
James D. Trotter

High-performance
finite element computations
Performance modelling, optimisation,
GPU acceleration & automated code generation

Thesis submitted for the degree of Philosophiae Doctor

Department of Informatics
Faculty of Mathematics and Natural Sciences

Simula Research Laboratory

2020

© James D. Trotter, 2020

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2342

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

Preface

This thesis is submitted in partial fulfilment of the requirements for the degree of
Philosophiae Doctor at the University of Oslo. The research presented here was con-
ducted at Simula Research Laboratory, under the supervision of Professor Xing Cai,
Dr. Johannes Langguth, and Dr. Simon W. Funke. This work was supported by the
Norwegian Research Council through grant 251186.

The thesis is made up of three research papers, presented in chronological order
of writing. The underlying, common theme is the use of recent computing hardware
to accelerate certain calculations pertaining to a class of numerical methods known
as finite element methods. The papers are preceded by an introductory chapter that
relates them together and provides background information and motivation for the
work. The first and third papers are joint work with Xing Cai and Johannes Langguth,
whereas the second paper is written together with Xing Cai and Simon W. Funke.

Acknowledgements

My sincerest thanks to Xing Cai for, in my opinion, going above and beyond on many
occasions. I feel very fortunate to have had such a collaboration and grateful that
you have shared so much of your knowledge. Thank you for being kind, trusting and
generous.

I also thank Johannes Langguth, especially for guiding me during the early stages of
this project, but also for the many fun and varied discussions we have had throughout.
I want to thank SimonW. Funke for his involvement at important moments, and whose
encouragement meant a lot.

I have many colleagues to thank for helping in different ways, including Kristian
Gregorius Hustad, Hermenegild Arevalo, Alban Souche and Valeriya Naumova for
assisting with data or hardware that was used during mywork. Tore H. Larsen deserves
a special mention for his tireless commitment in supporting the eX3 platform and its
users. In addition, I thank Martin Sandve Alnæs, Jørgen Dokken, Chad Jarvis, Miroslav
Kuchta and Andreas Thune for helpful discussions along the way.

Simula as a whole deserves special thanks for firmly placing everyone’s health and
well-being above all else in trying times.

Finally, I thank my loving wife, family and friends.

James D. Trotter
Oslo, September 2020

i

List of Papers

Paper I

Trotter, J. D., J. Langguth and X. Cai (2020). “Cache simulation for irregular memory
traffic on multi-core CPUs: Case study on performance models for sparse matrix-vector
multiplication”. In: Journal of Parallel and Distributed Computing, 144, pp. 189–205.
ISSN: 0743-7315. DOI: 10.1016/j.jpdc.2020.05.020.

Paper II

Trotter, J. D., X. Cai and S. W. Funke. “On memory traffic and optimisations for low-
order finite element assembly algorithms on multi-core CPUs”.
Submitted for publication.

Paper III

Trotter, J. D., J. Langguth and X. Cai. “Leveraging GPU-accelerated finite element
computation with automated code generation: A holistic approach”.
Submitted for publication.

iii

https://doi.org/10.1016/j.jpdc.2020.05.020

Contents

Preface i

List of Papers iii

Contents v

List of Figures vii

List of Tables ix

List of Algorithms xi

1 Introduction 1
1.1 Background . 2
1.2 Research questions . 11
1.3 Summary of research papers . 13
1.4 Discussion and conclusions . 25

Bibliography 29

Papers 40

I Cache simulation for irregularmemory trafficonmulti-coreCPUs:
case study on performance models for sparse matrix-vector
multiplication 41
1 Introduction . 41
2 Quantifying data traffic for irregular, parallel computations . . . 44
3 A performance model based on data traffic and bandwidth . . . 47
4 Sparse matrix-vector multiplication 48
5 Numerical experiments . 53
6 Related work . 70
7 Conclusion . 71
References . 72

v

Contents

II Onmemory traffic andoptimisations for low-orderfinite element
assembly algorithms on multi-core CPUs 77
1 Introduction . 77
2 Background . 79
3 Cellwise finite element assembly 80
4 Optimisations . 85
5 Memory traffic estimates . 90
6 Numerical experiments . 93
7 Related work . 103
8 Conclusion . 104
References . 105

III Leveraging GPU-accelerated finite element computation with
automated code generation: A holistic approach 109
1 Introduction . 110
2 Finite element methods and automated code generation 111
3 GPU implementation of finite element assembly 114
4 Optimisations . 118
5 Numerical experiments . 122
6 Related work . 126
7 Conclusion . 128
References . 129

vi

List of Figures

Introduction

1.1 Unstructured, tetrahedral meshes . 4
1.2 Multi-core CPU architecture . 6
1.3 GPU architecture and CUDA memory hierarchy 8
1.4 Matrix sparsity patterns . 16

Paper I

1 Memory traffic volumes for SpMV . 43
2 Sparsity patterns of original and reordered matrices 54

Paper II

1 Multi-core CPU architecture . 91
2 Rowwise assembly performance on Xeon, Epyc and Cavium TX2 . . . 103

Paper III

1 GPU-based assembly algorithms . 116
2 Time spent on assembly vs. CPU-GPU transfer 125
3 Assembly and solution time for a hyperelasticity problem 127

vii

List of Tables

Introduction

1.1 CSR SpMV memory traffic on Sandy Bridge 16
1.2 CSR SpMV performance on Skylake . 17

Paper I

1 Matrices from the SuiteSparse Matrix Collection 53
2 Multi-core CPU systems used in experiments 55
3 CSR SpMV performance using GCC, ICC and Intel MKL 56
4 Hardware performance monitoring events 57
5 CSR SpMV memory traffic on Sandy Bridge 58
6 CSR SpMV memory traffic on Skylake 59
7 CSR SpMV memory traffic on Epyc . 60
8 Memory and CPU cache bandwidth . 61
9 Estimated CSR SpMV performance on Sandy Bridge 63
10 Estimated CSR SpMV performance on Skylake 64
11 Estimated CSR SpMV performance on Epyc 65
12 CSR SpMV performance on Sandy Bridge and Skylake 67
13 CSR SpMV performance on Epyc . 68
14 COO SpMV memory traffic on Sandy Bridge 69
15 COO SpMV performance on Sandy Bridge 70

Paper II

1 Hardware used in numerical experiments 94
2 Meshes used in numerical experiments 95
3 Performance and memory traffic for gathering vertex coordinates . . . 96
4 Performance for computing element matrices 97
5 Performance and memory traffic for scattering element matrices . . . 98
6 Cellwise and rowwise assembly performance 100
7 Rowwise assembly performance on Xeon, Epyc and Cavium TX2 . . . 102

ix

List of Tables

Paper III

1 Hardware used in numerical experiments 122
2 Computational meshes used in numerical experiments. 123
3 Performance of GPU-based assembly for Poisson’s equation 123
4 Performance of hyperelasticity solver on CPU vs. GPU 126

x

List of Algorithms

Introduction

1.1 UFL code for Poisson’s equation . 11
1.2 UFL code for a hyperelasticity model 24

Paper I

1 CPU cache simulation . 45
2 Parallel SpMV for matrices in the CSR storage format. 50
3 Parallel SpMV for matrices in the COO format. 51

Paper II

1 Cellwise finite element assembly. 80
2 Gathering the vertex coordinates of a tetrahedron. 81
3 Transformation to a reference tetrahedron 83
4 Computing element matrices for the Laplacian 85
5 Scattering element matrices to a global matrix with binary search . . . 86
6 Scattering element matrices to a global matrix with a lookup table . . 88
7 Computing element matrices with cross-element vectorisation 89
8 Rowwise finite element assembly. 90

Paper III

1 UFL code for Poisson’s equation . 113
2 CPU-based global finite element assembly 114
3 Auto-generated CUDA C++ kernel for local assembly 117
4 Auto-generated CUDA C++ kernel for global assembly 119
5 Auto-generated CUDA C++ kernel for rowwise assembly 121

xi

Chapter 1

Introduction

Mathematical modelling and numerical simulation are staples of many scientific and
engineering disciplines today. Models based on partial differential equations (PDEs),
in particular, are extraordinarily wide-ranging. These models and their accompanying
numerical simulations are used, for example, to forecast the weather as well as to
inform researchers and clinicians about mechanisms underlying cardiac disease and
neurological disorders.

The broad topic of this thesis relates to finite element methods, a popular class
of numerical methods for solving PDEs. More specifically, the work presented here
contributes to solving such problems faster with the use of recent computing hard-
ware. This is done by pursuing three main ideas while analysing and optimising the
performance of some of the central calculations that are involved.

First, we thoroughly investigate how memory traffic impacts finite element com-
putations, especially the assembly of linear systems. The overall operation of finite
element solvers requires both assembling and solving linear systems of equations,
and the former often contributes a substantial portion of the total computations to
be carried out. Our work goes well beyond analysing performance solely in terms
of counting the number of arithmetic operations that are performed. As a result, we
uncover some highly effective optimisation strategies, making more efficient use of
the memory subsystems on shared memory, multi-core CPUs.

In addition to assembly, we take a close look at memory traffic resulting from sparse
matrix-vector multiplication (SpMV) kernels. One of the many applications of such
kernels is for solving sparse linear systems that arise from finite element methods. The
significance of memory traffic is already well established in this case. But the irregular
memory access patterns that are intrinsic to SpMV kernels still make it difficult to
pinpoint bottlenecks and predict their performance in a precise manner. In light of this,
we contribute a quantitative model that can be used to more accurately understand
SpMV performance on multi-core CPUs, even for highly irregular matrices.

Second, we explore how to accelerate finite element solvers by offloading major
calculations, particularly the assembly of linear systems, to graphics processing units,
or GPUs. Large parts of the scientific computing community have already embraced
a paradigm of heterogeneous computing, where performance-critical computations
are offloaded to accelerator hardware. In most cases, these accelerators come in
the form of GPUs. Driven by demands for higher performance and better energy
efficiency, accelerators are now vital to large-scale computations on many current
supercomputers. In all likelihood, heterogeneity will continue to be an essential feature
of future computing systems.

The third and final point is not only to optimise and accelerate finite element
solvers, but at the same time also to build on established tools for automated code

1

1. Introduction

generation. In doing so, we aim to bolster the productivity of domain scientists whose
work relies on finite element methods. Proficiency in implementing the intricate details
of high-performance finite element solvers should not be needed to make good use of
them for numerical simulations.

The main part of this thesis is made up of three research papers that examine the
various aspects mentioned above.

Outline

The rest of this chapter proceeds with Section 1.1 giving some brief, technical back-
ground to support the rest of the work in this thesis. Thereafter, we present our main
research questions in Section 1.2, before Section 1.3 summarises the three research
papers that make up the main part of the thesis. A discussion and our main conclusions
follow in Section 1.4. Finally, the three research papers are then presented in their
entirety.

1.1 Background

In this section, we recount some central background material that is needed to later
thoroughly summarise our research. Section 1.1.1 first reviews some of the main
points involved in finite element computations. Next, we give a short description
in Section 1.1.2 of typical multi-core CPU architecture, emphasising the memory
subsystem and how it impacts performance of memory-intensive applications. This
is followed by a brief account of matters related to GPU computing in Section 1.1.3.
Finally, we give some background on automated code generation in Section 1.1.4.

1.1.1 Finite element methods

This section provides a cursory overview of computational procedures that are involved
when using finite element methods to solve PDEs. This is done through the classical
example of solving Poisson’s equation. More in-depth accounts of various aspects
surrounding finite element methods can be found in a number of textbooks, such
as Axelsson and Barker [2001], Ciarlet [2002], and Ern and Guermond [2004].

Poisson’s equation. To begin, we state our example PDE problem for a polygonal
domain Ω ⊂ R3 , whose boundary mΩ consists of two disjoint parts, Γ� and Γ# . Then,
Poisson’s equation with a diffusion coefficient ^ > 0, source term 5 , boundary term 6,
and mixed Dirichlet-Neumann boundary conditions is given by

−^∇2D = 5 in Ω,

D = 0 on Γ� ,

∇D · n = 6 on Γ# ,

(1.1)

where n denotes the outward-pointing unit normal on the boundary.
Through a standard procedure, a finite element method translates the above prob-

lem into a system of linear equations. As a rough outline, the computations to be

2

Background

performed consist of two essential stages: Assembling the linear system and solving it.
These are described in further detail below together with some prerequisite steps that
are also needed.

The basic approach remains largely the same even for a time-dependent, non-linear,
system of PDEs. However, in this case, a sequence of linear systems arises. These linear
systems are successively assembled and solved by means of the same fundamental
computations as before.

Weak formulation. The first step is to introduce a weak form of the PDE problem.
In the case of Poisson’s equation, as stated in Eq. (1.1), the standard weak formulation
consists of finite-dimensional test and trial spaces, denoted by + and * , respectively,
as well as a bilinear form 0 : + ×* → R and a linear form ! : + → R. These are given
by

0(E,D) =
∫
Ω
^∇E · ∇D dG, and !(E) =

∫
Ω
5 E dG +

∫
Γ#

6E dB . (1.2)

In our case, the test and trial spaces are subspaces of the Sobolev space �1 (Ω) with
the additional requirement that functions must vanish on the Dirichlet boundary Γ� .
In the following, we assume that the test and trial spaces are the same,* = + .

The goal is now to find a solution D ∈ * , belonging to the trial space, such that
0(E,D) = !(E) for every test function E ∈ + . If q0, q1, . . . , q#−1 ∈ * is a basis for
the trial space, then a solution can be expanded into a sum, D =

∑#−1
9=0 G 9q 9 . The

coefficients, G0, G1, . . . , G#−1 ∈ R, are often referred to as degrees of freedom.
Furthermore, ifk0,k1, . . . ,k#−1 ∈ + is a basis for the test space, then the problem

of finding a solution D may be formulated as a linear system of equations, �G = 1. The
coefficient matrix is �8, 9 = 0(k8 , q 9) and the right-hand side vector is 18 = !(k8), for
0 ≤ 8, 9 < # . Also, the values G0, G1, . . . , G#−1 resulting from solving this linear system
are precisely the coefficients of the trial function D with respect to the trial space basis.
Solving the linear system therefore yields a solution to the variational formulation of
the PDE.

Finite elements. Next, a computational mesh is needed to represent the problem
domain and to allow the integrals that appear in the variational formulation to be
evaluated more easily. Thus, the domain is partitioned into cells, usually triangles,
tetrahedra, or other convex polytopes. It is customary to require that the intersection
of any two cells is either empty or a vertex, edge or face belonging to both cells.
Figure 1.1 shows two examples of unstructured, tetrahedral meshes that are used again
later in this thesis.

As a rule, an unstructured mesh is used, meaning that there is no simple or obvious
pattern that describes the connectivity between mesh cells. An explicit representation
of the mesh cell connectivity is therefore needed. During mesh-based computations,
such as assembling and solving linear systems obtained from finite element methods,
this becomes a major source of irregular memory traffic and a serious impediment to
performance.

Once a mesh is given, each mesh cell is associated with a local finite element
space, spanned by a set of carefully chosen basis functions, often referred to as shape

3

1. Introduction

(a) Cardiac mesh (b) Aneurysm mesh

Figure 1.1. Unstructured, tetrahedral meshes from cardiac modelling [Marciniak et al. 2017]
and blood flow simulations [Aneurisk-Team 2012].

functions. The most common example is that of Lagrange elements, where the shape
functions are Lagrange interpolating polynomials with respect to a specific set of
points, or nodes, of the cell. Besides Lagrange elements, there exists a whole range of
other, widely used function spaces and finite elements [Arnold and Logg 2014].

In any case, local shape functions on each mesh cell are combined to form a basis
for a global finite element space, consisting of polynomials that are defined piecewise
with respect to the computational mesh. Ultimately, such global finite element spaces,
accompanied by their deliberately constructed bases, appear as test or trial spaces in
weak formulations of PDEs, such as Eq. (1.2).

Finite element assembly. After introducing a computational mesh and suitable
finite elements, the work comes down to assembling and solving linear systems of
equations. A linear system, �G = 1, is assembled from problem-specific element
matrices �) and vectors 1) on each mesh cell) .

In the case of the variational forms in Eq. (1.2), the element matrices and vectors
are

(�))8, 9 =
∫
)

^∇k)8 · ∇q)9 dG, and (1))8 =
∫
)

5k)8 dG +
∫
m)∩Γ#

6k)8 dB, (1.3)

wherek)8 and q)9 are shape functions belonging to local test and trial spaces on the
mesh cell) , respectively.

The global matrix, � ∈ R#,# , of the linear system is computed as a sum over the
mesh cells,

� =
∑
) ∈T

%)�)&
T
) , (1.4)

where �) ∈ R=,= is an element matrix for the mesh cell) . The matrices %) ∈ R#,= and
&) ∈ R#,= are designed to scatter contributions from the element matrix to the correct

4

Background

locations of the global matrix �. Without going into too much detail, %) and &) are
defined in terms of local-to-global mappings from shape functions on each mesh cell
to the global test and trial spaces, respectively.

The right-hand side vector is assembled in a similar manner.
To assemble linear systems as described above, some implementation of certain

problem-specific computational kernels is needed. With respect to our current example,
these kernels must evaluate the integrals in Eq. (1.3), when they are provided with
a given mesh cell) . In general, hand-written kernels are often provided for each
individual problem. Alternatively, such kernels can be produced by automatically
generating code from a suitable high-level description of the finite element problem at
hand, as described in Section 1.1.4.

One final issue related to assembly is that boundary conditions must be taken
into account. Neumann conditions are readily incorporated into the variational form,
for example, in the linear form of Eq. (1.2) and element vector of Eq. (1.3). Dirichlet
boundary conditions, on the other hand, are accounted for by modifying the linear
system during or after it has been assembled. First, entries of an element matrix are
set to zero if their rows or columns correspond to degrees of freedom that are subject
to Dirichlet boundary conditions. This is done prior to adding an element matrix to
the global matrix. Second, after assembling the global matrix, its diagonal entries are
set to one for rows where Dirichlet boundary conditions apply. The corresponding
entries of the right-hand side vector are modified according to the Dirichlet boundary
values prescribed.

Iterative linear solvers. Linear systems of equations derived from finite element
methods are sparse and often very large. As such, appropriate linear solvers are needed.
The work in this thesis relies on standard, iterative methods [Saad 2003], for example,
the conjugate gradient method, which is used in Paper III.

A crucial, often performance-critical part of such methods is repeatedly carrying
out sparse matrix-vector multiplications (SpMV). These operations inherently lead
to irregular memory traffic and performance that depends heavily on the memory
subsystem of the underlying hardware rather than its floating-point capabilities.

Sparse matrices are most commonly encountered in the compressed sparse row
(CSR) format. A standard, shared memory-parallel SpMV kernel using the CSR format
is the main example studied in connection with performance modelling of irregular,
bandwidth-limited computations in Paper I. The CSR format also appears in Papers II
and III, due to being commonly used for global, sparse matrices that are assembled
during finite element computations.

To briefly explain, consider a sparse matrix with" rows, # columns and non-
zero entries. The matrix is then stored as non-zero values, 00, 01, . . . , 0 −1, together
with a compressed representation of the location of each non-zero. More specifically,
non-zero locations are stored as column indices 90, 91, . . . , 9 −1 and (" + 1) row
pointers A0, A1, . . . , A" . The non-zeros are sorted according to the row they belong to,
such that A8 and (A8+1 − 1) are the indices of the first and last non-zeros of the 8-th row,
respectively. In other words, a non-zero 0: belongs to the 8-th row if A8 ≤ : < A8+1. For
further details, see, for example, Saad [2003].

5

1. Introduction

Main memory

Memory modules Memory modules Memory modules Memory modulesMemory modules Memory modulesMemory modules Memory modules

L3 cache

Memory controllers

L2 cache

L1 cache

Registers

FPUs

CPU cores

Socket 1Socket 0

CPU cores

FPUs

Registers

L1 cache

L2 cache

Memory controllers

L3 cache

Figure 1.2. Memory hierarchy of a dual-socket, multi-core CPU.

1.1.2 Multi-core CPUs

An important part of this thesis is centred on memory-related optimisations for finite
element codes. For this reason, we give a high-level description of the architecture
and memory subsystem of a typical multi-core CPU. Further details can be found in
appropriate documentation for specific multi-core CPUs, such as Intel Xeon [Intel
Corporation 2018], AMD Epyc [Guo 2019], or ARM64 [Guo et al. 2019].

Common multi-core CPU systems are made up of one or more sockets, each
containing up to a few dozen CPU cores, as illustrated in Figure 1.2. CPU cores
contain floating-point units (FPUs) for carrying out floating-point calculations. These
calculations can only operate on data that lies in a CPU core’s registers. In other words,
registers are the working memory of a CPU.

Vectorisation is often used to perform calculations in parallel on multiple values
stored consecutively in a single register. Usually, the vector width is 2, 4, 8, or 16,
signifying the number of values that fit in a single register and may thus be handled
in parallel.

Data that is needed for computation, but is not already located in registers, must be
fetched from memory. Conversely, intermediate results that do not fit in registers, or
results that are otherwise to be saved for later, must be written to memory. Moreover,
memory is organised in a multi-level hierarchy. In addition to registers, each core
has its own first- and second-level cache. These are fast memories used for recently
accessed or soon to be used data. A larger, third-level cache is most often shared by all
the cores of a socket. Finally, each socket has one or more memory controllers that

6

Background

are used to transfer data between third-level caches and main memory.
Caches are in reality very complex, and many of the details surrounding their

exact implementation are never revealed by CPU vendors. For practical work, such as
designing cache-friendly or cache-oblivious algorithms, it is much more useful to rely
on simplified models, such as the ideal cache model described by Frigo et al. [2012].
The cache simulation methodology in Paper I is partly based on this model.

Many memory-intensive codes are bandwidth-limited in the sense that their per-
formance is chiefly a result of how much data can be moved to and from memory
at any given time. A theoretical upper limit on memory bandwidth is obtained by
multiplying the transfer rate of memory modules by the number of channels used
by the memory controllers. For example, a system with DDR4 memory operating at
2 666MHz and six memory channels has a theoretical bandwidth of about 128GB/s.

However, for various reasons, the theoretical bandwidth does not reflect what
may be achieved in reality. Instead, a rudimentary, but effective way to gauge the
achievable performance is through a microbenchmark, such as STREAM [McCalpin
1995]. This benchmark is routinely used to measure the practically achievable memory
bandwidth of multi-core CPUs in the case of streaming memory access patterns. It is,
for example, used in Papers I and II.

Finally, we note that multi-core CPUs employ various measures to maintain correct
results whenever several CPU cores operate on data from the same location in memory.
Cache coherency ensures that data residing in one CPU core’s cache is up-to-date,
in the event that the same data is modified by another CPU core. Even so, it is often
necessary to perform some form of explicit synchronisation between threads working
on the same data. In this case, atomic operations are regularly used to ensure that
a single CPU core updates and writes a certain piece of data to memory without
interference from others.

For example, a shared memory parallel implementation of the standard, cellwise
finite element assembly algorithm (see Section 1.1.1) can use atomic operations to
prevent race conditions between different threads updating the same global matrix
values. Failing to do so can lead to incorrect results. This approach is encountered in
Papers II and III.

1.1.3 GPU computing

Researchers have used GPUs for more than a decade to solve problems in scientific
computing [Che et al. 2008; Owens et al. 2007]. In 2006, NVIDIA announced its Tesla
GPU architecture together with the CUDA programming model, designed to make
general-purpose computations on NVIDIA GPUs more accessible [Kirk and Hwu 2010].
OpenCL [Khronos OpenCL Working Group 2020] is another GPU computing standard
that may be used with GPUs from several vendors. The GPU-related work in this
thesis is nonetheless based on CUDA, which still remains the most commonly used
method of GPU programming.

In this section, we briefly describe some of the main features of the CUDA pro-
gramming model and NVIDIA’s GPU architecture. More often than not, a detailed
understanding of both is needed to properly benefit from GPU acceleration. Further
details are found in the CUDA C Programming Guide [NVIDIA Corporation 2020b].

7

1. Introduction

GPU device memory (HBM2)

Main memory (DRAM)

Streaming multiprocessors

Floating-point units

L1 cache / shared memory

Registers

L2 cache

(a) GPU architecture

Global memory

Grids

Host memory

· · ·

Shared
memory

Thread block

Per-thread
local memory

Per-thread
local memory

Thread block

Shared
memory

Per-thread
local memory

Thread block

Shared
memory

(b) CUDA memory hierarchy

Figure 1.3. GPU architecture and logical memory hierarchy in the CUDA programming model.

CUDAprogrammingmodel. CUDA is a heterogeneous programmingmodel where
a program executing on a host processor can offload parallel tasks to a separate CUDA
device, which, in practice, is just another name for an NVIDIA GPU. The programmer
decomposes a parallel task into a large number of fine-grained tasks, each of which is
to be executed by a thread.

The programmer also arranges these fine-grained tasks so that threads map onto a
three-dimensional grid made up of three-dimensional thread blocks. Each thread block
consists of a limited number of threads that may cooperate and synchronise, though
the order of execution among thread blocks is not specified.

Another feature of the way parallel tasks are offloaded is that each thread executes
the same program, called a kernel. Individual threads can still operate on different data
or execute different instructions by having the kernel depend on a thread’s location
in the grid. Kernels are written in C++ or Fortran and must be compiled to PTX
assembly language code or GPU-specific binary code before they can be launched
from the host. There exists a large collection of libraries containing optimised CUDA
kernels for different applications, including linear solvers [Naumov et al. 2015; NVIDIA
Corporation 2020c; Tomov et al. 2010].

NVIDIA GPU architecture. A typical NVIDIA GPU consists of several Streaming
Multiprocessors (SMs), as shown in Figure 1.3(a). Each SM has a large number of
floating-point units (FPUs) and a warp scheduler to schedule threads for execution.
In addition, each SM has a limited amount of registers as well as a fast memory that
is divided between L1 cache and shared memory. The latter acts as a form of user-
managed cache or scratchpad memory. Beyond that, SMs share a single L2 cache and
the GPU device memory.

8

Background

As an example of a recent GPU model, NVIDIA V100 [NVIDIA Corporation 2017]
consists of 80 SMs based on the Volta microarchitecture. Each SM features 64 and
32 single- and double-precision FPUs, respectively. Consequently, the peak double-
precision performance is 7800Gflop/s. There are also a number of so-called tensor
cores for accelerating specialised operations on small matrices. Furthermore, SMs
carry 256 kB of register memory and 128 kB of L1 cache, where up to 96 kB can be
set aside for shared memory. An L2 cache of 6144 kB is shared among SMs. Device
memory consists of 32GB of high-bandwidth memory (HBM2) with a peak bandwidth
of 900GB/s.

When a kernel is launched on a GPU, different thread blocks are assigned to
different SMs to be executed concurrently. Furthermore, at each instruction issue,
an SM will select a small group of thirty-two consecutive threads from the same
thread block, called a warp, to be scheduled for execution. An SM can schedule a
new warp each cycle, provided that one is available for execution. The entire warp
generally executes one common instruction at a time. However, each thread has its
own execution context, including program counter and register state, so it can operate
on its own data or diverge from other threads by not participating in the execution of
a particular instruction. On the other hand, thread divergence can adversely impact
performance and should be avoided, if possible.

Performance considerations. Finally, we mention some recurring themes in op-
timising CUDA kernels for NVIDIA GPUs. All of these relate somehow to keeping
floating-point units busy by quickly and efficiently supplying data that is needed for
computation. The points below are all relevant to various degrees with respect to the
GPU-acceleration studied in Paper III. More information on how to obtain good perfor-
mance for GPU computations is found in the CUDA C++ Best Practices Guide [NVIDIA
Corporation 2020a].

The logical memory hierarchy presented to the programmer by the CUDA pro-
gramming model is depicted in Figure 1.3(b). Each thread may access its local memory,
which is private to the thread. There is also a shared memory, which is available to
a whole thread block, and global memory, which is shared by all threads on a device.
Finally, the global memory of a CUDA device is separate from the host’s memory, so
data must be explicitly transferred to or from the device.

L2 cache and GPU device memory are used to serve global memory accesses. Data
in shared memory is guaranteed to reside in an SM’s fast, on-chip memory, but per-
thread local memory may reside in registers, L1 cache, L2 cache, or even GPU device
memory.

Device memory may offer a high bandwidth, but the latency cost associated with
individual memory accesses is also very high. It is therefore important to maintain
high occupancy. That is, each SM should at all times have enough active warps ready
to be scheduled for execution. The number of warps simultaneously handled by an SM
is often limited by the availability of registers and shared memory. Thus, one should
at the same time attempt to limit the amount of registers and shared memory required
by each thread block.

On a related note, the concept of coalesced memory access is needed to achieve the

9

1. Introduction

highest possible throughput for accesses from global memory. This occurs whenever
threads in a warp access consecutive memory locations in global memory. It is often
worthwhile to rearrange data specifically to accomplish coalescing and thus improve
throughput for global memory accesses.

Finally, transferring data between a host CPU’s main memory and GPU device
memory is typically done over a PCIe connection with a meagre bandwidth of 16GB/s.
As a consequence, such transfers should be kept at a minimum to prevent them from
becoming a bottleneck.

1.1.4 Automated code generation

Reaching high performance in scientific codes is often a matter of considerable effort,
requiring proficiency in parallel programming and performance optimisation. If GPUs
are used, then knowledge of special-purpose programming models may be needed too.
At worst, high-performance tools for numerical simulations are simply unobtainable
for researchers and others from domains outside of high-performance computing.
Many could surely benefit from such tools, but they may not have the time or skills
needed to develop them.

For some problems in scientific computing, automated code generation has pro-
vided a solution that combines high performance with productivity and accessibility.
In some sense, this is a continuation of auto-tuning strategies used, for example, in
numerical linear algebra [Clint Whaley et al. 2001; Vuduc et al. 2005] and stencil
codes [Datta et al. 2008]. Automated code generation has, in fact, received a good
deal of attention in the area of stencil codes [Christen et al. 2011; Han et al. 2011;
Holewinski et al. 2012; Sourouri et al. 2017; Tang et al. 2011; Unat et al. 2011; Unat
et al. 2012; Zhang and Mueller 2012]. It has also been used to generate GPU code for
array-based computations with tools such as PyCUDA and PyOpenCL [Klöckner et al.
2012], and Loo.Py [Klöckner 2014; Klöckner et al. 2016].

For PDE solvers based on finite element methods, open-source frameworks such
as FEniCS [Logg et al. 2012] and Firedrake [Rathgeber et al. 2016] use automated code
generation techniques based on the Unified Form Language (UFL) [Alnæs et al. 2014]
to bring high-performance finite element computations to a wider audience.

Recall the variational forms for Poisson’s equation in Eq. (1.2), and the correspond-
ing expressions for calculating element matrices and vectors in Eq. (1.3). Using FEniCS,
the appropriate computational kernels for computing such element vectors and ma-
trices are automatically generated from the UFL code shown in Algorithm 1.1. In
this example, first-order Lagrange elements on tetrahedral mesh cells are used. The
variational forms are spelled out with the help of volume and area elements dx and ds
and operators such as inner and grad, which represent inner product and gradient
operators, respectively.

UFL deliberately mimics standard notation for finite element methods, making it
easier for users to translate finite element problems into code. A more detailed guide
to using FEniCS and UFL to solve PDEs is found in the FEniCS tutorial [Langtangen
and Logg 2017].

10

Research questions

element = FiniteElement (" Lagrange", tetrahedron , 1)
coords = VectorElement (" Lagrange", tetrahedron , 1)
mesh = Mesh(coords)

V = FunctionSpace(mesh , element)
u = TrialFunction(V)
v = TestFunction(V)
f = Coefficient(V)
g = Coefficient(V)
kappa = Constant(mesh)

a = kappa * inner(grad(u), grad(v)) * dx
L = inner(f, v) * dx + inner(g, v) * ds

Algorithm 1.1. UFL code for Poisson’s equation with mixed Dirichlet-Neumann boundary
conditions.

1.2 Research questions

In this section, we present a series of questions that guide the research undertaken in
this thesis. Our questions relate to the subjects of high-performance computing and
finite element methods. Since these are vast topics, we mention a few ways in which
we limit the scope of our research.

First, we consider only some of the most commonly used finite element methods,
based on low-order piecewise polynomial basis functions. Linear and quadratic La-
grange elements, for example, are widely used in practice and are therefore important
to many applications. In other words, we do not consider higher-order and spec-
tral methods, which usually require considerably different algorithms to implement
efficiently.

Further, in connection with linear solvers, we only concern ourselves with iterative
solvers for sparse linear systems, rather than direct solvers. The former are often used
in connection with large-scale problems based on unstructured meshes. Although
iterative solvers usually incorporate a preconditioning step, we do not touch on the
topic of preconditioning.

A related point is that our study of finite element solvers is based around performing
global matrix assembly. Matrix-free and related methods are therefore not considered.
These are known to be mostly advantageous for higher-order methods [Cantwell et al.
2011; Kronbichler and Kormann 2012; Reguly and Giles 2015; Vos et al. 2010].

Several of the following questions originate from an overarching concern of finding
memory-related factors that influence the performance of finite element solvers. Recall
that finite element computations can be broken down into two stages: assembling
and solving linear systems. Hence, we are naturally led to consider memory-related
performance issues of each stage.

Memory traffic has so far received little attention in the context of finite element
assembly, even though such computations heavily feature irregular memory accesses.
Thus, our first research question concerns memory-related performance issues of finite
element assembly.

Question 1. How do irregular memory accesses influence the performance of finite

11

1. Introduction

element assembly procedures and how should such algorithms be implemented
to mitigate memory-related performance issues?

Paper II is primarily concerned with the above question for the implementation of
finite element assembly on shared memory, multi-core CPUs. The same issues are also
dealt with in Paper III when offloading finite element assembly to a GPU.

For iterative linear solvers, on the other hand, the connection between memory
traffic and performance is already well recognised. Since they are so widely applicable,
also outside the domain of finite elements and PDEs, it is fair to say that iterative
solvers have been more thoroughly studied in general.

In particular, sparse matrix-vector multiplication (SpMV) is one of the cornerstones
of iterative solvers for sparse linear systems, where such operations are carried out
repeatedly and often dominate performance. Although SpMV kernels are mostly
limited by available memory bandwidth, irregular memory accesses often make it
difficult to predict their performance accurately.

Our next research question aims to investigate SpMV performance in more detail.
Earlier work by Langguth et al. [2015a] develops a performance model for SpMV
on both multi-core CPUs and GPUs for a special case of matrices that arise from a
cell-centred finite volume method on tetrahedral meshes. Partly as a continuation
of this effort, we ask about SpMV performance for general, sparse matrices. But we
consider only multi-core CPUs to limit the scope of our research.

Question 2. What is needed to quantitatively understand the performance of parallel
sparse matrix-vector multiplication on multi-core CPUs?

This question is pursued in Paper I, where a detailed quantitative performance model
is developed. As it happens, the methodology developed in the paper is not specifically
tied to SpMV. On the contrary, it is much more general, in the sense that it is relevant
for other irregular, bandwidth-limited kernels too.

The remaining questions relate to offloading finite element assembly to GPUs, a
topic mainly addressed in Paper III. Many aspects of GPU-accelerated finite element
solvers have been carefully investigated in the past, including GPU-based global
assembly [Cecka et al. 2010; Reguly and Giles 2015] and GPU-based iterative linear
solvers [Anzt et al. 2020; Anzt et al. 2017; Naumov et al. 2015].

Our attention is devoted mostly to GPU-based assembly of linear systems, where
the topic of memory-related performance issues is again examined in detail. However,
we also strive to maintain a high-level overview of the entire finite element solution
procedure. Whereas the two stages of finite element computations are usually offloaded
to a GPU separately, we consider how to couple these computations together to avoid
memory traffic bottlenecks due to CPU-GPU data transfers.

Question 3. What are the most important memory-related influences on perfor-
mance when offloading finite element solvers to a GPU?

After offloading the desired calculations to a GPU, it seems only natural to compare
the resulting performance to that of a typical multi-core CPU system.

12

Summary of research papers

Question 4. How does a GPU compare to a typical multi-core CPU in terms of
performance for a realistic finite element problem?

A convincing answer to this question ought to be based on optimised implementations
for both platforms. Thus, part of our strategy is to first produce an optimised finite
element assembly implementation for multi-core CPUs in Paper II. Thereafter, we
consider GPU acceleration of linear system assembly in Paper III. In this way, a fair
comparison can be made between CPU and GPU performance in the latter paper.
Moreover, we aim to use automated code generation, so that we can consider a more
complicated, real-world problem in the third paper.

The final research question stems from our goal to make high-performance GPU-
based finite element solvers more accessible with the help of automated code genera-
tion.

Question 5. How can automated code generation be used to implement GPU-based
finite element solvers for a range of PDEs?

We are not aware of any previous work that has successfully provided a complete
solution that combines automated code generation with fully GPU-accelerated finite
element solvers, including both GPU-based assembly and solution of linear systems.

However, the PDE solver framework FEniCS [Logg et al. 2012] has previously
demonstrated its worth by using automated code generation for parallel finite element
solvers for large-scale problems on clusters of multi-core CPUs. One of the novel
contributions of this thesis is therefore our extension of FEniCS in Paper III, which
enables GPU-based finite element assembly and solvers in a way that complements
the framework’s existing functionality.

1.3 Summary of research papers

This section summarises three research papers that form the backbone of this thesis.

1.3.1 Summary of Paper I

Trotter, J. D., J. Langguth and X. Cai (2020). “Cache simulation for irregular memory
traffic on multi-core CPUs: Case study on performance models for sparse matrix-vector
multiplication”. In: Journal of Parallel and Distributed Computing, 144, pp. 189–205.
ISSN: 0743-7315. DOI: 10.1016/j.jpdc.2020.05.020.

The first research paper of this thesis concerns the parallel performance of computa-
tions that prominently feature irregular memory access patterns. In the context of
finite element computations, irregular memory accesses naturally arise due to using
unstructured meshes and sparse matrices. The paper focuses particularly on the latter
by using sparse matrix-vector multiplication (SpMV) as the primary example of an
irregular computational kernel.

13

https://doi.org/10.1016/j.jpdc.2020.05.020

1. Introduction

Background and motivation. SpMV is one of the main components of iterative
linear solvers [Saad 2003], which are frequently used to solve large-scale finite element
problems. It also appears in other situations, such as graph algorithms [Davis 2019;
Kepner and Gilbert 2011], or explicit schemes for time-dependent PDEs (e.g., Langguth
et al. [2015a] and Langguth et al. [2015b]).

