∂Ωbase

ku· δu dS.
(3.3)

Here we have introduced the hydrostatic pressure p in order to enforce the incom-
pressibility constraint J = 1, with J = detF = det (Grad u + I), and I being
the second order identity tensor. Furthermore, N denotes the unit outward normal
vector, k the constant of a spring that we introduce at the basal boundary, and
pblood the intra-ventricular blood pressure. The virtual variables δu and δp are test
functions whose values in Equation (3.2) are arbitrary in the case of a mechanical
equilibrium.

In order to anchor the computational geometry, we fix u in the longitudinal
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direction at the base by using a Dirichlet boundary condition. At the epicardial
boundary normal forces are set to 0, and so there is no term for this boundary in
(3.3).

The internal stresses of our model are given by P, the first Piola-Kirchhoff
tensor, which can be calculated as a derivative of a strain energy functional in the
case of a hyperelastic material. In our model we employ a reduced version [1, 18,
19, 26] of the Holzapfel-Ogden strain energy law [21],

ψ(C) =
a

2b

(
eb(I1(C)−3) − 1

)
+

af
2bf

(
ebf (I4f (C)−1)2+ − 1

)
, (3.4)

which gives the amount of strain energy, ψ, stored per unit volume myocardium
undergoing the strain C = FTF. The notation (· )+ refers here to max{· , 0}.
Furthermore the mechanical invariants I1 and I4f are defined as

I1(C) = tr C, I4f = ef ·Cef , (3.5)

with ef indicating the local myocardial fiber direction. The material parameters
a, af , b, bf are scalar quantities which influence the shape of the stress-strain rela-
tionship, and can be adapted to personalize the elastic properties of a myocardial
tissue model to a specific patient.

The Lagrange multiplier formulation of incompressibility that we employ en-
forces its constraint only weakly. This can cause convergence issues in the numeri-
cal solution of the work balance equation (3.2). We therefore eliminate volumetric
strains from the energy function (3.4) by a simple modification

ψ̃(C) = ψ(J−
2
3 C), (3.6)

which has been shown to improve the robustness of Newton-Raphson methods
applied to incompressible hyperelastic problems [Figure 3C of [27]].

In order to account for muscle contraction we apply the active strain frame-
work [32]. In this framework the amount of muscle fiber shortening is specified
by a field γ via a split of the deformation gradient

F = FeFa(γ), (3.7)
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where Fe is the elastic part and Fa(γ) the active part of the deformation gradient.
For the value of Fa(γ) we adopt a simple relation [12, 18] which satisfies the
incompressibility constraint by design and directly relates the amount of active
fiber shortening to the value of γ

Fa = (1− γ)ef ⊗ ef +
1√

1− γ (I− ef ⊗ ef ). (3.8)

In the case γ = 0 there is no active shortening at all, and the amount of shortening
increases with increased γ up to the theoretical limit of γ = 1.

The active contraction is accounted for in terms of virtual work by modifying
the first Piola-Kirchhoff stress tensor, so that the strain energy only depends on
the elastic part of the deformation

P =
∂ψ̃

∂F
=
∂ψ̃(Ce)

∂F
(3.9)

with Ce = FT
e Fe.

Given an amount of fiber shortening γ, the value of the elastic parameters
a, b, af , bf , the intraventricular blood pressure pblood and the spring constant k, the
myocardial wall displacement u and hydrostatic pressure p can be obtained by
solving the principle of virtual work (3.2).

3.2.2 Clinical measurements

Clinical data were obtained with the permission of staff of Oslo University Hospi-
tal in the context of the Impact study [23]. Specifically, we consider the case of an
82 year old man in NYHA functional class III systolic heart failure with coronary
artery disease, and left bundle branch block. A left bundle branch block normally
causes both electrical and mechanical dyssynchrony. This case had a QRS width
of 140 ms and an ejection fraction of 30 %.

Prior to cardiac resynchronization therapy implant, the patient had echocar-
diographic and left ventricular (LV) pressure measurements taken, which are the
basis for the clinical data used in this study. Pressure recordings were carried out
using a standard over the wire technique; that is, a pressure catheter (Millar mi-
cro catheter) was placed in the LV through a multipurpose catheter via the right
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femoral artery. A stable position inside the LV cavity was established by with-
drawing the multipurpose catheter into the ascending aorta. Pressure data were
obtained automatically within the frequency range of 0 – 1000Hz and digitized
(Powerlab system, AD Instruments) before offline analyses were performed with
a low pass filter of 200Hz.

Images of the patient’s left ventricle (LV) were captured with 4D echocar-
diography using a GE Vingmed E9 machine. Speckle tracking motion analysis
was carried out with GE’s software package EchoPac. Data from 6 beats were
combined in EchoPac in order to obtain a single sequence of images for a single
heartbeat. Analysis of these images resulted in LV cavity volume measurements
as well as regional strain curves defined for a 17 segment delineation of the LV
according to the AHA representation [9]. The strain curves were measured in
the local left ventricular longitudinal, radial and circumferential directions. Both
strains and volumes were measured 34 times throughout the cardiac cycle. Using
ECG data and valvular events, a representative pressure trace from the catheter
was synchronized to the strain and volume data. A pressure-volume loop based
on this synchronization is displayed in Figure 3.2.

Finally a linear correction of the strain curves was performed based on the drift
of the curves; with the drift being the value of the strain obtained at the end of the
cardiac cycle. Theoretically the drift is zero for stable conditions during which
the heartbeat is cyclical, and the linear correction enforces this cyclical property.

3.2.3 Computational geometry generation

The computational mechanics framework used for our wall motion model, de-
scribed in Section 3.2.1, requires a reference stress-free geometry from which to
define displacements. Such a geometry typically does not exist in-vivo due to the
presence of blood pressure on the endocardial walls. Algorithms exist for calcu-
lating stress free geometries given a loaded state [8, 16]. However for the sake of
simplicity we derive our reference geometry from an echocardiographic image of
the LV at the beginning of atrial systole, as the pressure is near minimal at this
point, and the ventricular myocardium can be assumed to be relaxed.

From the image at the beginning of atrial systole, triangulated data points for
left ventricular endocardial and epicardial surfaces, along with a 17 segment de-
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lineation, were extracted using the EchoPac software package. The segment de-
lineation was given on a so called strain mesh, which is a 2-D surface constructed
by EchoPac and located approximately in the midwall of the LV.

We constructed a basal plane via least squares fitting, using the basal points of
the strain mesh as target data. The position of the basal plane was then adjusted
so that the cavity volume of the resulting mesh agreed with the measured volume
to a tolerance of 1 ml. Points on the epicardial and endocardial surfaces that lay
above the basal plane were removed.

We employed Gmsh [17] to create three linear tetrahedral volumetric meshes
between the endocardial and epicardial surfaces, with 4407, 8401 and 16343 ele-
ments. The mesh with 16343 elements is shown in Figure 3.1b. Myocardial fiber
orientations were assigned using a rule based method, with a fiber helix angle
of 40 degrees on the endocardium rotated clockwise throughout the ventricular
wall to 50 degrees on the epicardium [6]. A streamline representation of the local
myocardial fibers is displayed in Figure 3.1c.

Finally, the AHA-segments from the strain meshes were transferred onto the
volumetric meshes. This was accomplished by computing prolate spherical coor-
dinates for the barycenter of each tetrahedron, and then assigning an AHA-zone
to the tetrahedron based on the corresponding prolate spherical coordinate in the
strain mesh. The volumetric mesh with 16343 elements complete with AHA-
segments is shown in Figure 3.1d.

3.2.4 Synthetic test case

A synthetic dataset was constructed by solving the virtual work equation (3.2)
for a given set of elastic parameters (a, af , b, bf ), contraction γ, cavity pressures
pblood and spring constant k. The elastic parameters were chosen from a fit of the
reduced Holzapfel-Ogden law (3.4) to a set of patient-specific diastolic displace-
ments [Table 5 of [1]].

The contraction γ was chosen to be a wave traveling from apex to base with
a Gaussian shape along the basal-apical axis. A set of eight synthetic measure-
ments were generated. The pressure values of the first three measurements are the
pressure increases in the atrial systolic points of the patient pressure-volume loop,
Figure 3.2, and the rest are a linear extrapolation to 0 kPa. The exact pressures
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Figure 3.1: Computational geometry generation. Endo and epi-cardial surfaces
are marked on 3-D ultrasound images, 3.1a shows the endocardial marking for a
2-D slice of one such image. Next a computational geometry is generated from
epi and endo-cardial surfaces 3.1b, and rule based fibers are assigned 3.1c. Finally
AHA segments are assigned to the geometry 3.1d, according to the standardized
scheme 3.1e.
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Table 3.1: Mean and standard deviation of a Gaussian noise summand estimated
from patient drift values in circumferential (C), radial (R) and longitudinal (L)
directions.

Mean Covariance ×10−4

C R L

0.006 1.43 0.73 0.66 C
-0.013 - 6.8 6.31 R
0.01 - - 7.26 L

values in kPa are {0.93, 2.0, 4.8, 4.8, 3.6, 2.4, 1.2, 0.0}.

The strains and volumes generated by the wall motion model from the speci-
fied Gaussian contraction wave, together with the pressures, form a set of synthetic
measurements that can be used to test our data assimilation procedure. These syn-
thetic measurements contain fewer points than the clinical measurements, thereby
allowing for faster computations.

In order to increase the relevance of the synthetic dataset we added noise to
the computed synthetic strains and volumes. The strain noise was modelled as an
additive Gaussian process in order to imitate the accumulation of tracking errors
in EchoPac’s image based strain calculations. The mean and variance of a sum-
mand in the Gaussian process were estimated by dividing the sample means and
variances of the strain drift values by the number of measurement points. The re-
sulting mean and covariance estimates are given in Table 3.1. Theoretically, error
free strain curves would have almost no drift, making the drift values a good ap-
proximation of the tracking error. Similarly to our patient dataset, we performed a
linear correction of our synthetic strain curves based on the synthetic drift values.

Finally our synthetic volume measurements are corrupted by Gaussian noise
with mean 0 and a standard deviation of 4.3 mL. This standard deviation value
was experimentally obtained in [3, Figure 3B]].
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3.2.5 Parameter Estimation

Now that we have a mathematical description of cardiac motion, along with a
personalized computational geometry and target data, we next turn to the problem
of personalizing the motion model via the estimation of the elastic parameters
a, af , b, bf and fiber contraction γ.

We consider a, af , b, bf to be constant in time, as these parameters characterize
the myocardial stress-strain relationship, which we do not expect to change in the
span of a heartbeat. On the other hand, we expect the fiber contraction to vary
significantly during a heartbeat, and therefore estimate γ separately for each set
of pressure, strain, and volume measurements in the cardiac cycle. Furthermore,
as the contraction of the left ventricle may occur dyssynchronously, we allow for
γ to vary in space as well as in time.

Active muscle shortening is typically present in the ventricles throughout sys-
tole and in early diastole until the muscles fully release their contraction. During
the phase of atrial systole we do not expect muscle contraction in the ventricle,
and so we set γ = 0 for this phase. This allows us to estimate a, b, af , bf inde-
pendently of γ during atrial systole, and then estimate γ at each point in the rest
of the cardiac cycle with the material parameters fixed. In Figure 3.2 we show the
pressure-volume loop of the patient under consideration, and highlight the phases
where we estimate the contraction and elastic parameters.
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Figure 3.2: Patient pressure-volume relationship for the left ventricle. Measure-
ments in the red solid line are used to estimate contraction, whereas measurements
in the green dashed line are used to estimate elasticity.
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3.2.6 Definition of data matching functionals

As described in Section 3.2.2, the data available for our personalization of the
wall motion model are pressure, volume and strain measurements throughout the
cardiac cycle. The pressure measurements are included in the model as a boundary
condition via the virtual work (3.2), and thus our data assimilation only needs
to fit the model to the volume and strain measurements. In order to do this we
define a suitable set of functionals that quantify the model-data mismatch. The
personalization of the wall motion model can then be achieved by optimizing the
contraction and elastic parameters in order to minimize the model-data mismatch.

Let i denote the index of an observed cavity volume V i, or strain εi, in the
cardiac cycle. Furthermore let j ∈ {1, .., 17} be the index of an AHA segment
Ωj , and k ∈ {c, r, l} indicate a direction: circumferential, radial or longitudinal,
respectively. Given a measurement point i, we define the model-strain mismatch

I istrain =
17∑
j=1

∑
k∈{c,r,l}

(
εik,j − ε̃ik,j

)2
, (3.10)

for model strain ε̃ik,j and measured strain εik,j .

The speckle tracking software we used provided regionally averaged Lagrangian
strain measurements εik,j . In order to mimic these measurements in our model we
define the model strain as

εk,j = Gj(e
T
k∇uek), (3.11)

where ek denotes a unit direction field and Gj is the averaging operator

Gj(f) =
1

|Ωj|

∫
Ωj

fdx, (3.12)

with |Ωj| indicating the volume of segment j. Furthermore we also define the
model-volume mismatch

I ivol =

(
V i − Ṽ i

V i

)2

, Ṽ i = −1

3

∫
∂Ωendo

(X + u)· JF−TN dS, (3.13)
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and note that the method of calculating the simulated volume Ṽ i depends upon
(X+u)·N = 0 at the basal plane. These conditions hold in our model as the basal
plane is defined with 0 longitudinal coordinate and longitudinal displacements are
also set to 0 at this plane.

Finally, in order to have a single optimization target we combine the strain
(3.10) and volume (3.13) mismatches into one single functional with parameter α,

I iα = αI ivol + (1− α)I istrain, (3.14)

where α controls the relative emphasis of the parameter estimation on volume or
strain matching.

3.2.7 Parameter estimation as an optimization problem

The four elastic parameters a, b, af , bf of the reduced Holzapfel-Ogden law (3.4)
represent the passive elastic properties of the myocardium. Of the four parameters
we leave the exponential b type parameters fixed and estimate the linear a type
parameters by solving the following optimization problem

minimize
a,af

NAS∑
i=1

I ivol

subject to δW = 0 ∀ i,
(3.15)

where δW is given by (3.3), and NAS = 3 indicates the total number of measure-
ments available in atrial systole.

In order to avoid the issue of an under-constrained optimization problem for
the active contraction, we employ first order Tikhonov regularization to favor
smoother contractions. Mathematically, the contraction parameter problem is then
formulated as follows:

minimize
γ

I iα + ‖Gradγ‖

subject to δW = 0 ∀ i,
γi(X) ∈ [0, 1), X ∈ Ω,

(3.16)

with regularization parameter λ. Here ‖· ‖ refers to the standard L2 norm. This
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problem is solved for every measurement point i not in atrial systole.
The optimization problems (3.15) and (3.16) have two free parameters whose

values must be chosen, namely the strain-volume weighing α and the regulariza-
tion λ. The optimal choice of these parameters can be determined experimentally
based on the L-criterion [20].

In general, the L-criterion applies to a situation in which a parameter controls
the trade-off between two target values for minimization and where minimizing
one target comes at the cost of potentially increasing the other. In such a situation
the value of the two targets can be visualized as a curve parameterized by the
control. This curve may have an L-shape, such that a good compromise between
the two targets can be found in the corner.

Here, we consider λ in (3.16), whose value can be expected to influence the
trade-off between the optimized values of the data functional I iα and the regu-
larization functional ‖∇γi‖2

L2(Ω). Similarly α can be expected to influence the
trade-off between the optimized strain mismatch and volume mismatch in (3.15)
and (3.16).

3.2.8 Implementation of mechanics and optimization solvers

For the numerical solution of the work balance equation (3.2) we employ a Galerkin
finite element method with Taylor-Hood tetrahedral elements [22]; that is, a con-
tinuous piecewise quadratic representation of the displacement field and a contin-
uous piecewise linear representation of the pressure field. The contraction param-
eter γ is represented discretely as continuous piecewise linear.

The software implementation of our finite element method is based on the
package FEniCS [29], which automatically generates matrix and vector assembly
code from a symbolic representation of the work balance equation (3.2). The
resulting nonlinear systems were solved using the PETSc implementation of a
Newton trust region algorithm [5], while the inner linear solves were handled by
a distributed memory parallel LU solver [28].

To solve the optimization problems (3.15) and (3.16), we apply a sequential
quadratic programming algorithm (SQP) [25]. This algorithm requires the deriva-
tives of the function to be optimized, which in our case are the gradients of the
mismatch functionals in problems (3.15) and (3.16) with respect to a, af and γ
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respectively. These gradients are automatically computed by solving a machine
derived adjoint equation via the software framework dolfin-adjoint [13].

In addition to gradients, the SQP algorithm requires evaluations of the mis-
match functionals for given values of the control variables, which again relies on
the solution of the work balance equation (3.2). In the case of problem (3.16),
the control variable is γ, which has a very large influence on the solution of (3.2).
Numerical solution of (3.2) by Newton’s method depends upon having a good
initial guess, which in our case are the values of the mechanical state variables,
u, p, resulting from the previous solve of (3.2). If the value of γ differs too greatly
from one solve to the next the Newton algorithm might fail due to the root of the
system being too far away from the initial guess. To avoid this problem we make
use of a homotopy procedure that moves from one value of γ to the next in small
increments, and solves (3.2) each time the value of γ is changed. This procedure
is presented as Algorithm 1 and is similar to the one found in [34].

All algorithms, solvers and relevant data are publicly available online [14].