On the surface, SpMV is deceptively simple. The most common variants of this
kernel can be expressed in only a few lines of code and the number of floating-point
arithmetic operations to be carried out is simply twice the number of non-zero matrix
values. However, the performance observed in practice may vary considerably as a
result of irregular memory accesses.

In spite of its simplicity, there is a substantial body of literature covering opti-
misations for SpMV. For example, some apply techniques such as register and cache
blocking [Nishtala et al. 2007; Pinar and Heath 1999; Vuduc et al. 2002] or compres-
sion [Willcock and Lumsdaine 2006] to standard sparse matrix formats such as CSR (see
Section 1.1.1), whereas others propose alternative sparse matrix storage formats [Buluç
et al. 2009; Haase et al. 2007; Kreutzer et al. 2014; W. Liu and Vinter 2015; X. Liu et al.
2013; Yzelman and Bisseling 2012].

In most cases, SpMV algorithms are evaluated experimentally by trying them out
on a representative set of matrices, such as the SuiteSparse Matrix Collection [Davis
and Hu 2011]. Examples include the informative overviews of Goumas et al. [2009] and
Williams et al. [2009a] regarding SpMV onmulti-core CPUs. Occasionally, performance
is tied to best case estimates of memory traffic based on the number of rows, columns
and non-zeros of a given matrix [Bender et al. 2010; Heras et al. 2001; Temam and
Jalby 1992; Vuduc et al. 2002]. These results establish upper bounds on achievable
performance. But the performance observed in practice is often much worse, especially
for irregular matrices. Similarly, arithmetic intensity is easily deduced (about 0.1 flop/B
for a standard, CSR-based SpMV kernel), yet a simple bottleneck analysis, like the
roofline model [Williams et al. 2009b], frequently misses the mark.

Cache simulation. Existing memory traffic estimates for SpMV disregard the struc-
ture of a matrix, that is, the locations of its non-zeros. These estimates are simple to
derive, depending only on the number of rows, columns and non-zeros. However, they
can be highly inaccurate, especially for irregular matrices.

Therefore, inspired partly by analytical cache models [Agarwal et al. 1989; Frigo
et al. 2012] and trace-driven memory simulation [Uhlig and Mudge 1997], Paper I
proposes a trace-driven cache simulation technique for multi-core CPUs with multiple
levels of private and shared caches. The method is presented in general terms and is
applicable to any irregular, parallel computation, even though our main focus is on
SpMV. Furthermore, the difference compared to previous analytical cache models and
trace-driven approaches, see Burgess and Giles [1997], Heras et al. [2001], and Yzelman
and Bisseling [2009], is the incorporation of multiple memory hierarchy levels as well
as shared caches.

The method presented in the paper is aimed at a typical multi-core CPU’s memory
hierarchy, as outlined in Section 1.1.2. We assume that caches are fully associative and
use a least recently used policy when evicting cache lines to make room for new ones.

14

Summary of research papers

Also, the method accounts for cache lines that are brought to a cache as a direct result
of load or store instructions issued by a CPU without performing any prefetching.

Furthermore, each cache is considered to be inclusive of higher-level caches, which
means that a given cache always contains cache lines that are also held in smaller
caches, closer to the CPU. For example, anything that is found in a first-level cache will
also be present in a second- and third-level caches. As a result, the cache simulation
can be carried out independently for each cache.

In broad strokes, the cache simulation runs through a sequence of memory accesses
performed by a given algorithm to estimate memory traffic volumes associated with
each memory hierarchy level. Each cache is represented by a least recently used (LRU)
list to keep track of cache lines that were accessed most recently. As the simulation
progresses, it counts the number of cache misses that occur as new cache lines are
placed at the front of the LRU list and the oldest entries are evicted. The final memory
traffic volume is simply the cache line size (64 bytes, in most cases) multiplied by the
number of cache misses.

Finally, consider a cache that is shared by several CPU cores, such as the third-level
caches of most multi-core CPUs. In practice, the load and store requests to a shared
cache will be received in some unpredictable order. Threads running on different cores
typically proceed at different speeds for all sorts of reasons, such as thread scheduling
or memory latencies. In any case, we assume that memory accesses from different
CPU cores are interleaved. In other words, CPU cores are treated as though they issue
load and store instructions in a round-robin fashion.

Numerical experiments. In the paper, three multi-core CPU system are used, in-
cluding Intel and AMD CPUs. The main example in our numerical experiments is an
OpenMP-parallel SpMV kernel using matrices in the CSR format, (see Section 1.1.1).
Thus, a small subset of the SuiteSparse Matrix Collection [Davis and Hu 2011] was
selected, representing various application domains, such as circuit simulation, combi-
natorial problems, computational fluid dynamics, and more. Some of these matrices
are shown in Figure 1.4.

Estimates of memory traffic volumes for first, second- and third-level caches, as
well as main memory, are produced by running the cache simulation for a standard
OpenMP-parallel implementation of SpMV for matrices in CSR format. In addition,
the SpMV algorithm is itself run to measure its execution time and performance.

For the Intel systems, hardware performance monitoring facilities are used to
extract the actual volumes of memory traffic for each memory hierarchy level during
SpMV. These hardware measurements are directly compared to estimates produced by
the cache simulation.

To highlight some results, Table 1.1 shows estimated and measured memory traffic
volumes on a dual-socket Intel Sandy Bridge system for the matrices in Figure 1.4.
Overall, the estimates from the cache simulation are close to the memory traffic
measurements. The error is less than 10% even for very challenging and irregular
matrices, such as “GL7d19”, “sx-stackoverflow” and “Lynx68”.

The cache simulation mostly underestimates the memory traffic volume by a small
amount, for example, due to ignoring conflict misses. On the other hand, the memory

15

1. Introduction

TSOPF_rs_b2383 RM07R HV15R GL7d19 sx-stackoverflow

FullChip circuit5M Hardesty3 Lynx68 Lynx68_reordered

Figure 1.4. Matrix sparsity patterns. The matrices “GL7d19” and “Hardesty3” are rectangular,
whereas the others are square.

Table 1.1. Memory traffic of OpenMP-parallel CSR SpMV between shared L3 cache and main
memory (DRAM) using 16 threads on dual-socket Intel Xeon E5-2650 (Sandy Bridge) CPUs.

Measured Estimated Error
Matrix [MiB] [MiB] ([%])

TSOPF_RS_b2383 185 185 (+0.0%)
RM07R 451 439 (−2.7%)
HV15R 3413 3357 (−1.6%)
GL7d19 617 563 (−8.8%)
sx-stackoverflow 795 732 (−7.9%)
FullChip 449 438 (−2.4%)
circuit5M 895 917 (+2.5%)
Hardesty3 620 618 (−0.3%)
Lynx68 4402 4290 (−2.5%)
Lynx68_reordered 1481 1463 (−1.2%)

traffic is overestimated for “circuit5M”, which is possibly a result of threads competing
for the shared L3 cache. Recall that the cache simulation assumes that load and store
requests are submitted by CPU cores in a simple round-robin scheme, but this is not
really the case in practice.

The paper also contains further examples and detailed explanations about discrep-
ancies between measured memory traffic volumes and estimates based on the cache
simulation approach.

For the sake of comparison, a much simpler “pen-and-paper” estimate for the
“Lynx68” matrix places the memory traffic between 1401MiB (about 20B per non-zero
plus 20B per row) and 8134MiB (about 76B per non-zero plus 12B per row). This
is far away from the actual memory traffic that is measured between L3 cache and
main memory. Further results in the paper show that such simple best- and worst case

16

Summary of research papers

Table 1.2. Performance of OpenMP-parallel CSR SpMV using 48 threads on dual-socket Intel
Xeon Platinum 8168 (Skylake) CPUs. This includes actual measured performance, best case
performance estimates based on “pen-and-paper” data traffic estimates, and performance
estimates based on memory traffic from cache simulation.

Measured Best case Cache simulation

Matrix [Gflop/s] [Gflop/s] (Error [%]) [Gflop/s] (Error [%])

TSOPF_RS_b2383 13.36 30.63 (+129%) 16.64 (+25%)
RM07R 31.81 30.24 (−5%) 31.01 (−3%)
HV15R 29.11 30.39 (+4%) 31.96 (+10%)
GL7d19 13.46 28.31 (+110%) 12.72 (−6%)
sx-stackoverflow 2.70 27.46 (+916%) 2.24 (−17%)
FullChip 4.71 25.91 (+450%) 4.96 (+5%)
circuit5M 3.87 30.28 (+683%) 3.85 (−0%)
Hardesty3 16.26 23.15 (+42%) 24.68 (+52%)
Lynx68 9.31 27.91 (+200%) 11.48 (+23%)
Lynx68_reordered 23.33 27.91 (+20%) 25.68 (+10%)

estimates are even more problematic for the smaller L1 and L2 caches.
Next, the estimated memory traffic volumes are used to predict SpMV performance,

under the assumption that memory and cache bandwidth are the main performance
bottlenecks. Thus, we first need to measure realistic memory and cache bandwidths
for each of our multi-core CPUs. These measurements are obtained from a slightly
modified STREAM benchmark [McCalpin 1995]. Dividing each estimated memory
traffic volume by the corresponding bandwidth results in a lower bound on execution
time (or upper bound on performance) for SpMV with a given matrix.

Table 1.2 shows measured and estimated performance for the same matrices as
before. These results demonstrate how the cache simulation produces better perfor-
mance predictions than simpler “pen-and-paper” estimates, especially for irregular
matrices. More specifically, best case predictions miss by a factor of 5 to 10 times in
cases such as “sx-stackoverflow”, “FullChip” and “circuit5M”. The cache simulation, on
the other hand, are within 20% of the actual performance. Generally speaking, our
cache simulation estimates are always about the same quality or better than the best
case estimates.

The best case estimates are almost always too optimistic, whereas the cache sim-
ulation sometimes underestimates performance. This may happen due to over- or
underestimating memory traffic at different levels of a memory hierarchy, and typically
requires closer investigation in each individual case.

Conclusions. For SpMV, performance depends heavily on the sparsity pattern of the
matrix in question. The proposed cache simulation technique can be used to predict
the performance of SpMV even in the presence of highly irregular sparsity patterns.
More generally, the presented method is not specific to SpMV, but can be applied to
other irregular, memory bandwidth-limited computations.

17

1. Introduction

1.3.2 Summary of Paper II

Trotter, J. D., X. Cai and S. W. Funke. “On memory traffic and optimisations for low-
order finite element assembly algorithms on multi-core CPUs”.
Submitted for publication.

Shifting our attention away from sparse matrix-vector multiplication, the second paper
of this thesis is about implementing finite element assembly algorithms on multi-core
CPUs. However, we retain a strong emphasis on memory traffic, an aspect that is
brought over from the first paper and continues to form a common thread throughout
this thesis. The second paper also incorporates an important element of performance
modelling, which is used to evaluate performance optimisations that are suggested.

Motivation. Most existing work on finite element assembly tends to focus on arith-
metic operations, especially in connection with computing element vectors and ma-
trices, as outlined in Section 1.1.1. Some techniques that have been proposed are
sum factorisation [Bolis et al. 2014; Cantwell et al. 2011; Kronbichler and Kormann
2012; Vos et al. 2010], manual vectorisation [Sun et al. 2020], low-level loop optimisa-
tions [Homolya et al. 2018; Luporini et al. 2017; Luporini et al. 2015; Ølgaard and Wells
2010], or tensor representation and other means of simplifying expressions [Alnæs
and Mardal 2010; Kirby and Logg 2006; Rognes et al. 2009; Russell and Kelly 2013].

If memory traffic is mentioned in connection with finite element computations, it
is usually with respect to the well established practice of reordering sparse matrices.
For instance, the Cuthill-McKee algorithm [Cuthill and McKee 1969] or nested dissec-
tion [George 1973; George and Mcintyre 1978] are often used. Initially, such techniques
were motivated by reducing fill-in when using direct solvers. It has also been firmly
established that reordering can speed up SpMV operations of iterative solvers [Oliker
et al. 2002; Pichel et al. 2005; Pichel et al. 2012]. For example, the Cuthill-McKee
ordering reduces matrix bandwidth, leading to improved cache reuse during SpMV.
Reordering is often combined with other techniques for reducing memory traffic that
have already been mentioned in connection with Paper I, such as register and cache
blocking [Nishtala et al. 2007; Pinar and Heath 1999; Vuduc et al. 2002].

Unlike previous work on linear solvers, there appears to be little in the existing
literature about the influence of memory traffic on finite element assembly. Our second
paper improves the situation by conducting a thorough analysis and benchmarking of
the standard, cellwise, global finite element assembly algorithm, while paying special
attention to the memory traffic involved.

Background. Paper II begins with the commonly used, cellwise algorithm for global
assembly of sparse matrices, which is outlined in Section 1.1.1. The paper breaks the
algorithm down into the following four kernels:

• Gathering vertex coordinates
• Transforming to a reference cell
• Computing element matrices
• Scattering results to a global matrix

18

Summary of research papers

Of these kernels, the first and last one involve reading and writing data to and from
memory, respectively. Ideally, the other two involve only floating-point arithmetic on
data that is already located in registers or perhaps in a first-level cache.

The details of each kernel depend on the type of mesh cells and finite elements that
are used. The calculation of element matrices in the third kernel depends especially
on the underlying PDE that is targeted by the finite element solver. Examples studied
in the paper revolve around Poisson’s equation with first- and second-order Lagrange
elements on tetrahedral meshes.

Memory traffic analysis. Having identified the sources of memory traffic arising
during assembly, we proceed to quantify the induced memory traffic volumes. These
results take the form of best- and worst-case estimates that are later used to judge
the effectiveness of mesh reordering and other optimisations. A brief summary is
presented below, while a more detailed derivation is found in the paper.

First, we show that gathering 3 coordinates of< vertices for each cell in a mesh
with# cells results in# ×

(
d</(2F)e+<d3/Fe

)
load instructions, where vectorisation

is used to loadF consecutive coordinate values or 2F integers. Also, for a cache where
a cache line holds ! coordinate values or 2! integers, the number of cache misses is at
least d#</(2!)e + d"3/!e and at most d#</(2!)e + #<d3/! + 1e, where " is the
number of vertices in the mesh.

As a practical example, consider the largest of the meshes used in the paper, with
" = 3.02 × 106 vertices and # = 16.91 × 106 cells. Since each cell is a tetrahedron,
we have< = 4 vertices per cell and 3 = 3 coordinates per vertex. Assuming a cache
line size of ! = 8 (64 bytes), the ratio between the worst- and best case memory traffic
is about 26. Moreover, the paper’s numerical experiments demonstrate that memory
traffic is very far from the best case, if one uses a poor mesh ordering. Unfortunately,
such low quality mesh orderings are the default for some mesh generators.

A similar analysis is carried out for two different versions of the last kernel, which
is responsible for scattering element matrices to a global matrix. The first variant
performs a binary search for each element matrix entry to find the location in the array
of global matrix values that needs to be updated. The second version, on the other
hand, uses a precomputed lookup table to avoid carrying out binary searches during
assembly. As a result of this optimisation, fewer loads are issued overall, though some
additional storage and memory traffic is needed for the lookup table itself.

Mesh reordering. Numerical experiments presented in the paper show that a poor
ordering of the mesh or global degrees of freedom leads to one or two orders of
magnitude more memory traffic than the best case described above. However, it is
also shown that ordering the mesh vertices according to the reverse Cuthill-McKee
algorithm [Cuthill and McKee 1969], and at the same time placing the mesh cells in
lexicographic order, leads to memory traffic volumes close to the best case.

More specifically, when gathering the vertex coordinates of one particular large,
tetrahedral mesh (“Cardiac mesh 20”), the memory traffic is reduced from 4202 to
378MB after reordering. In comparison, the best case estimate is 342MB. The perfor-
mance increases accordingly from about 22 million to 260 million cells per second

19

1. Introduction

(Mcell/s). Reordering has a similar effect on the scattering of element matrices to a
global matrix.

Lookup table. Beyond estimating memory traffic volumes and experimentally as-
sessing the impact of mesh reordering, the paper also evaluates the use of a lookup
table for the scattering kernel, as well as a slightly modified algorithm that assembles
a matrix row by row.

Switching from binary searches to using a lookup table leads to a speedup of about
24 times. This is a huge performance improvement, which cannot be explained solely in
terms of the observed memory traffic volume. Instead, there seems to be a performance
bottleneck related to memory latency that disappears whenever the search procedure
is eliminated. This is highly plausible, if we keep in mind that a binary search entails
some amount of branching logic, which is typically prone to memory latency issues.

Rowwise assembly. Rowwise assembly first becomes significant as a means to
perform assembly in parallel using shared memory without the need for synchro-
nisation between threads. In contrast, a cellwise assembly must prevent data races
from different threads simultaneously updating the same global matrix values. This is
usually achieved by atomic operations, which can be very expensive.

The paper compares the parallel performance and scalability of cellwise and row-
wise algorithms for assembling matrices with respect to two basic variational forms
using first- and second-order Lagrange elements. Moreover, three different multi-core
CPUs are considered. In short, rowwise assembly performs best and scales almost
perfectly, since it avoids atomic operations and displays good cache reuse.

Ultimately, a parallel, rowwise assembly of a matrix for Poisson’s equation on a
large, unstructured, tetrahedral mesh, reaches about 390Mcell/s using 64 cores on a
dual-socket AMD Epyc CPU.

Conclusions. Memory traffic is a deciding factor during assembly of linear systems
for low-order finite element methods. Similar to SpMV, there are a great deal of
irregular memory accesses. Optimisation strategies should be selected accordingly.
For instance, memory latency bottlenecks are mitigated by replacing binary searches
with a precomputed lookup table. Also, performing parallel assembly rowwise has the
benefit of improved cache reuse as well as avoiding costly thread synchronisation.

1.3.3 Summary of Paper III

Trotter, J. D., J. Langguth and X. Cai. “Leveraging GPU-accelerated finite element
computation with automated code generation: A holistic approach”.
Submitted for publication.

In Paper III, we offload finite element solvers to a GPU. This is achieved by extending
the FEniCS PDE solver framework with automatic generation of GPU code. In this
way, we supplement existing functionality and advanced features of FEniCS with
auto-generated, GPU-based finite element solvers.

20

Summary of research papers

The implementation is informed by the knowledge gained in Paper II. Moreover,
optimisations are carried out to seamlessly integrate the assembly and solution stages,
so that unneeded CPU-GPU data transfers are avoided.

Finally, two different test cases are used to validate the correctness and performance
of our implementation.

Background. The open-source PDE solver frameworks FEniCS [Logg et al. 2012]
and Firedrake [Rathgeber et al. 2016] use automated code generation to deliver high
performance, while at the same time remaining accessible to domain scientists. This
is achieved through using the Unified Form Language (UFL) [Alnæs et al. 2014], as
described briefly in Section 1.1.4.

FEniCS and Firedrake are currently designed for parallel, CPU-based, distributed-
memory computations. Meanwhile, researchers have shown that GPUs can be a
suitable fit for solving linear systems [Anzt et al. 2020; Anzt et al. 2017; Dongarra et al.
2014; Naumov et al. 2015] and accelerating other aspects of finite element methods,
including calculation of element matrices [Banaś et al. 2014; Knepley and Terrel 2013]
and assembly of global matrices [Cecka et al. 2010; Reguly and Giles 2015]. Entire
finite element solvers have also been offloaded to GPUs [Fu et al. 2014; Pichler and
Haase 2017]. Some GPU-accelerated finite element solvers are based on matrix-free
and related methods [Kronbichler and Ljungkvist 2019; Ljungkvist 2014; Markall et al.
2013].

Automated code generation for GPUs. Paper III starts with a short overview
of using FEniCS to solve PDEs. As described in Section 1.1.1, implementations of
problem-specific computational kernels are needed to compute element vectors and
matrices. Paper II studied handwritten examples of such kernels as a part of analysing
common finite element assembly algorithms.

Alternatively, these kernels can be automatically generated by FEniCS from Unified
Form Language (UFL) code, for example, as shown in Algorithm 1.1 in Section 1.1.1. The
FEniCS form compiler (FFC) translates UFL code into C code for computing element
vectors and matrices. This is done automatically if the UFL code is embedded in a
Python application. Otherwise, the user invokes the form compiler to generate code,
which can later be used from a C++ application. Further details on the form compiler
are given in the FEniCS book [Logg et al. 2012].

Our effort to offload assembly to a GPU is based on NVIDIA’s CUDA framework
for GPU computing [NVIDIA Corporation 2020b], which was briefly introduced in
Section 1.1.3. The first contribution of the paper is to extend FFC to emit code that can
be compiled by the CUDA C++ compiler. Technically speaking, we modify FFC to get
a string of CUDA C++ code, which is later fed to NVIDIA’s runtime compilation API
(NVRTC) [NVIDIA Corporation 2019]. The end result is that auto-generated functions
for computing element vectors and matrices can be launched as CUDA kernels to run
on a GPU, or called from other CUDA kernels running on a GPU.

GPU-based assembly. The current CPU-based assembly algorithm in FEniCS first
partitions the mesh to distribute it among CPUs. A global matrix and vector are also

21

1. Introduction

distributed based on the partitioning. Each CPU assembles part of the global matrix
and vector corresponding to its own portion of the mesh.

Assembly is carried out cell by cell, much in the same way as described in Paper II.
In short, after reading a cell’s vertex coordinates—and maybe some problem-dependent
constants or coefficient values—the appropriate auto-generated kernel is invoked to
compute an element vector or matrix. The final step is to add the newly computed
values to a global vector or matrix. In the case of a matrix, this part is done by
PETSc [Balay et al. 2019], a library that FEniCS uses for its linear solvers and for
working with sparse matrices.

Based on the current finite element assembly procedure in FEniCS, the paper starts
with the easiest way of offloading assembly to a GPU.Thereafter, several improvements
are considered. More specifically, the calculation of element vectors and matrices is
moved to a GPU first, but the CPU is still used to add each element vector or matrix to
its global counterpart. The fact that PETSc is used in the same way as before makes
this strategy easy to implement in FEniCS.

Unfortunately, the above approach results in virtually no acceleration. One of the
main reasons is that an excessive amount of data is moved between CPU and GPU
memory. A far better proposition is therefore to offload the entire global assembly
routine, including the scattering of element matrices to a global matrix. Detailed
examples of auto-generated CUDA C++ kernels for both of these methods are given in
the paper.

Once a GPU-based global assembly is in place, the paper discusses three code
optimisations. Two of these were also considered in Paper II in connection with finite
element assembly on multi-core CPUs, namely using a lookup table to scatter element
matrix values and assembling a global matrix row by row.

The motivation behind these optimisations is the same as in the previous paper,
only further strengthened by findings that come from investigating the auto-generated
CUDA kernels with NVIDIA’s profiling tools. In particular, profiling indicates that
memory latency associatedwith binary searches is a significant performance bottleneck.
Using a lookup table to scatter element matrices alleviates the problem.

Rowwise assembly provides some of the same benefits for a GPU as it did for
multi-core CPUs in Paper II.

The third optimisation applies when offloading both assembly and linear solver
to a GPU. In this case, we make some changes to PETSc to avoid certain unfortunate
CPU-GPU data transfers. Numerical experiments presented in the paper show that
these transfers slow down the GPU-based assembly by about 3 to 5 times. In other
words, it is not enough to separately offload assembly and solution of linear systems
and hope for the best. Special care is taken to integrate these two steps to provide
seamless GPU acceleration.

Numerical experiments. Several experiments are carried out to assess the perfor-
mance of assembling sparse matrices for Poisson’s equation on large, unstructured,
tetrahedral meshes. First, FEniCS’s CPU-based assembly on a dual-socket AMD Epyc
7601 CPU assembles about 58 million cells per second (Mcell/s). In comparison, GPU-

22

Summary of research papers

based global assembly with an NVIDIA V100 GPU yields a performance of about 450
to 1250Mcell/s.

If a lookup table is used in the scattering kernel of the GPU-based global assembly,
then performance improves by about 70 to 90%. Rowwise assembly results in another
70% improvement on top of that. In the end, the NVIDIA V100 assembles 1600Mcell/s.

Comparing to the results of Paper II, where we recall that AMD Epyc attained
390Mcell/s, the final outcome is a speedup of about 4 for the auto-generated GPU-based
assembly over a highly optimised multi-core CPU version.

Hyperelasticity. In addition to Poisson’s equation, the paper draws on a more
advanced example in solid mechanics from Ølgaard and Wells [2012], featuring a
non-linear, vector PDE with spatially varying coefficients. The description provided in
the paper is very concise due to limited space, so we supplement it with a few more
details here.

In short, the problem is posed as finding a displacement field D : Ω → R3, for a
solid body occupying a polygonal domain Ω ⊂ R3. This is done by minimising the
total potential energy,

Π(D) =
∫
Ω
k (D) dG −

∫
Ω
� · D dG −

∫
mΩ
) · D dB, (1.5)

where � is a body force and) is a traction force on the boundary. Also,k is the stored
strain energy density function, which, in this case, is based on a Neo-Hookean elastic
stored energy model,

k =
`

2
(�2 − 3) − ` ln(�) +

_

2
ln(�)2 . (1.6)

Here ` and _ are Lamé parameters that depend on the material, � = det(�), �2 =

trace(�),� = �T� is the right Cauchy-Green tensor, and � = � +∇D is the deformation
gradient.

In our example, the Lamé parameters are set to ` = �
2(1+a) , _ = �a

(1+a) (1−2a) , where
� = 10 and a = 0.3. Also, a constant body force of (0,−0.1, 0) and constant traction
force of (0.01, 0, 0) were used.

The variational formulation of the above minimisation problem is obtained from
directional derivatives of the energy functional Π, leading to the following pair of
forms,

!(D; E) = �EΠ = lim
n→0

3Π(D + nE)
3n

(1.7)

and
0(D;XD, E) = �XD! = lim

n→0

3!(D + nXD; E)
3n

. (1.8)

The UFL code for the hyperelasticity model is shown in Algorithm 1.2.
A Newton solver is used for the non-linear system of equations. Also, the linear

system that arises during each Newton iteration is solved using the conjugate gradient
method without preconditioning.

23

1. Introduction

Function spaces and functions
e = VectorElement (" Lagrange", tetrahedron , 1)
du = TrialFunction(e) # Incremental displacement
v = TestFunction(e) # Test function
u = Coefficient(e) # Displacement
B = Coefficient(e) # Body force per unit volume
T = Coefficient(e) # Boundary traction force

Kinematics
d = len(u) # Mesh dimension (d=3)
I = Identity(d) # Identity tensor
F = I + grad(u) # Deformation gradient
C = F.T*F # Right Cauchy -Green tensor

Invariants of deformation tensors
Ic = tr(C)
J = det(F)

Elasticity parameters
mu = Constant(tetrahedron)
lmbda = Constant(tetrahedron)

Stored strain energy density for
a compressible neo -Hookean model
psi = ((mu/2)*(Ic - 3) - mu*ln(J) +

(lmbda /2)*(ln(J))**2)

Total potential energy
Pi = psi*dx - inner(B, u)*dx - inner(T, u)*ds

The first variation and its Jacobian are
automatically computed with `derivative `
F = derivative(Pi , u, v)
J = derivative(F, u, du)

Algorithm 1.2. UFL code for a hyperelasticity model.

Briefly, assembly is about five times faster and the linear solver is twice as fast on
NVIDIA V100 compared to AMD Epyc. There is an additional cost associated with
GPU offloading due to certain initial data transfers from CPU to GPU and computing
the lookup table used to scatter element matrices. Taking this cost into account lessens
the speedup of the assembly portion somewhat, though GPU-accelerated assembly
is still faster overall. Note that most CPU-GPU data transfers are performed only
once, and are therefore expected to become negligible in the case of a time-dependent
problem.

Conclusions. The FEniCS form compiler is adapted to also generate CUDA C++
code for fundamental, problem-specific kernels that are used to assemble linear systems
of equations for finite element methods. These kernels form the basis for offloading
global finite element assembly to GPUs.

Whenever these calculations are offloaded, it becomes critical to avoid unneces-
sarily transferring data between CPU and GPU. The penalty associated with such
transfers can easily overcome performance gains obtained by using a GPU to carry
out calculations.

24

Discussion and conclusions

The performance of GPU-based assembly benefits from using a lookup table to
scatter element matrices to a global matrix and performing assembly rowwise, the
same as for multi-core CPUs in Paper II. GPU-based assembly is demonstrated for an
advanced, non-linear, vector PDE with variable coefficients. Combined with a GPU-
based linear solver, the final result is a substantial speedup over a typical dual-socket
multi-core CPU.

1.4 Discussion and conclusions

Returning once more to the research questions in Section 1.2, we discuss to what extent
they are answered by the research summarised in the previous section. In addition to
conclusions surrounding each research question, we also mention some opportunities
for future work.

Finite element assembly. Recall that our first question concerns the performance
of finite element assembly in relation to the use of memory during such calculations.
This aspect of finite element computations is covered in Papers II and III. Both papers
present memory-related optimisations that are motivated by in-depth analysis and
profiling. Moreover, the suggested optimisations have a tremendous performance
impact on the canonical finite element problem of solving Poisson’s equation on
unstructured, tetrahedral meshes.

The following guidelines summarise our findings regarding this point:

• A precomputed lookup table should be used to mitigate memory latency issues
associated with binary searches when scattering local element matrices to a
global matrix.

• Rowwise assembly should be considered to improve cache reuse of global matrix
values and to avoid expensive atomic operations that are otherwise needed to
prevent race conditions.

Paper II also reaffirms the significance of well known practices surrounding mesh
reordering. With these conclusions, we consider the first research question to be
answered in a satisfactory way.

With the exception of the non-linear hyperelasticity problem in Paper III, most
of the work presented in this thesis is centred on Poisson’s equation as an example
PDE problem. But even if another PDE is considered, possibly demanding more
floating-point arithmetic per mesh cell, then it is still reasonable to believe that the
above-mentioned optimisations will remain helpful. Though the balance between
memory traffic and floating-point operations may shift, it is still important to prevent
memory latencies from stalling progress and causing floating-point units to stand idle.

Also, if element matrices become larger, due to solving vector PDEs or increasing
the order of finite elements, then the scattering of element matrices to a global matrix
triggers much more memory traffic than before. On the other hand, as the element
order increases, so does the amount of floating-point computation. At that point,
it may anyway be a good idea to resort to strategies such as sum factorisation or

25

1. Introduction

matrix-free methods [Kronbichler and Kormann 2012; Sun et al. 2020], which may
improve floating-point performance.

Sparse matrix-vector multiplication. Our second research question is related to
understanding the performance of SpMV on multi-core CPUs, which is the topic of
Paper I. The paper goes further by developing a method that is applicable also to other
irregular, memory bandwidth-limited computational kernels. However, the main effort
is to quantitatively model SpMV performance, which goes towards understanding the
performance of iterative solvers for sparse linear systems.

The quantitative performance model presented in Paper I is able to assess the
cost of an SpMV operation even for highly irregular matrices. These are cases where
simple best case memory traffic estimates are far too optimistic. Our method therefore
represents one possible approach to investigate SpMV performance, which stresses
the importance of accounting for matrix structure.

The fact that the actual hardware itself is not needed to produce the desired memory
traffic estimates might be considered another advantage of this method. This aspect
is not discussed in the work presented here, but has been useful in some related,
unpublished work, where we consider the so-called format selection problem. The
idea is to determine which of several eligible sparse matrix storage formats that results
in the best performance for a given matrix on a particular hardware with respect to
some sparse matrix operation, such as SpMV. In this case, we were able to use the
cache simulation approach for an ARM-based multi-core CPU system to gain a better
understanding of which sparse matrix format to choose, even before the target ARM
system became available to us.

For a given matrix, the cache simulation method can be used to point to a particular
memory hierarchy level that constitutes a performance bottleneck. While this may
not immediately suggest good optimisations or matrix reordering strategies, it is
conceivable that a matrix reordering strategy, or at least some useful heuristics, could
be derived from the simulation approach.

The performance estimates presented in Paper I are based on full knowledge of the
sparsity pattern of a matrix. Although this enables accurate predictions, a disadvantage
is that the entire matrix must be processed. The cache simulation can thus be somewhat
expensive to compute. A possible approach is to use only a part of the matrix, for
example, by sampling the sparsity pattern, to strike a compromise between accuracy
and the time and effort needed to obtain a prediction.

Finally, Paper I also explores some of the known limitations of the proposed cache
simulation method. In particular, an alternative SpMV kernel based on matrices in
the so-called coordinate (COO) format proves to be challenging because of irregular
writes to memory. This scenario is not properly dealt with by the current cache
simulation approach, since it does not account for additional memory traffic due to
cache coherency effects like false sharing of cache lines. However, there is nothing
that, in principle, prevents a more advanced cache simulation from incorporating more
features, such as cache coherency or associativity. This is one possible avenue for
future work.

26

Discussion and conclusions

GPU-based assembly. Turning to memory-related performance considerations of
GPU-based assembly, it turns out that the same techniques that were considered for
multi-core CPUs in Paper II are also applicable to GPUs. More specifically, Paper III
concludes that a precomputed lookup table should be used to scatter element matrices
to a global matrix, even for GPU-based assembly. Furthermore, rowwise assembly can
again improve performance. In this case, the primary benefit appears to be improved
cache reuse.

More importantly, Paper III demonstrates the significance of avoiding CPU-GPU
data transfers when offloading a finite element solver to a GPU. In this respect, we
benefit from a complete overview of the entire finite element computation. This
allows us to apply application-level optimisations that are not usually considered when
assembly and solution of linear systems are separately offloaded to a GPU.

In the end, NVIDIA’s performance profiling tools reveal that the only CPU-GPU
data transfers remaining are a few values related to testing the convergence of the
linear solver. These could conceivably be eliminated too, but they are so minuscule
that we do not expect there to be any substantial performance benefit.

Another question raised in Section 1.2 is about comparing a GPU to a typical multi-
core CPU. An answer to this question is likely to vary from case to case, depending on
the precise details of the finite element problem that is studied. From this perspective,
the question in general remains open and deserves further attention. However, as a
result of the work in Paper III, we now have at our disposal the ability to automatically
generate finite element kernels for GPUs. Naturally, these come in addition to the
usual ones for multi-core CPUs. We are therefore in a much better position to carry
out practical, experimental comparisons of CPU and GPU performance for a broad
range of relevant and interesting problems.

Most of our attention has been devoted to finite element assembly, and the only
linear solver we have considered so far is an unpreconditioned conjugate gradient
method. Many finite element problems will benefit from more advanced linear solvers
and preconditioning techniques. These are, in some cases, compulsory if an acceptable
solution is to be found at all. The GPU acceleration of various preconditioning schemes
and advanced linear solvers is currently a rapidly evolving field [Aliaga et al. 2019;
Anzt et al. 2020; Anzt et al. 2017; Chen et al. 2018; Geveler et al. 2013; Li and Saad 2013;
H. Liu et al. 2015; Naumov et al. 2015]. There are certainly interesting opportunities for
future work in employing these kinds of linear solvers for finite element computations.

The concrete examples that are studied in Papers II and III of this thesis include
Poisson’s equation and a non-linear hyperelasticity problem. In these cases, an NVIDIA
V100 GPU achieves a notable speedup over the best multi-core CPU results with respect
to the overall finite element solver. The time used to assemble linear systems on theGPU
is comparable to or less than the time spent by multi-core CPUs, even if GPU-specific
initialisation and CPU-GPU data transfers are included. For the unpreconditioned
conjugate gradient solver, where most of the time is spent, NVIDIA V100 demonstrates
a clear speedup over dual-socket AMD Epyc and Intel Xeon CPUs.

We conclude tentatively that a high-powered GPU, such as NVIDIA V100, has a
lot of potential to accelerate finite element solvers. But further research is needed to
discern the effectiveness of using GPUs for finite element computations, particularly
when more advanced linear solvers and preconditioning techniques are involved.

27

1. Introduction

Automated code generation. The final research question concerns GPU-based
finite element solvers and automated code generation. This matter is resolved in
Paper III, where we provide a fully working implementation for GPU-based finite
element computations by building on the automated code generation facilities of the
FEniCS PDE solver framework.

In our view, FEniCS presents an ideal starting point for our implementation efforts.
Not only has it been perhaps the foremost proving ground for combining automated
code generation and finite element computations, but it has also become a popular
framework with many users, collectively solving a huge variety of PDE problems.
Moreover, FEniCS is already equipped to solve large-scale problems on clusters of
multi-core CPUs.

In short, we have the great advantage of not having to start from scratch. Instead,
we can employ a proven technology like FEniCS, where a lot of work has already been
poured into optimising automatically generated finite element kernels.

In spite of its complexity, we have found a relatively straightforward way of imple-
menting GPU acceleration that is orthogonal to the many other concerns that FEniCS
deals with. We demonstrate in Paper III that our final implementation supports ad-
vanced use cases, such as non-linear, vector PDEs and any form of boundary conditions
that can already be used in FEniCS.

Once more, we point out that successful GPU-acceleration depends on having a
clear view of the entire finite element solver. With some work, we are able to carry
out critical, application-level optimisations to eliminate unnecessary CPU-GPU data
transfers and seamlessly couple the assembly and solution stages of a finite element
solver.

There is potentially room for further improvements to the auto-generated GPU
code beyond the substantial performance gains already demonstrated in Paper III. Also,
there is a wide range of PDEs and applications to explore, possibly generating new
ideas and opportunities for performance tuning and optimisations with respect to the
automatically generated finite element kernels.

For the sake of convenience, Paper III only uses FEniCS through C++ applications
that were written to benchmark the relevant PDE solvers. However, the more common
approach is to employ FEniCS via its Python API. Further work may be required to
ensure that the newly developed GPU acceleration features work equally well from
Python. There is potentially a lot of value in doing so, since GPU-accelerated solvers
will then become more easily available to most users.

Our current work investigates GPU-accelerated finite element solvers using a
single GPU. Another aspect to consider in the future is therefore to combine GPU ac-
celeration with FEniCS’s MPI-based distributed memory computations. These features
are complementary and ought to work well together, but further implementation work
and performance optimisations may be required. This would represent a significant
milestone in enabling automatically generated solvers for large-scale finite element
problems.

28

Bibliography

Agarwal, A., M. Horowitz, and J. Hennessy (May 1989). “An Analytical Cache Model”.
In: ACM Transactions on Computer Systems 7.2, pp. 184–215. issn: 0734-2071. doi:
10.1145/63404.63407.

Aliaga, J. I., E. Dufrechou, P. Ezzatti, and E. S. Quintana-Ortí (2019). “An efficient GPU
version of the preconditioned GMRES method”. In: The Journal of Supercomputing
75, pp. 1455–1469. issn: 0920-8542. doi: 10.1007/s11227-018-2658-1.

Alnæs, M. S., A. Logg, K. B. Ølgaard, M. B. Rognes, and G. N. Wells (Feb. 2014). “Uni-
fied form language: A domain-specific language for weak formulations of partial
differential equations”. In: ACM Trans. Math. Softw. 40.2. issn: 0098-3500. doi:
10.1145/2566630.

Alnæs, M. S. and K.-A. Mardal (Jan. 2010). “On the Efficiency of Symbolic Computations
Combined with Code Generation for Finite Element Methods”. In:ACM Trans. Math.
Softw. 37.1. issn: 0098-3500. doi: 10.1145/1644001.1644007.

Aneurisk-Team (June 2012). AneuriskWeb project website. Emory University, Depart-
ment of Math&CS. url: http://ecm2.mathcs.emory.edu/aneuriskweb.

Anzt, H., E. Boman, R. Falgout, P. Ghysels, M. Heroux, X. Li, L. Curfman McInnes,
R. Tran Mills, S. Rajamanickam, K. Rupp, B. Smith, I. Yamazaki, and U. Meier
Yang (2020). “Preparing sparse solvers for exascale computing”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
378.2166. doi: 10.1098/rsta.2019.0053.

Anzt, H., M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, and M. Köhler (2017). “Pre-
conditioned Krylov solvers on GPUs”. In: Parallel Computing 68, pp. 32–44. issn:
0167-8191. doi: 10.1016/j.parco.2017.05.006.

Arnold, D. N. and A. Logg (Nov. 2014). “Periodic Table of the Finite Elements”. In: SIAM
News 47 (9). url: http://www.femtable.org/.

Axelsson, O. and V. A. Barker (2001). Finite Element Solution of Boundary Value Problems:
Theory and Computation. Vol. 35. Classics in Applied Mathematics. SIAM. isbn:
978-0-89871-499-9.

Balay, S., S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A.
Dener, V. Eijkhout, W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley, D. May, L. C.
McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. Smith, S. Zampini, H. Zhang,
and H. Zhang (2019). PETSc Web page. url: https://www.mcs.anl.gov/petsc.

Banaś, K., P. Płaszewski, and P. Macioł (2014). “Numerical integration on GPUs for
higher order finite elements”. In: Computers & Mathematics with Applications 67.6,
pp. 1319–1344. issn: 0898-1221. doi: 10.1016/j.camwa.2014.01.021.

Bender, M., G. Brodal, R. Fagerberg, R. Jacob, and E. Vicari (2010). “Optimal Sparse
Matrix Dense Vector Multiplication in the I/O-Model”. In: Theory of Computing
Systems 47.4, pp. 934–962. issn: 1432-4350.

Bolis, A., C. D. Cantwell, R. M. Kirby, and S. J. Sherwin (Apr. 2014). “From ℎ to ?
efficiently: optimal implementation strategies for explicit time-dependent problems

29

https://doi.org/10.1145/63404.63407
https://doi.org/10.1007/s11227-018-2658-1
https://doi.org/10.1145/2566630
https://doi.org/10.1145/1644001.1644007
http://ecm2.mathcs.emory.edu/aneuriskweb
https://doi.org/10.1098/rsta.2019.0053
https://doi.org/10.1016/j.parco.2017.05.006
http://www.femtable.org/
https://www.mcs.anl.gov/petsc
https://doi.org/10.1016/j.camwa.2014.01.021

Bibliography

using the spectral/ℎ? element method”. In: International Journal for Numerical
Methods in Fluids 75.8, pp. 591–607. issn: 0271-2091. doi: 10.1002/fld.3909.

Buluç, A., J. T. Fineman,M. Frigo, J. R. Gilbert, and C. E. Leiserson (2009). “Parallel Sparse
Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Compressed
Sparse Blocks”. In: Proceedings of the Twenty-first Annual Symposium on Parallelism
in Algorithms and Architectures. SPAA ’09. Calgary, AB, Canada: ACM, pp. 233–244.
isbn: 978-1-60558-606-9. doi: 10.1145/1583991.1584053.

Burgess, D. A. and M. B. Giles (1997). “Renumbering unstructured grids to improve
the performance of codes on hierarchical memory machines”. In: Advances in
Engineering Software 28.3, pp. 189–201. issn: 0965-9978. doi: 10.1016/S0965-
9978(96)00039-7.

Cantwell, C. D., S. J. Sherwin, R. M. Kirby, and P. H. J. Kelly (Apr. 2011). “From h
to p efficiently: Strategy selection for operator evaluation on hexahedral and
tetrahedral elements”. In: Computers & Fluids 43.1, pp. 23–28. issn: 0045-7930. doi:
10.1016/j.compfluid.2010.08.012.

Cecka, C., A. J. Lew, and E. Darve (Aug. 2010). “Assembly of finite element methods on
graphics processors”. In: International Journal for Numerical Methods in Engineering
85.5, pp. 640–669. doi: 10.1002/nme.2989.

Che, S., M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron (Oct. 2008). “A
performance study of general-purpose applications on graphics processors using
CUDA”. In: J. Parallel Distrib. Comput. 68.10, pp. 1370–1380.

Chen, Y., X. Tian, H. Liu, Z. Chen, B. Yang, W. Liao, P. Zhang, R. He, and M. Yang
(2018). “Parallel ILU preconditioners in GPU computation”. In: Soft Computing 22,
pp. 8187–8205. issn: 1432-7643. doi: 10.1007/s00500-017-2764-7.

Christen, M., O. Schenk, and H. Burkhart (2011). “PATUS: A Code Generation and
Autotuning Framework for Parallel Iterative Stencil Computations on Modern
Microarchitectures”. In: Proceedings of the 2011 IEEE International Parallel & Dis-
tributed Processing Symposium. IPDPS ’11. USA: IEEE Computer Society, pp. 676–
687. isbn: 9780769543857. doi: 10.1109/IPDPS.2011.70.

Ciarlet, P. G. (2002). The Finite Element Method for Elliptic Problems. Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics. isbn: 0-89871-514-8.

Clint Whaley, R., A. Petitet, and J. J. Dongarra (2001). “Automated empirical optimiza-
tions of software and the ATLAS project”. In: Parallel Computing 27.1, pp. 3–35.
issn: 0167-8191. doi: 10.1016/S0167-8191(00)00087-9.

Cuthill, E. and J. McKee (1969). “Reducing the Bandwidth of Sparse SymmetricMatrices”.
In: Proceedings of the 1969 24th National Conference. ACM ’69. New York, NY, USA:
Association for Computing Machinery, pp. 157–172. isbn: 9781450374934. doi:
10.1145/800195.805928.

Datta, K., M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf,
and K. Yelick (2008). “Stencil Computation Optimization and Auto-Tuning on State-
of-the-Art Multicore Architectures”. In: Proceedings of the 2008 ACM/IEEE Confer-
ence on Supercomputing. SC ’08. Austin, Texas: IEEE Press. isbn: 9781424428359.
doi: 10.5555/1413370.1413375.

Davis, T. (Dec. 2019). “Algorithm 1000: SuiteSparse:GraphBLAS: Graph Algorithms
in the Language of Sparse Linear Algebra”. In: ACM Trans. Math. Softw. 45.4. issn:
0098-3500. doi: 10.1145/3322125.

30

https://doi.org/10.1002/fld.3909
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1016/S0965-9978(96)00039-7
https://doi.org/10.1016/S0965-9978(96)00039-7
https://doi.org/10.1016/j.compfluid.2010.08.012
https://doi.org/10.1002/nme.2989
https://doi.org/10.1007/s00500-017-2764-7
https://doi.org/10.1109/IPDPS.2011.70
https://doi.org/10.1016/S0167-8191(00)00087-9
https://doi.org/10.1145/800195.805928
https://doi.org/10.5555/1413370.1413375
https://doi.org/10.1145/3322125

Bibliography

Davis, T. and Y. Hu (2011). “The University of Florida Sparse Matrix Collection”. In:
ACM Transactions on Mathematical Software (TOMS) 38.1, pp. 1–25. issn: 1557-7295.

Dongarra, J., M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Yamazaki
(2014). “Accelerating Numerical Dense Linear Algebra Calculations with GPUs”.
In: Numerical Computations with GPUs, pp. 1–26.

Ern, A. and J.-L. Guermond (2004). Theory and Practice of Finite Elements. Applied
Mathematical Sciences. Springer. isbn: 0-387-20574-8.

Frigo, M., C. E. Leiserson, H. Prokop, and S. Ramachandran (Jan. 2012). “Cache-
Oblivious Algorithms”. In: ACM Transactions on Algorithms 8.1, 4:1–4:22. issn:
1549-6325. doi: 10.1145/2071379.2071383.

Fu, Z., T. J. Lewis, R. M. Kirby, and R. T. Whitaker (Feb. 2014). “Architecting the finite
element method pipeline for the GPU”. In: Journal of Computational and Applied
Mathematics 257, pp. 195–211. doi: 10.1016/j.cam.2013.09.001.

George, A. (1973). “Nested Dissection of a Regular Finite Element Mesh”. In: SIAM
Journal on Numerical Analysis 10.2, pp. 345–363. issn: 0036-1429. doi: 10.1137/
0710032.

George, A. and D. R. Mcintyre (1978). “On the Application of the Minimum Degree
Algorithm to Finite Element Systems”. In: SIAM Journal on Numerical Analysis 15.1,
pp. 90–112. issn: 0036-1429. doi: 10.1007/BFb0064460.

Geveler, M., D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek (2013). “Towards a complete
FEM-based simulation toolkit on GPUs: Unstructured grid finite element geometric
multigrid solvers with strong smoothers based on sparse approximate inverses”. In:
Computers & Fluids 80, pp. 327–332. issn: 0045-7930. doi: 10.1016/j.compfluid.
2012.01.025.

Goumas, G., K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris (2009). “Perfor-
mance evaluation of the sparse matrix-vector multiplication on modern architec-
tures”. In: The Journal of Supercomputing 50.1, pp. 36–77. issn: 0920-8542.

Guo, X. (Feb. 2019). Best Practice Guide - AMD EPYC. Ed. by O. W. Saastad. Partnership
for Advanced Computing in Europe (PRACE). url: https://prace-ri.eu/wp-
content/uploads/Best-Practice-Guide_AMD.pdf.

Guo, X., C. Morales, O. W. Saastad, and A. Shamakina (Feb. 2019). Best Practice Guide -
ARM64. Ed. by W. Rijks and V. Weinberg. Partnership for Advanced Computing
in Europe (PRACE). url: https://prace-ri.eu/wp-content/uploads/Best-
Practice-Guide_ARM64.pdf.

Haase, G., M. Liebmann, and G. Plank (2007). “A Hilbert-order multiplication scheme
for unstructured sparse matrices”. In: International Journal of Parallel, Emergent
and Distributed Systems 22.4, pp. 213–220. doi: 10.1080/17445760601122084.

Han, D., S. Xu, L. Chen, and L. Huang (2011). “PADS: A Pattern-Driven Stencil Compiler-
Based Tool for Reuse of Optimizations on GPGPUs”. In: Proceedings of the 2011
IEEE 17th International Conference on Parallel and Distributed Systems. ICPADS ’11.
USA: IEEE Computer Society, pp. 308–315. isbn: 9780769545769. doi: 10.1109/
ICPADS.2011.94.

Heras, D., V. Blanco, J. Cabaleiro, and F. Rivera (2001). “Modeling and improving locality
for the sparse-matrix-vector product on cache memories”. In: Future Generation
Computer Systems 18.1, pp. 55–67. issn: 0167-739X.

31

https://doi.org/10.1145/2071379.2071383
https://doi.org/10.1016/j.cam.2013.09.001
https://doi.org/10.1137/0710032
https://doi.org/10.1137/0710032
https://doi.org/10.1007/BFb0064460
https://doi.org/10.1016/j.compfluid.2012.01.025
https://doi.org/10.1016/j.compfluid.2012.01.025
https://prace-ri.eu/wp-content/uploads/Best-Practice-Guide_AMD.pdf
https://prace-ri.eu/wp-content/uploads/Best-Practice-Guide_AMD.pdf
https://prace-ri.eu/wp-content/uploads/Best-Practice-Guide_ARM64.pdf
https://prace-ri.eu/wp-content/uploads/Best-Practice-Guide_ARM64.pdf
https://doi.org/10.1080/17445760601122084
https://doi.org/10.1109/ICPADS.2011.94
https://doi.org/10.1109/ICPADS.2011.94

Bibliography

Holewinski, J., L.-N. Pouchet, and P. Sadayappan (2012). “High-Performance Code
Generation for Stencil Computations on GPU Architectures”. In: Proceedings of
the 26th ACM International Conference on Supercomputing. ICS ’12. San Servolo
Island, Venice, Italy: Association for Computing Machinery, pp. 311–320. isbn:
9781450313162. doi: 10.1145/2304576.2304619.

Homolya, M., L. Mitchell, F. Luporini, and D. A. Ham (June 2018). “TSFC: A Structure-
Preserving Form Compiler”. In: SIAM Journal on Scientific Computing 40.3, pp. 401–
428. issn: 1064-8275. doi: 10.1137/17M1130642.

Intel Corporation (Apr. 2018). Intel® 64 and IA-32 Architectures Optimization Reference
Manual. 248966-040. Intel Corporation.

Kepner, J. and J. Gilbert (2011). Graph Algorithms in the Language of Linear Algebra.
Ed. by J. Kepner and J. Gilbert. Society for Industrial and Applied Mathematics.
doi: 10.1137/1.9780898719918.

Khronos OpenCL Working Group (Apr. 2020). The OpenCL Specification. The Khronos
Group. url: https : / / www . khronos . org / registry / OpenCL / specs / 3 . 0 -
unified/pdf/OpenCL_API.pdf.

Kirby, R. C. and A. Logg (Sept. 2006). “A compiler for variational forms”. In: ACM Trans.
Math. Softw. 32.3, pp. 417–444. issn: 0098-3500. doi: 10.1145/1163641.1163644.

Kirk, D. andW.-m. Hwu (Jan. 2010). Programming Massively Parallel Processors. Morgan
Kaufmann.

Klöckner, A. (2014). “Loo.Py: Transformation-Based Code Generation for GPUs and
CPUs”. In: Proceedings of ACM SIGPLAN International Workshop on Libraries, Lan-
guages, and Compilers for Array Programming. ARRAY’14. Edinburgh, United King-
dom: Association for Computing Machinery, pp. 82–87. isbn: 9781450329378. doi:
10.1145/2627373.2627387.

Klöckner, A., N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih (2012). “PyCUDA
and PyOpenCL: A scripting-based approach to GPU run-time code generation”.
In: Parallel Computing 38.3, pp. 157–174. issn: 0167-8191. doi: 10.1016/j.parco.
2011.09.001.

Klöckner, A., L. C. Wilcox, and T. Warburton (2016). “Array Program Transformation
with Loo.Py by Example: High-Order Finite Elements”. In: Proceedings of the 3rd
ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers
for Array Programming. ARRAY 2016. Santa Barbara, CA, USA: Association for
Computing Machinery, pp. 9–16. isbn: 9781450343848. doi: 10.1145/2935323.
2935325.

Knepley, M. G. and A. R. Terrel (2013). “Finite Element Integration on GPUs”. In: ACM
Transactions on Mathematical Software 39.2. doi: 10.1145/2427023.2427027.

Kreutzer, M., G. Hager, G. Wellein, H. Fehske, and A. R. Bishop (2014). “A Unified Sparse
Matrix Data Format for Efficient General Sparse Matrix-Vector Multiplication
on Modern Processors with Wide SIMD Units”. In: SIAM Journal on Scientific
Computing 36.5, pp. 401–423. issn: 1064-8275.

Kronbichler, M. and K. Kormann (June 2012). “A generic interface for parallel cell-based
finite element operator application”. In: Computers and Fluids 63, pp. 135–147. issn:
0045-7930. doi: 10.1016/j.compfluid.2012.04.012.

32

https://doi.org/10.1145/2304576.2304619
https://doi.org/10.1137/17M1130642
https://doi.org/10.1137/1.9780898719918
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://doi.org/10.1145/1163641.1163644
https://doi.org/10.1145/2627373.2627387
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1145/2935323.2935325
https://doi.org/10.1145/2935323.2935325
https://doi.org/10.1145/2427023.2427027
https://doi.org/10.1016/j.compfluid.2012.04.012

Bibliography

Kronbichler, M. and K. Ljungkvist (May 2019). “Multigrid for Matrix-Free High-Order
Finite Element Computations on Graphics Processors”. In: ACM Trans. Parallel
Comput. 6.1. issn: 2329-4949. doi: 10.1145/3322813.

Langguth, J., N. Wu, J. Chai, and X. Cai (2015a). “Parallel performance modeling of
irregular applications in cell-centered finite volume methods over unstructured
tetrahedral meshes”. In: Journal of Parallel and Distributed Computing 76, pp. 120–
131. issn: 0743-7315. doi: 10.1016/j.jpdc.2014.10.005.

Langguth, J., M. Sourouri, G. T. Lines, S. B. Baden, and X. Cai (July 2015b). “Scalable
Heterogeneous CPU-GPU Computations for Unstructured Tetrahedral Meshes”.
In: IEEE Micro 35.4, pp. 6–15. issn: 0272-1732. doi: 10.1109/MM.2015.70.

Langtangen, H. P. and A. Logg (2017). Solving PDEs in Python. Springer. isbn: 978-3-
319-52461-0. doi: 10.1007/978-3-319-52462-7.

Li, R. and Y. Saad (2013). “GPU-accelerated preconditioned iterative linear solvers”.
In: The Journal of Supercomputing 63, pp. 443–466. issn: 0920-8542. doi: 10.1007/
s11227-012-0825-3.

Liu, H., B. Yang, and Z. Chen (2015). “Accelerating algebraic multigrid solvers on
NVIDIA GPUs”. In: Computers & Mathematics with Applications 70.5, pp. 1162–
1181. issn: 0898-1221. doi: 10.1016/j.camwa.2015.07.005.

Liu, W. and B. Vinter (2015). “CSR5: An Efficient Storage Format for Cross-Platform
Sparse Matrix-Vector Multiplication”. In: Proceedings of the 29th ACM on interna-
tional conference on supercomputing. ICS ’15. ACM, pp. 339–350. isbn: 978-1-4503-
3559-1.

Liu, X., M. Smelyanskiy, E. Chow, and P. Dubey (2013). “Efficient Sparse Matrix-vector
Multiplication on x86-based Many-core Processors”. In: Proceedings of the 27th
International ACM Conference on International Conference on Supercomputing. ICS
’13. ACM, pp. 273–282. isbn: 978-1-4503-2130-3. doi: 10.1145/2464996.2465013.

Ljungkvist, K. (2014). “Matrix-Free Finite-Element Operator Application on Graphics
Processing Units”. In: Euro-Par 2014: Parallel Processing Workshops. Ed. by L. Lopes,
J. Žilinskas, A. Costan, R. G. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro,
L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, S. L. Scott, S. Lankes,
C. Lengauer, J. Carretero, J. Breitbart, and M. Alexander. Springer International
Publishing, pp. 450–461. isbn: 978-3-319-14313-2. doi: 10.1007/978-3-319-14313-
2_38.

Logg, A., K.-A. Mardal, G. N. Wells, et al. (2012). Automated Solution of Differential
Equations by the Finite Element Method. Berlin: Springer. isbn: 978-3-642-23098-1.
doi: 10.1007/978-3-642-23099-8.

Luporini, F., D. A. Ham, and P. H. J. Kelly (Mar. 2017). “An Algorithm for the Optimiza-
tion of Finite Element Integration Loops”. In: ACM Transactions on Mathematical
Software 44.1. issn: 0098-3500. doi: 10.1145/3054944.

Luporini, F., A. L. Varbanescu, F. Rathgeber, G.-T. Bercea, J. Ramanujam, D. A. Ham,
and P. H. J. Kelly (Jan. 2015). “Cross-Loop Optimization of Arithmetic Intensity for
Finite Element Local Assembly”. In: ACM Transactions on Architecture and Code
Optimization 11.4. issn: 1544-3566. doi: 10.1145/2687415.

Marciniak, M., H. Arevalo, J. Tfelt-Hansen, T. Jespersen, R. Jabbari, C. Glinge, K. A.
Ahtarovski, N. Vejlstrup, T. Engstrom, M. M. Maleckar, and K. McLeod (Jan. 2017).
“From CMR Image to Patient-Specific Simulation and Population-Based Analysis:

33

https://doi.org/10.1145/3322813
https://doi.org/10.1016/j.jpdc.2014.10.005
https://doi.org/10.1109/MM.2015.70
https://doi.org/10.1007/978-3-319-52462-7
https://doi.org/10.1007/s11227-012-0825-3
https://doi.org/10.1007/s11227-012-0825-3
https://doi.org/10.1016/j.camwa.2015.07.005
https://doi.org/10.1145/2464996.2465013
https://doi.org/10.1007/978-3-319-14313-2_38
https://doi.org/10.1007/978-3-319-14313-2_38
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1145/3054944
https://doi.org/10.1145/2687415

Bibliography

Tutorial for an Openly Available Image-Processing Pipeline”. In: STACOM 2016:
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling
Challenges. Ed. by T. Mansi, K. McLeod, M. Pop, K. Rhode, M. Sermesant, and A.
Young. Springer International Publishing, pp. 106–117. isbn: 978-3-319-52718-5.
doi: 10.1007/978-3-319-52718-5_12.

Markall, G. R., A. Slemmer, D. A. Ham, P. H. J. Kelly, C. D. Cantwell, and S. J. Sherwin
(Jan. 2013). “Finite element assembly strategies on multi-core and many-core
architectures”. In: International Journal for Numerical Methods in Fluids 71.1, pp. 80–
97. issn: 0271-2091. doi: 10.1002/fld.3648.

McCalpin, J. D. (Dec. 1995). “Memory Bandwidth and Machine Balance in Current
High Performance Computers”. In: IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pp. 19–25.

Naumov, M., M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton, S. Layton,
N. Markovskiy, I. Reguly, N. Sakharnykh, V. Sellappan, and R. Strzodka (2015).
“AmgX: A Library for GPU Accelerated Algebraic Multigrid and Preconditioned
Iterative Methods”. In: SIAM Journal on Scientific Computing 37.5, S602–S626. doi:
10.1137/140980260.

Nishtala, R., R. W. Vuduc, J. W. Demmel, and K. A. Yelick (May 2007). “When cache
blocking of sparse matrix vector multiply works and why”. In: Applicable Algebra
in Engineering, Communication and Computing 18.3, pp. 297–311. issn: 1432-0622.
doi: 10.1007/s00200-007-0038-9.

NVIDIA Corporation (Aug. 2017). NVIDIA Tesla V100 GPU architecture. NVIDIA Cor-
poration. url: https://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf.

— (July 2019). NVRTC – CUDA runtime compilation user guide. NVIDIA Corporation.
url: https://docs.nvidia.com/cuda/nvrtc/.

— (Aug. 2020a). CUDA C++ Best Practices Guide. NVIDIA Corporation. url: https:
//docs.nvidia.com/cuda/cuda-c-best-practices-guide/.

— (Aug. 2020b). CUDA C++ Programming Guide. NVIDIA Corporation. url: https:
//docs.nvidia.com/cuda/cuda-c-programming-guide/.

— (July 2020c). cuSPARSE Library. NVIDIA Corporation. url: https://docs.nvidia.
com/cuda/cusparse/index.html.

Ølgaard, K. B. andG. N.Wells (Jan. 2010). “Optimizations for quadrature representations
of finite element tensors through automated code generation”. In:ACMTransactions
on Mathematical Software 37.1. issn: 0098-3500. doi: 10.1145/1644001.1644009.

— (2012). “Applications in solid mechanics”. In: Automated Solution of Differential
Equations by the Finite ElementMethod. Ed. byA. Logg, K.-A.Mardal, andG. N.Wells.
Berlin: Springer. Chap. 26, pp. 505–526. isbn: 978-3-642-23098-1. doi: 10.1007/978-
3-642-23099-8.

Oliker, L., X. Li, P. Husbands, and R. Biswas (2002). “Effects of Ordering Strategies and
Programming Paradigms on Sparse Matrix Computations”. In: SIAM Review 44.3,
pp. 373–393. doi: 10.1137/S00361445003820.

Owens, J. D., D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J.
Purcell (2007). “A Survey of General-Purpose Computation on Graphics Hardware”.
In: Computer Graphics Forum 26.1, pp. 80–113.

34

https://doi.org/10.1007/978-3-319-52718-5_12
https://doi.org/10.1002/fld.3648
https://doi.org/10.1137/140980260
https://doi.org/10.1007/s00200-007-0038-9
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/nvrtc/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://doi.org/10.1145/1644001.1644009
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1137/S00361445003820

Bibliography

Pichel, J. C., D. B. Heras, J. C. Cabaleiro, and F. F. Rivera (2005). “Performance opti-
mization of irregular codes based on the combination of reordering and blocking
techniques”. In: Parallel Computing 31 (8–9), pp. 858–876. doi: 10.1016/j.parco.
2005.04.012.

Pichel, J. C., F. F. Rivera, M. Fernández, and A. Rodríguez (2012). “Optimization of
sparse matrix–vector multiplication using reordering techniques on GPUs”. In:
Microprocessors and Microsystems 36.2, pp. 65–77. issn: 0141-9331. doi: 10.1016/j.
micpro.2011.05.005.

Pichler, F. and G. Haase (Mar. 2017). “Finite element method completely implemented
for graphic processor units using parallel algorithm libraries”. In: The International
Journal of High Performance Computing Applications 33.1, pp. 53–66. doi: 10.1177/
1094342017694703.

Pinar, A. and M. T. Heath (1999). “Improving Performance of Sparse Matrix-vector
Multiplication”. In: Proceedings of the 1999 ACM/IEEE Conference on Supercomputing.
SC ’99. Portland, Oregon, USA: ACM. isbn: 1-58113-091-0. doi: 10.1145/331532.
331562.

Rathgeber, F., D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T.
Bercea, G. R. Markall, and P. H. J. Kelly (Dec. 2016). “Firedrake: Automating the
Finite Element Method by Composing Abstractions”. In: ACM Transactions on
Mathematical Software 43.3. issn: 0098-3500. doi: 10.1145/2998441.

Reguly, I. Z. andM. B. Giles (Apr. 2015). “Finite Element Algorithms and Data Structures
on Graphical Processing Units”. In: International Journal of Parallel Programming
43.2, pp. 203–239. doi: 10.1007/s10766-013-0301-6.

Rognes, M. E., R. C. Kirby, and A. Logg (Nov. 2009). “Efficient Assembly of � (div) and
� (curl) Conforming Finite Elements”. In: SIAM Journal on Scientific Computing
31.6, pp. 4130–4151. issn: 1064-8275. doi: 10.1137/08073901X.

Russell, F. P. and P. H. J. Kelly (July 2013). “Optimized Code Generation for Finite
Element Local Assembly Using Symbolic Manipulation”. In: ACM Transactions on
Mathematical Software 39.4. issn: 0098-3500. doi: 10.1145/2491491.2491496.

Saad, Y. (2003). Iterative methods for sparse linear systems. 2nd ed. SIAM. isbn: 978-0-
898715-34-7.

Sourouri, M., S. B. Baden, and X. Cai (2017). “Panda: A Compiler Framework for
Concurrent CPU+GPU Execution of 3D Stencil Computations on GPU-accelerated
Supercomputers”. In: Int. J. Parallel Prog. 45 (3), pp. 711–729. doi: 10.1007/s10766-
016-0454-1.

Sun, T., L. Mitchell, K. Kulkarni, A. Klöckner, D. A. Ham, and P. H. Kelly (July 2020).
“A study of vectorization for matrix-free finite element methods”. In: The Inter-
national Journal of High Performance Computing Applications. doi: 10 . 1177 /
1094342020945005.

Tang, Y., R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson (2011). “The
Pochoir Stencil Compiler”. In: Proceedings of the Twenty-Third Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures. SPAA ’11. San Jose, California,
USA: Association for Computing Machinery, pp. 117–128. isbn: 9781450307437.
doi: 10.1145/1989493.1989508.

Temam, O. and W. Jalby (1992). “Characterizing the Behavior of Sparse Algorithms
on Caches”. In: Proceedings of the 1992 ACM/IEEE Conference on Supercomputing.

35

https://doi.org/10.1016/j.parco.2005.04.012
https://doi.org/10.1016/j.parco.2005.04.012
https://doi.org/10.1016/j.micpro.2011.05.005
https://doi.org/10.1016/j.micpro.2011.05.005
https://doi.org/10.1177/1094342017694703
https://doi.org/10.1177/1094342017694703
https://doi.org/10.1145/331532.331562
https://doi.org/10.1145/331532.331562
https://doi.org/10.1145/2998441
https://doi.org/10.1007/s10766-013-0301-6
https://doi.org/10.1137/08073901X
https://doi.org/10.1145/2491491.2491496
https://doi.org/10.1007/s10766-016-0454-1
https://doi.org/10.1007/s10766-016-0454-1
https://doi.org/10.1177/1094342020945005
https://doi.org/10.1177/1094342020945005
https://doi.org/10.1145/1989493.1989508

Bibliography

Supercomputing ’92. Minneapolis, Minnesota, USA: IEEE Computer Society Press,
pp. 578–587. isbn: 0-8186-2630-5.

Tomov, S., J. Dongarra, and M. Baboulin (June 2010). “Towards dense linear algebra
for hybrid GPU accelerated manycore systems”. In: Parallel Computing 36.5-6,
pp. 232–240. issn: 0167-8191. doi: 10.1016/j.parco.2009.12.005.

Uhlig, R. A. and T. N. Mudge (June 1997). “Trace-driven Memory Simulation: A Survey”.
In: ACM Computing Surveys 29.2, pp. 128–170. issn: 0360-0300. doi: 10.1145/
254180.254184.

Unat, D., X. Cai, and S. B. Baden (2011). “Mint: Realizing CUDA Performance in 3D
Stencil Methods with Annotated C”. In: Proceedings of the International Conference
on Supercomputing. ICS ’11. Tucson, Arizona, USA: Association for Computing
Machinery, pp. 214–224. isbn: 9781450301022. doi: 10.1145/1995896.1995932.

Unat, D., J. Zhou, C. Y., S. B. Baden, and X. Cai (2012). “Accelerating a 3D Finite-
Difference Earthquake Simulation with a C-to-CUDA Translator”. In: Computing
in Science & Engineering 14.3, pp. 48–59. doi: 10.1109/MCSE.2012.44.

Vos, P. E., S. J. Sherwin, and R. M. Kirby (2010). “From ℎ to ? efficiently: Implementing
finite and spectral/ℎ? elementmethods to achieve optimal performance for low- and
high-order discretisations”. In: Journal of Computational Physics 229.13, pp. 5161–
5181. issn: 0021-9991. doi: 10.1016/j.jcp.2010.03.031.

Vuduc, R. W., J. W. Demmel, and K. A. Yelick (Jan. 2005). “OSKI: A library of automati-
cally tuned sparse matrix kernels”. In: Journal of Physics: Conference Series. Vol. 16.
1. IOP Publishing, pp. 521–530.

Vuduc, R. W., J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and B. Lee (2002).
“Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply”. In:
Proceedings of the 2002 ACM/IEEE Conference on Supercomputing. SC ’02. Baltimore,
Maryland: IEEE Computer Society Press, pp. 1–35. isbn: 0-7695-1524-X.

Willcock, J. and A. Lumsdaine (2006). “Accelerating Sparse Matrix Computations via
Data Compression”. In: Proceedings of the 20th Annual International Conference on
Supercomputing. ICS ’06. Cairns, Queensland, Australia: ACM, pp. 307–316. isbn:
1-59593-282-8. doi: 10.1145/1183401.1183444.

Williams, S., L. Oliker, R. W. Vuduc, J. Shalf, K. Yelick, and J. Demmel (2009a). “Opti-
mization of sparse matrix-vector multiplication on emerging multicore platforms”.
In: Parallel Computing 35.3, pp. 178–194. issn: 0167-8191. doi: 10.1016/j.parco.
2008.12.006.

Williams, S., A. Waterman, and D. Patterson (Apr. 2009b). “Roofline: An Insightful
Visual Performance Model for Multicore Architectures”. In: Communications of the
ACM 52.4, pp. 65–76. issn: 0001-0782. doi: 10.1145/1498765.1498785.

Yzelman, A. N. and R. H. Bisseling (2009). “Cache-Oblivious Sparse Matrix-Vector
Multiplication by Using Sparse Matrix Partitioning Methods”. In: SIAM Journal on
Scientific Computing 31.4, pp. 3128–3154. doi: 10.1137/080733243.

— (2012). “A Cache-Oblivious Sparse Matrix–Vector Multiplication Scheme Based
on the Hilbert Curve”. In: Progress in Industrial Mathematics at ECMI 2010. Ed. by
M. Günther, A. Bartel, M. Brunk, S. Schöps, and M. Striebel. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 627–633. isbn: 978-3-642-25100-9.

Zhang, Y. and F. Mueller (2012). “Auto-Generation and Auto-Tuning of 3D Stencil
Codes on GPU Clusters”. In: Proceedings of the Tenth International Symposium on

36

https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1145/254180.254184
https://doi.org/10.1145/254180.254184
https://doi.org/10.1145/1995896.1995932
https://doi.org/10.1109/MCSE.2012.44
https://doi.org/10.1016/j.jcp.2010.03.031
https://doi.org/10.1145/1183401.1183444
https://doi.org/10.1016/j.parco.2008.12.006
https://doi.org/10.1016/j.parco.2008.12.006
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1137/080733243

Bibliography

Code Generation and Optimization. CGO ’12. San Jose, California: Association for
Computing Machinery, pp. 155–164. isbn: 9781450312066. doi: 10.1145/2259016.
2259037.

37

https://doi.org/10.1145/2259016.2259037
https://doi.org/10.1145/2259016.2259037

Papers

Paper I

Cache simulation for irregular memory traffic on
multi-core CPUs: case study on performance models
for sparse matrix-vector multiplication

James D. Trotter, Simula Research Laboratory and University of Oslo, Norway
Johannes Langguth, Simula Research Laboratory
Xing Cai, Simula Research Laboratory and University of Oslo, Norway

Published in Journal of Parallel and Distributed Computing, Volume 144, October 2020,
pages 189–205. ISSN: 0743-7315. DOI: 10.1016/j.jpdc.2020.05.020.

Abstract

Parallel computations with irregular memory access patterns are often limited
by the memory subsystems of multi-core CPUs, though it can be difficult to
pinpoint and quantify performance bottlenecks precisely. We present a method
for estimating volumes of data traffic caused by irregular, parallel computations
on multi-core CPUs with memory hierarchies containing both private and shared
caches. Further, we describe a performance model based on these estimates
that applies to bandwidth-limited computations. As a case study, we consider
two standard algorithms for sparse matrix-vector multiplication, a widely used,
irregular kernel. Using three different multi-core CPU systems and a set of matrices
that induce a range of irregular memory access patterns, we demonstrate that
our cache simulation combined with the proposed performance model accurately
quantifies performance bottlenecks that would not be detected using standard
best- or worst case estimates of the data traffic volume.

1 Introduction

Performance is a high priority in scientific computations, and so meticulous work is
devoted to optimising the underlying code. During such optimisation efforts, perfor-
mance models are valuable tools for directing attention towards pressure points, and
indicating when optimisations are good enough and expending further effort would be
unproductive. For instance, the popular Roofline model [Williams et al. 2009b] bounds
performance in terms of a CPU’s peak computational capacity and memory bandwidth
together with an algorithm’s computational intensity. Because CPUs have hierarchical
memories, the bandwidth and computational intensity can vary depending on the
memory hierarchy level that is considered. Moreover, the computational intensity
depends not only on parameters such as cache size, but also on the memory access
pattern of the computation. Recently, more elaborate performance models have been
developed for stencil codes [Cruz and Araya-Polo 2015; Stengel et al. 2015; Zhang
and Cai 2016], where they have been used to evaluate the effectiveness of spatial

41

I. Cache simulation on multi-core CPUs: case study on SpMV

and temporal blocking optimisations. In these cases, the amounts of data transferred
between levels of the memory hierarchy is known in advance, because memory ac-
cesses are predictable and depend only on the problem size and the order of the stencil.
Unfortunately, this is not the case for irregular computations, where memory access
patterns depend on data that may only be known at runtime.

When faced with irregular access patterns, the typical approach is to derive esti-
mates of the memory traffic for the worst- or best case scenarios. These are “paper and
pencil” estimates that have the advantage of being cheap to produce, not requiring
any implementation or actual machine to run. On the other hand, such estimates are
crude and can in reality be far from the true data traffic volumes, thereby rendering
little help in understanding the actual performance that is achieved. For example,
Fig. 1 shows worst- and best case estimates for sparse matrix-vector multiplication
(SpMV), a widely used computational kernel that suffers from both irregularity and
low computational intensity. Due to the considerable difference between the best- and
worst case data traffic, these estimates cannot provide much confidence if they are
used to evaluate whether the performance of a given kernel implementation is good
enough. In this case, more accurate estimation of data traffic volumes is needed for
performance validation. In general, numerous computational kernels face the same
issues due to irregular memory accesses that arise through the use of sparse data
structures, such as graphs or unstructured meshes.

In this paper, we present a method for quantifying the amounts of data transferred
between levels of a multi-core CPU’s memory hierarchy during irregular computations.
The estimated data traffic volumes are produced by a trace-driven cache simulation
that relies on a few basic assumptions and a simplified model of the memory hierarchy.
Moreover, the method applies to memory hierarchies with shared caches, a common
feature of contemporary multi-core CPUs, and a case that is not always addressed by
existing analytical cache models [Agarwal et al. 1989; Frigo et al. 2012]. Because the
proposed method is based on tracing a sequence of memory references, it requires
some amount of computation that is likely to be at least as much as the cost of
executing the kernel itself. However, the method remains applicable in cases where
the actual machine in question is not available, or the data traffic cannot be quantified
directly through hardware monitoring facilities, for example, because these facilities
are unavailable, unreliable or the results are not easily interpreted.