Algorithm 1 Max Increment Homotopy Newton Solver
Initial Variables

uprev Previous displacement field
pprev Previous tissue hydrostatic pressure field
γnext Desired tissue contraction field
δγmax Maximum change in a component per Newton solve

Set
M =

⌈
‖γnext−γprev‖∞

δγmax

⌉
γ0 = γprev
u0 = uprev
p0 = pprev
δγ = 1

M
(γnext − γprev)

Use Newton’s method M times with fixed increment δγ
for i ∈ {1...M} do

γi = γi−1 + δγ
Initialize Newton solver with ui−1, pi−1

Solve δW (ui, pi, γi) = 0 for ui, pi
Output ui, pi
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3.2.9 Error estimation

In order to evaluate the goodness of fit of the reproduction to synthetic data, we
introduce two spatial error measures. The first is the maximum of the relative
difference between the reproduced contraction parameter γrepr and ground truth
γground averaged over AHA segments

‖γ‖err = max
i

1

17

17∑
j=1

|Gj(γ
i
repr)−Gj(γ

i
ground)|

maxk |Gj(γiground)|
. (3.17)

Note that this error measure makes use of the averaging operator Gj defined in
(3.12). The second spatial error measure is based on the difference between the
reproduced displacement field urepr and the ground truth uground

‖u‖err = max
X∈degrees of freedom of u

|urepr(X)− uground(X)|. (3.18)

Finally in order to ease the interpretation of the strain and volume matches,
we also consider averaged values of the optimization functionals

I strain =
1

51N

N∑
i=1

I istrain, (3.19)

Ivol =
1

N

N∑
i=1

√
I ivol =

1

N

N∑
i=1

∣∣∣∣∣V i − Ṽ i

V i

∣∣∣∣∣ , (3.20)

‖∇γ‖2 =
1

N

N∑
i=1

‖∇γi‖2. (3.21)

(3.22)

Here N specifies the number of measurement points used in the optimization,
and the factor 51 in the definition of I strain originates from the number of AHA
segments, 17, times the number of strain measurements per segment, 3.

73



3.3 Numerical Results

In this section we present the results of our numerical experiments. We first
conduct parameter estimation using synthetic data generated by the wall motion
model; this gives an idea of how well the algorithm can perform under noisy but
otherwise ideal circumstances. Next, we carry out parameter estimation using the
clinical data. Finally, we compare our spatially resolved contraction parameter
results to those generated using a global contraction field.

In all of the experiments below, optimizations were terminated if the differ-
ence between the value of the mismatch in the current and previous iteration was
less than 10−9 for the passive material parameter optimization and 10−6 for the
active contraction parameter optimization, or if the SQP algorithm was not able
to further reduce the mismatch value. For the identification of the elastic parame-
ters, the SQP algorithm was initialized with the elastic material parameters given
in Section 3.2.4. For the identification of the contraction field γ, the SQP algo-
rithm was initialized with the value of γ from the previous measurement point in
the cardiac cycle.

In order to obtain convergence of Newton’s method for the solution of the
virtual work equation (3.2), we set δγmax = 0.02 in the homotopy Newton solver,
(Algorithm 1) and limit γ to the interval [0, 0.9]. In the cases that Newton’s method
did not converge, δγmax was further reduced several times. If the reductions in
δγmax did still not obtain Newton solver convergence, then a large value of the
mismatch functional was returned so that the optimization algorithm would move
to another part of the parameter space. A similar approach was applied when
changing the endocardial pressure from one measurement point to the next. If
the number of steps needed to reach the next endocardial pressure exceeded 100
steps, then the algorithm was stopped and was considered to have failed.

Strains were calculated with respect to the measurement point defined as start
of atrial systole, as the reference geometry taken from the image corresponding
to this point was assumed to be stress and strain free. Similarly, pressures for
the clinical data were adjusted downward by the pressure measured at the start of
atrial systole, 2.8 kPa, so that the adjusted start of atrial systole pressure was 0,
and therefore compatible with the stress free assumption.

Using the patient data, we tested the three different mesh resolutions, low,

74



medium and high with 4407, 8401 and 16343 elements respectively. In all three
cases we observed a good fit of the simulated to the clinical data, and have chosen
to perform all of our computations on the medium resolution mesh.

The medium resolution mesh contained 2661 vertices, and as a consequence
the contraction optimization problem 3.16 had just as many control variables. The
value of the basal spring-constant was set to k = 1.0, as we noticed that this value
gave reasonable motion at the base of the computational models.

3.3.1 Synthetic data

Using the synthetic data described in Section 3.2.4 as a target, we personalized the
wall motion model using a series of strain-volume weighing (α) and regularization
(λ) values. We first set λ = 0 and tested α from 0 to 1.0 in increments of 0.1. In
the noisy case this yielded the trade-off curve Figure 3.3a, from which we selected
α = 0.8 based on the L-criterion described in Section 3.2.7. Next we set α = 0.8

and tested λ from 0.0001 to 10.0 in increasing powers of 10, and selected the
point 0.01 also based on the L-criterion. The trade-off curve for λ can be seen in
Figure 3.3b.
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Figure 3.3: Trade-off curves for various α and λ values used in model personal-
ization with noisy synthetic data as a target. Left: optimal average strain versus
average volume misfits as defined in Equation (3.22) for a variety of choices of α
and λ = 0.0. Right: Total average data functional versus contraction gradient size
for a variety of λ values and α = 0.8.
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Table 3.2: Accuracy of reproduced synthetic data as compared to ground truth.
The error measures are defined in Section 3.2.9. The value of the strain volume
trade-off and regularization parameters are α = 0.8, λ = 0.01.

‖u‖err ‖γ‖err

Clean 1.18 mm 0.0212
Noisy 1.39 mm 0.0434

With the α and λ values chosen, we quantified the error in reproduction of γ
and the error in the displacement map for both the noisy and clean cases. These
are displayed in Table 3.2. In both the noisy and clean cases the displacement
map is reproduced with a maximum error less then 1.4 mm, and the reproduced
contraction parameter has a relative regional error below 4.34%. As one would
expect, the errors in the noisy case are higher than in the clean case.

The reconstructed displacement fields in the noisy case are shown alongside
the ground truth in Figure 3.4. We note that the ground truth and reproduction
look very similar.

3.3.2 Clinical data

Based on the clinical data described in Section 3.2.2 we calculated optimized
elastic parameter and contraction values. The elastic parameters a, af , b, bf were
optimized solely using the volume mismatch Ivol. In Table 3.3 we show the results
of the elastic parameter fitting. We note that the initial volume mismatch was
already very small, and that the optimization algorithm managed to reduce this by
circa 25%. The strain mismatch, though not explicitly optimized, was also slightly
improved.

After completing the elastic parameter estimation we next turned to optimizing
the contraction parameter γ. In order to identify good functional weighing values,
α and λ, we followed a variation of the procedure used in the synthetic data case.
We first ran optimizations with λ = 0 and α ranging from 0 to 1.0 in increments of
0.1. All of these optimizations failed due to Newton solver non-convergence. Next
we tested λ = 1.0 and α in the same increments. These optimizations succeeded,
but the resulting strain-volume trade-off curve did not contain any obvious corner
values that would allow us to pick an α by the L-criterion. By visually inspecting
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0.93 kPa 2.0 kPa 4.8 kPa 4.8 kPa

3.6 kPa 2.4 kPa 1.2 kPa 0.0 kPa

Figure 3.4: Reconstruction of displacement based on noisy synthetic data for 8
measurement points using α, λ = 0.8, 0.01. For each point the ground truth is
displayed on the left and the reconstruction on the right.

Table 3.3: Optimized and initial patient-specific elastic parameter values and ob-
jective functionals. Note that only the volume and not the strain functional was
used in the optimization.

a b af bf Ivol I strain

(kPa) (kPa)

Initial 0.291 5.0 2.582 5.0 0.0098 0.0024
Optimized 0.335 5.0 2.586 5.0 0.0073 0.0023
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the simulated vs. measured volume and strain curves we identified α = 0.9 as
giving good strain and volume matching. We next tested α = 0.9 and λ = 0.0001

to 1.0 in increasing powers of 10. From these trials only λ = 0.01 and above were
convergent, with λ = 0.01 giving the best strain and volume functional values.
We therefore chose α, λ = 0.9, 0.01 as the values of the functional weights.

With these α and λ values we were able to obtain an excellent agreement
of the model to the measured regional strain values and pressure-volume loop.
Simulated versus measured plots of these data are given in Figure 3.5 for strain
and Figure 3.6 for the pressure-volume loop. In Figure 3.7 we plot the initial and
optimized mismatch values for the measurement points for which γ was active.
We note that the strain mismatch is reduced by at least two orders of magnitude
at each measurement point, and that the volume is in most cases significantly
reduced as well, except at around a single point near 50% of the cardiac cycle
where the volume fit was slightly worsened.

Visualizations of the optimized displacement field are given in Figure 3.8.
These displacements are very heterogeneous, as expected for a dyssynchronous
ventricle.

3.3.3 Clinical data with a synchronous contraction

In this section we repeat the estimation of γ from the clinical data, but instead of
representing γ as a piecewise linear function we represent it with a single global
value, which gives a synchronous contraction. This reduces the number of con-
trols in the optimization problem (3.16) to 1, and makes the λ parameter unnec-
essary, as ‖∇γ‖2

L2(Ω) = 0 for a spatially constant γ. Due to solver stability issues
we were not able to use the same strain - volume weighing, α = 0.9 as in the
piecewise linear case. A slight increase of this parameter to α = 0.95 yielded
convergent optimization results which we present here.