Because of its importance and familiarity as an irregular computational kernel, we
use SpMV to demonstrate that our cache simulation accurately quantifies the volumes
of data transfers in the memory hierarchies of two Intel-based multi-core CPU systems.
In turn, these data transfer volumes are used to give accurate performance predictions
that are unavailable through the use of simple worst- or best case estimates. We also
give performance predictions for an AMD Epyc CPU, and explore some limitations
of the proposed method using a variant of SpMV that not only includes irregular
reads, but also irregular writes. Ultimately, these predictions result in a quantitative
understanding of SpMV performance, which, for example, can be used to check that
the observed performance of a given implementation matches with our expectations,
and that the implementation is free from hidden performance issues.

The remainder of this paper is organised as follows. In the next section, we describe
our cache simulation approach for estimating the data traffic volumes of computations

42

Introduction

8 MiB 16 MiB 32 MiB 64 MiB 128 MiB 256 MiB 512 MiB 1 GiB 2 GiB 4 GiB

Matrix size in CSR format

8 MiB

16 MiB

32 MiB

64 MiB

128 MiB

256 MiB

512 MiB

1 GiB

2 GiB

4 GiB

8 GiB

16 GiB

32 GiB

D
at

a
tr

affi
c

vo
lu

m
e

Best case estimate

Worst case estimate

Actual data traffic

Figure 1. Worst- and best case data traffic volumes for sparse matrix-vector multiplication.
The data traffic estimates (Eqs. (5) and (6)) are based on a standard algorithm (see Section 4)
and are shown for matrices from the SuiteSparse Matrix Collection [Davis and Hu 2011]. For
comparison, actual data traffic volumes are shown based on the measured number of cache
misses for the 32KiB L1 data cache with 64 byte cache lines on an Intel Sandy Bridge Xeon
E5-2650 CPU. (See Section 5.3 for details on how these measurements were obtained.) Notice
that there is a wide gap between the best- and worst case data traffic volumes. For a given
sparse matrix, the actual volume of data traffic depends on the size of the CPU cache and the
sparsity pattern of the matrix.

with irregular memory accesses. In Section 3, we present a performance model for
bandwidth-limited computations, where the relevant data traffic volumes are used
together with realistic memory and CPU cache bandwidths. Next, in Section 4, we
recall standard SpMV algorithms for matrices in the compressed sparse row (CSR) and
coordinate (COO) storage formats. We also review known bounds on the volume of
data traffic generated by the CSR SpMV algorithm, which is later used to compare with
the results of our cache simulation method. Then, in Section 5, we describe experiments
that are used to validate the estimated data traffic volumes and the performance model
for the studied SpMV algorithms. Finally, we briefly discuss related work in Section 6
and draw our conclusions in Section 7.

43

I. Cache simulation on multi-core CPUs: case study on SpMV

2 Quantifying data traffic for irregular, parallel computations

To estimate the data traffic volume for a given computation on amulti-core CPU system,
we consider the sequence of load and store operations that would be performed by the
participating CPUs. Then we simulate a cache’s behaviour using a simplified model
based on the established ideal-cache model [Frigo et al. 2012], which is ordinarily used
in the design of cache-oblivious algorithms. We depart from the ideal-cache model
in two ways. First, for practical reasons, we assume a least recently used replacement
policy, instead of the ideal-cache model’s optimal policy, also known as Bélády’s
algorithm. Second, we extend our cache model to incorporate multi-level memory
hierarchies and caches that are shared by multiple processors.

2.1 A simplified cache model

Consider the case of a sequential computation in a memory hierarchy consisting of
main memory and a single CPU cache. More specifically, consider a cache of size /
that is partitioned into cache lines of size !, such that there are //! cache lines. Data
is moved between main memory and the cache in contiguous blocks of size !, called
cache blocks. These transfers originate from load or store operations issued by the
CPU.

Furthermore, we make the following three assumptions regarding the behaviour
of the cache:

• First, we assume that the cache operates with demand caching, which means
that a cache block is placed into the cache only when the CPU issues a load or
store referencing a memory address corresponding to that cache block. This
assumption precludes the use of hardware prefetching, a common feature in
multi-core CPUs that is used to speculatively fetch data before it is requested.
However, to allow hardware prefetching would complicate our cache simulation
in ways that are most likely specific to particular hardware.

• Second, the cache is assumed to be fully associative, meaning that any cache
block can be placed into any cache line. In this way, we disregard conflict misses,
that is, cache misses due to cache blocks that would be mapped to the same set
in a set-associative or direct-mapped cache. The mapping of cache blocks to sets
is hardware-specific, as well as documented poorly or not at all. Moreover, the
overall effect of conflict misses is likely to be small and to only have an impact
on a few, very specific memory access patterns.

• Third, we assume that cache lines are evicted according to a least recently used
policy whenever the cache is full. This policy can be easily simulated, and it also
seems to approximate real hardware accurately enough for our purposes.

The volume of data traffic between the cache and main memory is deduced by
counting transfers of cache blocks that result from a given sequence of loads and
stores. The procedure is described in the following and summarised in Algorithm 1.
Throughout the cache simulation, we maintain a least recently used list with //!

44

Quantifying data traffic for irregular, parallel computations

& ← 0

Initialise ;8BC as empty
for each load or store address U do
if bU/!c is in ;8BC then

move bU/!c to front of ;8BC
else
& ← & + 1
if ;8BC has //! entries then

remove last item from ;8BC

end if
insert bU/!c at the front of ;8BC

end if
end for

Algorithm 1. A CPU cache simulation for a fully associative cache of size / with cache lines of
size ! using a least recently used replacement policy. The number of cache misses is denoted
by & .

entries, one per cache line, to keep track of the cache blocks that occupy the cache. The
list is also used to decide which cache line to evict, if the cache is full and more room
is needed for incoming cache blocks. Initially, the list is empty, thereby representing
a cold cache that does not contain any relevant data prior to the computation. Next,
each load or store references a memory address, U , and a corresponding block of main
memory, indexed by bU/!c . If the referenced cache block is found in the least recently
used list, then it is moved to the front of the list. Otherwise, a cache miss occurs. In
this case, the number of cache misses is increased by one, and, if the least recently
used list is full, the last entry of the list is removed. Finally, the referenced cache block
is added to the front of the list. Thus, the total number of cache misses is equal to the
number of new entries that were inserted at the front of the least recently used list.

2.2 Multi-level hierarchies, private and shared caches

In the case of a memory hierarchy with multiple cache levels, we consider the CPU’s
working memory to be the highest level of the memory hierarchy, whereas main
memory is the lowest level. Caches that lie near the CPU are referred to as higher-
level caches, and, conversely, caches farther from the CPU are lower-level caches.
Furthermore, we assume that each cache is inclusive of any higher-level caches, which
means that cache blocks contained in a higher-level cache are also contained in lower-
level caches. For example, data that is brought to a first-level (L1) cache must also
be placed into a last-level cache. With this assumption, each cache can be treated
individually. Letting /8 denote the size of the 8-th cache and ! the size of blocks that
are transferred from the next, lower level of the memory hierarchy, we obtain the
corresponding number of cache misses &8 by using a least recently used list with /8/!
entries and following Algorithm 1.

Next, consider a parallel computation with multiple CPUs, where each CPU has a

45

I. Cache simulation on multi-core CPUs: case study on SpMV

private cache. For the private cache belonging to the ?-th processor, let / (?) and ! (?)
denote the cache size and cache line size, respectively. This case is again handled by
applying Algorithm 1 to each cache individually. However, only the loads and stores
that are issued by the ?-th processor are used to count the number of cache misses
& (?) for the corresponding private cache.

Now, consider a parallel computation with multiple CPUs sharing a cache. Gener-
ally speaking, each CPU issues its load and store instructions independently of the
others. Therefore, the order in which a shared cache receives data requests is affected
by factors such as the scheduling of threads onto CPUs. Moreover, if CPUs retrieve
data from different levels of the memory hierarchy, they might proceed at different
speeds because of varying memory access latencies—that is, the time it takes to serve
each request depends on where in the memory hierarchy the data is located. Ultimately,
the order of data requests to a shared cache, and thus the number of cache misses, may
differ between runs of the same, identical program due to competition between the
CPUs.

However, we propose to approximate the order of data requests to a shared cache by
assuming that requests are submitted by processors in a round-robin fashion. In turn,
each CPU issues its next load or store operation, resulting in an interleaving of the data
requests from each CPU to the shared cache. The number of cache misses for each CPU
is obtained from the interleaved sequence of loads and stores by applying Algorithm 1
with the following modification: Rather than estimating only a total number of cache
misses, we maintain a counter & (?) for each CPU, which is incremented whenever a
cache miss is caused by a load or store that was issued by the ?-th processor. The total
number of cache misses is & =

∑
? &
(?) . Attributing data traffic to individual CPUs

will be important when these data traffic estimates are tied to the overall performance
in Section 3.

Finally, for systems with a non-uniform memory access (NUMA) architecture, it
may be necessary to distinguish between multiple memory controllers or channels that
may serve data in response to last-level cache misses. In this case, memory addresses
are partitioned into NUMA domains according to some memory policy, and separate
counters are used for the cache misses for each NUMA domain.

2.3 Limitations

We have already mentioned some limitations of the proposed cache simulation method.
For instance, we ignore conflict misses and hardware prefetching, and, in the case
of a shared cache, we assume a simple round-robin scheduling of requests from
participating CPUs. In addition, the proposed method treats stores in the same way
as loads and ignores any additional data transfers that may be required to maintain
cache coherence for multi-core CPUs with private caches. In practice, a store will
typically result in two data transfers. First, the relevant cache block is transferred from
a lower-level cache or main memory before the store operation is carried out in the
working memory of the CPU. Second, the modified cache line must be written back to
lower-level caches and, eventually, to main memory. However, our proposed cache
simulation method does not account for traffic resulting from writing back modified
cache lines, or additional traffic arising from write-related cache coherency effects,

46

A performance model based on data traffic and bandwidth

such as false sharing. For kernels whose performance is significantly impacted by any
of the above-mentioned effects, the current approach would have to be extended or
improved.

3 A performance model based on data traffic and bandwidth

In this section, we describe a performance model for computations that are limited
by cache or memory bandwidth by tying the execution time to relevant data traffic
volumes between levels inside a memory hierarchy. In the following model, we assume
that computation and memory accesses overlap, and, moreover, that the dominant
cost is due to memory accesses, so that computations can be neglected. In addition,
data must be transferred between adjacent memory hierarchy levels, and we assume
that these transfers occur in parallel.

For the 8-th cache in a multi-level hierarchy, recall that ! is the cache line size
and let & (?)

8
be the number of cache misses for the ?-th processor that is attached

to the 8-th cache. Then + (?)
8

= ! · & (?)
8

is the data traffic volume that is transferred
to the 8-th cache from lower levels of the memory hierarchy on account of the ?-
th processor. Furthermore, let _8 denote the sustainable, single-core bandwidth for
transferring the data, and let `8 denote the aggregate bandwidth that is available to all
the CPU cores that are sharing the 8-th cache. Although hardware vendors occasionally
specify theoretical bandwidth numbers, these are rarely achievable in practice. Instead,
realistic, sustainable bandwidths are typically determined by a benchmark program,
such as STREAM [McCalpin 1995].

First, performance may be limited due to data traffic induced by individual CPU
cores. In this case, a lower bound on the execution time) is given by the per-core
data transfer that takes the longest time, that is,

) ≥ max
8,?

+
(?)
8

_8
, or (≤ min

8,?

�_8

+
(?)
8

, (1)

where � is the number of floating-point operations performed, and (= �/) is the
performance in floating-point operations per unit time. In other words, a lower bound
on the execution time) translates to an equivalent upper bound on performance.

Second, whenever resources in a memory hierarchy are shared by multiple CPU
cores, performance may be limited due to the total data traffic volume and a limited,
aggregate bandwidth,

) ≥ max
8

∑
? +
(?)
8

`8
, (≤ min

8

�`8∑
? +
(?)
8

. (2)

In particular, for data transferred between main memory and last-level caches, the
aggregate bandwidth does not scale linearly with the number of CPU cores, but instead
saturates before all the cores are in use. Moreover, many multi-core CPUs have a
NUMA architecture, where main memory is partitioned into NUMA domains, and
the bandwidth of each NUMA domain is limited. In some cases, it is also necessary

47

I. Cache simulation on multi-core CPUs: case study on SpMV

to take into account the fact that groups of CPU cores have an affinity to their local
NUMA domain. This is especially the case for problems where a significant amount of
data is transferred between CPU cores and their remote NUMA domains, since the
bandwidth of such transfers tends to be severely limited.

4 Sparse matrix-vector multiplication

The multiplication of a sparse matrix with a dense vector, or SpMV, is a prime example
of an irregular, parallel computation. It is also a fundamental computational kernel
that appears in numerous scientific applications. For example, SpMV is performed
repeatedly in iterative methods for solving sparse linear systems, such as Krylov
subspace methods [Saad 2003]. The efficiency of these methods often hinges on the
SpMV computations that are required during each iteration, but it is well known that
SpMV has a low computational intensity, and, therefore, its performance lies well
below peak computational capacity [Toledo 1997; Vuduc 2004]. More precisely, every
non-zero value in a sparse matrix gives rise to one multiplication and one addition,
but typically requires loading at least two floating-point numerical values and one
integer index. In the general case, the locations of the matrix non-zeros are represented
explicitly, whichmeans that half of the floating-point values are read indirectly, indexed
by the column indices of the matrix non-zeros. These indirect reads can induce a highly
irregular memory access pattern, which prevents data reuse in the caches. In any case,
performance is typically limited by the speed at which data can be retrieved from
CPU caches or main memory, rather than the peak floating-point capacity. But the
relationship between the locations of matrix non-zeros, also called the sparsity pattern,
and the amount of data that must be read from each level of the memory hierarchy is
difficult to characterise. In other words, for a given matrix, it is not obvious which
level of the memory hierarchy constitutes a performance bottleneck.

There is a vast literature devoted to optimising SpMV performance, including
low-level code optimisations [Williams et al. 2009a], and optimisations for reducing
the volume of data traffic, such as register blocking [Pinar and Heath 1999; Vuduc et al.
2002], cache blocking [Nishtala et al. 2007], matrix re-orderings [Heras et al. 2001;
Yzelman and Bisseling 2011], and compression [Willcock and Lumsdaine 2006]. In
addition, advanced SpMV algorithms have been proposed, either based on the standard
compressed sparse row format and variants thereof [Buluç et al. 2009; W. Liu and
Vinter 2015; Merrill and Garland 2016; Yzelman and Bisseling 2012] or other sparse
matrix formats [Haase et al. 2007; Kreutzer et al. 2014; X. Liu et al. 2013]. Furthermore,
sparse matrix partitioning schemes [Akbudak et al. 2013; Çatalyürek and Aykanat
1999; Karsavuran et al. 2016; Vastenhouw and Bisseling 2005; Yzelman and Roose 2014]
are used to improve the parallel efficiency of SpMV through better load balancing and
reduced communication. Although there has recently been a considerable effort to
optimise SpMV for GPUs [Filippone et al. 2017], we focus our attention on multi-core
CPUs, which still represent a relevant and important case.

Note, however, that we do not propose any new optimisations or storage formats
for sparse matrices. Instead, we aim to understand the performance of irregular,
bandwidth-limited computations, by using a pair of simple, well known SpMV algo-

48

Sparse matrix-vector multiplication

rithms as examples.

4.1 Compressed Sparse Row

Compressed sparse row (CSR) is a standard storage format for general sparse matrices,
where the non-zero matrix entries and their locations are stored explicitly. Consider
a sparse matrix � = (08, 9) ∈ R<,= with < rows, = columns, and # non-zeros. In
other words, there are # distinct pairs of row and column indices, (8: , 9:), such that
0: B 08: , 9: ≠ 0. If the non-zeros are arranged in ascending order according to their
row indices, then the matrix � can be represented in the CSR format with # non-zero
values (00, 01, . . . , 0#−1) and column indices (90, 91, . . . , 9#−1), and (<+1) row pointers
(A0, A1, . . . , A<). The row pointers A8 and A8+1 − 1 are the indices of the first and last
non-zeros of the 8-th row, respectively. That is, a non-zero 0: belongs to row 8: if
A8: ≤ : < A8:+1.

For a source vector G ∈ R= and destination vector ~ ∈ R< , the SpMV ~ ← ~ +�G
is defined as

~8 ← ~8 +
A8+1−1∑
:=A8

0:G 9: , for 8 = 0, 1, . . . ,< − 1. (3)

A common strategy for computing SpMV in parallel is to partition the rows of the
matrix and distribute the parts among multiple processors or threads. In this way, each
processor computes its destination vector values ~8 according to the row partitioning.
The non-zero values 0: , column indices 9: , and destination vector elements ~8 are
partitioned along with the rows. In contrast, the source vector elements G 9: may be
shared by several processors, though the extent of this sharing depends on the column
indices 9: .

The code in Algorithm 2 shows a straightforward C implementation of shared-
memory parallel SpMV for a matrix in the CSR format. Here, OpenMP is used to
parallelise the outer loop by distributing the rows among a given number of threads.
The schedule clause of the omp for compiler directive specifies that the loop is to be
divided into chunks, consisting of chunk_size consecutive loop iterations, and that the
chunks are assigned to threads in a round-robin fashion. Unless otherwise noted, we
omit the chunk_size, which implies that the threads are assigned one large chunk each.

4.2 Coordinate storage format

The coordinate (COO) format is another scheme for storing sparse matrices, though
it is not commonly used for SpMV due to its poor performance. The main reason is
that COO does not compress the row- and column indices, which leads to a larger
memory footprint and more memory traffic during an SpMV calculation compared
to CSR. However, a COO-based SpMV algorithm is interesting because it features
irregular writes, which are not required for a CSR-based SpMV. Therefore, we include
COO-based SpMV as an additional irregular kernel that we use to investigate the
accuracy of the proposed cache simulation method.

A sparse matrix � with # non-zeros is stored in the COO format by means of
three arrays: the row indices (80, 81, . . . , 8#−1), column indices (90, 91, . . . , 9#−1), and

49

I. Cache simulation on multi-core CPUs: case study on SpMV

void csr_spmv(
int m,
int const * r,
int const * j,
double const * a,
double const * x,
double * y)

{
#pragma omp for schedule(static , c h unk_ s i z e)
for (int i = 0; i < m; i++) {

double z = 0.0;
for (int k = r[i]; k < r[i+1]; k++)

z += a[k] * x[j[k]];
y[i] += z;

}
}

Algorithm 2. Parallel SpMV for matrices in the CSR storage format.

non-zero values (00, 01, . . . , 0#−1). The non-zeros are not required to be sorted by
their row or column indices, and may thus appear in any order. Given a source vector
G ∈ R= and destination vector ~ ∈ R< , the SpMV ~ ← ~ +�G is computed as

~8: ← ~8: + 0:G 9: , for : = 0, 1, . . . , # − 1. (4)

The code in Algorithm 3 shows a naive C implementation of shared-memory
parallel SpMV for a matrix in the COO format. Note that care must be taken to avoid
race conditions due to the irregular writes. For this reason, an omp atomic directive
is used within the loop. Although there is a substantial synchronisation overhead
imposed by atomic writes, and there are more efficient ways of implementing COO
SpMV that avoid this overhead, we deliberately choose the current version to study
the effect of irregular writes to a shared array.

4.3 Best- and worst case bounds on data traffic for CSR SpMV

In this section, we recall well known bounds on the number of cache misses for the
sequential version of the CSR SpMV algorithm. Let � be a sparse matrix with <
rows, = columns, and # non-zeros in the CSR format. Furthermore, assume that row
pointers and column indices are stored as four-byte integers, and non-zero values
are stored as eight-byte double precision floats. We define the size of the matrix as
the memory footprint of the CSR format, that is, 4(< + 1) + 12# bytes. Moreover,
the working set is the combined size of the matrix �, and the vectors G and ~, that is,
4(< + 1) + 12# + 8< + 8=.

To determine the number of cache misses incurred by Algorithm 2, assume, for
the sake of simplicity, that each of the arrays r, j, a, x, and y are aligned to a cache
line boundary. Otherwise, there is at most one additional cache miss for each of the

50

Sparse matrix-vector multiplication

void coo_spmv(
int N,
int const * i,
int const * j,
double const * a,
double const * x,
double * y)

{
#pragma omp for schedule(static , c h unk_ s i z e)
for (int k = 0; k < N; k++) {

#pragma omp atomic
y[i[k]] += a[k] * x[j[k]];

}
}

Algorithm 3. Parallel SpMV for matrices in the COO format.

arrays. Further, suppose that the cache does not contain any relevant data to begin
with, which holds for the first application of SpMV in an iterative solver, but also
during subsequent iterations provided that the working set exceeds the size of the
cache under consideration. In the best case, there are only compulsory misses because
data must be brought into the cache whenever it is first accessed. Consequently, a
lower bound on the number of cache misses & coincides with the number of cache
lines occupied by the working set,

& ≥

A8︷ ︸︸ ︷
d4(< + 1)/!e +

~8︷ ︸︸ ︷
d8</!e +

0:︷ ︸︸ ︷
d8# /!e +

9:︷ ︸︸ ︷
d4# /!e +

G 9:︷ ︸︸ ︷
d8=/!e,

(5)

where ! is the cache line size. The lower bound is attained only if a) there are no conflict
misses, that is, data is never evicted due to using a set-associative or direct-mapped
cache when it would otherwise have been reused, and b) there are no capacity misses
because the sparsity pattern of the matrix leads to perfect reuse of the source vector
elements G 9: , and, in addition, the row pointers A8 and destination vector ~8 remain in
the cache between iterations of the outer loop over the rows.

To obtain a reasonable upper bound, we disregard conflict misses and assume that
only the source vector suffers from capacity misses. This is equivalent to the cache
being fully associative and the matrix rows being short enough that row pointers and
destination vector elements do not suffer capacity misses. In the worst case, every
access to a source vector element G 9: incurs a cache miss, and the number of cache
misses & is bounded from above by

& ≤

A8︷ ︸︸ ︷
d4(< + 1)/!e +

~8︷ ︸︸ ︷
d8</!e +

0:︷ ︸︸ ︷
d8# /!e +

9:︷ ︸︸ ︷
d4# /!e +

G 9:︷︸︸︷
.

(6)

As shown in Fig. 1, the worst- and best case estimates provide only a rough idea of the
actual data traffic volume + = & · !. More accurate estimates of & need to take the
sparsity pattern of the matrix into account, as considered in Section 4.4.

51

I. Cache simulation on multi-core CPUs: case study on SpMV

Bounds similar to those given above have been presented previously in the literature
in various forms, for example, by Heras et al. [2001] for the case where the source
vector G fits in cache, but irregular accesses may cause conflict misses due to using a
direct-mapped or set-associative cache. Vuduc et al. [2002] consider the case where
a register blocking optimisation has been applied. Bender et al. [2010] prove tight
lower bounds on the number of cache misses of a sequential SpMV algorithm for large
classes of general sparse matrices, and they also describe an asymptotically optimal
algorithm based on cache-aware or cache-oblivious sorting that attains these lower
bounds. See also Ballard et al. [2014, Section 6] for a survey regarding both sequential
and parallel SpMV, where the authors consider movement of data between levels of a
memory hierarchy, as well as between parallel processors connected across a network.
A different approach to estimating the data traffic volume of SpMV is described by
Temam and Jalby [1992] based on a probabilistic model. However, their model is
primarily concerned with cache misses caused by conflicts in a direct-mapped cache,
and assumes that the matrix non-zeros are uniformly distributed, which is rarely the
case.

4.4 Data traffic estimates based on cache simulation

By applying the cache simulation method presented in Section 2, we obtain an alter-
native estimate for the number of cache misses in the CSR SpMV algorithm. To do
so, we apply Algorithm 1 to the sequence of loads and stores that would be issued by
Algorithm 2. There are in total 3# + 2< + 1 loads and< stores, where< and # are
the number of matrix rows and non-zeros, respectively. To break it down, the inner
loop performs 3# loads to fetch the non-zero values, column indices and source vector
elements, while the outer loop performs< + 1 loads for the row pointers, and< loads
and< stores for the destination vector. Multi-level memory hierarchies and shared
caches are handled as described in Section 2.2. In this case, if % processors are used,
we assume that the ?-th processor is assigned consecutive rows from ? d</%e up to
(? + 1) d</%e.

Crucially, this method of quantifying data traffic volumes for SpMV produces
estimates that inherently depend on the sparsity pattern of the matrix. In this way,
our estimates more accurately capture the true volume of data traffic generated by
a given SpMV computation compared to the best- and worst case estimates Eqs. (5)
and (6). Moreover, our method also incorporates the cache size, and it can therefore
produce different estimates for each level of a memory hierarchy. These estimates can
subsequently be used to diagnose performance bottlenecks that could not be identified
by previous estimates.

Finally, we observe that the above procedure may be similarly applied to the
COO SpMV kernel in Algorithm 3, other SpMV algorithms, or other irregular kernels.
To do so, one must deduce the relevant sequence of load and store operations, and
corresponding memory addresses, for the computation of interest.

52

Numerical experiments

Table 1. Matrices from the SuiteSparse Matrix Collection [Davis and Hu 2011] used in our
experiments. The SuiteSparse matrices are sorted according to the number of columns.

Non-zeros per row

Matrix Rows Columns Non-zeros Mean Median Std. Max

TSOPF_RS_b2383 0.04M 0.04M 16M 424 6 484 983
spal_004 0.01M 0.3M 46M 4 525 5 063 1 492 6 029
RM07R 0.4M 0.4M 37M 98 125 69 295
relat9 12.3M 0.5M 39M 4 4 0 4
HV15R 2.0M 2.0M 283M 140 156 54 484
GL7d19 1.9M 2.0M 37M 20 20 3 121
sx-stackoverflow 2.6M 2.6M 36M 14 2 138 38 148
FullChip 3.0M 3.0M 27M 9 6 1 807 2 312 481
Freescale1 3.4M 3.4M 19M 6 5 2 27
circuit5M 5.6M 5.6M 60M 11 5 1 357 1 290 501
Hardesty3 8.2M 7.6M 40M 5 5 0 5
Lynx68∗ 6.8M 6.8M 112M 16 17 2 17
Lynx68_reordered∗ 6.8M 6.8M 112M 16 17 2 17

∗ These matrices are not found in the SuiteSparse Matrix Collection.

5 Numerical experiments

In this section, we describe experiments that test the accuracy of data traffic estimates
obtained with the cache simulation method described in Section 2, focusing on the
CSR-based SpMV kernel in Algorithm 2. Next, we use the data traffic estimates for CSR
SpMV to evaluate the performance model from Section 3. Finally, we also evaluate the
data traffic estimates for the COO SpMV kernel in Algorithm 3.

5.1 Sparse matrices

The data used in this study consists of real-valued matrices, most of which are from the
SuiteSparse Matrix Collection [Davis and Hu 2011], a large set of sparse matrices from
a variety of real-world applications. The selected matrices were mainly chosen because
they exhibit a variety of sparsity patterns and are large enough that the SpMV working
set exceeds the last-level caches of our test systems. In addition, we have included two
matrices from a cardiac electrophysiology simulation that have previously been used
by Langguth et al. [2015b]. Both matrices are derived from a finite volume method on
the same tetrahedral mesh, but each matrix represents a different numbering of the
mesh cells. Thus, the matrices have the same number of rows, columns and non-zeros,
but very different sparsity patterns, see Fig. 2. For a list of the matrices used in our
experiments, see Table 1, which also displays some high-level statistics about the
sparsity pattern of each matrix. It is also worth noting that the matrices spal_004,
GL7d19, sx-stackoverflow, and Lynx68, have particularly irregular sparsity patterns.

53

I. Cache simulation on multi-core CPUs: case study on SpMV

(a) Lynx68 (b) Lynx68_reordered

Figure 2. The sparsity patterns of the Lynx68 and Lynx68_reordered matrices. The shaded
areas represent the locations of non-zero matrix entries. Both matrices have the same number
of rows, columns and non-zeros, but they have very different sparsity patterns.

5.2 Experimental setup

For our experiments, we used three multi-core CPU systems: a dual-socket Intel
Sandy Bridge Xeon E5-2650, a dual-socket Intel Skylake Xeon Platinum 8168, and a
dual-socket AMD Epyc 7601. On all three systems, each processor core has an L1
instruction cache and L1 data cache, as well as a unified L2 cache for both instructions
and data. In addition, there are L3 caches on each system, which may also contain
both instructions and data. For the Intel processors, there is a shared L3 cache for
each socket, whereas the AMD Epyc has an 8MiB L3 cache for each group of four
processor cores, also referred to as a compute complex. Similarly, there is a NUMA
domain for each socket on the Intel systems, whereas a NUMA domain on the AMD
Epyc is associated with a group of two compute complexes, or eight processor cores.
Every cache uses a common cache line size of 64 bytes. The main characteristics of the
hardware are summarised in Table 2. Recall that in a memory hierarchy, a lower-level
cache is said to be inclusive of a higher-level cache if every cache block contained in the
higher-level cache is also present in the lower-level cache. We note that the L3 cache
is inclusive of the L2 cache on Sandy Bridge, but not on Skylake [Intel Corporation
2018, Ch. 2].

In the following experiments, turbo boost is disabled, and the intel_pstate or acpi-
cpufreq performance scaling driver is used with the “performance” scaling governor.
As a consequence, the CPU clock frequency is capped at 2.0 GHz on Sandy Bridge,
2.7 GHz on Skylake, and 2.2 GHz on Epyc, respectively. Furthermore, each thread is
pinned to its own CPU core, and memory that is accessed by a given thread is initialised
so that a first touch policy will place the corresponding memory pages in the NUMA
domain closest to the thread.

54

Numerical experiments

Table 2. Multi-core CPU systems used in our experiments, including the size and set associativity
of each cache, memory configuration, and theoretical memory bandwidth.

Sandy Bridge Skylake Epyc

CPUs 2× Intel Xeon
E5-2650

2× Intel Xeon
Platinum 8168

2× AMD Epyc 7601

CPU cores 2× 8 2× 24 2× 32
L1 cache per core 32 KiB, 8-way 32 KiB, 8-way 32 KiB, 8-way
L2 cache per core 256 KiB, 8-way 1024 KiB, 16-way 512 KiB, 16-way
L3 cache per core 2560 KiB, 20-way 1408 KiB, 11-way 2048 KiB, 16-way
Memory per socket 4× 1 600 MHz 6× 2 666 MHz 8× 2 666 MHz
Memory bandwidth 2× 51.2 GB/s 2× 128.0 GB/s 2× 170.6 GB/s

Moreover, each system is running Ubuntu 18.04.2 LTS with Linux kernel version
4.15, and code is compiled using GCC 7.4.0 with the compiler flags -O3 -fopenmp
-march=native.

As an initial verification of the SpMV kernel in Algorithm 2, Table 3 shows that
the serial performance on Sandy Bridge closely matches a reference implementation
provided by the Intel Math Kernel Library (MKL) 2017. In addition, we compare the
performance of our implementation on both Sandy Bridge and Epyc using different
compilers. For a few matrices, the Intel C compiler attains a slight performance
increase, while the performance slightly degrades for other matrices. In particular, for
matrices that are irregular, the difference in performance is negligible. Both because
it is widely used and freely available, we will stick to using GCC for the remaining
experiments.

5.3 Estimating and measuring data traffic for CSR-based SpMV

For each matrix in Table 1, we use the method described in Section 2 to estimate the
number of cache misses &̂ (?)L1 and &̂ (?)L2 incurred by the ?-th processor for the L1 and
L2 caches, respectively. Because the L3 cache is shared, the corresponding estimates
are produced by interleaving load and store instructions issued by each processor, as
described in Section 2.2. Moreover, we obtain separate estimates for the number of
L3 cache misses &̂ (?)L3,3 for each NUMA domain 3 = 0, 1, . . . , � − 1. We use a common
cache line size of 64 bytes, and the cache sizes listed in Table 2. Based on an estimated
number of cache misses per core, & (?) , we deduce the corresponding volume of data
traffic, +̂ (?) = 64 · &̂ (?) . In the results that follow, we focus on the total data traffic
volumes for each cache level, +̂8 =

∑
? +̂
(?)
8

for 8 = L1, L2 and +̂L3 =
∑
?,3 +̂

(?)
L3,3 .

To validate the estimated data traffic volumes, we now compare them to data
traffic measurements on our Intel-based multi-core CPUs. Unfortunately, currently
available tools for hardware performance monitoring on Linux, in particular, libpfm4
[Eranian and Richter 2018], do not support the hardware performance events that are
required to directly measure data traffic throughout the memory hierarchy of AMD
Epyc processors. Therefore, we focus on the Intel-based systems for now, although

55

I. Cache simulation on multi-core CPUs: case study on SpMV

Table 3. Serial performance (in Gflop/s) of a CSR-based SpMV kernel. The first column
is the performance of a reference implementation on Sandy Bridge provided by the func-
tion mkl_cspblas_dcsrgemv from the Intel Math Kernel Library (MKL) 2017. The remaining
columns compare the performance of our implementation compiled with GCC and ICC on
both Sandy Bridge and Epyc.

Sandy Bridge Epyc

Matrix Intel MKL 2017 GCC 7.4.0 ICC 17.0.0 GCC 7.4.0 ICC 19.0.5

TSOPF_RS_b2383 1.60 1.54 1.93 1.67 2.61
spal_004 1.11 1.15 1.19 1.55 2.15
RM07R 1.36 1.51 1.76 1.76 2.45
relat9 0.64 0.67 0.59 1.04 0.92
HV15R 1.38 1.34 1.66 1.77 2.49
GL7d19 0.26 0.26 0.26 0.39 0.36
sx-stackoverflow 0.23 0.25 0.23 0.35 0.32
FullChip 0.90 0.97 0.92 1.26 1.19
Freescale1 0.87 0.97 0.86 1.37 1.27
circuit5M 1.14 1.23 1.17 1.74 1.88
Hardesty3 1.02 1.14 0.98 1.74 1.60
Lynx68 0.21 0.21 0.21 0.34 0.30
Lynx68_reordered 0.66 0.65 0.69 1.33 1.24

we consider the AMD Epyc system once again when evaluating the performance of
the CSR-based SpMV kernel in Section 5.5. Measurements of the actual data traffic
volumes are obtained from Performance Monitoring Units (PMUs) in the hardware that
can be configured to report various hardware performance events [Intel Corporation
2017, Ch. 18]. In our case, these events are accessed by providing appropriate event
encodings to the perf_event_open system call, and using the returned file descriptor
to read values from hardware performance counters. The library libpfm4 [Eranian and
Richter 2018] is used to translate event names to event encodings. Moreover, we follow
guidelines given by Molka et al. [2017] to select appropriate hardware performance
events for data traffic measurements by using microbenchmarks to correlate hardware
events with data transfers between levels of the memory hierarchy. The events that
have been chosen as a result of this procedure are shown in Table 4.

For each matrix in Table 1, we compute SpMV in parallel using Algorithm 2, and,
for each thread, we record the hardware performance events listed in Table 4. These
events provide the number of cache misses per core for each cache level, from which
the total data traffic volumes are computed.

The estimated and measured total data traffic volumes for CSR SpMV using a single
core, single socket, and both sockets are shown in Tables 5 and 6 for Sandy Bridge
and Skylake, respectively. Also, estimated data traffic volumes for the single core and
single socket cases on AMD Epyc are shown in Table 7. In the following, we refer to
the data traffic volume from the L2 cache to the L1 cache as L1← L2 traffic, and so on
for the remaining levels of the hierarchy.

Overall, the correspondence between measured and estimated data traffic is close,

56

Numerical experiments

Table 4. Hardware performance events recorded for each processor core. Each event includes
cache lines brought to the specified cache due to loads, stores, and hardware prefetches. Event
names follow the conventions of the library libpfm4 [Eranian and Richter 2018].

Cache level Sandy Bridge Skylake

L1← L2 l1-dcache-load-
misses

l1-dcache-load-misses

L2← L3 l2_lines_in:any l2_lines_in:any

L3←DRAM offcore_response_0:
any_data:any_rfo:
l3_miss:snp_any

offcore_response_0:
any_data:any_rfo:
l3_miss_local:
l3_miss_miss_remote_hop1_dram:
snp_any

which shows that the main contributions to data traffic are captured by our simulation
scheme, even with a simplified model of the memory hierarchy. Most estimates are
within a few percent of the measured data traffic volumes, but there are some notable
exceptions.

First, for some of the most irregular matrices, spal_004, GL7d19, Lynx68, and
sx-stackoverflow, our method underestimates the L1 ← L2 traffic on both Sandy
Bridge and Skylake by about 15–40%. Also, the L2 ← L3 traffic on Sandy Bridge is
underestimated by about 10–20% for spal_004 and Lynx68. These discrepancies are
likely caused by conflict misses due to the caches being set-associative, rather than fully
associative, as we assume in our simplified model of the memory hierarchy. Observe
how the estimates of the L2← L3 traffic on Skylake are more accurate, probably due to
the increased cache size and associativity, which should result in fewer conflict misses.
Now, there is also another, plausible reason for underestimating the data traffic volume:
There may be additional, needless data traffic in cases where hardware prefetching
mechanisms place data into a CPU cache and the data is later evicted without being
used. This is possible because hardware prefetchers may transfer data from lower levels
of a memory hierarchy, even though there are no outstanding requests referencing
the data. The indirect and irregular memory access patterns that occur in SpMV can
easily render standard hardware prefetching mechanisms inefficient, though this will
naturally depend a great deal on the sparsity pattern of the matrix. While it would be
possible to assess the impact of hardware prefetchers by explicitly disabling them, this
is beyond the scope of our current work.

Second, the cache simulation overestimates the L3← DRAM for the matrices sx-
stackoverflow and Lynx68 on Skylake by about ten and forty percent, respectively.
The fact that this does not occur on Sandy Bridge suggests that the overestimation
is related to the L3 cache not being inclusive of the L2 cache on Skylake. It is likely
that a more accurate estimate could be produced if non-inclusivity were taken into
account, for example, by combining the size of the L2 and L3 caches.

57

I. Cache simulation on multi-core CPUs: case study on SpMV

Table 5. Estimated and measured total data traffic (in MiB) on Intel Sandy Bridge Xeon E5-2650
for SpMV with Algorithm 2.