In Figure 3.9 we plot the optimal strain and volume fit functionals using both
a piecewise linear and a global γ. The plot shows that the piecewise representa-
tion of γ gave in most points at least an order of magnitude improvement in the
mismatch values over the global representation of γ.
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Figure 3.5: Comparison of regional strain curves starting in end diastole. In red:
optimized wall motion model data. In blue: clinical data from speckle tracking
echocardiography. In each plot the y-axis represents strain while the x-axis shows
the progression in time of the cardiac cycle as a percentage.
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Figure 3.6: Clinically measured (blue) versus optimized wall motion model (red)
left ventricular cavity volumes.
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mismatch functionals for measurement points used to estimate the contraction γ.
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Figure 3.8: Two views of displacement magnitudes calculated by the wall motion
model optimized to clinical data for different points in the cardiac cycle.
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Figure 3.9: Comparison of optimized mismatch functional values obtained from a
global and piecewise linear representation of γ. The volume functional is plotted
on the left and the strain functional on the right.

3.4 Discussion

3.4.1 Mathematical model and fit to data

We conducted parameter estimations with synthetic data in order to test our data
assimilation procedure under idealized circumstances. These tests employed a
contraction pattern and pressure curve that were not physiologically motivated,
but rather were designed to simply capture the essential mechanical effects of the
cardiac cycle; that is, regionally varying muscle shortening and elastic distention
due to pressure. These tests also incorporated noise in strain and volume which
were derived directly from clinical measurements. The results of the synthetic
data estimations gave an accurate reproduction of the original data. Displacements
were matched to within 1.18 mm in the clean case and to 1.39 mm in the noisy
case, whereas the contraction parameter was estimated regionally to within 2.1 %
in the clean case and 4.3 % in the noisy case.

Several past studies [31, 37] have included objective functionals consisting of
strain and volume components with equal weighing given to both. We have shown
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that it may be possible to improve such data assimilation procedures by tuning the
relative weight of strain and volume components. Specifically in our synthetic
data case, Figure 3.3a, we were able to locate the point α = 0.8 in the corner of
the strain-volume trade-off curve that gave a good compromise between volume
and strain matching.

The clinical measurements that we used to demonstrate our data assimilation
technique had several pathological features. Firstly the data indicated a large leak
of volume in the early relaxation phase, as can be seen in Figure 3.6. In a healthy
heart this phase occurs iso-volumetrically. Furthermore there is a great varia-
tion in the timing and magnitude of peak strain, Figure 3.5, which indicates a
dyssynchronous contraction. Our data assimilation procedure was able to repro-
duce these pathological features with high accuracy. The largest discrepancies be-
tween model and image based strains were in atrial systole, where no contraction
was simulated. This discrepancy could possibly be reduced by allowing for more
spatial resolution in the elastic parameters, in a similar way to the contraction.

By performing the contraction fitting with both a high resolution and a syn-
chronous global parameter we were able to show the necessity of using the for-
mer in order to accurately represent the dyssynchronous contraction. Indeed, Fig-
ure 3.9 shows that the spatially resolved parameter achieved fit values that were
several orders of magnitude better than with the global parameter.

In [24] it was shown by computational modelling that a synchronous left ven-
tricular contraction leads to a homogeneous strain distribution, which was ex-
pected based on measurements of healthy left ventricles. Our results show what
one would expect in the dyssynchronous case: namely that a synchronous con-
traction, modelled with a global parameter, does not give the expected strain dis-
tribution, as observed in our clinical measurements.

In many computational modelling studies [7, 10, 35] the force of contraction
in the myocardium is modelled by an increase in fiber tension triggered by an elec-
trical activation. In contrast to this the force of contraction is indirectly modeled
by the elastic and contraction parameters in our study. Given a fixed contraction
parameter γ, smaller material parameters indicate weaker contractions and vice-
versa. In this way our approach relies more on accurate clinical data and less on
assumptions than if the contraction had been given by a model.
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3.4.2 Algorithmic considerations

The discrete implementation of the optimization problem (3.16) has as many con-
trol variables as there are vertices in the computational mesh, making the use of
adjoint gradient calculations highly advantageous. During the optimization of the
contraction parameter γ a typical evaluation of the work-balance equation (3.2)
took 8.4 seconds running in parallel on 8 cores. The evaluation of the functional
gradient took 13.5 seconds using the adjoint method, also with 8 cores. In contrast
to this a one sided finite difference evaluation of the gradient, as used in [2, 39],
would require 2661 work-balance equation evaluations, with an extrapolated com-
pute time of over 6 hours.

The proper choice of regularization parameter is an issue that is common in
the field of inverse problems. In our study we also included an additional strain-
volume weighing parameter α that we tuned in order to obtain a good balance
between strain and volume matching. In our synthetic data case, we were able to
decouple the problems of identifying good α and λ values by fixing one parameter
and then tuning the other based on the L-criterion. This allowed us to obtain an
accurate reproduction of the underlying displacement and contraction fields. In
the patient data case we were limited to the range of α and λ values for which
our Homotopy-Newton solver was able to secure convergence, and by a lack of
identifiable corner points in the resulting trade-off curves. Nevertheless we were
able to obtain good α and λ values ad-hoc that lead to excellently matching strain
curves and pressure-volume relations.

3.4.3 Limitations

The results obtained in this article were limited by issues pertaining to the choice
of mathematical model, quality of clinical data, numerical stability, and the design
of the data assimilation algorithm. Firstly, the boundary conditions of the ventricle
wall motion model did not account for the effects of the right ventricular pressure
on the septum, and the mechanical coupling to the neighbouring structures: left
atrium, right ventricle and pericardium. Furthermore, the motion model neglected
the effects of visco-elasticity, tissue compressibility [42], inertia, and myocardial
sheet microstructure. Finally the reference geometry that we used for our calcula-
tions came from an echocardiographic image in which there was a non-zero level
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of blood pressure. The blood pressures we used in our patient specific model were
off by the 2.8 kPa which we subtracted in order to have 0 pressure in the reference
geometry. This pressure adjustment meant that the elastic stiffness of the ventri-
cle was underestimated by our elastic parameter estimation, as the mathematical
model operated at a lower pressure than measured in the patient’s heart.

The accuracy of the optimized motion model is limited by uncertainties in the
clinical strain and volume measurements, which are related to echocardiographic
image quality, image sample rate, and speckle tracking algorithm accuracy. The
level of detail in the reproduced motion was limited by the spatial resolution of
the strain data, which was only available to us as regional averages.

Finally there were several algorithmic limitations. Firstly our procedures for
choosing the functional weights α and λ were not optimal. In both the synthetic
and clinical data case the weight values were chosen by parameter sweeps that
kept a single parameter fixed, which did not account for possibly better α, λ com-
binations lying outside of the areas we tested. Next the Newton-Homotopy solver
was not able to solve (3.2) for all the values of γ that were suggested by the SQP
algorithm. Further restrictions on the space of control variables or better nonlinear
solvers are needed to improve the stability of the contraction optimization. Finally
the SQP optimization algorithm that we employed was a local search only, that is
only one minimum of the objective is calculated. Better parameter fits may be
possible with global optimization methods that explore multiple minima.

3.5 Conclusion and Future Outlook

By employing high resolution data assimilation we were able to capture the de-
tailed motion of a dyssynchronous left ventricle in a computational model with
an excellent fit of model observations to data. This demonstrates the power of the
data assimilation method, which can also be applied to other models and or model
parameters.

In the future we would like to improve and further automate our high resolu-
tion data assimilation method so that it can be employed on cohorts of patients.
This would allow us to search for patterns among groups of patients that could
lead to further understanding of dyssynchrony.
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Abstract: In myocardial infarction muscle tissue of the heart is damaged as a re-
sult of ceased or severly impaired blood flow. Survivors have an increased risk for
further complications, possibly leading to heart failure. Material properties play
an important role in determining post-infarction outcome. Due to spatial variation
in scarring, material properties can be expected to vary throughout the tissue of a
heart after an infarction. In this study we propose a data assimilation technique
that can efficiently estimate heterogeneous elastic material properties in a person-
alized model of cardiac mechanics. As part of the data assimilation an unloaded
geometry estimation algorithm is designed and tested on synthetic data. Further-
more, data assimilation is carried out on a clinical dataset consisting of regional
left ventricular strains, and in-vivo pressures during atrial systole from a human
with a myocardial infarction. Good matches to regional strains are obtained and
simulated equibiaxial tests are carried out to demonstrate regional heterogeneities
in stress-strain relationships.
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4.1 Introduction

Myocardial infarction (MI) is a condition in which muscle tissue in the heart is
damaged due to a loss of blood supply. After an infarction, there is an increased
risk for further complications, such as rupture, infarct expansion, ventricular re-
modeling, hypertrophy, and heart failure [18]. Post MI, the elastic properties of
the myocardium have been shown to play a large role in determining the outcome
[12, 32].

A promising way to study the elastic properties of in-vivo myocardium is by
mathematical modelling and computer simulation. Via the use of simulation it is
possible to create an in-silico representation of a patient’s heart after an infarc-
tion. This opens up new possibilities for quantification of elasticity, beyond what
is available in medical imaging today. Additionally, an in-silico model that is per-
sonalized to a patient can potentially simulate the effects of treatments or therapies
on the patient, thereby improving the outcome and reducing risks after MI.