L1← L2 L2← L3 L3← DRAM

Matrix
Meas.
[MiB]

Est.
[MiB]

Err.
[%]

Meas.
[MiB]

Est.
[MiB]

Err.
[%]

Meas.
[MiB]

Est.
[MiB]

Err.
[%]

Single core
TSOPF_RS_b2383 188 186 -1.1 187 186 -0.5 186 186 0.0
spal_004 1335 1054 -21.0 956 839 -12.2 529 528 -0.2
RM07R 503 488 -3.0 472 456 -3.4 441 439 -0.5
relat9 1505 1477 -1.9 1114 1086 -2.5 594 595 0.2
HV15R 3597 3522 -2.1 3480 3397 -2.4 3308 3291 -0.5
GL7d19 3526 2714 -23.0 2679 2631 -1.8 573 532 -7.2
sx-stackoverflow 3429 2565 -25.2 2600 2446 -5.9 749 717 -4.3
FullChip 500 490 -2.0 474 467 -1.5 454 447 -1.5
Freescale1 387 381 -1.6 385 375 -2.6 347 344 -0.9
circuit5M 1180 1185 0.4 923 958 3.8 937 944 0.7
Hardesty3 742 734 -1.1 650 618 -4.9 616 618 0.3
Lynx68 9103 5560 -38.9 6873 5532 -19.5 4367 4270 -2.2
Lynx68_reordered 5297 5131 -3.1 2965 2891 -2.5 1428 1428 0.0

Single socket
TSOPF_RS_b2383 188 186 -1.1 188 186 -1.1 185 186 0.5
spal_004 1344 1054 -21.6 962 840 -12.7 515 529 2.7
RM07R 504 488 -3.2 474 456 -3.8 420 438 4.3
relat9 1506 1477 -1.9 1112 1086 -2.3 584 591 1.2
HV15R 3600 3522 -2.2 3493 3397 -2.7 3220 3357 4.3
GL7d19 3527 2714 -23.1 2679 2631 -1.8 751 673 -10.4
sx-stackoverflow 3433 2565 -25.3 2592 2615 -6.5 791 749 -5.5
FullChip 501 490 -2.2 481 467 -2.9 427 439 2.8
Freescale1 388 381 -1.8 389 375 -3.6 327 338 3.4
circuit5M 1181 1185 0.3 928 958 3.2 905 943 4.2
Hardesty3 742 734 -1.1 658 619 -5.9 576 618 7.3
Lynx68 9105 5560 -38.9 6923 5532 -20.1 4418 4316 -2.3
Lynx68_reordered 5302 5131 -3.2 2996 2891 -3.5 1467 1465 -0.1

Dual socket
TSOPF_RS_b2383 188 186 -1.1 187 185 -1.1 185 185 0.0
spal_004 1346 1054 -21.7 959 840 -12.4 542 531 -2.0
RM07R 504 488 -3.2 475 456 -4.0 451 439 -2.7
relat9 1510 1477 -2.2 1113 1087 -2.3 591 592 0.2
HV15R 3602 3522 -2.2 3499 3397 -2.9 3413 3357 -1.6
GL7d19 3528 2714 -23.1 2688 2631 -2.1 617 563 -8.8
sx-stackoverflow 3434 2565 -25.3 2613 2446 -6.4 795 732 -7.9
FullChip 502 490 -2.4 483 467 -3.3 449 438 -2.4
Freescale1 388 381 -1.8 390 375 -3.8 354 348 -1.7
circuit5M 1181 1185 0.3 928 958 3.2 895 917 2.5
Hardesty3 742 734 -1.1 668 619 -7.3 620 618 -0.3
Lynx68 9099 5560 -38.9 6937 5532 -20.3 4402 4290 -2.5
Lynx68_reordered 5302 5131 -3.2 3054 2892 -5.3 1481 1463 -1.2

58

Numerical experiments

Table 6. Estimated and measured total data traffic (in MiB) on Intel Skylake Xeon Platinum
8168 for SpMV with Algorithm 2.

L1← L2 L2← L3 L3← DRAM

Matrix
Meas.
[MiB]

Est.
[MiB]

Err.
[%]

Meas.
[MiB]

Est.
[MiB]

Err.
[%]

Meas.
[MiB]

Est.
[MiB]

Err.
[%]

Single core
TSOPF_RS_b2383 188 186 -1.1 187 186 -0.5 187 186 -0.5
spal_004 1332 1054 -20.9 858 838 -2.3 554 528 -4.7
RM07R 503 488 -3.0 471 454 -3.6 456 439 -3.7
relat9 1497 1477 -1.3 878 842 -4.1 595 591 -0.7
HV15R 3598 3522 -2.1 3446 3368 -2.3 3383 3287 -2.8
GL7d19 3209 2714 -15.4 2401 2397 -0.2 504 479 -5.0
sx-stackoverflow 3240 2565 -20.8 2190 2173 -0.8 519 552 6.4
FullChip 500 490 -2.0 482 461 -4.4 431 436 1.2
Freescale1 387 381 -1.6 388 369 -4.9 339 340 0.3
circuit5M 1180 1185 0.4 963 957 -0.6 933 915 -1.9
Hardesty3 741 734 -0.9 623 618 -0.8 622 618 -0.6
Lynx68 8729 5560 -36.3 5551 5480 -1.3 3260 3539 8.6
Lynx68_reordered 5247 5131 -2.2 1584 1529 -3.5 1497 1424 -4.9

Single socket
TSOPF_RS_b2383 191 186 -2.6 192 185 -3.6 186 186 0.0
spal_004 1318 1054 -20.0 860 838 -2.6 532 528 -0.8
RM07R 518 488 -5.8 474 454 -4.2 442 448 1.4
relat9 1500 1477 -1.5 871 843 -3.2 591 588 -0.5
HV15R 3625 3522 -2.8 3456 3368 -2.5 3382 3360 -0.7
GL7d19 3210 2714 -15.5 2420 2397 -1.0 484 456 -5.8
sx-stackoverflow 3243 2565 -20.9 2263 2173 -4.0 517 555 7.4
FullChip 504 490 -2.8 513 461 -10.1 430 428 -0.5
Freescale1 388 381 -1.8 395 369 -6.6 333 332 -0.3
circuit5M 1189 1185 -0.3 1058 957 -9.5 935 930 -0.5
Hardesty3 742 734 -1.1 634 619 -2.4 625 618 -1.1
Lynx68 8732 5560 -36.3 5594 5480 -2.0 2589 3599 39.0
Lynx68_reordered 5249 5131 -2.2 1635 1535 -6.1 1509 1494 -1.0

Dual socket
TSOPF_RS_b2383 194 187 -3.6 199 185 -7.0 187 185 -1.1
spal_004 1320 1054 -20.2 866 840 -3.0 535 528 -1.3
RM07R 525 488 -7.0 481 454 -5.6 441 447 1.4
relat9 1504 1477 -1.8 882 844 -4.3 593 589 -0.7
HV15R 3683 3522 -4.4 3467 3368 -2.9 3346 3360 0.4
GL7d19 3213 2714 -15.5 2425 2397 -1.2 483 473 -2.1
sx-stackoverflow 3254 2565 -21.2 2342 2173 -7.2 504 552 9.5
FullChip 511 490 -4.1 544 462 -15.1 410 428 4.4
Freescale1 389 381 -2.1 398 369 -7.3 316 332 5.1
circuit5M 1196 1185 -0.9 1073 957 -10.8 908 927 2.1
Hardesty3 744 734 -1.3 653 620 -5.1 632 618 -2.2
Lynx68 8734 5560 -36.3 5623 5480 -2.5 2586 3564 37.8
Lynx68_reordered 5254 5131 -2.3 1658 1540 -7.1 1488 1482 -0.4

59

I. Cache simulation on multi-core CPUs: case study on SpMV

Table 7. Estimated total data traffic (in MiB) on AMD Epyc 7601 for SpMV with Algorithm 2.
Measurements of the data traffic on Epyc are missing due to a lack of reliable hardware
performance events for measuring data traffic throughout the memory hierarchy.

Matrix
L1← L2
[MiB]

L2← L3
[MiB]

L3← DRAM
[MiB]

Single core
TSOPF_RS_b2383 187 186 186
spal_004 1054 839 530
RM07R 488 455 439
relat9 1477 967 618
HV15R 3522 3369 3301
GL7d19 2714 2548 1111
sx-stackoverflow 2565 2340 1207
FullChip 490 463 457
Freescale1 381 371 351
circuit5M 1185 958 945
Hardesty3 734 618 618
Lynx68 5560 5514 5017
Lynx68_reordered 5131 1786 1438

Single socket
TSOPF_RS_b2383 186 185 185
spal_004 1054 840 607
RM07R 488 456 446
relat9 1477 968 614
HV15R 3522 3369 3359
GL7d19 2714 2548 1136
sx-stackoverflow 2565 2340 1219
FullChip 490 463 453
Freescale1 381 371 359
circuit5M 1185 958 937
Hardesty3 734 619 618
Lynx68 5560 5514 5020
Lynx68_reordered 5131 1792 1475

5.4 Measuring CPU cache and memory bandwidth

Before we can relate the relevant data traffic volumes in a memory hierarchy to an
algorithm’s performance, we must first benchmark the CPU cache and main memory
bandwidths of our test systems. We do so by using a modified version of the STREAM
bandwidth benchmark [McCalpin 1995].

The original STREAM benchmark only includes computational kernels with regular
memory access patterns, and it is not clear that the measured bandwidths are relevant
for an irregular computation, such as SpMV. For example, the standard kernels benefit
greatly from the compiler’s automatic vectorisation, but the CSR SpMV kernel in
Algorithm 2 usually does not. In addition, the STREAM kernels do not include indirect
memory accesses, and, moreover, they perform a larger proportion of writes than

60

Numerical experiments

Table 8. Memory and CPU cache bandwidth (in GB/s) measured by the STREAM bench-
mark [McCalpin 1995]. In addition to the standard Triad kernel, we have added a kernel for
computing a dot product with indirect memory accesses. The latter kernel is representative of
the SpMV computation in Algorithm 2, and it corresponds to SpMV with a matrix in the CSR
format that has a single, dense row. The bandwidths per NUMA domain and per socket are
measured by using numactl to place memory in a single NUMA domain or socket, and running
the benchmarks with all cores belonging to the given NUMA domain or socket, respectively.

Triad
(2: ← 0: + 1: · 3)

Indirect dot product
(2 ← ∑

: 0: · 1 9: , 9: = :)

Sandy
Bridge Skylake Epyc

Sandy
Bridge Skylake Epyc

Registers↔ L1, per core 81.4 212.0 63.2 13.1 13.2 8.7
L1↔ L2, per core 29.2 88.8 64.9 13.3 13.4 8.8
L2↔ L3, per core 17.9 24.2 51.3 12.7 12.5 8.8
L3↔ DRAM

per core 9.1 11.4 18.3 9.8 10.1 8.7
per NUMA domain 28.1 74.8 21.0 37.3 99.8 29.6
per socket 28.1 74.8 85.4 37.3 99.8 118.5
all sockets 56.8 139.2 168.4 70.6 184.5 225.7

is typical for SpMV. Therefore, we supplement the STREAM benchmark with an
additional computational kernel, which more closely resembles SpMV, and consists
of computing a dot product with indirect memory accesses. This is similar to the
approach used by Vuduc et al. [2002].

The measured bandwidths for the different kernels are shown in Table 8. The sizes
of the arrays used by each kernel are selected so that the data fits in the appropriate
level of the memory hierarchy, and times are measured using clock_gettime with
CLOCK_MONOTONIC. The Triad kernel is included mostly as a reference, since the num-
bers it produces are often used in performance evaluations, for example, in the Roofline
model [Williams et al. 2009b].

The Triad kernel has a higher throughput than the indirect dot product whenever
data is read from one of the CPU caches. This is because the compiler generates
vectorised code for Triad, which alleviates bottlenecks that are limiting the performance
of the indirect dot product kernel. Meanwhile, for the per-socket memory bandwidth,
the Triad kernel produces a result that is about 75 % of the indirect dot product. This
difference is caused by the following two facts. First, the indirect dot product performs
no stores, whereas the Triad kernel performs one store for every two loads. Second,
the bandwidths reported by STREAM assume that the traffic generated by a store is
the same as for a load. However, in practice, stores usually generate twice as much
data traffic, that is‚ sixteen bytes per store for Triad, because a cache line is transferred
from main memory before a store is performed, and, in addition, the modified cache
line is written back to main memory afterwards. Although it is possible to use non-
temporal stores to avoid bringing cache lines from main memory before a store, this
requires either using a different compiler, such as the Intel C Compiler, or hand-coded

61

I. Cache simulation on multi-core CPUs: case study on SpMV

optimisation, because GCC will not generate such code.

5.5 Evaluating performance for CSR-based SpMV

In this section, we apply the performance model from Section 3 to evaluate the per-
formance of the standard CSR SpMV algorithm. The performance model uses the
data traffic estimates from Section 5.3 and CPU cache and memory bandwidths from
Section 5.4.

First, we record the actual execution time and performance, so that we can later
compare to our performance predictions. For each matrix in Table 1, we compute
SpMV in parallel using Algorithm 2 and measure the execution time. To account for
variations in the measurements, we obtain a random sample of one hundred trials, and
let) denote the sample mean execution time. The performance is (= 2# /) , where #
is the number of matrix non-zeros.

For each cache level, we compute upper bounds on performance based on Eq. (1)
using per-core data traffic and bandwidth. That is, the maximum of the data traffic
volumes among all cores is used along with the single-core bandwidth of data transfers
to the corresponding level of the memory hierarchy. Finally, there is an upper bound
on performance based on Eq. (2) and the total traffic and bandwidth of each NUMA
domain. For the bandwidths, we have used the numbers given in Table 8 for the
“indirect dot product” kernel.

Upper bounds on performance for CSR-based SpMV on Sandy Bridge, Skylake, and
Epyc are shown in Tables 9, 10 and 11. Again, for the Intel systems, we present results
using a single core, single socket and both sockets. For AMD Epyc, we present single
core and single socket results.

Generally speaking, no single level of the memory hierarchy can be regarded as
a bottleneck for all of the tested matrices. For a single core, bottlenecks sometimes
appear between the registers and L1 cache, between L1 and L2, and also between L3 and
main memory. Whenever additional cores are used, performance is frequently limited
by the aggregate memory bandwidth. However, for some matrices, including GL7d19,
sx-stackoverflow, and Lynx68_reordered, L1 ← L2 traffic remains the limiting
factor. In these cases, the aggregate memory bandwidth per socket or NUMA domain
is plentiful, but the irregular traffic between the L1 and L2 cache is so substantial that
it limits performance. In addition, the sparsity patterns of circuit5m and FullChip
result in severely unbalanced workloads among multiple processors, which is not
surprising due to both matrices having at least one very long row. Note that the
performance bounds increase only marginally when moving from a single core to
multiple cores, far from the ideal speedup one might hope for with a perfectly balanced
workload. Moreover, in both cases, the per-core bounds are lower than the per-socket
or per NUMA domain bounds, indicating that the aggregate memory bandwidth is not
saturated.

Comparing the two Intel systems, our predictions show very little difference
between Sandy Bridge and Skylake in the single-core case. However, when looking at
an entire socket or full machine, the Skylake system is predicted to performmuch better,
mostly due to its higher aggregate memory bandwidth. In addition, the increased size
of Skylake’s L2 cache means that some matrices, such as Lynx68_reordered, generate

62

Numerical experiments

Table 9. Upper bounds on performance (in Gflop/s) on Intel Sandy Bridge Xeon E5-2650 for
SpMV with Algorithm 2. The column “Reg.← L1” is based on the number of loads from the L1
cache to registers. The next four columns are based on the estimated data traffic volumes in
Table 5. The “per core” bounds use the maximum data traffic volume among all cores together
with the single-core CPU cache or memory bandwidth. The “per socket” bound is based on
the largest of the per-socket traffic volumes and the aggregate memory bandwidth of a single
socket. The relevant bandwidths are from the “indirect dot product” kernel in Table 8. The
smallest of the upper bounds is displayed in bold and represents the bottleneck predicted by
our model.

Matrix
Reg.← L1
per core

L1← L2
per core

L2← L3
per core

L3← DRAM
per core

L3← DRAM
per socket

Single core
TSOPF_RS_b2383 1.31 2.21 2.11 1.63 —
spal_004 1.31 1.11 1.33 1.63 —
RM07R 1.31 1.95 1.99 1.60 —
relat9 1.31 0.67 0.87 1.22 —
HV15R 1.31 2.04 2.02 1.61 —
GL7d19 1.31 0.35 0.34 1.31 —
sx-stackoverflow 1.31 0.36 0.36 0.94 —
FullChip 1.31 1.38 1.38 1.11 —
Freescale1 1.31 1.26 1.22 1.03 —
circuit5M 1.31 1.27 1.51 1.18 —
Hardesty3 1.31 1.40 1.59 1.22 —
Lynx68 1.31 0.51 0.49 0.49 —
Lynx68_reordered 1.31 0.55 0.93 1.46 —

Single socket
TSOPF_RS_b2383 4.52 7.60 7.25 5.60 6.19
spal_004 10.38 8.25 10.55 12.88 6.21
RM07R 9.92 14.62 15.13 12.07 6.09
relat9 8.26 3.92 5.10 8.18 4.69
HV15R 10.11 15.61 15.51 12.11 6.00
GL7d19 9.91 2.65 2.67 6.91 3.95
sx-stackoverflow 3.30 0.90 0.92 2.61 3.44
FullChip 4.21 3.46 3.49 3.00 4.31
Freescale1 5.99 5.11 4.98 4.53 3.98
circuit5M 2.21 1.86 2.47 1.95 4.49
Hardesty3 10.32 10.92 12.56 9.69 4.66
Lynx68 10.30 3.40 3.25 3.27 1.84
Lynx68_reordered 10.40 4.35 7.34 11.27 5.42

Dual socket
TSOPF_RS_b2383 9.04 15.19 14.51 11.20 6.22
spal_004 24.42 16.50 21.10 25.38 12.35
RM07R 19.82 29.70 30.25 24.15 11.79
relat9 16.52 7.66 9.93 16.18 7.74
HV15R 20.21 31.22 31.03 24.27 11.98
GL7d19 18.78 5.06 5.20 19.38 9.22
sx-stackoverflow 4.80 1.31 1.36 4.67 5.36
FullChip 5.21 4.19 4.19 4.48 7.43
Freescale1 10.83 8.73 8.49 9.31 6.70
circuit5M 3.36 3.66 3.62 3.55 6.65
Hardesty3 20.64 21.83 25.12 19.39 9.22
Lynx68 20.60 6.79 6.51 9.35 3.48
Lynx68_reordered 20.73 8.65 14.53 22.42 10.75

63

I. Cache simulation on multi-core CPUs: case study on SpMV

Table 10. Upper bounds on performance (in Gflop/s) on Intel Skylake Xeon Platinum 8168 for
SpMV with Algorithm 2. The column “Reg.← L1” is based on the number of loads from the L1
cache to registers. The next four columns are based on the estimated data traffic volumes in
Table 6. The “per core” bounds use the maximum data traffic volume among all cores together
with the single-core CPU cache or memory bandwidth. The “per socket” bound is based on
the largest of the per-socket traffic volumes and the aggregate memory bandwidth of a single
socket. The relevant bandwidths are from the “indirect dot product” kernel in Table 8. The
smallest of the upper bounds is displayed in bold and represents the bottleneck predicted by
our model.

Matrix
Reg.← L1
per core

L1← L2
per core

L2← L3
per core

L3← DRAM
per core

L3← DRAM
per socket

Single core
TSOPF_RS_b2383 1.32 2.22 2.07 1.67 —
spal_004 1.32 1.12 1.31 1.68 —
RM07R 1.32 1.96 1.97 1.64 —
relat9 1.32 0.67 1.10 1.27 —
HV15R 1.32 2.05 2.00 1.66 —
GL7d19 1.32 0.35 0.37 1.50 —
sx-stackoverflow 1.32 0.36 0.40 1.26 —
FullChip 1.32 1.39 1.38 1.18 —
Freescale1 1.32 1.27 1.22 1.07 —
circuit5M 1.32 1.28 1.48 1.25 —
Hardesty3 1.32 1.41 1.56 1.26 —
Lynx68 1.32 0.51 0.49 0.61 —
Lynx68_reordered 1.32 0.56 1.74 1.51 —

Single socket
TSOPF_RS_b2383 13.67 22.96 21.42 17.31 16.55
spal_004 30.70 24.58 30.58 38.67 16.64
RM07R 29.46 43.52 44.66 36.09 15.92
relat9 24.96 11.71 19.76 25.88 12.61
HV15R 28.38 43.58 42.72 34.73 16.04
GL7d19 26.92 7.28 8.39 31.26 15.58
sx-stackoverflow 5.80 1.59 1.96 6.02 12.43
FullChip 5.81 4.69 4.53 4.35 11.84
Freescale1 15.99 12.40 12.53 13.50 10.85
circuit5M 3.02 2.27 3.22 2.76 12.18
Hardesty3 31.19 33.35 37.09 29.97 12.46
Lynx68 31.10 10.26 9.71 12.35 5.90
Lynx68_reordered 31.29 12.96 40.30 33.58 14.21

Dual socket
TSOPF_RS_b2383 27.31 45.92 42.84 34.61 16.64
spal_004 59.30 47.20 57.93 74.12 33.29
RM07R 53.36 79.80 81.20 65.61 31.01
relat9 49.93 22.13 38.70 50.03 20.89
HV15R 56.73 87.17 85.43 69.91 31.96
GL7d19 46.53 12.72 16.79 55.31 29.85
sx-stackoverflow 8.16 2.24 2.85 9.56 17.73
FullChip 6.42 5.23 4.96 5.83 20.35
Freescale1 30.86 21.03 21.48 28.04 18.86
circuit5M 5.17 3.85 5.20 5.26 17.59
Hardesty3 62.39 64.62 74.19 59.94 24.68
Lynx68 62.19 20.51 19.41 35.81 11.48
Lynx68_reordered 62.27 25.68 80.59 67.15 28.43

64

Numerical experiments

Table 11. Upper bounds on performance (in Gflop/s) on AMD Epyc 7601 for SpMV with
Algorithm 2. The column “Reg.← L1” is based on the number of loads from the L1 cache to
registers. The next four columns are based on the estimated data traffic volumes in Table 7.
The “per core” bounds use the maximum data traffic volume among all cores together with the
single-core CPU cache or memory bandwidth. The “per NUMA domain” bound is based on
the maximum traffic volume among NUMA domains and the aggregate bandwidth of a single
NUMA domain. The relevant bandwidths are from the “indirect dot product” kernel in Table 8.
The smallest of the upper bounds is displayed in bold and represents the bottleneck predicted
by our model.

Matrix
Reg.← L1
per core

L1← L2
per core

L2← L3
per core

L3← DRAM
per core

L3← DRAM
per socket

Single core
TSOPF_RS_b2383 0.88 1.46 1.46 1.44 —
spal_004 0.88 0.74 0.92 1.45 —
RM07R 0.88 1.29 1.38 1.42 —
relat9 0.88 0.44 0.68 1.05 —
HV15R 0.88 1.35 1.41 1.42 —
GL7d19 0.88 0.23 0.25 0.56 —
sx-stackoverflow 0.88 0.24 0.26 0.50 —
FullChip 0.88 0.91 0.97 0.97 —
Freescale1 0.88 0.83 0.86 0.89 —
circuit5M 0.88 0.84 1.04 1.05 —
Hardesty3 0.88 0.93 1.10 1.09 —
Lynx68 0.88 0.34 0.34 0.37 —
Lynx68_reordered 0.88 0.36 1.05 1.29 —

Single socket
TSOPF_RS_b2383 12.14 20.88 20.88 10.32 8.54
spal_004 27.83 21.53 29.80 20.16 17.16
RM07R 25.20 36.99 39.30 20.72 18.25
relat9 22.19 10.06 15.57 14.05 11.52
HV15R 25.12 38.01 39.93 20.88 18.36
GL7d19 22.74 6.08 7.37 12.39 6.24
sx-stackoverflow 4.43 1.20 1.41 3.78 4.31
FullChip 4.04 3.19 3.29 4.70 9.34
Freescale1 14.18 10.24 10.95 10.13 8.49
circuit5M 3.04 2.50 3.28 4.20 6.67
Hardesty3 27.73 28.29 33.95 16.78 14.56
Lynx68 27.64 8.96 9.04 10.06 4.47
Lynx68_reordered 27.75 11.28 32.28 19.90 17.94

65

I. Cache simulation on multi-core CPUs: case study on SpMV

less L2← L3 data traffic compared to Sandy Bridge. However, this does not seem to
significantly impact performance because data transfers between the L2 and L3 caches
never constituted a bottleneck to begin with.

For Epyc, the single core performance is constrained by traffic between registers
and the L1 cache or the L1 and L2 caches. This stems from the fact that the measured per
core bandwidths of the indirect dot product kernel are essentially the same regardless
of which level of the memory hierarchy that data is read from, and there is naturally
more traffic to the smaller, higher-level caches. For a single socket, the performance
predictions are quite similar to a single socket on the Skylake system. The bottlenecks
associated with each matrix are at the same level of the memory hierarchy, with the
only exception being TSOPF_RS_b2383, which is foremost limited by the aggregate
L3← DRAM traffic on Epyc and Reg.← L1 traffic on Sandy Bridge and Skylake.

Finally, our performance predictions are compared to the measured performance
in Table 12 for Sandy Bridge and Skylake, and in Table 13 for Epyc. For comparison,
we also compute a “best case” upper bound using the best case estimate of the data
traffic from Eq. (5) and the main memory bandwidth for the number of cores being
used.

For matrices such as RM07R, HV15R, and Hardesty3, whose sparsity patterns are
regular and lead to good load balancing, the best case estimates are very close to the
measured performance, but our cache simulation estimates are at least of the same
quality. On the other hand, the two methods produce significantly different results
for matrices with irregular sparsity patterns that cause a large amount of additional,
irregular data traffic. Examples of such irregular matrices are circuit5m, GL7d19,
sx-stackoverflow, FullChip, Freescale1, and Lynx68. The performance predicted
by the cache simulation is always within a factor of three of the measured performance.
Compare this to the prediction based on the best case data traffic, which is off by a
factor of three or more in 23 out of 72 cases on Intel and 8 out of 36 cases on Epyc.
Moreover, among the most irregular matrices, for example, sx-stackoverflow, the
best case prediction misses by more than a factor of ten.

In cases such as GL7d19, sx-stackoverflow, and Lynx68, where there are still dis-
crepancies between the measured and performance predicted by the cache simulation
on Sandy Bridge and Skylake, it is likely that the irregular sparsity patterns of these
matrices result in the SpMV computation being limited more by memory latency than
bandwidth. Regarding the single core estimates on Epyc, they appear to consistently
underestimate the performance, suggesting that the per core bandwidths obtained
from the indirect dot product kernel is actually lower than the real throughput that is
achieved during CSR SpMV.

5.6 Estimating data traffic and performance for COO-based SpMV

Themeasured and estimated total data traffic volumes for COO SpMVwith Algorithm 3
are shown in Table 14. To keep the discussion short, we show results for the case
of a single core and a single socket on Sandy Bridge. For a single core, the results
are quite similar to those presented in Table 5 for CSR SpMV in terms of accuracy.
The L1← L2 and L2← L3 traffic is underestimated for a few matrices, likely due to
conflict misses. In the single socket case, the data traffic for the private L1 and L2

66

Numerical experiments

Table 12. Comparison of measured and estimated performance (in Gflop/s) for CSR-based
SpMV with Algorithm 2 on Sandy Bridge and Skylake. The “best case” predictions are based
on the best case data traffic estimate Eq. (5) and main memory bandwidth. The “cache sim.”
predictions produced by our method are the smallest of the upper bounds from Tables 9 and 10.
In many cases, our method quantifies performance bottlenecks more accurately and attributes
them to data transfers to and from various levels in the memory hierarchy.

Sandy Bridge Skylake

Best case Cache sim. Best case Cache sim.

Matrix
Meas.
[Gflop/s]

Est.
[Gflop/s]

Err.
[%]

Est.
[Gflop/s]

Err.
[%]

Meas.
[Gflop/s]

Est.
[Gflop/s]

Err.
[%]

Est.
[Gflop/s]

Err.
[%]

Single core
TSOPF_RS_b2383 1.14 1.63 43 1.31 15 1.19 1.68 41 1.32 11
spal_004 0.85 1.63 92 1.11 31 0.88 1.68 91 1.12 28
RM07R 1.10 1.61 46 1.31 19 1.20 1.66 38 1.32 10
relat9 0.51 1.23 142 0.67 32 0.66 1.27 91 0.67 1
HV15R 1.12 1.61 44 1.31 17 1.20 1.66 39 1.32 10
GL7d19 0.19 1.50 691 0.34 81 0.36 1.55 334 0.35 -2
sx-stackoverflow 0.17 1.46 737 0.36 106 0.35 1.50 331 0.36 4
FullChip 0.76 1.38 81 1.11 46 1.05 1.42 35 1.18 12
Freescale1 0.74 1.25 69 1.03 39 1.09 1.29 19 1.07 -2
circuit5M 0.93 1.61 73 1.18 27 1.12 1.66 48 1.25 12
Hardesty3 0.86 1.23 44 1.22 43 1.18 1.27 7 1.26 7
Lynx68 0.16 1.48 821 0.49 203 0.23 1.53 570 0.49 103
Lynx68_reordered 0.59 1.48 149 0.55 -7 0.80 1.53 91 0.56 -31

Single socket
TSOPF_RS_b2383 3.77 6.19 64 4.52 20 11.40 16.57 45 13.67 20
spal_004 4.87 6.19 27 6.21 28 14.21 16.55 17 16.64 17
RM07R 5.83 6.11 5 6.09 4 16.71 16.36 -2 15.92 -5
relat9 2.60 4.69 80 3.92 51 8.97 12.54 40 11.71 31
HV15R 5.09 6.14 21 6.00 18 15.07 16.44 9 16.04 6
GL7d19 1.29 5.72 343 2.65 105 7.52 15.31 104 7.28 -3
sx-stackoverflow .51 5.55 998 .90 78 1.85 14.86 702 1.59 -14
FullChip 1.88 5.24 178 3.00 59 3.51 14.01 299 4.35 24
Freescale1 2.49 4.77 91 3.98 60 8.26 12.77 55 10.85 31
circuit5M 1.47 6.12 317 1.86 27 2.20 16.38 646 2.27 3
Hardesty3 3.58 4.68 31 4.66 30 9.09 12.52 38 12.46 37
Lynx68 1.03 5.64 449 1.84 79 4.96 15.10 204 5.90 19
Lynx68_reordered 3.38 5.64 67 4.35 29 11.65 15.10 30 12.96 11

Dual socket
TSOPF_RS_b2383 5.57 11.72 110 6.22 12 13.36 30.63 129 16.64 25
spal_004 9.00 11.71 30 12.35 37 26.58 30.60 15 33.29 25
RM07R 10.61 11.57 9 11.79 11 31.81 30.24 -5 31.01 -3
relat9 4.74 8.87 87 7.66 62 15.44 23.18 50 20.89 35
HV15R 11.09 11.63 5 11.98 8 29.11 30.39 4 31.96 10
GL7d19 2.52 10.83 329 5.06 101 13.46 28.31 110 12.72 -6
sx-stackoverflow .76 10.51 1287 1.31 73 2.70 27.46 916 2.24 -17
FullChip 2.43 9.91 309 4.19 73 4.71 25.91 450 4.96 5
Freescale1 4.21 9.04 114 6.70 59 15.81 23.62 49 18.86 19
circuit5M 2.32 11.59 400 3.36 45 3.87 30.28 683 3.85 -0
Hardesty3 5.98 8.86 48 9.22 54 16.26 23.15 42 24.68 52
Lynx68 1.98 10.68 438 3.48 75 9.31 27.91 200 11.48 23
Lynx68_reordered 6.92 10.68 54 8.65 25 23.33 27.91 20 25.68 10

67

I. Cache simulation on multi-core CPUs: case study on SpMV

Table 13. Comparison of measured and estimated performance (in Gflop/s) for CSR-based
SpMV with Algorithm 2 on Epyc. The “best case” predictions are based on the best case data
traffic estimate Eq. (5) and main memory bandwidth. The “cache sim.” predictions produced by
our method are the smallest of the upper bounds from Table 11.

Epyc, single core Epyc, single socket

Best case Cache sim. Best case Cache sim.

Matrix
Meas.
[Gflop/s]

Est.
[Gflop/s]

Err.
[%]

Est.
[Gflop/s]

Err.
[%]

Meas.
[Gflop/s]

Est.
[Gflop/s]

Err.
[%]

Est.
[Gflop/s]

Err.
[%]

TSOPF_RS_b2383 .89 1.44 62 .88 -2 7.67 19.67 156 8.54 11
spal_004 .84 1.44 72 .74 -12 14.23 19.65 38 17.16 21
RM07R 1.00 1.43 43 .88 -12 17.41 19.42 12 18.25 5
relat9 .88 1.09 24 .44 -50 8.75 14.89 70 10.06 15
HV15R 1.00 1.43 43 .88 -12 15.95 19.52 22 18.36 15
GL7d19 .36 1.34 276 .23 -35 5.15 18.18 253 6.08 18
sx-stackoverflow .33 1.30 292 .24 -28 1.37 17.64 1184 1.20 -13
FullChip .84 1.22 46 .88 5 2.69 16.64 519 3.19 19
Freescale1 1.12 1.11 -1 .83 -26 5.78 15.17 162 8.49 47
circuit5M 1.12 1.43 27 .84 -25 2.67 19.45 629 2.50 -6
Hardesty3 1.38 1.09 -21 .88 -36 8.58 14.87 73 14.56 70
Lynx68 .28 1.32 366 .34 19 3.71 17.93 384 4.47 21
Lynx68_reordered 1.03 1.32 27 .36 -65 14.52 17.93 23 11.28 -22

caches is often severely underestimated. Notice, in particular, the matrix spal_004,
which has very few rows, and is therefore likely to suffer from false sharing. That
is, to maintain cache coherency, two different CPU cores writing to the same cache
block may cause the cache block to be transferred from a shared level of the memory
hierarchy for every write. Since the L3 cache is shared by all the cores on a single
socket, there is no false sharing for the L3← DRAM traffic, and the estimates are quite
accurate. We suspect that in the dual socket case, requirements for cache coherence
between the L3 caches of the two sockets will lead to false sharing and similar issues
also for the L3← DRAM traffic.

Finally, the performance of the COO SpMV kernel on Sandy Bridge is shown
in Table 15 together with performance predictions based on best-case estimates of
the memory traffic as well as predictions based on the cache simulation. Five of the
matrices benefit somewhat from the cache simulation, whereas there is almost no
difference between the two predictions for the rest of the matrices. For a single core,
the performance predictions from the cache simulation are within fifty percent of the
measured performance for all except four of the matrices. However, the performance
impact of going from a single core to a full socket is far from ideal due to the cost of
using atomic writes. As a result, the performance predictions become less accurate
in general. Moreover, for spal_004 and FullChip there is a significant slowdown
as performance is crippled by false sharing. Since our performance model does not
account for false sharing, the performance estimates are not even close in these cases.

68

Numerical experiments

Table 14. Estimated and measured total data traffic (in MiB) on Intel Sandy Bridge Xeon E5-2650
for COO-based SpMV with Algorithm 3.

L1← L2 L2← L3 L3← DRAM

Matrix
Meas.
[MiB]

Est.
[MiB]

Err.
[%]

Meas.
[MiB]

Est.
[MiB]

Err.
[%]

Meas.
[MiB]

Est.
[MiB]

Err.
[%]

Single core
TSOPF_RS_b2383 296 289 -2.4 281 289 2.8 247 248 0.4
spal_004 776 736 -5.2 766 735 -4.0 706 707 0.1
RM07R 660 626 -5.2 621 595 -4.2 582 579 -0.5
relat9 2902 2143 -26.2 2518 2045 -18.8 1357 1300 -4.2
HV15R 4768 4585 -3.8 4604 4469 -2.9 4380 4361 -0.4
GL7d19 3669 2849 -22.3 2843 2773 -2.5 687 686 -0.1
sx-stackoverflow 3646 2657 -27.1 2560 2371 -7.4 772 791 2.5
FullChip 610 583 -4.4 590 558 -5.4 546 540 -1.1
Freescale1 453 440 -2.9 459 434 -5.4 405 404 -0.2
circuit5M 1421 1390 -2.2 1174 1164 -0.9 1140 1150 0.9
Hardesty3 880 861 -2.2 806 851 5.6 734 738 0.5
Lynx68 9453 5960 -37.0 7291 5933 -18.6 4823 4757 -1.4
Lynx68_reordered 5670 5556 -2.0 3590 3464 -3.5 1831 1830 -0.1

Single socket
TSOPF_RS_b2383 357 289 -19.0 377 289 -23.3 247 247 0.0
spal_004 6640 736 -88.9 15514 735 -95.3 705 707 0.3
RM07R 666 626 -6.0 632 595 -5.9 591 588 -0.5
relat9 2949 2143 -27.3 2567 2045 -20.3 1702 1603 -5.8
HV15R 4789 4585 -4.3 4626 4469 -3.4 4488 4426 -1.4
GL7d19 3834 2849 -25.7 3006 2773 -7.8 934 885 -5.2
sx-stackoverflow 4279 2657 -37.9 3325 2371 -28.7 819 823 0.5
FullChip 1672 583 -65.1 2237 558 -75.1 545 534 -2.0
Freescale1 457 440 -3.7 466 434 -6.9 407 403 1.0
circuit5M 1509 1390 -7.9 1333 1164 -12.7 1140 1157 1.5
Hardesty3 881 861 -2.3 809 851 5.2 734 738 0.5
Lynx68 9474 5960 -37.1 7343 5933 -19.2 4863 4803 -1.2
Lynx68_reordered 5686 5556 -2.3 3602 3464 -3.8 1891 1876 -0.8

69

I. Cache simulation on multi-core CPUs: case study on SpMV

Table 15. Comparison of measured and estimated performance (in Gflop/s) for COO-based
SpMV with Algorithm 3 on Sandy Bridge. The “best case” predictions are based on a best case
estimate of the data traffic, whereas the “cache sim.” predictions are based on estimates of
memory traffic produced by our cache simulation for each level of the memory hierarchy.

Sandy Bridge, single core Sandy Bridge, single socket

Best case Cache sim. Best case Cache sim.