A key step in creating a personalized in-silico model is data assimilation. This
involves adjusting mathematical model parameters in order to fit the model to
patient data. A properly fitted model can then be said to reflect the state of a
patient’s heart. Several past studies have presented data assimilation techniques
for the creation of in-silico personalized elasticity models of infarcted hearts. The
first such study [35] modeled an infarction in a sheep heart. The modeled left
ventricular end diastolic volume (EDV) was matched to the measured EDV by
tuning a single elastic parameter.

Hand tuning of multiple parameters was carried out in [8] in order to calibrate
a computational model of a porcine heart to in-vivo data before and after MI. Good
matches to pressure-volume relations were obtained. Hand tuning was also used
to identify elastic parameters in a fluid-structure interaction model of a healthy
and an infarcted human heart [13].

More recent studies have employed a genetic algorithm in order to identify
elastic parameters by minimizing the mismatch between simulated and measured
strains and volumes. In the paper which pioneered this technique [31] an infarc-
tion was induced in a pig which divided the ventricle into healthy and infarcted
areas. Elastic parameters were defined for these two areas and then successfully
identified. In a follow up study [30], these same parameters were tracked over the
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course of 12 weeks in 7 pigs. The mechanical changes observed in-silico agreed
well with previous data collected from excised hearts. A further study employed
the methodology of [31] in order to evaluate the effects of a hydrogel therapy on
infarct stiffness [9].

Parameter estimation for infarcted humans was considered in [10]. In the study
a single elastic parameter was tuned to match model based to measured left ven-
tricular (LV) cavity volumes for 10 patients. The tuned parameter values were
shown to be significantly different in healthy and infarcted hearts.

In the general clinical setting the spatial distribution of fibrotic tissue in a heart
can be quite complex, which mostly likely leads to heterogeneities in elastic prop-
erties after MI. The study of such heterogeneities necessitates a data assimilation
procedure which can resolve spatial differences in elastic model parameters. We
address this by introducing an adjoint-gradient-based optimization method for the
estimation of elastic parameters. This method is able to efficiently optimize high
dimensional parameter sets, and thereby estimate spatially resolved elastic param-
eters throughout the myocardium. As a demonstration we present a personalized
in-silico elasticity model based on data collected from a heart failure patient with
a heterogeneous distribution of fibrotic tissue. Our data consist of regional strains,
which were computed by speckle tracking echocardiography, a pressure transient
obtained from a catheter, and a quantification of segmental scar burden based on
late enhancement gadolinium magnetic resonance imaging.

Recently it has been shown that the choice of reference geometry has a signif-
icant effect on in-vivo elastic parameter estimation [33]. In order to account for
this we have designed a combined reference geometry and elastic parameter esti-
mation algorithm and applied it to our clinical data. Additionally, we have carried
out synthetic data tests using the combined algorithm in a simplified model with
globally constant parameters.

4.2 Methods and Materials

4.2.1 Clinical Data

Clinical data were obtained with the permission of staff of Oslo University Hospi-
tal in the context of the Impact study [23]. Specifically, we consider the case of a
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64 year old man in systolic heart failure, with left bundle branch block, coronary
artery disease, and chronic infarction predominantly in the inferior and posterior
sections of the left ventricular wall.

Prior to treatment, the patient had echocardiography, late gadolinium enhance-
ment MRI, and left ventricular (LV) pressure measurements taken, which are the
basis for the clinical data used in this study. Pressure recordings were carried out
using a standard over the wire technique; that is, a pressure catheter (Millar mi-
cro catheter) was placed in the LV through a multipurpose catheter via the right
femoral artery. A stable position inside the LV cavity was established by with-
drawing the multipurpose catheter into the ascending aorta. Pressure data were
obtained automatically within the frequency range of 0 – 1000Hz and digitized
(Powerlab system, AD Instruments) before offline analyses were performed with
a low pass filter of 200Hz.

A 4D echocardiography examination of the patient’s LV was performed us-
ing a GE Vingmed E9 machine. Speckle tracking motion analysis was carried
out with GE’s software package EchoPac. This resulted in regional strain curves
defined for a 17 segment delineation of the LV according to the standard AHA
representation [7]. The strain curves were measured in the local left ventricular
longitudinal, radial and circumferential directions. Data from 6 beats were com-
bined in order to obtain a single sequence of images for a single heartbeat. From
this sequence 6 separate measurement points of left ventricular strain during atrial
systole were obtained. It was observed that the speckle tracking algorithm was
able to accurately follow the motion of the basal and midwall segments, but that
the tracking of the apical segments was inaccurate, most likely due to the presence
of apical rocking. Finally 6 left ventricular cavity volumes were obtained from the
same segmentations that were used to calculate the 6 sets of strain.

Strain and pressure data were synchronized. The start of atrial systole in the
pressure measurements was identified from left atrial ECG data which were taken
simultaneously. In the echocardiographic images the start of atrial systole was
identified by the onset of longitudinal stretching following diastasis, and the end
of diastole was identified by the onset of longitudinal contraction. For strain mea-
surements after the first, corresponding pressures were registered using the fre-
quency of image aquisition and timing of pressure measurements.

Pressure data were available only to a precision of 1 mmHg and consequently
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strain points 2 and 3 shared the same pressure. In order to give each strain point a
unique pressure an additional cubic polynomial smoothing was carried out. Both
smoothed and original pressure data are plotted in Figure 4.1.

Figure 4.1: Left ventricular pressure trace with original catheter data in dotted
black and cubic polynomial smoothed data in solid green.

Cardiac MRI imaging was performed with a 1.5 Tesla scanner (Skyra, Siemens,
Erlangen, Germany). The amount of myocardial fibrosis was quantified on a per
region basis from short axis late gadolinium enhancement images acquired 10 to
20 minutes after intravenous injection of 0.2 mmol/kg of gadoterat meglumine
(Guerbet, Villepinte, France). This resulted in an estimated volume ratio of fi-
brotic to healthy tissue for each myocardial segment. In this analysis the apex
region was merged into the neighbouring apical regions, giving a 16 segment di-
vision. This data is summarised in Figure 4.2. Sample ultrasound and MRI images
are shown in Figure 4.3.

4.2.2 Mesh Creation

In order to capture the details of the patient ventricular geometry in our in-silico
model we created a computational geometry based on a 3-D ultrasound image.
This image was taken at the start of atrial systole, when the pressure was at a
minimum. Using GE’s EchoPac software, we extracted triangulated data points
for left ventricular endocardial and epicardial surfaces. These surfaces were cut by
a plane fitted to the basal points of the surfaces, and adjusted so that the ventricular
volume of the computational geometry was within 1 mL of the volume measured
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Figure 4.2: Results of regional quantification of myocardial scar burden based
on late enhancement gadolinium MRI images. The inner, middle and outer rings
represent apical, midwall and basal sections respectively. Scar-free segments are
coloured blue, whereas scarred segments are coloured red in proportion to the
amount of scar tissue they contain. The proportion of scar is also given as a
percentage in scarred segments.
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(a) 3-D echocardiography

(b) Late enhancement gadolinium MRI

Figure 4.3: Sample ventricular images used in this study. 4.3a: Long and short
axis 2D slices of a 3-D echocardiographic image along with tracked segments in
green and an ECG signal. 4.3b: short axis late enhancement gadolinium MRI
images used for regional scar quantification. Fibrotic sections of the myocardium
appear in white.
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in the image. Using the epi, endo and basal surfaces as boundaries we created a
volumetric mesh using Gmsh [14]. This mesh contained 741 vertices and 2214
tetrahedra. AHA zones were deliniated on this volumetric mesh based on data
provided by EchoPac, so that our AHA zones were consistent with those used to
calculate image based strains. Finally, local myocardial fiber orientations were
assigned with a helix angle of 40 degrees on the endocardium rotated clockwise
throughout the ventricular wall to −50 degrees on the epicardium using a rule
based method [5]. Snapshots of the image based geometry, along with a sample
of fibers and AHA segments, are shown in Figure 4.4.

Figure 4.4: Left: image based mesh with 2214 elements. Middle: streamline
representation of a sample of fibers. Right: AHA regions marked in separate
colours.

4.2.3 Elastic Wall Motion Model

In order to simulate the motion of the left ventricle throughout atrial systole we
adopt a quasi-static continuum mechanics description. That is we consider a field
u giving the displacement map between a reference configuration Ω and a de-
formed configuration undergoing a pressure load. Furthermore, we define the
deformation gradient F = Gradu + I, which is the strain measure we use for our
clinical and simulated strain data.

In our wall motion model the myocardium is considered to be a hyperelastic
material with strain energy given by a transversely isotropic simplification of the
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Holzapfel-Ogden law [21],

ψ(C) =
a

2b

(
eb(I1(C)−3) − 1

)
+

af
2bf

(
ebf (I4f (C)−1)2+ − 1

)
. (4.1)

This equation defines the amount of energy, ψ, stored per unit volume myocardium
undergoing the strain C = FTF. The notation (· )+ refers to max{· , 0}, and the
mechanical invariants I1 and I4f are defined as

I1(C) = tr C, I4f = ef ·Cef , (4.2)

with ef indicating the local myocardial fiber direction. The material parameters
a, af , b, bf are scalar quantities which influence the shape of the stress-strain re-
lationship, and which we estimate in order to personalize the elastic properties
of the computational model to patient data. Furthermore, in order to improve the
numerical stability of our finite element solver, as shown in [27], we employ a
modified strain energy functional

ψ̃(C) = ψ
(
J−

2
3 C
)
. (4.3)

The elastic energy (4.3) is embedded into a standard pressure-displacement
variational formulation of incompressible hyperelasticity [Chapter 8.5 of [19]].
Displacements are set to 0 in the longitudinal direction at the base of the ventricu-
lar geometry by a Dirichlet boundary condition. Movement in the other directions
at the base is restricted by a linear spring with constant k.

The total variational equation, including the effects of blood pressure, pblood,
and the basal spring, is given by

0 =

∫
Ω

P + pJF−T : Grad δu dV +

∫
Ω

(J − 1)δp dV

+ pblood

∫
∂Ωendo

JF−TN· δu dS +

∫
∂Ωbase

ku· δu dS.
(4.4)

In this equation P is the first Piola-Kirchoff tensor P = ∂ψ̃
∂F

, ∂Ωendo the endo-
cardium, ∂Ωbase the ventricular base, N the unit outward facing normal, p the hy-
drostatic pressure, and δu, δp virtual variations in the displacement and pressure
respectively. Equation (4.4) is discretized by a mixed finite element method with

102



Taylor - Hood elements [22], that is a piecewise quadratic representation of the
displacement field and a piecewise linear representation of the pressure.

The software implementation of the finite element vector and matrix assembly
code is based on the package FEniCS [29]. Nonlinear systems are solved using
the PETSc SNES implementation of a Newton line search algorithm [4], while the
inner linear solves are handled by a distributed memory parallel LU solver [28].

4.2.4 Elastic Parameter Estimation

In order to personalize the elastic material properties of our computational me-
chanics model we make use of a least squares minimization of the mismatch
between model derived and measured strains. More specifically we define the
functional

Idata =
Nsm∑
i

Nreg∑
j

∣∣∣∣∣diagcrl

(
1

|Ωj|

∫
Ωj

FiF
−1
0 dV

)
− diagcrl

(
F̃i

)∣∣∣∣∣
2

. (4.5)

Here Nsm = 6 is the number of strain measurements available in atrial systole
and Nreg = 16 the number of AHA regions, with the apex segment excluded for
compatibility with the late enhancement MRI data. Furthermore Ωj denotes the
jth AHA segment, and |Ωj| the corresponding segmental volume. Also Fi is the
simulated deformation gradient corresponding to image i, and F̃i the image based
deformation gradient. Finally, diagcrl(· ) indicates the vector of circumferential,
radial and longitudinal diagonal components of the tensor argument. Note that
by adjusting the simulated deformation gradient by F−1

0 we are able to measure
simulated strains from a reference that is consistent with that used to calculate the
image based strains [33].

During data assimilation, each of the four elastic parameters a, b, af , bf is spa-
tially resolved as a piecewise linear function having a separate degree of freedom
at each vertex of the computational geometry. This allows for a greater hetero-
geneity of motion to be modelled than with globally constant parameters, but
greatly increases the number of parameters that need to be optimized. This can
lead to a potentially under-constrained optimization with many parameter combi-
nations with similar optimal Idata values. One way to choose among these parame-
ter sets is to pick the smoothest set. We therefore quantify the solution smoothness
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with a 1st order Tikhonov regularization functional

Ismooth =
1

|Ω|
∑

z∈{a,af ,b,bf}

∫
Ω

|Grad z|2 dV, (4.6)

where |Ω| is the volume of the simulated myocardium. The total functional for
our optimization is then

I = Idata + λIsmooth (4.7)

with regularization parameter λ. In this study we chose λ empirically by running
optimizations with various λ values, plotting the corresponding optimal Idata and
Ismooth values, and choosing a corner point corresponding to the smoothest set
of parameters that fits the data well. This procedure is inspired by the so called
L-criterion [17].

The total functional (4.7) is minimized by simultaneously optimizing all of the
degrees of freedom of the 4 elastic parameters. This optimization is carried out
by a sequential quadratic programming (SQP) algorithm [25]. Each iteration of
the SQP algorithm requires an evaluation of the functional (4.7), and the gradi-
ent of the functional with respect to all of the material parameter variables. This
gradient is calculated efficiently by the adjoint gradient method [Equation 13 of
[3]] symbolically derived by the software package dolfin-adjoint [11]. In partic-
ular, the computational cost of the adjoint gradient does not significantly depend
on the number of optimization parameters, of which there are 2964 in our study.
This compares favorably with a one sided finite difference approach to functional
gradient calculation, which would require 2964 model realizations, one for each
optimization parameter.

4.2.5 Unloaded Geometry Estimation

In order to make use of the elastic wall motion model described in Section 4.2.3
we require a reference geometry Ω from which to calculate displacements. Ad-
ditionally, this geometry should be stress-free in order to be compatible with the
requirements of hyperelastic theory. The presence of residual stresses and in-vivo
blood pressure means that such a geometry is generally unavailable from medical
imaging. In our study we do not estimate residual stresses, but do address the
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issue of pressure loading.
The effects of pressure on the image based geometry can be accounted for

by deforming the image based geometry in a series of updates according to the
backward displacement method [6]. The backward displacement method calcu-
lates a reference geometry that matches the in-vivo geometry when inflated to
the in-vivo pressure. In order to do this it requires knowledge of the values of the
elastic parameters. Consequently the elastic parameter optimization and backward
displacement algorithms are interdependent. In order to handle this dependency
we have modified the original backward displacement method by optimizing the
material parameters after each backward displacement update. Furthermore we
recalculate the fibers of our reference geometry at each iteration by deforming
the image based fibers by the deformation gradient of the backward displacement.
By doing this we ensure that the resulting reference fibers match those of the im-
age based geometry when deformed by the corresponding in-vivo pressure. Our
modified backward displacement algorithm is presented as Algorithm 2.

Algorithm 2 Unloaded geometry and material parameter estimation algorithm

for j ∈ {1...} until convergence do

Inflate Ωj to in-vivo pressure with material paramaters aj, bj, ajf , b
j
f , ef

j

to get displacement uΩj .

Apply backward displacement update at each vertex X
XΩj+1 = XΩ0 − uΩj .

Update fibers ef j+1 = F(−uΩj)ef
0.

Obtain aj+1, bj+1, aj+1
f , bj+1

f by minimization of the regularized
strain mismatch functional (4.7).

4.3 Results

In the following sections we present the numerical results of this study. We first
give the results of a synthetic data test of Algorithm 2, then move onto the re-
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sults of applying the algorithm to our clinical data. Finally, we carry out simu-
lated equibiaxial extensions tests using the material parameters calculated from
the clinical data.

4.3.1 Synthetic data test

In order to test our implementation of Algorithm 2, we have carried out a set of
simple synthetic data tests with spatially constant parameters. As a consequence
Ismooth = 0 in the tests and only the data functional Idata is minimized.

Our procedure was as follows. First we defined a ground truth set of elastic
parameters a = af = 1.5 kPa. This excluded the b parameters which were sim-
ply fixed to b = bf = 5.0 during the whole test. The image based ventricular
geometry, as shown in Figure 4.4, was chosen as the ground truth 0 pressure ge-
ometry for this test. This geometry was inflated to 0.1 kPa using the ground truth
parameters, and a 0.1 kPa mesh was then extracted. The original mesh was then
further inflated to 0.2 kPa and average regional strain measurements were taken
with respect to the 0.1 kPa mesh.

The synthetic data test then consisted of trying to reproduce the 0 pressure
ground truth geometry and material parameters by running Algorithm 2 on the
0.1 kPa mesh, using the synthetic strains as a target for the material parameter
optimization.

We ran the synthetic test 16 times, each time initializing the material param-
eters a and af for a different combination of values in the set {0.5, 1, 5, 10} with
units kPa. The algorithm was stopped when the maximum distance between the
current and ground truth 0.1 kPa pressure meshes was less than 0.0005 mm. This
occurred in all cases, and on average after 14.8 iterations.

Of the 16 trials, 14 reproduced very closely the ground truth 0 pressure mesh
and ground truth material parameter values. In two of the cases, corresponding to
the initial parameters a = 10, af = 0.5 and a = 10, af = 0.5, the material param-
eter optimization returned the lower bounds a = 0.15, af = 0.15. Consequently
the optimized meshes for these two cases were also inaccurate, with a maximum
distance (Dmax) of 8.80 mm between optimized and target meshes in both cases.