Matrix
Meas.
[Gflop/s]

Est.
[Gflop/s]

Err.
[%]

Est.
[Gflop/s]

Err.
[%]

Meas.
[Gflop/s]

Est.
[Gflop/s]

Err.
[%]

Est.
[Gflop/s]

Err.
[%]

TSOPF_RS_b2383 0.86 1.22 42 1.22 42 0.99 4.65 370 4.65 370
spal_004 0.83 1.22 47 1.22 47 0.33 4.65 1309 4.65 1309
RM07R 0.84 1.21 44 1.21 44 1.30 4.62 255 4.53 248
relat9 0.19 1.05 453 0.46 142 0.65 4.00 515 1.73 166
HV15R 0.85 1.22 44 1.21 42 1.31 4.63 253 4.55 247
GL7d19 0.17 1.16 582 0.33 94 0.69 4.43 542 2.57 272
sx-stackoverflow 0.16 1.14 612 0.35 119 0.55 4.35 691 2.73 396
FullChip 0.64 1.10 72 0.92 44 0.10 4.19 4090 3.54 3440
Freescale1 0.62 1.04 68 0.87 40 1.00 3.95 295 3.33 233
circuit5M 0.74 1.12 51 0.97 31 0.99 4.26 330 3.66 270
Hardesty3 0.76 1.02 34 1.02 34 1.31 3.90 198 3.90 198
Lynx68 0.15 1.15 667 0.44 193 0.61 4.39 620 1.65 170
Lynx68_reordered 0.39 1.15 195 0.51 31 0.79 4.39 456 4.05 413

6 Related work

The cache simulation method we have presented builds on analytical cache models
[Agarwal et al. 1989] and trace-driven memory simulation [Uhlig and Mudge 1997],
both of which are well knownmethods for studying cache performance. In their survey,
Uhlig and Mudge [1997] compare a number of advanced tools for trace-driven memory
simulation that cope with various cache configurations, such as associativity and
replacement policies. Our approach is to develop a model that is as simple as possible,
but accurate enough to diagnose potential performance issues. Our cache simulation
method is somewhat related to the model described by Aho et al. [1971] for page
replacements in a virtual memory computer, which is similarly based on counting page
replacements generated by a sequence of memory references. In addition, we draw
heavily on the ideal-cache model [Frigo et al. 2012], though we explicitly incorporate
multi-level hierarchies and shared caches. Shared caches have previously been studied
based on statistical models that use high-level information such as a thread’s average
fetch rate [Sandberg et al. 2011].

Regarding performance models, Langguth et al. [2015a] developed a performance
model for irregular applications that was used to study a special case of SpMV, where
matrices were derived from a finite volume method on an unstructured, tetrahedral
mesh. Our current work may be seen as a continuation that provides a general method
for estimating data traffic volumes in a memory hierarchy.

In the context of SpMV, Heras et al. [2001] have used a cache simulation technique
for conflict misses in direct-mapped and set-associative caches. Also, Yzelman and
Bisseling [2009] have used similar methods to evaluate sparse matrix re-ordering
strategies for SpMV, though their simulator is limited to a single cache. Goumas et al.

70

Conclusion

[2009] and Williams et al. [2009a] have performed experimental evaluations of SpMV
performance on various multi-core CPU architectures, identifying several potential
performance bottlenecks that depend on matrix structure as well as characteristics
of the computing hardware. While Goumas et al. produce a set of guidelines for
optimising SpMV kernels, Williams et al. rely on automatic tuning to select appro-
priate optimisations. In both cases, memory bandwidth is identified as a significant
performance bottleneck, but neither of these studies attempt to quantify the impact
of data traffic from main memory or any other level of the memory hierarchy. In
other work, Vuduc et al. [2002] have modelled SpMV performance based on cache miss
estimates, sustainable memory bandwidth and memory access latencies. However,
the data traffic volume is based on a best case scenario that is often too optimistic,
especially for matrices with highly irregular sparsity patterns. Malossi et al. [2014] pro-
posed to use machine learning techniques to characterise SpMV performance, though
the disadvantages are a potentially expensive re-training step needed to calibrate the
model for each new hardware architecture, and also that the method does not identify
performance bottlenecks explicitly, even though it correlates sparse matrix features
with SpMV performance.

7 Conclusion

The performance of irregular, bandwidth-limited computations, such as SpMV, is
dictated by data transfers between levels of a CPU’s memory hierarchy. Even though
it is fairly easy to acquire worst- and best case estimates of the data traffic, these
estimates are not always sufficient for locating and quantifying bottlenecks because
a precise characterisation of irregular data traffic is missing. We have presented a
cache simulation method that accurately quantifies data traffic in a multi-core CPU’s
memory hierarchy in the presence of irregular memory access patterns. Further, we
have shown that this method extracts the most important contributions to data traffic
while only requiring basic hardware characteristics to be specified, such as the size
of each cache and its cache lines. Consequently, our method should be applicable to
other hardware architectures and cache hierarchies than the multi-core systems we
have considered here.

Regarding SpMV, future efforts could use the quantitative performance model
presented here to evaluate specific optimisations, such as matrix re-orderings. The data
traffic estimates produced by the cache simulation method could potentially be used to
tune algorithms and optimisations, though this may place some requirements on how
fast such simulations can be carried out. Although we have deliberately focused on a
pair of simple and well known SpMV kernels, the presented methods are also applicable
to more advanced SpMV algorithms and other irregular computations. For example,
one might consider problems related to unstructured meshes, such as the assembly of
sparse matrices in finite element methods. These algorithms also suffer from irregular
memory accesses, and, moreover, they are often produced through automated code
generation and therefore require extensive optimisation. Many relevant optimisations
represent trade-offs between different amounts of data traffic and computation, so that
more accurate data traffic estimates may help to choose suitable optimisations.

71

I. Cache simulation on multi-core CPUs: case study on SpMV

Acknowledgement

This work was supported by the Research Council of Norway under contract 251186.
Also, the research presented in this paper has benefited from the Experimental Infras-
tructure for Exploration of Exascale Computing (eX3), which is financially supported
by the Research Council of Norway under contract 270053.

References

Agarwal, A., M. Horowitz, and J. Hennessy (May 1989). “An Analytical Cache Model”.
In: ACM Transactions on Computer Systems 7.2, pp. 184–215. issn: 0734-2071. doi:
10.1145/63404.63407.

Aho, A., P. Denning, and J. Ullman (1971). “Principles of Optimal Page Replacement”.
In: J. ACM 18.1, pp. 80–93. issn: 1557-735X.

Akbudak, K., E. Kayaaslan, and C. Aykanat (2013). “Hypergraph Partitioning Based
Models and Methods for Exploiting Cache Locality in Sparse Matrix-Vector Mul-
tiplication”. In: SIAM Journal on Scientific Computing 35.3, pp. C237–C262. doi:
10.1137/100813956.

Ballard, G., E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz (2014).
“Communication lower bounds and optimal algorithms for numerical linear alge-
bra”. In: Acta Numerica 23, pp. 1–155. issn: 0962-4929.

Bender, M., G. Brodal, R. Fagerberg, R. Jacob, and E. Vicari (2010). “Optimal Sparse
Matrix Dense Vector Multiplication in the I/O-Model”. In: Theory of Computing
Systems 47.4, pp. 934–962. issn: 1432-4350.

Buluç, A., J. T. Fineman,M. Frigo, J. R. Gilbert, and C. E. Leiserson (2009). “Parallel Sparse
Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Compressed
Sparse Blocks”. In: Proceedings of the Twenty-first Annual Symposium on Parallelism
in Algorithms and Architectures. SPAA ’09. Calgary, AB, Canada: ACM, pp. 233–244.
isbn: 978-1-60558-606-9. doi: 10.1145/1583991.1584053.

Çatalyürek, Ü. V. and C. Aykanat (1999). “Hypergraph-partitioning-based decom-
position for parallel sparse-matrix vector multiplication”. eng. In: Parallel and
Distributed Systems, IEEE Transactions on 10.7, pp. 673–693. issn: 1045-9219.

Cruz, R. de la and M. Araya-Polo (2015). “Modeling Stencil Computations on Modern
HPC Architectures”. In: High Performance Computing Systems. Performance Model-
ing, Benchmarking, and Simulation. Springer International Publishing, pp. 149–171.
isbn: 978-3-319-17248-4.

Davis, T. and Y. Hu (2011). “The University of Florida Sparse Matrix Collection”. In:
ACM Transactions on Mathematical Software (TOMS) 38.1, pp. 1–25. issn: 1557-7295.

Eranian, S. and R. Richter (2018). perfmon2: improving performance monitoring on Linux.
http://perfmon2.sourceforge.net/. Accessed: 2018-11-21.

Filippone, S., V. Cardellini, D. Barbieri, and A. Fanfarillo (Jan. 2017). “Sparse Matrix-
Vector Multiplication on GPGPUs”. In: ACM Transactions on Mathematical Software
43.4, 30:1–30:49. issn: 0098-3500. doi: 10.1145/3017994.

72

https://doi.org/10.1145/63404.63407
https://doi.org/10.1137/100813956
https://doi.org/10.1145/1583991.1584053
http://perfmon2.sourceforge.net/
https://doi.org/10.1145/3017994

References

Frigo, M., C. E. Leiserson, H. Prokop, and S. Ramachandran (Jan. 2012). “Cache-
Oblivious Algorithms”. In: ACM Transactions on Algorithms 8.1, 4:1–4:22. issn:
1549-6325. doi: 10.1145/2071379.2071383.

Goumas, G., K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris (2009). “Perfor-
mance evaluation of the sparse matrix-vector multiplication on modern architec-
tures”. In: The Journal of Supercomputing 50.1, pp. 36–77. issn: 0920-8542.

Haase, G., M. Liebmann, and G. Plank (2007). “A Hilbert-order multiplication scheme
for unstructured sparse matrices”. In: International Journal of Parallel, Emergent
and Distributed Systems 22.4, pp. 213–220. doi: 10.1080/17445760601122084.

Heras, D., V. Blanco, J. Cabaleiro, and F. Rivera (2001). “Modeling and improving locality
for the sparse-matrix-vector product on cache memories”. In: Future Generation
Computer Systems 18.1, pp. 55–67. issn: 0167-739X.

Intel Corporation (Dec. 2017). Intel® 64 and IA-32 Architectures Software Developer’s
Manual: Volume 3 (3A, 3B, 3C & 3D): System Programming Guide. 325384-065US.
Intel Corporation.

— (Apr. 2018). Intel® 64 and IA-32 Architectures Optimization Reference Manual. 248966-
040. Intel Corporation.

Karsavuran, M. O., K. Akbudak, and C. Aykanat (2016). “Locality-Aware Parallel Sparse
Matrix-Vector and Matrix-Transpose-Vector Multiplication on Many-Core Proces-
sors”. In: IEEE Transactions on Parallel and Distributed Systems 27.6, pp. 1713–1726.
issn: 1045-9219. doi: 10.1109/TPDS.2015.2453970.

Kreutzer, M., G. Hager, G. Wellein, H. Fehske, and A. R. Bishop (2014). “A Unified Sparse
Matrix Data Format for Efficient General Sparse Matrix-Vector Multiplication
on Modern Processors with Wide SIMD Units”. In: SIAM Journal on Scientific
Computing 36.5, pp. 401–423. issn: 1064-8275.

Langguth, J., N. Wu, J. Chai, and X. Cai (2015a). “Parallel performance modeling of
irregular applications in cell-centered finite volume methods over unstructured
tetrahedral meshes”. In: Journal of Parallel and Distributed Computing 76, pp. 120–
131. issn: 0743-7315. doi: 10.1016/j.jpdc.2014.10.005.

Langguth, J., M. Sourouri, G. T. Lines, S. B. Baden, and X. Cai (July 2015b). “Scalable
Heterogeneous CPU-GPU Computations for Unstructured Tetrahedral Meshes”.
In: IEEE Micro 35.4, pp. 6–15. issn: 0272-1732. doi: 10.1109/MM.2015.70.

Liu, W. and B. Vinter (2015). “CSR5: An Efficient Storage Format for Cross-Platform
Sparse Matrix-Vector Multiplication”. In: Proceedings of the 29th ACM on interna-
tional conference on supercomputing. ICS ’15. ACM, pp. 339–350. isbn: 978-1-4503-
3559-1.

Liu, X., M. Smelyanskiy, E. Chow, and P. Dubey (2013). “Efficient Sparse Matrix-vector
Multiplication on x86-based Many-core Processors”. In: Proceedings of the 27th
International ACM Conference on International Conference on Supercomputing. ICS
’13. ACM, pp. 273–282. isbn: 978-1-4503-2130-3. doi: 10.1145/2464996.2465013.

Malossi, A. C. I., Y. Ineichen, C. Bekas, A. Curioni, and E. S. Quintana-Orti (2014).
“Performance and Energy-Aware Characterization of the Sparse Matrix-Vector Mul-
tiplication on Multithreaded Architectures”. In: 2014 43rd International Conference
on Parallel Processing Workshops. IEEE, pp. 139–148. isbn: 9781479956159.

73

https://doi.org/10.1145/2071379.2071383
https://doi.org/10.1080/17445760601122084
https://doi.org/10.1109/TPDS.2015.2453970
https://doi.org/10.1016/j.jpdc.2014.10.005
https://doi.org/10.1109/MM.2015.70
https://doi.org/10.1145/2464996.2465013

I. Cache simulation on multi-core CPUs: case study on SpMV

McCalpin, J. D. (Dec. 1995). “Memory Bandwidth and Machine Balance in Current
High Performance Computers”. In: IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pp. 19–25.

Merrill, D. and M. Garland (2016). “Merge-based parallel sparse matrix-vector mul-
tiplication”. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC ’16. IEEE Press, pp. 1–12. isbn:
9781467388153.

Molka, D., R. Schöne, D. Hackenberg, and W. Nagel (2017). “Detecting Memory-
Boundedness with Hardware Performance Counters”. In: Proceedings of the 8th
ACM/SPEC on international conference on performance engineering. ICPE ’17. ACM,
pp. 27–38. isbn: 9781450344043.

Nishtala, R., R. W. Vuduc, J. W. Demmel, and K. A. Yelick (May 2007). “When cache
blocking of sparse matrix vector multiply works and why”. In: Applicable Algebra
in Engineering, Communication and Computing 18.3, pp. 297–311. issn: 1432-0622.
doi: 10.1007/s00200-007-0038-9.

Pinar, A. and M. T. Heath (1999). “Improving Performance of Sparse Matrix-vector
Multiplication”. In: Proceedings of the 1999 ACM/IEEE Conference on Supercomputing.
SC ’99. Portland, Oregon, USA: ACM. isbn: 1-58113-091-0. doi: 10.1145/331532.
331562.

Saad, Y. (2003). Iterative methods for sparse linear systems. 2nd ed. SIAM. isbn: 978-0-
898715-34-7.

Sandberg, A., D. Black-Schaffer, and H. Erik (2011). “A simple statistical cache sharing
model for multicores”. eng. In: Proc. 4th SwedishWorkshop OnMulti-Core Computing,
pp. 31–36.

Stengel, H., J. Treibig, G. Hager, and G. Wellein (2015). “Quantifying Performance
Bottlenecks of Stencil Computations Using the Execution-Cache-Memory Model”.
In: Proceedings of the 29th ACM on International Conference on Supercomputing. ICS
’15. Newport Beach, California, USA: ACM, pp. 207–216. isbn: 978-1-4503-3559-1.
doi: 10.1145/2751205.2751240.

Temam, O. and W. Jalby (1992). “Characterizing the Behavior of Sparse Algorithms
on Caches”. In: Proceedings of the 1992 ACM/IEEE Conference on Supercomputing.
Supercomputing ’92. Minneapolis, Minnesota, USA: IEEE Computer Society Press,
pp. 578–587. isbn: 0-8186-2630-5.

Toledo, S. (1997). “Improving the memory-system performance of sparse-matrix vector
multiplication”. In: IBM Journal of Research and Development 41.6, pp. 711–725.

Uhlig, R. A. and T. N. Mudge (June 1997). “Trace-driven Memory Simulation: A Survey”.
In: ACM Computing Surveys 29.2, pp. 128–170. issn: 0360-0300. doi: 10.1145/
254180.254184.

Vastenhouw, B. and R. H. Bisseling (2005). “A Two-Dimensional Data Distribution
Method for Parallel Sparse Matrix-Vector Multiplication”. In: SIAM Review 47.1,
pp. 67–95. doi: 10.1137/S0036144502409019.

Vuduc, R. W. (Jan. 2004). “Automatic performance tuning of sparse matrix kernels”.
PhD thesis. Berkeley, CA, USA: University of California. url: http://bebop.cs.
berkeley.edu/pubs/vuduc2003-dissertation.pdf.

Vuduc, R. W., J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and B. Lee (2002).
“Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply”. In:

74

https://doi.org/10.1007/s00200-007-0038-9
https://doi.org/10.1145/331532.331562
https://doi.org/10.1145/331532.331562
https://doi.org/10.1145/2751205.2751240
https://doi.org/10.1145/254180.254184
https://doi.org/10.1145/254180.254184
https://doi.org/10.1137/S0036144502409019
http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf
http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

References

Proceedings of the 2002 ACM/IEEE Conference on Supercomputing. SC ’02. Baltimore,
Maryland: IEEE Computer Society Press, pp. 1–35. isbn: 0-7695-1524-X.

Willcock, J. and A. Lumsdaine (2006). “Accelerating Sparse Matrix Computations via
Data Compression”. In: Proceedings of the 20th Annual International Conference on
Supercomputing. ICS ’06. Cairns, Queensland, Australia: ACM, pp. 307–316. isbn:
1-59593-282-8. doi: 10.1145/1183401.1183444.

Williams, S., L. Oliker, R. W. Vuduc, J. Shalf, K. Yelick, and J. Demmel (2009a). “Opti-
mization of sparse matrix-vector multiplication on emerging multicore platforms”.
In: Parallel Computing 35.3, pp. 178–194. issn: 0167-8191. doi: 10.1016/j.parco.
2008.12.006.

Williams, S., A. Waterman, and D. Patterson (Apr. 2009b). “Roofline: An Insightful
Visual Performance Model for Multicore Architectures”. In: Communications of the
ACM 52.4, pp. 65–76. issn: 0001-0782. doi: 10.1145/1498765.1498785.

Yzelman, A. N. and R. H. Bisseling (2009). “Cache-Oblivious Sparse Matrix-Vector
Multiplication by Using Sparse Matrix Partitioning Methods”. In: SIAM Journal on
Scientific Computing 31.4, pp. 3128–3154. doi: 10.1137/080733243.

— (2011). “Two-dimensional cache-oblivious sparse matrix-vector multiplication”. In:
Parallel Computing 37.12, pp. 806–819. issn: 0167-8191. doi: 10.1016/j.parco.
2011.08.004.

— (2012). “A Cache-Oblivious Sparse Matrix–Vector Multiplication Scheme Based
on the Hilbert Curve”. In: Progress in Industrial Mathematics at ECMI 2010. Ed. by
M. Günther, A. Bartel, M. Brunk, S. Schöps, and M. Striebel. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 627–633. isbn: 978-3-642-25100-9.

Yzelman, A. N. and D. Roose (2014). “High-Level Strategies for Parallel Shared-Memory
Sparse Matrix-Vector Multiplication”. In: IEEE Transactions on Parallel and Dis-
tributed Systems 25.1, pp. 116–125. issn: 1045-9219. doi: 10.1109/TPDS.2013.31.

Zhang, W. and X. Cai (2016). “Solving 3D Time-Fractional Diffusion Equations by High-
Performance Parallel Computing”. In: Fractional Calculus and Applied Analysis 19.1,
pp. 140–160. issn: 1311-0454. doi: 10.1515/fca-2016-0008.

75

https://doi.org/10.1145/1183401.1183444
https://doi.org/10.1016/j.parco.2008.12.006
https://doi.org/10.1016/j.parco.2008.12.006
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1137/080733243
https://doi.org/10.1016/j.parco.2011.08.004
https://doi.org/10.1016/j.parco.2011.08.004
https://doi.org/10.1109/TPDS.2013.31
https://doi.org/10.1515/fca-2016-0008

Paper II

On memory traffic and optimisations for low-order
finite element assembly algorithms on
multi-core CPUs

James D. Trotter, Simula Research Laboratory and University of Oslo, Norway
Xing Cai, Simula Research Laboratory and University of Oslo, Norway
Simon W. Funke, Simula Research Laboratory

Submitted for publication.

Abstract

Motivated by the wish to understand the achievable performance of finite element
assembly on unstructured computational meshes, we dissect the standard cellwise
assembly algorithm into four kernels, two of which are dominated by irregular
memory traffic. Several optimisation schemes are studied together with associated
lower and upper bounds on the estimated memory traffic volume. Apart from
properly reordering the mesh entities, the two most significant optimisations
include adopting a lookup table in adding element matrices or vectors to their
global counterparts, and using a rowwise assembly algorithm for multi-threaded
parallelisation. Rigorous benchmarking shows that, due to the various optimisa-
tions, the actual volumes of memory traffic are in many cases very close to the
estimated lower bounds. These results confirm the effectiveness of the optimi-
sations, while also providing a recipe for developing efficient software for finite
element assembly.

1 Introduction

Finite element methods are among the most important and widely used techniques for
numerically solving partial differential equations (PDEs), especially when the geometry
of the solution domain is best described by an unstructured computational mesh.
While offering flexibility to handle complicated geometries, unstructured meshes bring
challenges with respect to achieving performance on modern computing hardware.
In particular, unstructured meshes lead to irregular memory access patterns that are
difficult for hierarchical, cache-based memories. This is due to poor data prefetching
and limited data reuse in the caches. Another challenge arises with multi-threaded
parallel computing because irregular memory accesses can lead to race conditions
(i.e., several threads simultaneously update the same variables) that are not easy to
determine beforehand.

From a computational point of view, the application of finite element methods to
PDEs ultimately translates into assembling systems of linear algebraic equations and
then solving them. In many cases, a significant portion of the overall computation

77

II. Memory traffic optimisations for FEM assembly

occurs during the assembly stage, which is the topic of the current paper. Our aim is to
understand how memory traffic—the movement of data to and from memory—impacts
the performance of such calculations in connection with unstructured meshes. Gener-
ally speaking, it is important to execute the assembly with high parallel performance
to prevent it from becoming a bottleneck. For non-linear problems, assembly is also
critical to achieving good performance, because it must be carried out during each
iteration of a non-linear solver.

Considerable efforts have gone into optimising finite element assembly algo-
rithms [Cantwell et al. 2011; Kronbichler and Kormann 2012; Markall et al. 2013; Vos
et al. 2010], particularly in connection with automatically generating high-performance
assembly code [Kirby et al. 2005; Kirby and Logg 2006; Luporini et al. 2017; Luporini
et al. 2015; Ølgaard and Wells 2010; Russell and Kelly 2013; Sun et al. 2020]. However,
the emphasis of these efforts is mainly placed on reducing the number of floating-point
operations performed, without fully accounting for the impact of memory traffic on
the performance. For discretisations that are based on low-degree polynomials, such
as linear and quadratic finite elements, counting floating-point operations alone is not
sufficient to understand the achievable performance. Instead, it is important in these
cases to have a quantified understanding of the memory traffic and devise optimisation
strategies accordingly.

In this paper, our initial focus is on the standard cellwise assembly algorithm,
which is commonly used for building vectors and sparse matrices from finite element
variational forms. We dissect this algorithm into four different kernels and investigate
them in detail with respect to the floating-point computations and memory traffic
involved. The novelty of our work is the derivation of precise lower and upper bounds
on memory traffic for the memory-traffic-heavy kernels and several optimisation
strategies. These optimisations even include two seemingly memorywise wasteful
schemes, i.e., use of a lookup table in adding element matrices and vectors to their
global counterparts, and a rowwise assembly algorithm. The latter is for avoiding race
conditions in the context ofmulti-threaded parallel assembly. Our contribution includes
a quantification of the effectiveness of the optimisations, by rigorously benchmarking
the actual memory traffic volumes (measured by hardware performance counters)
against the lower and upper bounds. Our work thus provides a recipe for developing
serial and parallel software for low-order finite element asembly algorithms.

The remainder of the paper is organised as follows. We beginwith some background
information on finite element assembly in Section 2. The cellwise assembly algorithm
is detailedly dissected in Section 3, whereas a few memory-oriented optimisations,
including the rowwise assembly algorithm, are explored in Section 4. In Section 5,
we derive precise lower and upper bounds on the memory traffic involved in these
calculations. Next, Section 6 presents benchmarking results from various finite element
assembly computations. In Section 7, connections are made to the relevant work on
finite element methods, before we draw our conclusions in Section 8.

78

Background

2 Background

In this section, we briefly present some notation and familiar concepts from the finite
element literature that are needed to describe the usual finite element assembly proce-
dure. Further details can be found, for instance, in [Ciarlet 2002; Ern and Guermond
2004].

Computations based on finite elements usually begin with a variational formulation,
consisting of a bilinear form 0 : + × * → R and a linear form ℓ : + → R, where +
and * are called, respectively, the test and trial function spaces. The test and trial
space are often one and the same, though, in general, they do not need to be. The
objective is to find a solution D ∈ * such that 0(E,D) = ℓ (E) for every E ∈ + . If we
choose a basis {k8 }"−18=0 for the test space and another basis {q 9 }#−19=0 for the trial space,
then we can compute a linear system of equations, �G = 1, with the coefficient matrix
�8, 9 = 0(k8 , q 9) and right-hand side vector 18 = ℓ (k8). When the linear system is solved,
it yields a solution D =

∑#−1
9=0 G 9q 9 to the variational formulation of the PDE.

The bilinear form 0 and linear form ℓ are primarily defined in terms of integrals
over a domain Ω ⊂ R3 , 3 > 0, though some additional constraints may arise due to
handling prescribed boundary conditions. To illustrate, we use Poisson’s equation as
the classical example of a linear elliptic PDE,

−4D = 5 in Ω

for some 5 ∈ !2 (Ω) and the homogeneous Neumann boundary condition. In this case,
the test and trial spaces are finite-dimensional subspaces of the Sobolev space �1 (Ω),
and the standard variational form consists of the weak formulation of the Laplacian

0(E,D) =
∫
Ω
∇E · ∇D dG,

and
ℓ (E) =

∫
Ω
5 E dG .

The basic approach, as outlined above, also applies to systems of PDEs, where
the trial and test spaces consist of vector-valued functions, and to time-dependent
and non-linear problems, both of which are reduced to solving sequences of linear
problems.

In this paper, we are interested in the assembly of coefficient matrices that are
derived from bilinear variational forms whose test and trial spaces are defined in
terms of finite elements. First, a computational mesh, or triangulation, denoted by
T , is introduced by partitioning a domain Ω into cells, usually convex polygons or
polyhedra. Next, local function spaces - ()) on each mesh cell) ∈ T are combined
to form a global finite element space - (T), consisting of functions defined piecewise
with respect to the mesh T . Here, we use \0, \1, . . . , \"−1 to denote the basis functions
of the global finite element space- (T). For each mesh cell) , there is an injective map
` : [0,<) → [0,"), called a local-to-global mapping, that identifies each basis function
\)0 , \

)
1 , . . . , \

)
<−1 of the local space - ()) with a corresponding global basis function,

such that \` (9) (G) = \)9 (G) whenever G ∈) , for 0 ≤ 9 < <. For simplicity, we restrict

79

II. Memory traffic optimisations for FEM assembly

for all cells) ∈ T do
1. Gather vertex coordinates of)
2. Transform to a reference cell)̂
3. Compute element matrix �)
4. Scatter results to the global matrix �

end for

Algorithm 1. Cellwise finite element assembly.

our attention to polynomial spaces and the commonly used Lagrange elements, whose
basis consists of Lagrange interpolating polynomials on each mesh cell.

The most common approach is to use a cellwise assembly algorithm that computes
the matrix � as a sum over the mesh cells,

� =
∑
) ∈T

%)�)&
T
) . (1)

Denoting< = dim+ ()) and = = dim* ()), then �) ∈ R<,= is an element matrix for a
mesh cell) ,

(�))8, 9 = 0(k̃8 , q̃ 9),

where k̃8 ∈ + ()) and q̃ 9 ∈ * ()) are local basis functions. The purpose of the matrices
%) ∈ R",< and &) ∈ R#,= is to “scatter” contributions from the element matrix �)
to the correct locations of the global matrix �. More specifically, if ` and a denote
local-to-global mappings of the test and trial space, respectively, then (%))8, 9 = X8,` (9)
and (&))8, 9 = X8,a (9) , where X8, 9 denotes the Kronecker delta function.

3 Cellwise finite element assembly

For a global matrix � corresponding to some bilinear variational form and a mesh
T , the high-level pseudo-code in Algorithm 1 describes a typical cellwise assembly
algorithm. The calculations pertaining to each mesh cell can thus be dissected into
four separate parts, or kernels, each of which is described in detail in the following
subsections.

3.1 Gathering vertex coordinates

The first step is to gather the coordinates of a cell’s vertices, from a data structure
storing the entire mesh T , before they can be used to compute the transformation to a
reference cell and the element matrix. In general, an unstructured mesh is used, thus
an explicit representation of the connectivity between mesh cells is needed. In this
paper, we primarily consider three-dimensional meshes whose cells are tetrahedra,
though the following text extends easily to other commonly used mesh cells, such as
quadrilaterals or hexahedra.

Let Ω ⊂ R3 (3 = 3) denote a bounded, polyhedral domain, and let T be a mesh
with vertices ?0, ?1, . . . , ?"−1 ∈ R3 that partitions Ω into the 3-dimensional mesh cells,

80

Cellwise finite element assembly

void simplex3_gather_vertex_coordinates(
const double * restrict vertex_coords ,
const int * restrict vertex_indices ,
int cell_index ,
double cell_vertex_coords [12])

{
for (int i = 0; i < 4; i++) {

int v_id = vertex_indices[cell_index *4+i];
for (int j = 0; j < 3; j++) {

cell_vertex_coords[i*3+j] =
vertex_coords[v_id *3+j];

}
}

}

Algorithm 2. Gathering the vertex coordinates of a tetrahedron.

)0,)1, . . . ,)#−1. Each cell) is defined by< distinct vertices, ?f (0) , ?f (1) , . . . , ?f (<−1) ,
where f : [0,<) → [0,") is an injective map.

If we consider all the vertex coordinates of the mesh T as an" × 3 matrix,
?0,0 ?0,1 . . . ?0,3−1
?1,0 ?1,1 . . . ?1,3−1
...

...
. . .

...

?"−1,0 ?"−1,1 . . . ?"−1,3−1

,

then these values are typically stored in memory in a row-major order. The vertex
coordinates are usually not accessed in sequence. Instead, gathering the coordinates of
a cell) =

[
?f (0) . . . ?f (<−1)

]
requires loading< different rows, f (0), . . . , f (< − 1),

each with 3 consecutive values.
For the typical case of a tetrahedral mesh, twelve values are loaded per) , because

each cell has four vertices, and each vertex has three coordinates. The code in Algo-
rithm 2 shows how the vertex coordinates of a cell may be gathered in this case. Note
that the restrict keyword is used as a hint to the compiler that accesses through the
different pointers will not refer to the same memory locations, thereby allowing the
compiler to apply certain optimisations that it otherwise might not.

3.2 Transforming to a reference cell

Since the element matrices are computed by integration, it is customary to first perform
a change of variables that shifts the domain of integration from a given cell) ∈ T to a
reference cell)̂ ⊂ R3 . The change of variables is needed to apply standard numerical
integration schemes, which are defined for integrals over certain reference domains,
such as the standard simplex or unit cube. In addition, some parts of the integrals
can often be simplified or precomputed, because they are independent of the mesh
geometry.

81

II. Memory traffic optimisations for FEM assembly

Given a mesh cell) ∈ T and a reference cell)̂ ⊂ R3 , let � :)̂ →) be a one-to-one
�1-mapping, such that � ′(Ĝ) ≠ 0 for all Ĝ ∈)̂ , where � ′(Ĝ) is the Jacobian of � , i.e.,(
� ′(Ĝ)

)
8, 9

=
m�8
mĜ 9
(Ĝ). In general, for a continuous function 5 : R3 → R, whose support

is compact and lies in) , a change of variables from) to a reference cell)̂ gives∫
)

5 (G) dG =

∫
)̂

5
(
� (Ĝ)

) ��det � ′(Ĝ)�� dĜ .
In the case of a 3-dimensional simplicial mesh, the reference cell is usually the

standard simplex,)̂ =
[
40 41 · · · 43−1 0

]
, where 48 ∈ R3 is the 8-th unit vector,

0 ≤ 8 < 3 , and 0 ∈ R3 is the zero vector. If) is a 3-dimensional simplex with vertices
?0, ?1, . . . , ?3 ∈ R3 , then an affine mapping from the standard simplex to) is defined
by

� (Ĝ) = ?3 +
3−1∑
:=0

Ĝ: (?: − ?3). (2)

The Jacobian of this mapping is(
� ′(Ĝ)

)
8, 9

= (? 9 − ?3) · 48 = ? 9,8 − ?3,8 , (3)

which, it may be noted, is constant over)̂ and does not depend on Ĝ . Furthermore,
the inverse of the Jacobian

(
� ′(Ĝ)

) −1 is often required and can be computed from
Cramer’s rule, (

� ′(Ĝ)
) −1

=
1

det � ′(Ĝ)�
T
� ′,

where �� ′ is the matrix of cofactors of � ′(Ĝ). Recall that the (8, 9)-th cofactor of a
matrix is computed from the determinant of the sub-matrix obtained by omitting the
8-th row and 9-th column and multiplying by a factor (−1)8+9 .

For a tetrahedral mesh, the code in Algorithm 3 shows how the transformation to
the reference tetrahedron is computed, requiring a total of 41 floating-point operations.

3.3 Computing the element matrix

Once a cell’s vertex coordinates and the mapping to a reference cell have been obtained,
the element matrix can be computed. This kernel must be tailored to an individual
variational form. Alternatively, projects such as FEniCS [Logg et al. 2012] and Fire-
drake [Rathgeber et al. 2016] can ease the burden of hand-crafting these kernels by
automatically generating code that will compute element matrices based on high-level
descriptions of variational forms.

To illustrate, let us consider the variational form for the Laplacian with respect to
a test space + (T) and trial space* (T),

0(E,D) =
∫
Ω
∇E · ∇D dG .

In this example, the element matrix �) is(
�)

)
8, 9

=

∫
)

∇k8 · ∇q 9 dG,

82

Cellwise finite element assembly

void simplex3_transform_to_reference_cell(
const double p[12], // Vertex coords
double J[9], // Jacobian matrix
double C[9], // Cofactors of J
double * restrict J_det) // Determinant of J

{
// Compute Jacobian matrix
for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++) {
J[i*3+j] = p[j*3+i] - p[3*3+i];

}
}

// Compute cofactors of the Jacobian
C[0] = J[4]*J[8]-J[5]*J[7];
C[1] = J[5]*J[6]-J[3]*J[8];
C[2] = J[3]*J[7]-J[4]*J[6];
C[3] = J[2]*J[7]-J[1]*J[8];
C[4] = J[0]*J[8]-J[2]*J[6];
C[5] = J[1]*J[6]-J[0]*J[7];
C[6] = J[1]*J[5]-J[2]*J[4];
C[7] = J[2]*J[3]-J[0]*J[5];
C[8] = J[0]*J[4]-J[1]*J[3];

// Compute determinant of the Jacobian
*J_det = J[0]*C[0]+J[1]*C[1]+J[2]*C[2];

}

Algorithm 3. Transforming an arbitrary tetrahedron to the reference tetrahedron. The 3 × 3
Jacobian matrix J is computed using Eq. (3). The cofactors of the Jacobian matrix are stored in
C, where J_det stores the determinant of the Jacobian.

for local basis functions k8 ∈ + ()) and q 9 ∈ * ()). Applying a change of variables,
based on a mapping � :)̂ →) for a reference cell)̂ , leads to(

�)
)
8, 9

=

∫
)̂

(
� ′(Ĝ)

) −T ∇k̂8 ·
(
� ′(Ĝ)

) −T ∇q̂ 9
��det � ′(Ĝ)�� dĜ,

where k̂8 = k8 ◦ � and q̂ 9 = q 9 ◦ � . Note that k̂8 and q̂ 9 are local basis functions for
+ ()̂) and* ()̂), respectively.

In some cases, integrals are computed by using a numerical integration scheme,
whereby the integrand is evaluated at a number of quadrature points, multiplied by
suitable weights, and then the results are added together. However, in many cases,
element matrices can be rewritten into a tensor representation [Kirby and Logg 2006]
by factoring out terms that are independent of the cell geometry. More specifically,
the element matrix is written as a tensor contraction �) =

∑
U �̂U�

U
)
, where �̂ is a

reference tensor and �) is a geometry tensor that depends on the mesh cell) . The

83

II. Memory traffic optimisations for FEM assembly

advantage is that integrals appearing in the reference tensor can be precomputed and
do not need to be evaluated at runtime. This strategy is employed by FEniCS in its
automated generation of kernels for computing element matrices.

For example, the element matrix for the Laplacian can be written as the contraction
of a reference tensor �̂ of rank four and a geometry tensor �) of rank two. More
specifically,

�̂8, 9,:0,:1 =

∫
)̂

mk̂8

mG:0

mq̂ 9

mG:1
dĜ, (4)

for 0 ≤ 8 < dim+ ()̂), 0 ≤ 9 < dim* ()̂), and

�
:0,:1
)

=
1��det � ′�� 3−1∑

;=0

(
�� ′

)
;,:0

(
�� ′

)
;,:1
, (5)

for 0 ≤ :0, :1 < 3 . Because the basis functions with respect to the reference element
are known beforehand, the reference tensor can be precomputed. Algorithm 4 shows
a kernel that uses this approach to compute element matrices for the Laplacian with
first-order Lagrange elements on tetrahedra. The kernel for second-order elements is
similar, though additional basis functions result in a 10 × 10 element matrix.

3.4 Scattering results to a global matrix

In the final stage of the cellwise assembly, the contributions from an element matrix�)
are added to the global matrix�. Let+ ()) and* ()) denote local finite element spaces
with local-to-global mappings ` : [0,<) → [0,") and a : [0, =) → [0, #), respectively.
Then, for each pair of local basis functions, (k8 , q 9), for 0 ≤ 8 < < and 0 ≤ 9 < =, the
corresponding value of the global matrix is updated,

�` (8),a (9) ← �` (8),a (9) +
(
�)

)
8, 9
.

However, because the global matrix � is sparse with only its non-zeros stored, it is
necessary to locate the correct position in the array that stores the non-zero values of
� before each update.