The results for the 14 successful optimizations are presented in Table 4.1. We
note that the estimation of the unloaded geometry and material parameters were
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Dmax Idata εa εaf
(mm) (kPa) (kPa)

Initial
mean 4.15 336 3.29 4.61
std 0 253 3.32 3.84

Optimized
mean 9.63× 10−04 3.71× 10−5 1.27× 10−04 8.74× 10−04

std 2.75× 10−5 2.99× 10−8 3.25× 10−6 1.30× 10−5

Table 4.1: Mean and standard deviation of results for 14 out of 16 successfully
fitting synthetic data tests of the combined pressure-free geometry and material
parameter estimation procedure, Algorithm 2. The symbolDmax denotes the max-
imum distance of the current unloaded mesh to the target mesh. εa and εaf denote
the respective absolute errors in estimating the target parameters a = af = 1.5
kPa.

consistently highly accurate for these cases.

4.3.2 Patient Specific Model

As a first step towards creating a personalized model of the infarcted left ventri-
cle in atrial systole, we identified suitable values for the regularization parameter
λ. This was done by carrying out a series of trial material parameter optimiza-
tions with the image based geometry used as the reference. These trials were
performed for the λ values (1, 10, 50, 100, 500, 1000) and consisted of minimiz-
ing the regularized strain mismatch functional (4.5) once without deforming the
image based geometry. Material parameters were initialized with globally con-
stant values a = 1.291, b = 5.0, af = 2.582, bf = 5.0. These values were selected
from a patient-specific study of healthy ventricles [Table 5 case P2 of [2]].

Optimal data and regularization functional values I∗data and I∗smooth were ob-
tained for each of the λ values tested and the corner point λ = 100.0 was selected.
These are shown in Figure 4.5.

With the λ parameter identified, we then ran the full geometry and material
parameter estimation, Algorithm 2. The stopping criterion was based on the dif-
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Figure 4.5: Optimal data versus regularization functionals obtained from opti-
mizations with a range of regularization parameter values for the case k = 0.1
and in-vivo data. The regularization values are written next to their respective
data points in the plot.

ference in volumes of successive unloaded geometries. If this difference was less
than 1 mL the algorithm was stopped. We tested basal spring k values in the set
{0.01, 0.1, 1.0, 10.0} with unit kPa. For the stiff cases k = 1.0 and k = 10.0 sim-
ulated pressure increases caused significant outward bending at the base, leading
to large displacements in the midwall. Applying these displacements negatively
to the image based geoemtery produced self-intersecting walls. In the very com-
plaint case k = 0.01 there were whole ventricle translations. The case k = 0.1

avoided both of these problems and was therefore chosen.
The creation of the personalized model required 6 unloading iterations, during

which the cavity volume of the reference geometry decreased from 186.0 mL to
33.7 mL. Material parameters were optimized 7 times, requiring between 100-281
SQP iterations for the minimization of the functional. More specific details about
the progression of Algorithm 2 are presented in Table 4.2. We note that the spatial
averages of the parameters decreased with nearly every unloading iteration, while
the optimal function values I∗ increased.

Measured vs. optimized strain-pressure curves are plotted in Figure 4.6. We
note that the optimized curves match the measured points fairly well, except for
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Table 4.2: Performance of the unloaded geometry and material parameter estima-
tion, Algorithm 2, applied to the clinical dataset. The first and second columns
contain the unloading iteration number and the cavity volume of the corresponding
mesh. The third column I∗ contains the values of the optimized total functional
at each unloading iteration and the fourth column the number of SQP iterations
needed to minimize I . The final four columns contain material parameter values
averaged over the entire ventricular geometry.

Iteration Volume I∗ Opt. Iter. a b af bf

(mL) (kPa) (kPa)

0 186.0 133.5 100 2.41 3.04 1.29 3.58
1 72.0 168.8 172 2.03 3.01 1.15 3.53
2 63.0 158.1 281 1.67 2.60 0.95 3.36
3 48.3 160.1 104 1.63 2.51 0.95 3.26
4 40.0 194.5 108 1.57 2.43 0.91 3.20
5 33.5 211.8 119 1.60 2.43 0.94 3.22
6 33.7 220.7 103 1.64 2.38 0.91 3.13
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Table 4.3: Regionally averaged material parameter values. Data in italics indicates
the presence of fibrosis in the corresponding myocardial segment.

Region a b af bf

(kPa) (kPa)

B
as

al

Anterior 0.742 0.390 0.508 2.242
Anteroseptal 0.417 0.838 1.326 2.140
Septum 0.277 0.789 1.305 1.597
Inferior 0.176 3.904 0.839 7.108
Posterior 2.374 8.699 1.206 5.723
Lateral 1.358 3.931 1.261 4.504

M
id

Anterior 2.300 1.903 1.028 2.912
Anteroseptal 1.339 0.365 0.601 0.817
Septum 0.475 0.939 0.415 1.044
Inferior 0.295 1.825 0.464 4.012
Posterior 2.220 2.050 0.526 4.663
Lateral 1.353 6.059 0.651 4.305

A
pi

ca
l

Anterior 4.405 3.690 1.650 3.448
Septum 1.701 0.589 0.794 0.852
Inferior 1.995 0.494 0.856 1.736
Lateral 2.596 1.029 0.803 2.852

the circumferential strain in the basal-anteroseptal segment, which is matched
poorly. Furthermore, we show the optimal material parameter fields in Figure 4.7
and note that the results are fairly smooth, yet still show significant variation
across the ventricle. Segmental averages of the material parameters are given
in Table 4.3.

Geometries at 0, begin atrial systole, and end diastolic pressures are shown in
Figure 4.8, along with a wireframe of the original image based geometry overlaid
over the begin atrial systole geometry for comparison. We note that the wire-frame
and the begin atrial systole geometry lie close together, indicating that Algorithm 2
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(a) Longitudinal Strains

(b) Circumferential Strains

(c) Radial Strains

Figure 4.6: Optimized model (solid line) vs. measured (black dot) strains. Model
strains are calculated as regional averages of the corresponding diagonal com-
ponent of the deformation gradient F. The line colouring indicates the relative
amount of scar in a segment as in Figure 4.2.
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Figure 4.7: Optimal material parameters visualized on the image based ventricular
geometry. The orientation of the geometry is such that the anterior, posterior and
lateral segments face the viewer. From left to right are parameters a, b, af , bf .

was able to approximate the image based geometry fairly well. Finally we have
plotted the pressure volume relationship of the ventricle in Figure 4.9 along with
measured volumes. These are compared to the empirically derived relationship
predicted by [24]. We note that the optimized model data lie within circa 10 mL
of the measured data and that both measured and model data vary significantly
from the empirical relationship.

Figure 4.8: Geometries personalized by the unloaded geometry and material pa-
rameter estimation algorithm. To the left is the pressure-free unloaded geometry,
in the middle the geometry at the start of atrial systole and to the right is the
end diastolic geometry. The middle image also includes the original image-based
geometry as a black wire-frame for comparison.
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Figure 4.9: Comparison of pressure volume relationships. The black dots rep-
resent data from 4-D echocardiography, the green line simulated data from the
optimized and unloaded ventricular mechanics model, and the dotted blue line the
theoretical relationship predicted by the formula of Klotz et al. [24].

4.3.3 Simulated Equibiaxial Testing

The personalization of the mechanics model to the patient data resulted in 4 ma-
terial parameters that are resolved in space over the ventricular geometry. These
parameters are relevant for mathematical modelling but do not give an intuitive
idea of stiffness in the ventricle. Stiffness can be visualized in terms of stress-
strain relationships, with stiffer materials giving higher stresses than softer ones
at the same levels of strain.

In order to visualize regional differences in stress-strain relationships in the pa-
tient ventricle, we have conducted a series of in-silico equibiaxial extension tests,
using analytical values for the stresses based on [Equations 17,18 of [20]]. A test
was conducted per myocardial region using the corresponding regionally averaged
material parameter values from Table 4.3. The results of these tests are presented
in Figures 4.10a and 4.10b. We note that the cross fiber stresses were nearly neg-
ligible as compared to the fiber stresses, indicating a high degree of anisotropy.
Fiber stresses were high in the heavily scarred inferior to posterior, mid to basal
segments, and in the scar-free mid lateral and apical anterior segments.
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(a) Fiber

(b) Cross Fiber

Figure 4.10: Results of simulated equibiaxial extension testing. Solid curves and
dotted curves represent stresses in the fiber direction and cross fiber direction re-
spectively. 4.10a and 4.10b: Stress-strain curves generated from simulated equib-
iaxial extension tests performed with average material parameter values obtained
from each myocardial segment. Strains are measured in terms of the in-plane
fiber and cross-fiber diagonal components of the deformation gradient F. Blue
segments are healthy whereas red contain scar tissue in proportion to their colour
as in Figure 4.2.
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Finally we have also averaged the stress-strain relationships for the healthy
and fibrotic regions, excluding the apical regions due to poor quality in the speckle
tracking. These curves are plotted in Figure 4.11 and show that on average, the
infarcted segments have just over twice as much fiber stress for a given state of
equibiaxial strain as the healthy segments.

Figure 4.11: Average of stress-strain relationships for scar-free (blue) and scar
containing (red) basal and midwall segments. Solid curves and dotted curves
represent stresses in the fiber direction and cross fiber direction respectively.

4.4 Discussion
By applying our adjoint gradient-based data assimilation method we were able to
estimate spatially heterogeneous material properties in an infarcted left ventricle.
Additionally, we have shown the applicability of our combined reference geome-
try and material parameter estimation algorithm. In particular this algorithm was
able to very accurately reproduce synthetic data, and also converged in volume for
our infarcted in-vivo case.

Several combined unloaded geometry and material parameter estimation algo-
rithms have been introduced in the past. In the earliest studies [1, 26, 34] material
parameters were tuned to fit the pressure-volume relationship predicted by the em-
pirically derived relation of Klotz et al. [24]. In [36] an algorithm was presented
that estimated both material parameters and unloaded geometry from in-vivo data,
without accounting for the dependency between the material parameter and geom-
etry estimation. Recently in-vivo data was used to estimate both material parame-
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ters and unloaded geometry [33] and an iterative algorithm to deal with the mutual
dependency of parameter estimation and geometry unloading was introduced.

In our study we faced rather large geometrical changes during the unloading of
the image based geometry, which were a consequence of soft material parameters
needed to fit the strain measurements. We were unable to compute these geomet-
rical changes with the algorithm presented in [33], as the backward displacements
became large and led to mesh self-intersections. By modifying the order of ge-
ometrical updates and parameter optimizations in the algorithm, we were able to
make smaller changes to the geometry between each material parameter optimiza-
tion, and thereby more gradually unload the geometry. This modified algorithm
successfully converged with our clinical data. During the course of the geomet-
rical unloading, we observed a softening of optimized material properties as the
geometry was unloaded. This is in agreement with the results of [33].

We also observed a gradual worsening of the optimal functional values I∗ dur-
ing unloading. Indeed the optimal value was 133.5 before unloading and 220.7
afterwards. In particular we noticed that the circumferential strain in the basal
anteroseptal segment was underestimated after unloading and well fitted before.
This discrepency can be attributed to a circumferential buckle in the unloaded ge-
ometry which was not present in the in-vivo geometry. In the unloaded geometry
simulated increases in pressure had the effect of unbuckling the basal anteroseptal
segment instead of expanding it circumferentially.

The volume of the unloaded geometry predicted by our model is about 4 times
smaller than that predicted by the empirical relationship of Klotz et al. [24], and
the measured in-vivo volumes also deviate significantly from the plotted empir-
ical relationship. This is surprising considering that the transversely isotropic
Holzapfel law employed in our study was previously found to reproduce the Klotz
volume relationship well [16]. As we only consider a single clinical dataset the
discrepency in pressure-volume relationships could be a chance occurrence. How-
ever, there could also be a significant difference between the true ex-vivo and
in-vivo pressure volume relationships of our patient. This would explain the dis-
crepency between the Klotz predicted volumes, which are based on ex-vivo data,
and our simulated volume curve which is based on in-vivo data. In the in-vivo
situation the contracting atria may pull on the mitral valve plane and thereby con-
tribute to in-vivo ventricular longitudinal lengthening. This mechanism could in-
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crease the volume of the ventricle without increasing the pressure, and is absent
in the ex-vivo procedures employed in [24]. If the pull of the atria on the mitral
valve plane were significant and accounted for in our model, we would expect
stiffer material properties and a larger unloaded volume closer to that predicted
by the Klotz relation.

Active tension was assumed to be 0 in our model. Typically this tension is
absent in atrial systole for a healthy heart, but may extend into atrial systole under
pathological conditions. If active tension were present in the diastasis phase of our
patient, than its release in atrial systole would contribute to strain. Missing this
effect would lead to an underestimation of tissue stiffness in our model. Further-
more the LV pressure and strain measurements were not taken simultaneously and
had to be synchronized. Errors in this synchronization can lead to large errors in
the determination of end diastolic pressure, especially if the timing of end diastole
is falsely placed in the isovolumic contraction phase where pressure changes are
large. Such uncertainty in pressure synchronization propagates to our estimates
of material stiffness.

The pressure-volume relation and many of the pressure-strain relations mea-
sured in the in-vivo dataset have a convex shape for the first 4 pressure measure-
ments. This convexity was reproduced poorly by the model, and may be due to
the effects of inertia. As the force of the pressure is first applied, we can ex-
pect wall velocities, and therefore strain and volume changes, to be small until
the walls build significant momentum from their initial state of rest. As inertia
was not included in our quasi-static model, this would explain the discrepancy
between simulated and measured data. Another possibility is the pulling effect of
the atria on the mitral valve plane. Such a pull might follow a classical Hill curve
shape, which we can see in the strain data. However, due to the noisy nature of our
echocardiographic data and the lack of precision in our pressure measurements,
we do not know whether or not the observed convexity was physiological.

In our simulated and measured data we noticed that the heavily infarcted re-
gion encompassing basal to mid, and inferior to posterior segments differed in
several ways from healthy segments. In these infarcted segments longitudinal and
radial strains were smaller, optimal b and bf parameters larger, and the simulated
equibiaxial stress-strain relationships showed greater fiber stresses. All of these
observations indicate increased myocardial stiffness. This is consistent with the
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increased stiffness observed in healing infarcts during an ex-vivo tissue experi-
ment [15] and in previous computational modelling with in-vivo data [31].

We also observed that the mid lateral segment was identified as free from scar
in the late enhancement MRI analysis, yet showed signs of stiffness similar to the
heavily infarcted segments described above. This might be a case of an infarction
impairing the mechanics of neighbouring healthy tissue [18]. The apical anterior
segment was also identified as free from scar and yet showed signs of stiffness.
However, the low measured strain and consequent high simulated stiffness in this
region may have simply been a consequence of the speckle tracking algorithm’s
inability to follow the apical tissue in the 3-D echo images.

Ideally model material parameters should be uniquely identifiable from in-
vivo data in order to produce potentially useful biomarkers for clinical practice.
Recently it has been shown that the linear parameters a and af of a reduced
Holzapfel-Ogden law, corresponding to the strain energy (4.1) with b = bf = 5.0,
are structurally identifiable [16]. Structural identifiability means that there exist
sets of model loaded states such that only one set of parameters produces them,
making it theoretically possible to uniquely identify the parameters. In our syn-
thetic data test we made use of the reduced Holzapfel model suggested by the
study [16], and were able to uniquely reproduce parameters, which we expected
due to the parameters’ structural identifiability. As the unloaded geometry esti-
mate depended upon a sequence of material parameter estimates, we expected it
to be uniquely identifiable as well, which is what we observed in the experiment.

Our in-vivo data is corrupted by noise, which makes the question of the unique
identifiability of parameters more complex. Additionally, we have optimized the
exponential b and bf parameters in our in-vivo experiment, for which structural
identifiability is still an open question. Furthermore, in contrast to the synthetic
data test, we have spatially resolved all of the parameters in the in-vivo case,
thereby greatly increasing their number. Due to the high number of parameters,
we have added regularization to the functional in order to constrain the parameter
fitting . Indeed, Figure 4.5 confirms the existence of several material parameter
sets that fit the model to the data very similarly, but differ in their smoothness. By
choosing corner points in the space of optimized data and smoothness functionals
our aim was to pick the smoothest data set that still fit the data well. Ultimately
though, we do not yet know how uniquely the spatially resolved in-vivo parame-

118



ters can be estimated, which is a significant limitation in our study.

Further limitations are related to data collection, in particular the speckle
tracking algorithm was unable to track the apical rocking phenomenon, pressure
measurements were imprecise, and only a single clinical dataset was included.

The computational model lacked several relevant physical effects, notably in-
ertia, viscoelasticity, residual stresses in the unloading geometry, mechanical cou-
pling of the LV to the right ventricle and atria, the effect of sheet microstructure,
and tissue compressibility due to blood entering and exiting the ventricle via coro-
nary vessels. The spring constant at the base was tuned due to algorithmic and
not physiological considerations. The apex of the computational model was free
while longitudinal motion at the base was fixed. The in-vivo situation is the op-
posite, the base moves longitudinally and the apex is fixed. The fiber orientations
were generic and not patient specific. Previous studies have shown that the elas-
tic anisotropy of infarcted areas can be significantly different from healthy tissue
[12, 31], an effect not captured by the assumed healthy fiber orientations in the
model. The measured ventricular volumes were not included in the parameter
estimation in order to simplify the study. Their inclusion might have helped to
further constrain the space of optimal parameters.

The spatial discretization of the material parameters was not optimized. The
computational mesh used to solve the variational equation of motion (4.4) was
also used for the representation of the spatial parameters due to ease of imple-
mentation. It is possible that a coarser representation of the material parameters
could have also produced good model-data fits. Fewer parameters might improve
uniqueness and reduce the number of SQP iterations needed to find a minimum.

4.5 Conclusion

Adjoint based data assimilation has been used to personalize a mechanics model
to reflect the heterogeneities in material properties throughout an infarcted left
ventricle using in-vivo data. Further trials with more datasets are warranted in
order to evaluate the applicability of the technique.
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