We assume that the global matrix � is stored in the commonly used format of com-
pressed sparse row (CSR). Suppose there are in total non-zero entries 00, 01, . . . , 0 −1,
arranged in an ascending order according to their row and column indices (8: , 9:),
0 ≤ : < . Then, in addition to the non-zeros, we store the column indices
90, 91, . . . , 9 −1 and (" + 1) row pointers A0, A1, . . . , A" . The row pointers A8 and A8+1 − 1
are the indices of the first and last non-zeros of the 8-th row, respectively. In other
words, a non-zero 0: belongs to the 8-th row if A8 ≤ : < A8+1.

Now, it remains to find the non-zero matrix entry 0: that corresponds to the global
matrix value �` (8),a (9) . For a CSR matrix, the row pointers are used to find matrix
entries that belong to the given row, i.e., A` (8) ≤ : < A` (8)+1. Because the non-zeros
within each row are sorted by their column indices, a common strategy is to perform
a binary search to find the non-zero matrix entry 0: whose column index equals a (9).
Algorithm 5 shows how this is done when the test and trial spaces are first-order
Lagrange elements on tetrahedra.

84

Optimisations

void laplacian_simplex3_p1_element_matrix(
const double J[9], // Jacobian matrix
const double C[9], // Cofactors of J
double J_det , // Determinant of J
double * restrict A) // Element matrix

{
// Compute 3-by -3 symmetric geometry tensor
double G[6];
double d = (1./6.) / fabs(J_det);
G[0] = d*(C[0]*C[0]+C[3]*C[3]+C[6]*C[6]);
G[1] = d*(C[0]*C[1]+C[3]*C[4]+C[6]*C[7]);
G[2] = d*(C[0]*C[2]+C[3]*C[5]+C[6]*C[8]);
G[3] = d*(C[1]*C[1]+C[4]*C[4]+C[7]*C[7]);
G[4] = d*(C[1]*C[2]+C[4]*C[5]+C[7]*C[8]);
G[5] = d*(C[2]*C[2]+C[5]*C[5]+C[8]*C[8]);

// Compute 4-by -4 element matrix
A[0]=G[0]; A[1]=G[1]; A[2]=G[2];
A[4]=G[1]; A[5]=G[3]; A[6]=G[4];
A[8]=G[2]; A[9]=G[4]; A[10]=G[5];
A[3]=A[12]=-G[0]-G[1]-G[2];
A[7]=A[13]=-G[1]-G[3]-G[4];
A[11]=A[14]=-G[2]-G[4]-G[5];
A[15]=G[0]+2*G[1]+2*G[2]+G[3]+2*G[4]+G[5];

}

Algorithm 4. Computing an element matrix for the Laplacian with test and trial spaces of
first-order Lagrange elements on tetrahedra. The element matrix is computed as a tensor
contraction of a reference tensor and a geometry tensor given by Eq. (4) and Eq. (5), respectively.
The geometry tensor is a symmetric 3 × 3 matrix, computed from the Jacobian determinant
J_det and the cofactors C, and stored in the array G. The reference tensor is independent of the
mesh geometry, so its values are hard-coded into the computation.

4 Optimisations

In this section, we consider some optimisations that are relevant for the finite element
assembly algorithm described in Section 3.

4.1 Reordering an unstructured mesh

The arithmetic intensity of finite element assembly algorithms is low when low-order
Lagrange elements are used. Therefore, it is prudent to consider optimisations that
improve data locality and use caches more effectively.

The memory access patterns and data locality associated with gathering the vertex
coordinates of each mesh cell (see Algorithm 2) depends on the order in which mesh
cells are visited. Therefore, reordering the vertices and cells of an unstructured mesh,
prior to the finite element assembly, can yield improved performance. For similar pur-

85

II. Memory traffic optimisations for FEM assembly

void scatter_to_global_matrix_bsearch(
const int test_space_dofs [4],
const int trial_space_dofs [4],
const double element_matrix [16],
const int * row_ptr ,
const int * col_idx ,
double * values)

{
for (int i = 0; i < 4; i++) {

int row = test_space_dofs[i];
for (int j = 0; j < 4; j++) {

int col = trial_space_dofs[j];
int p = row_ptr[row];
int q = row_ptr[row+1]-1;
int r = p;
while (p <= q) {

r = (p+q) / 2;
if (col_idx[r] == col) break;
else if (col_idx[r] < col) p = r+1;
else q = r-1;

}
values[r] += element_matrix[i*4+j];

}
}

}

Algorithm 5. Scattering a 4 × 4 element matrix to a global matrix stored in CSR format. The
location of each corresponding non-zero in the global matrix is found by a binary search among
the non-zeros of the respective row.

poses, researchers have previously studied cache-efficient mesh layouts, for instance,
to improve the performance of visualising unstructured meshes [Tchiboukdjian et al.
2010; Tchiboukdjian et al. 2008; Yoon and Lindstrom 2006].

In this paper, we opt for a simple approach that is commonly used in connection
with finite element methods. First, we reorder the vertices of a mesh based on the
Reverse Cuthill-McKee (RCM) algorithm [Cuthill and McKee 1969]. Specifically, we
apply the RCM algorithm to an adjacency matrix whose rows and columns correspond
to the mesh vertices and whose entries indicate whether or not a pair of vertices have
a mesh cell in common. Roughly speaking, this method leads to vertices being closer
to each other whenever they belong to the same mesh cells.

It is important to also reorder the cells of a mesh, because a good vertex ordering
alone does not imply good data locality when gathering the vertex coordinates of each
mesh cell. We thus rearrange the mesh cells in a lexicographic order according to their
vertex indices. This simple technique appears to be quite effective in practice.

86

Optimisations

4.2 Reordering global degrees of freedom

When scattering element matrices to a global matrix in the CSR format (see Algo-
rithm 5), the numbering of the global degrees of freedom greatly impacts the memory
access pattern and data locality. Generally speaking, reordering the global degrees
of freedom of the test and trial spaces is equivalent to reordering the equations and
unknowns of the assembled linear system, and this is a well-known method for im-
proving performance of sparse linear solvers, particularly direct solvers. In fact, there
exists a variety of sparse matrix reorderings that are commonly used in connection
with finite element methods [George 1973; George and Mcintyre 1978], including the
RCM algorithm [Cuthill and McKee 1969] that we use to reorder the vertices of a mesh.

In fact, for first-order Lagrange elements, the global degrees of freedom are usually
numbered in the same way as the mesh vertices. Thus, reordering the mesh vertices
is equivalent to reordering the global degrees of freedom. For second- and higher-
order elements, it is also possible to apply the RCM algorithm to reorder the global
degrees of freedom. However, in this paper, we instead order the global degrees of
freedom according to the mesh entities that they belong to. In this way, it is sufficient
to choose an ordering for the faces of the mesh, and the global degrees of freedom
will be numbered accordingly. Like the mesh cells, we order the faces of a mesh
lexicographically according to their vertex indices.

4.3 Using a lookup table in the scattering kernel

Another concern that affects the performance of scattering element matrices to a
global matrix is the binary search (Algorithm 5) that is performed for each entry of an
element matrix. This is needed to find the location within the CSR structure of the
corresponding non-zero entry in the global matrix. As an alternative, it is possible to
precompute and store the locations of the global matrix non-zeros for each entry of
every element matrix. The non-zero locations can usually be obtained for free or at
little extra cost when the sparsity pattern of the global matrix is computed prior to the
assembly. The lookup table can then be reused every time the matrix is assembled.

Although this approach requires a slight increase in storage requirements and
memory traffic to accommodate the lookup table, the benefit is that the binary searches,
which are potentially quite costly, can now be omitted. An example of this approach
is shown in Algorithm 6, which should be contrasted with Algorithm 5.

4.4 Cross-element vectorisation

For kernels that require some amount of floating-point calculations, it is often necessary
to employ vectorisation to make the most effective use of a multi-core CPU. For finite
element assembly, proper use of vectorisation can be used to speed up the calculation of
element matrices. Although the compiler is sometimes able to automatically vectorise,
there are cases that require such optimisations to be applied manually, for instance,
using a technique known as cross-element vectorisation [Sun et al. 2020]. However,
we note that the kernels we consider here are both simple and lightweight in terms of
floating-point calculations, so we do not expect vectorisation to havemuch of an impact

87

II. Memory traffic optimisations for FEM assembly

void scatter_to_global_matrix_lookup(
const int nonzero_locations [16],
const double element_matrix [16],
double * values)

{
for (int i = 0; i < 4; i++) {

for (int j = 0; j < 4; j++) {
int k = nonzero_locations[i*4+j];
values[k] += element_matrix[i*4+j];

}
}

}

Algorithm 6. Scattering a 4 × 4 local matrix to a global matrix in CSR format. A lookup table
nonzero_locations is used to find the correct locations of the non-zero values.

on the overall assembly time. We include it nonetheless for the sake of completeness
and because it may play a more important role for more advanced kernels.

The idea behind cross-element vectorisation is to compute element matrices of
several cells simultaneously by letting each vector lane correspond to a different mesh
cell. This requires rearranging the input data, i.e., the vertex coordinates of the cells,
after being brought into the first-level cache. Because vector operations are primarily
designed to act on a sequence of contiguous memory locations, the vertex coordinates
of each cell are interleaved. Once the data has been rearranged, the element matrix
computation is almost identical to the scalar kernel. The code in Algorithm 7 shows
how element matrices for the Laplacian with first-order Lagrange elements may be
computed using cross-element vectorisation and AVX512 intrinsics.

4.5 Rowwise assembly

The most common strategy for parallelising a cellwise finite element assembly in
shared memory, using multiple threads, is to assign a roughly equal number of cells to
each thread. There is an inherent difficulty because the mesh cells that share global
basis functions may be assigned to different threads. To avoid incorrect results of the
scattering kernel, one must take care to prevent race conditions, e.g., by introducing
atomic operations or another form of synchronisation.

An alternative to the usual cellwise assembly algorithm is to compute an entire
row of the global matrix at a time. From Eq. (1), we find that the 8-th row and 9-th
column of the global matrix � can be expressed

�8, 9 =
∑
) ∈T

(
%)�)&

T
)

)
8, 9

=
∑
) ∈T

<−1∑
:=0

X8,` (:)
(
�)&

T
)

)
:,9
,

where ` is a local-to-global mapping for the test space + (T). Recall that the 8-th row
of the matrix corresponds to a global basis function \8 ∈ + (T), and this global basis
function is associated with a face 58 of the mesh T . Moreover, for a mesh cell) , we

88

Optimisations

void laplacian_simplex3x8_p1_element_matrix(
const __m512d J[9], // Jacobian matrices
const __m512d C[9], // Cofactors of J
__m512d J_det , // Determinants of J
__m512d * restrict A) // Element matrices

{
// Compute 3-by -3 symmetric geometry tensors
__m512d G[6];
__m512d d = (1./6.) / _mm512_abs_pd(J_det);
G[0] = d*(C[0]*C[0]+C[3]*C[3]+C[6]*C[6]);
G[1] = d*(C[0]*C[1]+C[3]*C[4]+C[6]*C[7]);
G[2] = d*(C[0]*C[2]+C[3]*C[5]+C[6]*C[8]);
G[3] = d*(C[1]*C[1]+C[4]*C[4]+C[7]*C[7]);
G[4] = d*(C[1]*C[2]+C[4]*C[5]+C[7]*C[8]);
G[5] = d*(C[2]*C[2]+C[5]*C[5]+C[8]*C[8]);

// Compute 4-by -4 element matrices
A[0]=G[0]; A[1]=G[1]; A[2]=G[2];
A[4]=G[1]; A[5]=G[3]; A[6]=G[4];
A[8]=G[2]; A[9]=G[4]; A[10]=G[5];
A[3]=A[12]=-G[0]-G[1]-G[2];
A[7]=A[13]=-G[1]-G[3]-G[4];
A[11]=A[14]=-G[2]-G[4]-G[5];
A[15]=G[0]+2*G[1]+2*G[2]+G[3]+2*G[4]+G[5];

}

Algorithm 7. Computing element matrices using cross-element vectorisation for the Laplacian
with test and trial spaces of first-order Lagrange elements on tetrahedra. Vectorisation is
implemented manually using AVX512 intrinsics and appropriate data types, such as __m512d.

have X8,` (:) ≠ 0 only if 58 ⊆) . Therefore, the above sum can be restricted to those cells
that contain the face 58 , so that

�8, 9 =
∑
) ∈T
58 ⊆)

(
�)&

T
)

)
[(8), 9 ,

where [: [0,") → [0,<) is a left inverse of `. That is, [maps global basis functions
of the test space to basis functions of the local space + ()).

Ultimately, the abovemay be translated to the high-level pseudo-code for a rowwise
assembly algorithm that is shown in Algorithm 8.

The basic building blocks of the above algorithm are the same as those used in
cellwise assembly, but there are some differences. Rather than computing and scattering
the entire element matrix in steps 3 and 4, only a single row is needed in each iteration
of the inner loop. Therefore, the order in which the element matrices are computed
and scattered is different compared to a cellwise assembly, but the total amount of
work carried out during these two steps remains the same. On the other hand, the first
two steps, gathering a cell’s vertex coordinates and transforming to a reference cell,

89

II. Memory traffic optimisations for FEM assembly

for all 8 = 0, 1, . . . , dim+ (T) − 1 do
for all cells) ∈ T such that 58 ⊆) do
1. Gather vertex coordinates of)
2. Transform to a reference cell)̂
3. Compute row [(8) of element matrix �)
4. Scatter row [(8) of �) to the 8-th row of �

end for
end for

Algorithm 8. Rowwise finite element assembly.

are now carried out more often than before. For example, for a tetrahedral mesh and
first-order Lagrange elements, these steps occur exactly four times more often than in
a cellwise assembly. That is, each cell consists of four vertices and steps 1 and 2 are
executed every time a cell contains the vertex corresponding to the current row of the
global matrix.

If we compare the cellwise and rowwise assembly algorithms, then the latter
performs more work. However, the memory access pattern of the rowwise assembly
is more regular because rows of the global matrix are accessed in sequence, and
only a single row is written to during an iteration of the outer loop. This is in stark
contrast to the irregular memory access pattern of cellwise assembly, which jumps
back and forth between rows of the global matrix that are potentially far apart. Thus,
the rowwise assembly algorithm presents an interesting trade-off by needing some
redundant computations as well as extra memory traffic to gather vertex coordinates,
but at the same time generating less memory traffic to write the results to the global
matrix. More importantly, the rowwise algorithm can easily be parallelised without
introducing any synchronisation overhead to avoid race conditions. This is achieved
by simply assigning different rows of the global matrix to different threads.

5 Memory traffic estimates

In this section, we derive some lower and upper bounds of the memory traffic that
are expected for the finite element assembly kernels from Section 3. These estimates
are useful for evaluating the impact of memory traffic on different kernels and the
effectiveness of some of the optimisations from Section 4.

We are concerned with multi-core CPU systems with one or more sockets that each
contains multiple cores. Each CPU core is equipped with one or more floating-point
functional units (FPUs) that perform floating-point calculations on operands that are
supplied from the CPU core’s working memory, or registers. Data that is needed for
computation, but is not already located in registers, must be fetched from memory.
Conversely, intermediate results that do not fit in registers, or results that are otherwise
to be saved for later, must be written to memory. Moreover, memory is organised in a
multi-level hierarchy, as depicted in Fig. 1. At the highest level of a typical memory
hierarchy, that is, closest to the CPU registers, each core has a smaller, first-level (L1)
cache and a larger second-level (L2) cache. Next, a third-level (L3) cache is usually

90

Memory traffic estimates

Core 0 Core n− 1

. . .

Socket 0

. . .

FPUs

Registers

L1 cache

L2 cache

L3 cache

FPUs

Registers

L1 cache

L2 cache

Memory controllers

Core 0 Core n− 1

. . .

Socket 1

. . .

FPUs

Registers

L1 cache

L2 cache

L3 cache

FPUs

Registers

L1 cache

L2 cache

Memory controllers

Main memory

Memory modules
Memory modules

Memory modules
Memory modules

Memory modules
Memory modules

Memory modules
Memory modules

Figure 1. A simplified diagram of the architecture of a two-socket, multi-core CPU system
and its memory hierarchy. Each core has one or more floating-point units (FPUs), a working
memory, also called registers, and two levels of caches. A third-level cache is most often shared
by all the cores of a socket. Finally, each socket has one or more memory controllers that are
used to transfer data between third-level caches and main memory.

shared by some or all of the cores on a given socket. Finally, main memory, or DRAM,
occupies the lowest level of the memory hierarchy. As a general rule, higher-level
memories are faster, but have smaller storage capacities than lower-level ones.

5.1 Ideal cache model

For modelling purposes, it is often convenient to assume the ideal cache model [Frigo
et al. 2012]. In this model, a cache is characterised by two properties. First, the cache
size, / , is the number of words (numerical values) that can be held in the cache at any
time. Second, the main memory is partitioned into equally sized blocks, called cache
blocks. The size of these blocks is referred to as the cache line size, !, the number
of words held per block. The effect is that entire cache blocks are transferred, rather
than individual values, whenever data is moved between cache and main memory.
This allows exploiting spatial locality by presuming that nearby memory locations are
likely to soon be accessed or written to.

The cache model also determines when and where cache blocks are placed in a
cache. First, caches are assumed to operate with demand caching, which means that a
cache block is placed into a cache only if a CPU issues a load or store that references

91

II. Memory traffic optimisations for FEM assembly

a memory location within the cache block. Second, we assume that caches are fully
associative, which entails that a cache block can be placed anywhere in a cache. That is,
unlike set associative or direct-mapped caches, there are no restrictions that make only
one or a few cache lines available for placing a given cache block. As a consequence,
the ideal cache model ignores conflict misses, or cache misses that would occur due
to cache blocks being mapped to the same set of cache lines in a set-associative or
direct-mapped cache. Third, if the cache is full, then a cache line must be evicted, and
its contents written back to main memory, to make room for an incoming cache block.
In this case, the ideal cache model employs an optimal replacement policy, which
evicts cache lines in a way that minimises the number of transfers between the cache
and main memory.

5.2 Gathering vertex coordinates

To gather the vertex coordinates of each mesh cell, the data must be brought from
whichever level of the memory hierarchy where it resides to the processor’s registers.
In the following, the cache line size ! denotes the number of double precision floating-
point values that fit in a cache block, and we assume that 2! integers fit in the same
cache block. Themost common cache line size is 64 bytes, such that ! = 8. Furthermore,
letF denote the vector width, which is the number of consecutive double precision
floating-point values that may be read or written with a single load or store. Similarly,
we assume that twice the vector width, 2F , applies when working with integers. In
practice, the most relevant cases areF = 1, 2, 4 or 8.

First, note that the vertex indices are accessed sequentially. Unless the data resides
in cache before the computation begins, there is no reuse of cached values. Therefore,
in total # × d</(2F)e loads are issued, where # is number of mesh cells and< is the
number of vertices in each cell. Moreover, d#</(2!)e cache blocks are transferred
from lower levels of the memory hierarchy.

Second, reading the coordinates of a single vertex requires at least d3/Fe loads
from the first-level cache, where 3 is the number of coordinates for each vertex. If each
vertex coordinate is brought to the cache exactly once due to perfect cache data reuse,
then the total number of cache lines that are transferred is at least d"3/!e, where"
is the number of vertices in the mesh.

In the worst case, the coordinates of a vertex must be brought to the cache for
every mesh cell that the vertex belongs to. If those coordinates are aligned to a cache
line boundary, then they span d3/!e cache lines. However, the vertex coordinates are
usually not aligned to a cache line boundary, for instance, if 3 = 3 for a tetrahedral
mesh and cache lines may hold ! = 8 values. In this case, the coordinates of a vertex
may span d3/! + 1e cache lines. Thus, the number of cache lines that are brought to
the cache is at most #< × d3/! + 1e.

In summary, # ×
(
d</(2F)e +<d3/Fe

)
loads are issued, and the number of cache

misses is at least d#</(2!)e + d"3/!e and at most d#</(2!)e + #<d3/! + 1e.

92

Numerical experiments

5.3 Scattering results to a global matrix

Recall that adding an element matrix value to a global matrix first requires a binary
search or a table lookup before the relevant matrix value is updated. In either case,
updating the global matrix values results in an irregular memory access pattern that
is influenced by the order of the mesh cells as well as the numbering of the global
basis functions. To scatter the values of an< × = element matrix means accessing<
different rows of the global matrix, and updating = values in each row. Since the matrix
values that need to be updated usually do not occupy contiguous memory locations,
vectorisation is of little use. Therefore, the global matrix updates amount to # ×<=
loads and the same number of stores, where # is the number of mesh cells. In the ideal
case, where each global matrix value is brought to a cache exactly once, the number
of cache blocks that must be transferred is at least d /!e, where is the number of
nonzero entries in the global matrix.

If a binary-search approach is used, then there are 2#< loads issued to read row
pointers and an average of #<= × log2 (Ā) loads issued for reading column indices,
where Ā = /" is the average number of non-zeros per row and" is the number of
matrix rows. The row pointers and column indices also result in at least d(" + 1)/(2!)e
and d /(2!)e additional cache blocks being transferred, respectively.

If a table lookup is used, as in Algorithm 6, then the row pointers and column
indices are no longer needed. Instead, there are # ×<= loads issued and d#<=/(2!)e
cache blocks transferred for the lookup table. Despite the extra memory usage due
to the lookup table, this approach results in fewer memory accesses overall and the
accesses to the lookup table are regular and in sequence.

To summarise, # ×<= stores are issued regardless. In addition, the binary-search
approach requires 2#< +#<=

(
1 + log2 (Ā)

)
loads, whereas the lookup-table approach

requires 2#<= loads. Also, the binary-search approach causes at least d /!e + d(" +
1)/(2!)e + d /(2!)e cache misses, whereas the lookup-table counterpart incurs at
least d /!e + d#<=/(2!)e cache misses.

6 Numerical experiments

In this section, we describe numerical experiments that benchmark the performance of
our finite element assembly algorithms. To understand the observed performance, we
use measurements of memory traffic based on the hardware performance monitoring
features of the CPUs and compare these with the memory traffic estimates from
Section 5.

6.1 Experimental setup

The following is a brief description of the hardware and parameters used in the subse-
quent numerical experiments.

93

II. Memory traffic optimisations for FEM assembly

Table 1. Information about the hardware used in our experiments, including peak double-
precision floating-point performance, cache sizes, memory configuration, and memory band-
width. The practically achievable memory bandwidth is measured by the Triad kernel of the
STREAM benchmark [McCalpin 2013].

Intel Xeon Gold 6130 AMD Epyc 7601 Cavium TX2 CN9980

Instruction set x86-64 x86-64 ARMv8.1
Microarchitecture Skylake (server) Zen Vulcan
Cores per socket 16 32 32
Frequency 1.9 to 3.6GHz 2.7 to 3.2GHz 2.0 to 2.5GHz
Double-precision
floating-point perf.
single core 112Gflop/s 25.6Gflop/s 20Gflop/s
single socket 972.8Gflop/s 691.2Gflop/s 512Gflop/s

Memory per socket
L3 cache 22MiB 64MiB 32MiB
DRAM channels 6 8 8
DRAM transfer rate 2.67GHz 2.67GHz 2.67GHz
Theoretical max.
bandwidth

128GB/s 171GB/s 171GB/s

STREAM Triad
bandwidth
single core 13.0GB/s 18.6GB/s 11.7GB/s
single socket 74.4GB/s 81.3GB/s 111.3GB/s
dual socket 147.1GB/s 161.4GB/s 221.3GB/s

6.1.1 Hardware

Most of the following experiments were conducted on a multi-core CPU system with
two Intel Xeon Gold 6130 CPUs. In addition, we have used a dual-socket AMD Epyc
7601 system and a dual-socket Cavium ThunderX2 CN9980 system to study parallel
performance and scalability in Section 6.3. See Table 1 for a summary of the main
characteristics of these systems. For further details on the CPUs, see [Guo 2019; Intel
Corporation 2018; Schor 2018].

The Xeon Gold 6130 CPU is based on the Skylake server microarchitecture, and
therefore it supports the AVX512 instruction set, which is capable of performing 32
double precision floating-point operations per cycle if vectorisation and fused multiply-
add instructions are used. If a single core is used, the CPU frequency is 3.6GHz for
scalar code and 3.5GHz for AVX512, whereas if all sixteen cores are being used,
the frequency is reduced to 2.8GHz and 1.9GHz for scalar and AVX512 operations,
respectively. In comparison, the AMD Epyc and Cavium TX2 CPUs can perform only
eight double-precision floating-point operations per cycle. Despite having twice as
many CPU cores and slightly higher clock speeds, the peak floating-point performance
of these CPUs is significantly lower than Intel Xeon.

Meanwhile, Intel Xeon has six memory channels, whereas AMD Epyc and Cavium
TX2 have eight, which results in a higher memory bandwidth for the latter two systems.
From the numbers measured by the Triad kernel of the STREAM bandwidth benchmark,

94

Numerical experiments

Table 2. Computational meshes used in our numerical experiments.

Mesh Vertices Cells

Uniform mesh 1 1 771 561 10 368 000
Uniform mesh 2 4 173 281 24 576 000

Cardiac mesh 1 1 255 775 6 735 654
Cardiac mesh 20 3 019 809 16 907 270
Cardiac mesh 41 2 226 802 12 255 517
Cardiac mesh 44 1 958 816 10 697 116

Aneurysm mesh 3 855 668 5 173 053
Aneurysm mesh 4 1 923 234 11 717 169

the realistic dual-socket memory bandwidth for the AMD Epyc system is about 10%
higher than Intel Xeon, while the dual-socket memory bandwidth for Cavium TX2 is
almost 40% higher than AMD Epyc.

The various benchmarks were compiled using GCC 9.2.0 with the options -O3,
-march=native, and -fopenmp.

6.1.2 Computational meshes

In the following experiments, we use tetrahedral meshes from two different biomed-
ical applications. The first set of meshes have previously been used in cardiac mod-
elling [Marciniak et al. 2017], and they originate from patient data in a Danish study
on cardiac disease [Jabbari et al. 2015]. The second set of meshes, which represent
blood vessels with aneurysms, have been used in blood flow simulations, and they are
based on data from the Aneurisk project [Aneurisk-Team 2012]. Finally, we also use
two standard, uniform meshes of the unit cube. See Table 2 for an overview of the
meshes.

6.2 Benchmarking assembly kernels

In this section, we report the results of benchmarking the individual assembly kernels
from Section 3.

6.2.1 Gathering vertex coordinates

We begin by benchmarking the first assembly kernel, which is gathering the vertex
coordinates of a mesh. Table 3 shows the observed performance for each mesh, both
before and after the mesh has been reordered, as described in Section 4.1.

The results show that reordering yields a speedup for the cellwise algorithm of
about 10x to 11x for the cardiac meshes and about 4x to 5x for the aneurysm meshes.
Besides the performance, we have also measured the memory traffic by using the
hardware performance events skx_unc_imc[0-5]::UNC_M_CAS_COUNT.RD that are
associated with the CPU’s memory controllers. These measurements show that the
memory traffic for some of the original meshes is near the worst-case estimates that

95

II. Memory traffic optimisations for FEM assembly

Table 3. Performance and memory traffic for gathering vertex coordinates of tetrahedral meshes
on Intel Xeon Gold 6130. The best- and worst case columns show best- and worst case estimates
of the memory traffic, as described in Section 5.2.

Perf. [Mcell/s] DRAM read [MB] Page walks [M]

Mesh Orig. Reorder Orig. Reorder Best case Worst case Orig. Reorder

Uniform mesh 1 292 N/A 228 N/A 208 3483 0.0 N/A
Uniform mesh 2 292 N/A 537 N/A 493 8257 0.0 N/A
Cardiac mesh 1 27 271 1145 145 137 2263 18.3 0.0
Cardiac mesh 20 22 260 4232 378 342 5680 54.9 0.0
Cardiac mesh 41 23 260 2815 273 249 4117 38.1 0.0
Cardiac mesh 44 24 251 2330 235 218 3594 32.5 0.0
Aneurysm mesh 3 63 281 174 106 103 1738 2.6 0.0
Aneurysm mesh 4 49 268 764 248 233 3936 8.3 0.0

were derived in Section 5.2, whereas the reorderedmeshes yieldmemory traffic volumes
close to the best-case estimates. In fact, for cellwise assembly, the original cardiac
meshes generate about 8 to 10 times more memory traffic than the reordered versions,
and about 1.7 to 3 times more for the aneurysm meshes.

In addition, the random access patterns associated with the original meshes trigger
a large number of page walks, as measured by the hardware performance event
DTLB_LOAD_MISSES.WALK_COMPLETED. These page walks occur due to missing the
translation lookaside buffers, or TLBs, which are used to cache page table entries for
translating virtual to physical memory addresses. Not only do page walks trigger
additional memory accesses to fetch page table information from memory, but they
also increase latency and reduce throughput for those memory accesses that miss the
TLBs because they cannot complete before the page table information has been fetched.
However, page walks are more or less eliminated by reordering the mesh, which in
part explains the improved performance.

After reordering the mesh, we would expect the execution time to be limited by
the available memory bandwidth. In practice, the achieved throughput is almost half
of the 13.0GB/s single-core bandwidth that is measured by STREAM and reported
in Table 1. It is quite plausible that hardware prefetchers are less effective when
faced with irregular memory access patterns rather than the sequential memory
accesses performed by STREAM. Regardless, we cannot expect to attain much better
performance for the reordered meshes, since the actual volumes of memory traffic are
already close to the best-case estimates and cannot be significantly improved upon.

6.2.2 Computing element matrices

We have designed the benchmark for computing element matrices to be independent of
the mesh connectivity and memory traffic concerns, by ensuring that data is only read
from and written to the first-level cache. However, it does depend on the variational
form that is to be assembled. In the following, we benchmark a kernel for computing
the transformation to a reference mesh cell and two kernels for computing element

96

Numerical experiments

Table 4. Performance (in Mcell/s) for computing transformation to a reference cell and element
matrices for the Laplacian on Intel Xeon Gold 6130. The “Auto” column relies on the compiler
to perform automatic vectorisation, whereas the “Manual” column is for manually optimised
code using AVX512 to perform cross-element vectorisation. Finally, the “Best case” is an upper
bound on performance based on peak single core floating-point performance and a minimum
number of floating-point operations per mesh cell.

Auto Manual Best case

Transform to
reference cell

205 1303 2732

P1 Laplacian 125 672 1750
P2 Laplacian 25 168 299

matrices for the Laplacian, 0(E,D) =
∫
Ω
∇D · ∇E dG . The performance of these kernels is

presented in Table 4, including default kernels that rely on compiler autovectorisation
and AVX512 kernels that use manually implemented cross-element vectorisation.

For the default kernels, we are relying on the compiler to automatically perform
vectorisation, if possible. However, inspecting the generated assembly code reveals that
it is unable to do so. Moreover, the performance ranges from about 7.6 to 14.4Gflop/s.
Observe that the lower number is close to the peak scalar floating-point performance of
a single core when fused multiply-add instructions are not used, whereas 14.4Gflop/s
is precisely the scalar floating-point capacity of a single core when fused multiply-add
instructions are used. Thus, the performance varies somewhat between the kernels,
depending on whether or not the compiler is able to employ fused multiply-add
instructions.

We observe a significant increase in throughput for the manually implemented
cross-element vectorisation that uses AVX512 to compute eight element matrices
simultaneously. More specifically, the transformation to a reference cell and the two
Laplacian kernels all experience a speedup of about 5 to 8 times. Also, manual vectori-
sation attains almost half of the peak floating-point performance for the transform
to reference cell, and 38% and 56% of peak floating-point performance for the first-
and second-order Laplacian, respectively. This should be considered a high level of
utilisation, if we take into account that fused multiply-add instructions may only be
relevant for a portion of the overall calculations.

6.2.3 Scattering results to a global matrix

The final assembly kernels involve updating a global matrix based on element matrices
that are computed in the previous step. In this case, we expect the performance to be
highly dependent on the mesh and finite elements that are used, and, in particular, on
the numbering of both the mesh cells and the global degrees of freedom of the finite
element space. The performance of Algorithms 5 and 6 is shown in Table 5, for the
original and reordered meshes and for first- and second-order Lagrange elements.

The first thing to note is the tremendous performance improvement that results
from using a lookup table to locate non-zeros in the global matrix, rather than relying

97

II. Memory traffic optimisations for FEM assembly

Table 5. Performance and memory traffic for scattering element matrices to a global matrix on
Intel Xeon Gold 6130.

Performance [Mcell/s] DRAM read / write [GB] Page walks [M]

Mesh Original Reordered Original Reordered Best case Original Reordered

P1, cellwise, binary search
Uniform mesh 1 19.8 0.58 / 0.27 0.49 / 0.21 0.0
Uniform mesh 2 16.9 1.77 / 0.88 1.15 / 0.50 0.0
Cardiac mesh 1 1.4 3.6 9.26 / 3.48 0.40 / 0.17 0.33 / 0.14 59.3 0.1
Cardiac mesh 20 1.2 3.6 25.56 / 8.87 1.15 / 0.50 0.81 / 0.35 164.4 0.3
Cardiac mesh 41 1.3 3.6 18.04 / 6.45 0.81 / 0.35 0.59 / 0.26 116.0 0.2
Cardiac mesh 44 1.3 3.6 15.36 / 5.53 0.67 / 0.29 0.51 / 0.22 99.9 0.2
Aneurysm mesh 3 2.5 3.6 3.16 / 1.38 0.29 / 0.12 0.24 / 0.10 14.8 0.1
Aneurysm mesh 4 2.3 3.7 8.14 / 3.39 0.71 / 0.31 0.55 / 0.24 35.7 0.2

P1, cellwise, lookup table
Uniform mesh 1 99.8 0.93 / 0.26 0.87 / 0.21 0.0
Uniform mesh 2 98.5 2.57 / 0.99 2.07 / 0.50 0.0
Cardiac mesh 1 8.1 87.2 3.69 / 3.07 0.60 / 0.16 0.57 / 0.14 17.1 0.0
Cardiac mesh 20 7.2 79.6 10.05 / 8.45 1.62 / 0.48 1.43 / 0.35 46.6 0.1
Cardiac mesh 41 7.4 80.5 7.13 / 5.97 1.17 / 0.34 1.04 / 0.26 33.1 0.0
Cardiac mesh 44 7.5 84.8 6.14 / 5.15 0.97 / 0.26 0.91 / 0.22 28.6 0.0
Aneurysm mesh 3 15.8 87.7 1.43 / 1.03 0.46 / 0.12 0.44 / 0.10 4.2 0.0
Aneurysm mesh 4 13.9 83.7 3.78 / 2.84 1.07 / 0.29 0.98 / 0.24 10.0 0.0

P1, rowwise, lookup table
Uniform mesh 1 83.2 1.05 / 0.21 1.05 / 0.21 0.0
Uniform mesh 2 82.9 2.49 / 0.50 2.50 / 0.50 0.0
Cardiac mesh 1 76.8 76.8 0.69 / 0.14 0.69 / 0.15 0.69 / 0.14 0.0 0.0
Cardiac mesh 20 77.6 76.5 1.72 / 0.35 1.72 / 0.35 1.73 / 0.35 0.1 0.1
Cardiac mesh 41 77.8 76.7 1.25 / 0.26 1.25 / 0.26 1.25 / 0.26 0.0 0.0
Cardiac mesh 44 76.4 76.0 1.09 / 0.23 1.09 / 0.22 1.10 / 0.22 0.0 0.0
Aneurysm mesh 3 79.7 77.7 0.52 / 0.10 0.52 / 0.10 0.52 / 0.10 0.0 0.0
Aneurysm mesh 4 79.4 76.8 1.18 / 0.24 1.19 / 0.24 1.19 / 0.24 0.0 0.0

P2, cellwise, lookup table
Uniform mesh 1 6.7 10.79 / 5.16 7.34 / 3.20 0.6
Uniform mesh 2 6.7 25.46 / 12.11 17.40 / 7.56 1.4
Cardiac mesh 1 1.2 6.3 22.23 / 16.98 6.72 / 3.16 4.81 / 2.11 33.3 0.4
Cardiac mesh 20 1.1 6.1 57.45 / 43.24 17.92 / 8.48 12.02 / 5.26 85.5 1.3
Cardiac mesh 41 1.2 6.1 41.11 / 31.20 12.88 / 6.09 8.73 / 3.82 61.2 0.9
Cardiac mesh 44 1.3 6.2 35.67 / 27.15 11.07 / 5.23 7.62 / 3.34 53.2 0.8
Aneurysm mesh 3 1.6 6.3 14.01 / 9.70 5.03 / 2.31 3.66 / 1.59 13.7 0.4
Aneurysm mesh 4 1.7 6.1 31.65 / 21.90 12.03 / 5.61 8.29 / 3.60 30.1 0.9

P2, Rowwise, lookup table
Uniform mesh 1 13.5 7.84 / 3.20 7.62 / 3.20 0.0
Uniform mesh 2 13.5 18.57 / 7.58 18.05 / 7.56 0.0
Cardiac mesh 1 12.6 12.6 5.14 / 2.12 5.13 / 2.12 4.99 / 2.11 0.1 0.1
Cardiac mesh 20 12.6 12.7 12.83 / 5.27 12.85 / 5.28 12.48 / 5.26 0.3 0.3
Cardiac mesh 41 12.6 12.7 9.31 / 3.83 9.32 / 3.83 9.06 / 3.82 0.2 0.3
Cardiac mesh 44 12.6 12.7 8.14 / 3.35 8.14 / 3.35 7.91 / 3.34 0.2 0.2
Aneurysm mesh 3 12.7 12.7 3.91 / 1.60 3.91 / 1.60 3.80 / 1.59 0.1 0.1
Aneurysm mesh 4 12.7 12.6 8.85 / 3.61 8.85 / 3.62 8.60 / 3.60 0.2 0.3

98

Numerical experiments

on a binary search. For first-order elements, the speedup is about 6x when the original
mesh ordering is used and about 24x for the reordered meshes. The performance
improvement for the original mesh ordering could partly be explained by the fact
that the lookup table reduces memory traffic by half compared to the binary search.
However, for the reordered meshes, it is in fact the lookup table that generates more
memory traffic, in spite of the huge speedup that is observed. This indicates that the
binary search is not at all limited by memory bandwidth in this case. More likely,
the CPU is unable to ensure enough concurrent memory requests to use the memory
subsystem effectively, perhaps due to conditional statements required in the search
that could incur pipeline stalls. Recall also that the binary search issues significantly
more loads, putting pressure on the connection between registers and the L1 cache,
which may further impede accesses to lower levels of the memory hierarchy.

Second, for cellwise assembly with a lookup table, we observe that reordering the
meshes results in a speedup of about 10x to 11x for the cardiac meshes and about 5x
to 6x for the aneurysm meshes. This is closely correlated with a measured reduction
in both read and write memory traffic. Overall, the reordering strategy works well,
since the memory traffic ends up close to the best case, and there seems to be little
room for improvement.

As expected, the rowwise algorithm is unaffected by mesh reordering. It achieves
quite good performance regardless, as the cellwise algorithm is only about 5% to
15% faster in the case of first-order elements. This is consistent with the fact that
the rowwise algorithm requires a small amount of additional data to be read for each
mesh cell, namely the mapping from global degrees of freedom to the local degrees
of freedom of each mesh cell. The fact that the rowwise algorithm results in memory
traffic almost identical to the best case is strong evidence of its cache-friendly nature.

The results for second-order elements paint a similar picture. Mesh reordering
results in a speedup of about 3x to 5x for cellwise assembly, whereas the performance
of rowwise assembly is unaffected. However, in this case, the rowwise algorithm is
almost twice as fast as the cellwise approach. The former also generates less read and
write memory traffic, although the observed speedup seems larger than one would
expect, if it were based only on the difference in memory traffic.

6.3 Parallel finite element assembly

Having considered each of the assembly kernels individually, we now turn our attention
to the performance of the full cellwise and rowwise assembly algorithms. For the Intel
Xeon Gold 6130 system, Table 6 compares the parallel performance of these algorithms
with the reordered meshes when assembling the mass matrix and Laplacian for first-
and second-order elements.

First, let us compare the serial performance of cellwise and rowwise assembly.
Recall that the rowwise algorithm is required to gather cell vertex coordinates and
compute the transformation to a reference cell several more times than the cellwise
algorithm, as described in Section 4.5. This explains why the cellwise algorithm is 3
times faster when using first-order elements for both the mass matrix and Laplacian.
However, for second-order elements, the difference in performance is much smaller. In
this case, the rowwise algorithm is about 5% to 10% faster when assembling the mass

99

II. Memory traffic optimisations for FEM assembly

Table 6. Parallel performance (in Mcell/s) of cellwise and rowwise finite element assembly for
the mass matrix and Laplacian on Intel Xeon Gold 6130.

Cellwise performance [Mcell/s] Rowwise performance [Mcell/s]

Number of threads Number of threads
Mesh 1 2 4 8 16 32 1 2 4 8 16 32

P1 Mass matrix

Uniform mesh 1 75.4 18.9 36.6 67.8 119.6 238.0 29.5 59.3 113.8 211.0 363.4 550.8
Uniform mesh 2 74.5 19.0 36.6 67.6 119.4 237.8 31.2 59.1 102.4 209.1 363.2 544.5
Cardiac mesh 1 56.1 18.4 35.2 65.2 115.8 218.4 21.0 38.9 73.1 133.8 238.3 437.3
Cardiac mesh 20 58.6 18.1 35.0 64.7 114.9 212.1 20.2 37.0 71.1 131.8 233.3 427.1
Cardiac mesh 41 59.7 18.2 35.0 64.8 115.3 215.1 20.3 37.9 72.1 131.7 235.8 441.1
Cardiac mesh 44 62.0 18.2 35.1 65.0 115.4 214.9 20.6 37.3 71.2 131.5 236.8 442.4
Aneurysm mesh 3 64.6 18.4 35.2 64.7 115.2 217.2 22.1 41.6 76.8 140.8 246.7 474.3
Aneurysm mesh 4 61.5 18.3 34.8 64.4 114.8 210.0 21.8 40.0 73.4 136.9 238.5 466.9

P1 Laplacian
Uniform mesh 1 50.2 18.1 35.0 64.7 114.7 221.7 18.2 33.7 66.6 122.9 218.1 435.9
Uniform mesh 2 49.7 17.9 34.9 64.7 114.1 222.3 18.2 34.5 66.4 122.0 217.3 430.0
Cardiac mesh 1 44.4 17.6 33.8 62.5 111.5 207.5 14.8 27.6 52.3 96.1 170.3 337.0
Cardiac mesh 20 41.1 17.4 33.5 61.9 110.1 200.7 14.4 26.4 50.8 94.0 167.4 324.7
Cardiac mesh 41 41.8 17.5 33.6 62.1 110.7 202.2 14.4 26.9 51.5 93.8 169.0 330.8
Cardiac mesh 44 42.9 17.5 33.6 62.2 110.8 203.0 14.5 26.5 50.5 93.5 168.1 333.4
Aneurysm mesh 3 44.7 17.6 33.8 62.4 108.3 204.7 15.3 28.7 53.5 98.7 175.2 353.0
Aneurysm mesh 4 42.7 17.5 33.4 61.8 110.2 197.5 15.0 27.9 51.6 95.6 169.6 339.3

P2 Mass matrix

Uniform mesh 1 5.7 3.0 5.8 10.6 19.2 25.8 7.4 11.2 15.3 18.4 29.1 38.2
Uniform mesh 2 5.6 3.0 5.8 10.6 18.9 24.7 7.4 11.3 15.2 18.4 29.1 38.5
Cardiac mesh 1 5.4 2.9 5.6 10.4 18.6 24.6 5.5 8.5 11.9 15.2 25.4 34.6
Cardiac mesh 20 5.2 2.9 5.6 10.4 18.5 24.1 5.4 8.3 11.4 14.6 24.1 33.5
Cardiac mesh 41 5.2 2.9 5.6 10.3 18.3 24.0 5.5 8.4 11.3 14.9 24.9 34.4
Cardiac mesh 44 5.2 2.9 5.6 10.3 18.5 24.1 5.5 8.4 11.7 15.0 24.7 34.4
Aneurysm mesh 3 5.3 2.9 5.6 10.3 18.5 23.9 5.8 8.8 12.3 14.9 24.9 34.1
Aneurysm mesh 4 5.2 2.9 5.6 10.3 18.4 23.6 5.8 8.7 12.0 14.8 24.6 34.2

P2 Laplacian
Uniform mesh 1 5.4 2.9 5.6 10.1 18.4 25.6 4.4 6.8 9.6 12.1 21.7 31.4
Uniform mesh 2 5.3 2.9 5.6 10.1 18.2 24.5 4.4 6.8 9.6 12.1 21.7 31.5
Cardiac mesh 1 5.1 2.8 5.4 10.0 17.9 24.5 3.8 6.0 8.4 10.9 19.7 29.3
Cardiac mesh 20 4.9 2.8 5.4 9.9 17.8 24.0 3.8 5.8 8.2 10.6 18.8 28.4
Cardiac mesh 41 4.9 2.8 5.4 9.9 17.8 23.9 3.8 5.9 8.2 10.7 19.2 29.3
Cardiac mesh 44 5.0 2.8 5.4 9.9 17.8 23.9 3.8 5.9 8.2 10.8 18.9 29.3
Aneurysm mesh 3 5.1 2.8 5.4 9.9 17.7 23.7 3.9 6.0 8.5 10.5 19.0 28.4
Aneurysm mesh 4 4.9 2.8 5.4 9.9 17.7 23.5 3.9 6.0 8.4 10.4 18.4 28.6

100

Numerical experiments

matrix, but the cellwise algorithm is about 30% faster at assembling the Laplacian.
Because of the much larger element matrices associated with second-order elements,
it seems clear that the scattering kernel is more dominant than it is for first-order
elements. Thus, the rowwise assembly algorithm suffers less from the additional work
it must do in connection with the first two kernels. In any case, the cellwise assembly
algorithm is preferable for a sequential assembly, particularly for first-order elements.

As a way of validating the performance results for the sequential, cellwise assembly,
we have also compared with the performance of the open source finite element code in
FEniCS [Logg et al. 2012]. Note that FEniCS uses a cellwise assembly algorithm with
the binary search strategy to locate global matrix entries after each element matrix
has been computed. To make a fair comparison, we ran our benchmark for a cellwise
assembly algorithm to assemble the Laplacian for first-order Lagrange elements, also
using the binary search strategy. The performance of our benchmark for the reordered
version of “Cardiac mesh 20” is 3.53Mcell/s, whereas the performance of FEniCS is
2.37Mcell/s with the same mesh. The performance of the two implementations is not
too different, especially considering that FEniCS is a much more general code that is
designed to handle more advanced use cases than our simple benchmark.

Regarding parallel performance, both the cellwise and rowwise algorithms ex-
perience some slowdown at first compared to the sequential cellwise assembly. We
already know that the rowwise algorithm is about three times slower than cellwise
assembly when using a single thread, but we now observe that rowwise assembly is
faster whenever four or more threads are used. Furthermore, the algorithm scales
nicely as the number of threads increases, and the performance reaches about 300
to 550Mcell/s and 28 to 38Mcell/s for first- and second-order elements, respectively,
when 32 threads are used. The parallel performance of the cellwise assembly only
reaches 200 to 240Mcell/s for first-order elements and 23 to 26Mcell/s for second-order
elements. This is because the parallel cellwise assembly seems to suffer from the high
cost, or synchronisation overhead, that is introduced through the use of atomics to
avoid race conditions.

To provide a more complete picture, Table 7 shows the parallel performance of
a rowwise assembly for the Laplacian with first-order elements on three different
multi-core systems, including Intel Xeon Gold 6130, AMD Epyc 7601 and Cavium
TX2 CN9980. For the latter two systems, the serial performance lags behind Intel
Xeon. This is partly due to the CPU cores operating at a lower frequency than the
Intel Xeon, although the Cavium TX2 also seems less able to make use of instruction-
level parallelism. The rowwise assembly reaches about 340 to 400Mcell/s and 310 to
380Mcell/s on AMD Epyc and Cavium TX2, respectively.

A visual comparison of the performance of the three systems is shown in Fig. 2
for “Cardiac mesh 20”. In the whole-system dual-socket case, AMD Epyc is faster
than both Intel Xeon and Cavium TX2. The performance of the latter two systems is
comparable, in spite of Cavium TX2 having twice as many cores and a significantly
higher memory bandwidth. Thus, the finite element assembly performance is contrary
to the STREAM Triad results in Table 1, which show that Cavium TX2 has the highest
single- and dual-socket memory bandwidth of the three systems. This leads us to
conclude that performance on Cavium TX2 is not primarily limited by the available
memory bandwidth.

101

II. Memory traffic optimisations for FEM assembly

Table 7. Parallel performance (in Mcell/s) of rowwise finite element assembly for the Laplacian
with first-order Lagrange elements on Intel Xeon Gold 6130, AMD Epyc 7601, and Cavium TX2
CN9980.

Rowwise performance [Mcell/s]

Number of threads
Mesh 1 2 4 8 16 32 64

Intel Xeon Gold 6130
Uniform mesh 1 18.2 33.7 66.6 122.9 218.1 435.9
Uniform mesh 2 18.2 34.5 66.4 122.0 217.3 430.0
Cardiac mesh 1 14.8 27.6 52.3 96.1 170.3 337.0
Cardiac mesh 20 14.4 26.4 50.8 94.0 167.4 324.7
Cardiac mesh 41 14.4 26.9 51.5 93.8 169.0 330.8
Cardiac mesh 44 14.5 26.5 50.5 93.5 168.1 333.4
Aneurysm mesh 3 15.3 28.7 53.5 98.7 175.2 353.0
Aneurysm mesh 4 15.0 27.9 51.6 95.6 169.6 339.3

AMD Epyc 7601
Uniform mesh 1 11.9 23.3 45.2 86.4 165.4 292.1 394.9
Uniform mesh 2 12.3 23.3 45.2 88.6 173.6 321.2 387.3
Cardiac mesh 1 11.2 20.4 37.9 72.2 133.3 246.2 383.4
Cardiac mesh 20 10.5 20.4 37.4 71.8 134.7 247.3 393.2
Cardiac mesh 41 10.6 19.7 37.4 71.5 135.6 255.4 383.1
Cardiac mesh 44 10.8 20.3 36.8 71.0 137.1 256.6 350.1
Aneurysm mesh 3 10.7 21.1 38.9 75.1 139.0 253.0 338.2
Aneurysm mesh 4 11.4 21.0 38.4 73.6 140.8 262.0 403.1

Cavium TX2 CN9980
Uniform mesh 1 6.5 12.8 24.7 49.2 97.8 193.9 382.4
Uniform mesh 2 6.3 12.3 24.3 48.3 96.6 191.4 381.7
Cardiac mesh 1 6.1 12.1 23.4 45.4 87.8 171.9 340.3
Cardiac mesh 20 6.0 11.6 22.8 44.4 86.3 168.3 320.9
Cardiac mesh 41 6.0 11.9 23.0 43.8 87.1 167.7 320.9
Cardiac mesh 44 6.0 11.8 22.8 44.4 86.0 167.3 312.5
Aneurysm mesh 3 6.1 12.1 24.1 46.8 89.6 172.2 328.3
Aneurysm mesh 4 6.1 11.9 22.7 44.1 85.8 167.8 327.7

102

Related work

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64

M
ce
ll/
s

Threads

Intel Xeon Gold 6130
AMD Epyc 7601
Cavium TX2 CN9980

Figure 2. Parallel performance for rowwise assembly of the Laplacian with first-order Lagrange
elements for “Cardiac mesh 20”.

7 Related work

The standard cellwise assembly algorithm is described, for example, by Ern and Guer-
mond [2004], and in the FEniCS book [Logg et al. 2012]. The tensor representation
for computing element matrices is described by Kirby et al. [2005] and Kirby and
Logg [2006], and it was extended to more general finite elements and variational
forms by Rognes et al. [2009]. Besides the tensor representation, the optimisation
of kernels for computing element matrices has been studied from several different
angles in connection with automated code generation for FEniCS [Logg et al. 2012]
and Firedrake [Rathgeber et al. 2016]. This includes numerical integration [Ølgaard
and Wells 2010], the use of computer algebra for exact integration and simplification
of expressions [Alnæs and Mardal 2010; Russell and Kelly 2013], as well as low-level
loop optimisations [Homolya et al. 2018; Luporini et al. 2017; Luporini et al. 2015].

A lot of work on optimising finite element assembly has focused on reducing the
number of floating-point operations that are required to compute element matrices, for
instance, using a technique called sum factorisation [Bolis et al. 2014; Cantwell et al.
2011; Kronbichler and Kormann 2012; Vos et al. 2010], which exploits tensor-product
structure that is particularly relevant for quadrilateral and hexahedral meshes and
higher-order polynomial spaces. Sometimes, a fully assembled global matrix itself is
not needed, but it is sufficient to evaluate the product of such a matrix with a vector.

103

II. Memory traffic optimisations for FEM assembly

In these circumstances, it is possible to use matrix-free methods [Kronbichler and
Kormann 2012] or variations, such as the local matrix approach [Cantwell et al. 2011;
Markall et al. 2013; Vos et al. 2010].

Sun et al. [2020] describe the use of cross-element vectorisation on Intel multi-core
CPUs using AVX-512, and demonstrate some significant performance improvements
for more complicated variational forms. A similar idea is used by Knepley and Terrel
[2013] in their implementation of a GPU-based element matrix computation.

More recently, a lot of work has focused on implementing finite element assembly
algorithms for GPUs. Cecka et al. [2011] explored several strategies for global assembly,
including both cellwise and rowwise algorithms. Markall et al. [2013] compare a
parallel, global matrix assembly that uses a mesh colouring or atomics to avoid race
conditions to what they call a local matrix approach. The latter is like a matrix-free
method except that the element matrices are computed only once, and they are stored
in memory and reused each time a matrix-vector multiplication is computed. Fu
et al. [2014] implement a cellwise assembly algorithm that uses a binary search when
scattering element matrices to a global matrix. Their method also relies on partitioning
the mesh to ensure that data fits in a GPU’s fast shared memory. Reguly and Giles
[2015] perform a detailed comparison of both the assembly and solution of linear
systems, where they compare cellwise, global matrix assembly for CSR and ELLPACK
sparse matrix formats to the local matrix- and matrix-free methods. In addition to
various experiments that demonstrate the tradeoffs between different methods, they
also describe the memory traffic required by each method.

8 Conclusion

Finite element assembly algorithms with linear or quadratic finite elements on un-
structured meshes are characterised by low arithmetic intensity and irregular memory
access patterns. As a result, moving data to and from memory can greatly impact the
performance. We have performed a detailed breakdown of the standard cellwise finite
element assembly algorithm, focusing on a quantified understanding of the memory
traffic involved. Estimated lower and upper bounds of the memory traffic have been
derived and used to demonstrate the effectiveness of some optimisations related to,
specifically, mesh reordering and use of a lookup table in the scattering kernel. In
addition, we have shown that a rowwise assembly algorithm, which has previously
been used for finite element assembly on GPUs, is also an efficient strategy for parallel
assembly with shared memory on multi-core CPUs.

Acknowledgements

This work was supported by the Research Council of Norway under contract 251186.
Also, the research presented in this paper has benefited from the Experimental Infras-
tructure for Exploration of Exascale Computing (eX3), which is financially supported
by the Research Council of Norway under contract 270053.

104

References

References

Alnæs, M. S. and K.-A. Mardal (Jan. 2010). “On the Efficiency of Symbolic Computations
Combined with Code Generation for Finite Element Methods”. In:ACM Trans. Math.
Softw. 37.1. issn: 0098-3500. doi: 10.1145/1644001.1644007.

Aneurisk-Team (June 2012). AneuriskWeb project website. Emory University, Depart-
ment of Math&CS. url: http://ecm2.mathcs.emory.edu/aneuriskweb.

Bolis, A., C. D. Cantwell, R. M. Kirby, and S. J. Sherwin (Apr. 2014). “From ℎ to ?
efficiently: optimal implementation strategies for explicit time-dependent problems
using the spectral/ℎ? element method”. In: International Journal for Numerical
Methods in Fluids 75.8, pp. 591–607. issn: 0271-2091. doi: 10.1002/fld.3909.

Cantwell, C. D., S. J. Sherwin, R. M. Kirby, and P. H. J. Kelly (Apr. 2011). “From h
to p efficiently: Strategy selection for operator evaluation on hexahedral and
tetrahedral elements”. In: Computers & Fluids 43.1, pp. 23–28. issn: 0045-7930. doi:
10.1016/j.compfluid.2010.08.012.

Cecka, C., A. J. Lew, and E. Darve (Aug. 2011). “Assembly of finite element methods on
graphics processors”. In: International Journal for Numerical Methods in Engineering
85.5, pp. 640–669. doi: 10.1002/nme.2989.

Ciarlet, P. G. (2002). The Finite Element Method for Elliptic Problems. Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics. isbn: 0-89871-514-8.

Cuthill, E. and J. McKee (1969). “Reducing the Bandwidth of Sparse SymmetricMatrices”.
In: Proceedings of the 1969 24th National Conference. ACM ’69. New York, NY, USA:
Association for Computing Machinery, pp. 157–172. isbn: 9781450374934. doi:
10.1145/800195.805928.

Ern, A. and J.-L. Guermond (2004). Theory and Practice of Finite Elements. Applied
Mathematical Sciences. Springer. isbn: 0-387-20574-8.

Frigo, M., C. E. Leiserson, H. Prokop, and S. Ramachandran (Jan. 2012). “Cache-
Oblivious Algorithms”. In: ACM Transactions on Algorithms 8.1, 4:1–4:22. issn:
1549-6325. doi: 10.1145/2071379.2071383.

Fu, Z., T. J. Lewis, R. M. Kirby, and R. T. Whitaker (Feb. 2014). “Architecting the Finite
Element Method Pipeline for the GPU.” In: Journal of Computational and Applied
Mathematics 257, pp. 195–211. issn: 0377-0427. doi: 10.1016/j.cam.2013.09.001.

George, A. (1973). “Nested Dissection of a Regular Finite Element Mesh”. In: SIAM
Journal on Numerical Analysis 10.2, pp. 345–363. issn: 0036-1429. doi: 10.1137/
0710032.

George, A. and D. R. Mcintyre (1978). “On the Application of the Minimum Degree
Algorithm to Finite Element Systems”. In: SIAM Journal on Numerical Analysis 15.1,
pp. 90–112. issn: 0036-1429. doi: 10.1007/BFb0064460.

Guo, X. (Feb. 2019). Best Practice Guide - AMD EPYC. Ed. by O. W. Saastad. Partnership
for Advanced Computing in Europe (PRACE). url: https://prace-ri.eu/wp-
content/uploads/Best-Practice-Guide_AMD.pdf.

Homolya, M., L. Mitchell, F. Luporini, and D. A. Ham (June 2018). “TSFC: A Structure-
Preserving Form Compiler”. In: SIAM Journal on Scientific Computing 40.3, pp. 401–
428. issn: 1064-8275. doi: 10.1137/17M1130642.

Intel Corporation (Apr. 2018). Intel® 64 and IA-32 Architectures Optimization Reference
Manual. 248966-040. Intel Corporation.

105

https://doi.org/10.1145/1644001.1644007
http://ecm2.mathcs.emory.edu/aneuriskweb
https://doi.org/10.1002/fld.3909
https://doi.org/10.1016/j.compfluid.2010.08.012
https://doi.org/10.1002/nme.2989
https://doi.org/10.1145/800195.805928
https://doi.org/10.1145/2071379.2071383
https://doi.org/10.1016/j.cam.2013.09.001
https://doi.org/10.1137/0710032
https://doi.org/10.1137/0710032
https://doi.org/10.1007/BFb0064460
https://prace-ri.eu/wp-content/uploads/Best-Practice-Guide_AMD.pdf
https://prace-ri.eu/wp-content/uploads/Best-Practice-Guide_AMD.pdf
https://doi.org/10.1137/17M1130642

II. Memory traffic optimisations for FEM assembly

Jabbari, R., T. Engstrøm, C. Glinge, B. Risgaard, J. Jabbari, B. G. Winkel, C. J. Terkelsen,
H.-H. Tilsted, L. O. Jensen, M. Hougaard, S. E. Chiuve, F. Pedersen, J. H. Svendsen,
S. Haunsø, C. M. Albert, and J. Tfelt-Hansen (Jan. 2015). “Incidence and risk factors
of ventricular fibrillation before primary angioplasty in patients with first ST-
elevation myocardial infarction: a nationwide study in Denmark”. In: Journal of the
American Heart Association 4.1. issn: 2047-9980. doi: 10.1161/JAHA.114.001399.

Kirby, R. C., M. Knepley, A. Logg, and L. R. Scott (2005). “Optimizing the Evaluation of
Finite Element Matrices”. In: SIAM Journal on Scientific Computing 27.3, pp. 741–
758. issn: 1064-8275. doi: 10.1137/040607824.

Kirby, R. C. and A. Logg (Sept. 2006). “A compiler for variational forms”. In: ACM Trans.
Math. Softw. 32.3, pp. 417–444. issn: 0098-3500. doi: 10.1145/1163641.1163644.

Knepley, M. G. and A. R. Terrel (Feb. 2013). “Finite Element Integration on GPUs”. In:
ACM Transactions on Mathematical Software 39.2. issn: 0098-3500. doi: 10.1145/
2427023.2427027.

Kronbichler, M. and K. Kormann (June 2012). “A generic interface for parallel cell-based
finite element operator application”. In: Computers and Fluids 63, pp. 135–147. issn:
0045-7930. doi: 10.1016/j.compfluid.2012.04.012.

Logg, A., K.-A. Mardal, G. N. Wells, et al. (2012). Automated Solution of Differential
Equations by the Finite Element Method. Berlin: Springer. isbn: 978-3-642-23098-1.
doi: 10.1007/978-3-642-23099-8.

Luporini, F., D. A. Ham, and P. H. J. Kelly (Mar. 2017). “An Algorithm for the Optimiza-
tion of Finite Element Integration Loops”. In: ACM Transactions on Mathematical
Software 44.1. issn: 0098-3500. doi: 10.1145/3054944.

Luporini, F., A. L. Varbanescu, F. Rathgeber, G.-T. Bercea, J. Ramanujam, D. A. Ham,
and P. H. J. Kelly (Jan. 2015). “Cross-Loop Optimization of Arithmetic Intensity for
Finite Element Local Assembly”. In: ACM Transactions on Architecture and Code
Optimization 11.4. issn: 1544-3566. doi: 10.1145/2687415.

Marciniak, M., H. Arevalo, J. Tfelt-Hansen, T. Jespersen, R. Jabbari, C. Glinge, K. A.
Ahtarovski, N. Vejlstrup, T. Engstrom, M. M. Maleckar, and K. McLeod (Jan. 2017).
“From CMR Image to Patient-Specific Simulation and Population-Based Analysis:
Tutorial for an Openly Available Image-Processing Pipeline”. In: STACOM 2016:
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling
Challenges. Ed. by T. Mansi, K. McLeod, M. Pop, K. Rhode, M. Sermesant, and A.
Young. Springer International Publishing, pp. 106–117. isbn: 978-3-319-52718-5.
doi: 10.1007/978-3-319-52718-5_12.

Markall, G. R., A. Slemmer, D. A. Ham, P. H. J. Kelly, C. D. Cantwell, and S. J. Sherwin
(Jan. 2013). “Finite element assembly strategies on multi-core and many-core
architectures”. In: International Journal for Numerical Methods in Fluids 71.1, pp. 80–
97. issn: 0271-2091. doi: 10.1002/fld.3648.

McCalpin, J. D. (Jan. 2013). STREAM: Sustainable Memory Bandwidth in High Per-
formance Computers. Department of Computer Science School of Engineering
and Applied Science, University of Virginia. Charlottesville, Virginia. url: https:
//www.cs.virginia.edu/stream/.

Ølgaard, K. B. andG. N.Wells (Jan. 2010). “Optimizations for quadrature representations
of finite element tensors through automated code generation”. In:ACMTransactions
on Mathematical Software 37.1. issn: 0098-3500. doi: 10.1145/1644001.1644009.

106

https://doi.org/10.1161/JAHA.114.001399
https://doi.org/10.1137/040607824
https://doi.org/10.1145/1163641.1163644
https://doi.org/10.1145/2427023.2427027
https://doi.org/10.1145/2427023.2427027
https://doi.org/10.1016/j.compfluid.2012.04.012
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1145/3054944
https://doi.org/10.1145/2687415
https://doi.org/10.1007/978-3-319-52718-5_12
https://doi.org/10.1002/fld.3648
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
https://doi.org/10.1145/1644001.1644009

References

Rathgeber, F., D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T.
Bercea, G. R. Markall, and P. H. J. Kelly (Dec. 2016). “Firedrake: Automating the
Finite Element Method by Composing Abstractions”. In: ACM Transactions on
Mathematical Software 43.3. issn: 0098-3500. doi: 10.1145/2998441.

Reguly, I. Z. andM. B. Giles (Apr. 2015). “Finite Element Algorithms and Data Structures
on Graphical Processing Units”. In: International Journal of Parallel Programming
43.2, pp. 203–239. issn: 0885-7458. doi: 10.1007/s10766-013-0301-6.

Rognes, M. E., R. C. Kirby, and A. Logg (Nov. 2009). “Efficient Assembly of � (div) and
� (curl) Conforming Finite Elements”. In: SIAM Journal on Scientific Computing
31.6, pp. 4130–4151. issn: 1064-8275. doi: 10.1137/08073901X.

Russell, F. P. and P. H. J. Kelly (July 2013). “Optimized Code Generation for Finite
Element Local Assembly Using Symbolic Manipulation”. In: ACM Transactions on
Mathematical Software 39.4. issn: 0098-3500. doi: 10.1145/2491491.2491496.

Schor, D. (June 2018). A Look at Cavium’s New High-Performance ARM Microprocessors
and the Isambard Supercomputer. WikiChip. url: https://fuse.wikichip.org/
news/1316/a-look-at-caviums-new-high-performance-arm-microprocessors-
and-the-isambard-supercomputer/.

Sun, T., L. Mitchell, K. Kulkarni, A. Klöckner, D. A. Ham, and P. H. J. Kelly (May 2020).
A study of vectorization for matrix-free finite element methods. arXiv: 1903.08243.
url: http://arxiv.org/abs/1903.08243.

Tchiboukdjian, M., V. Danjean, and B. Raffin (Jan. 2010). “Binary Mesh Partitioning for
Cache-Efficient Visualization”. In: IEEE Transactions on Visualization and Computer
Graphics 16.5, pp. 815–828. issn: 2160-9306. doi: 10.1109/TVCG.2010.19.

Tchiboukdjian, M., V. Danjean, and B. Raffin (2008). “A Fast Cache-Oblivious Mesh Lay-
out with Theoretical Guarantees”. In: International Workshop on Super Visualization
(IWSV’08). Kos, Greece. url: https://hal.inria.fr/inria-00436053.

Vos, P. E., S. J. Sherwin, and R. M. Kirby (2010). “From ℎ to ? efficiently: Implementing
finite and spectral/ℎ? elementmethods to achieve optimal performance for low- and
high-order discretisations”. In: Journal of Computational Physics 229.13, pp. 5161–
5181. issn: 0021-9991. doi: 10.1016/j.jcp.2010.03.031.

Yoon, S.-E. and P. Lindstrom (Nov. 2006). “Mesh Layouts for Block-Based Caches”. In:
IEEE Transactions on Visualization and Computer Graphics 12.5, pp. 1213–1220. issn:
1077-2626. doi: 10.1109/TVCG.2006.162.

107

https://doi.org/10.1145/2998441
https://doi.org/10.1007/s10766-013-0301-6
https://doi.org/10.1137/08073901X
https://doi.org/10.1145/2491491.2491496
https://fuse.wikichip.org/news/1316/a-look-at-caviums-new-high-performance-arm-microprocessors-and-the-isambard-supercomputer/
https://fuse.wikichip.org/news/1316/a-look-at-caviums-new-high-performance-arm-microprocessors-and-the-isambard-supercomputer/
https://fuse.wikichip.org/news/1316/a-look-at-caviums-new-high-performance-arm-microprocessors-and-the-isambard-supercomputer/
https://arxiv.org/abs/1903.08243
http://arxiv.org/abs/1903.08243
https://doi.org/10.1109/TVCG.2010.19
https://hal.inria.fr/inria-00436053
https://doi.org/10.1016/j.jcp.2010.03.031
https://doi.org/10.1109/TVCG.2006.162

Paper III

Leveraging GPU-accelerated finite element
computation with automated code generation:
A holistic approach

James D. Trotter, Simula Research Laboratory and University of Oslo, Norway
Johannes Langguth, Simula Research Laboratory
Xing Cai, Simula Research Laboratory and University of Oslo, Norway

Submitted for publication.

Abstract

Automated code generation has been increasingly used to enable complex finite
element computations on parallel architectures. The FEniCS framework is an
example of this trend, where user friendliness is provided by a mathematics-like
Unified Form Language that allows users to easily prescribe partial differential
equations (PDEs) and numerical details of the finite element method. The au-
tomated compiler inside FEniCS then translates the high-level user input into
parallelised C++ code. While the capabilities and performance of auto-generated
FEniCS code have been verified by real-world applications running on clusters
of multi-core CPUs, GPU acceleration at the moment only applies to the stage
that solves linear systems derived from the finite element method. The preceding
phase of discretising PDEs by assembling those linear systems, is restricted to
CPUs.

In this paper, we extend the FEniCS compiler to also generate code for GPU-
based assembly of linear systems, including auto-generated optimisations of the
resulting CUDA C++ code. Numerical experiments show that GPU-based linear
system assembly for a typical PDE benefits from using a lookup table to avoid
repeatedly carrying out numerous binary searches, and that further performance
gains are realised by assembling a matrix row by row.

More importantly, the extended FEniCS compiler seamlessly couples the as-
sembly and solution phases for GPU acceleration, so that we are able to eliminate
all unnecessary CPU-GPU data transfers. Further experiments are used to quan-
tify the negative impact of these data transfers, which can entirely destroy the
potential of GPU acceleration if the assembly and solution phases are offloaded
to GPU separately. Finally, a complete, auto-generated GPU-based PDE solver
for a non-linear solid mechanics application is used to demonstrate a substantial
speedup over running on dual-socket multi-core CPUs.

109

III. GPU-accelerated FEM with auto-code generation

1 Introduction

Numerically solving partial differential equations (PDEs) is the most important problem
in the area of scientific computing, and the finite element method (FEM) is one of
the most important tools for doing so. Such computations are often implemented as
hand-written, manually optimised computational kernels tailored to each individual
problem. However, developing high-performance FEM codes is very challenging for
domain scientists who are not experts in high-performance computing. Writing codes
for accelerators such as GPUs is even more difficult, but the performance and energy
efficiency of modern accelerators makes such codes very attractive.

Thus, an alternative approach is to offer a high-level language in which finite
element-based computations may be expressed, and then automatically generate low-
level, optimised code for problem-specific kernels. This strategy is used, for instance,
by the open-source frameworks FEniCS [Logg et al. 2012] and Firedrake [Rathgeber
et al. 2016] for parallel, distributed-memory, CPU-based PDE solvers. Among software
packages and libraries that use FEM to solve PDEs, so far only a few offer GPU-
accelerated computations. This is mostly due to the complexities of GPU programming
associated with implementing the intricate details of finite element computations and
the difficulty of obtaining performance gains that offset the overhead of offloading
calculations to GPUs.

This paper describes how we have extended FEniCS with automated generation
of GPU code for finite element assembly, thereby enabling fully GPU-based finite
element solvers. Our contribution is not limited to providing a new and improved
GPU acceleration to the widely used FEniCS framework. We also use automated
code generation to achieve a seamless integration between the two important phases
of finite element computations, thereby eliminating the need for most CPU-GPU
transfers. To the best of our knowledge, no prior results exist in this generic topic.
Moreover, we carefully study the impact of various CUDA optimisations applicable to
auto-generated finite element code. Our work is fully compatible with all the other
features of FEniCS, which means that non-linearity, vector PDEs, unstructured meshes,
complicated boundary conditions, and so on, pose no hindrance to GPU acceleration.

The rest of the paper is organised as follows. First, we provide some background
on automated code generation for FEM and the FEniCS PDE solver framework in
Section 2, along with some basic principles of GPU computing. In Section 3, we
focus on GPU-based finite element assembly and show how we accordingly extended
the built-in automated code generation features of the FEniCS form compiler. Next,
we discuss optimisations that are relevant to our GPU-based assembly algorithms in
Section 4. In Section 5, we present numerical experiments and results to illustrate
key parts of the development and optimisation process, including the effectiveness of
various optimisations and the performance of the final GPU-based assembly algorithm.
This is followed by a discussion of related work in Section 6 and concluding remarks
in Section 7.

110

Finite element methods and automated code generation

2 Finite element methods and automated code generation

The popularity of FEM is due to a solid mathematical foundation and the flexibility
in handling irregular geometries, plus a wealth of shape functions to represent the
numerical solutions of PDEs. The operation of finite element solvers consists of two
major phases: assembling a linear system and solving it. Since solving a linear system is
a generic kernel used in many types of numerical computations, its GPU acceleration
is a well studied subject [Anzt et al. 2020]. On the other hand, the phase of linear
system assembly, which discretises a PDE following the finite element principle, is a
far less studied area with respect to automated code generation and, particularly, GPU
acceleration.

2.1 Finite element assembly

By omitting many of the mathematical details, we will give here a very brief description
of the finite element assembly phase. The purpose is to show the main computational
steps involved, and explain how automated code generation and GPU acceleration can
be applied.

The algorithmic procedure within the finite element assembly phase is generic,
independent of the target PDE or the choice of shape functions. Here, the solution
domain of the target PDE is represented by a mesh of non-overlapping cells, called
elements. The numerical solution is sought in each element, combining prescribed
shape functions (also called trial functions). There are many choices of the element
type, such as triangles in 2D and tetrahedra in 3D. Given an element type, the associated
shape functions are typically piecewise polynomials. The overall assembly procedure
loops over each element) , computing an element matrix �) and an element vector 1)
by calculating integrals based on the so-called variational form of the target PDE (an
example will be given below for Poisson’s equation).

The global coefficient matrix � and right-hand side vector 1 of the resulting linear
system, �G = 1, arise from assembling all the element matrices and vectors. Since
the shape functions can span across neighbouring elements, each non-zero value in
� or 1 is normally a sum of the corresponding values from several element matrices
or vectors. (A needed local-to-global mapping is decided beforehand.) The global
coefficient matrix � is always sparse, because each shape function is only non-zero in
a small number of elements. If the computational mesh is unstructured, the non-zero
values are irregularly placed in �. The solution vector G will contain the weights for
combining the shape functions into the overall numerical solution of the target PDE.

Example: Poisson’s equation

To provide a more concrete example, we consider Poisson’s equation on a polygonal
domain Ω ⊂ R3 with a very simple boundary condition,

− ^∇2D = 5 in Ω, D = 0 on mΩ, (1)

111

III. GPU-accelerated FEM with auto-code generation

where ^ > 0 is a constant and 5 is a given source term. The corresponding variational
form has two parts (a bilinear form and a linear form) as follows:

0(E,D) =
∫
Ω
^∇E · ∇D dG, !(E) =

∫
Ω
5 E dG . (2)

See, for example, Ciarlet [2002], for further details.
On a mesh cell) , the element matrix �) is computed by evaluating integrals over

) (for each pair of 8, 9),

(�))8, 9 =
∫
)

^∇k)8 · ∇q)9 dG, (3)

wherek)8 and q)9 are non-zero local shape functions on) (also called local test and
trial functions). Each value in the element vector 1) is calculated by

∫
)
5k)8 dG .

To program the finite element assembly, a computational kernel must be coded
to compute the element matrix and vector for each mesh cell. Such a kernel can
either be hand-written for each variational form, or, be automatically generated from
a high-level description.

2.2 Unified Form Language

The Unified Form Language (UFL) [Alnæs et al. 2014] is a high-level language used by
both the PDE solver frameworks FEniCS and Firedrake for specifying variational forms
in a manner close to their mathematical description. UFL allows defining variational
forms in terms of integrals over cells, interior faces, or boundary faces of a mesh. The
user indicates whether an integral is to be taken over the whole mesh or some user-
defined region. Furthermore, function spaces based on various finite elements [Arnold
and Logg 2014] may be prescribed for test and trial spaces, as well as for any coefficients
that may be involved.

UFL is a domain-specific language embedded in Python, so users can take advantage
of Python’s features when writing variational forms. This becomes particularly useful
in more advanced PDE solver applications. The code in Algorithm 1 shows UFL
descriptions of the variational form for the Poisson problem. Here, linear Lagrange
elements on tetrahedral mesh cells are prescribed for the test and trial functions u and
v and coefficient f. After defining these functions, the bilinear and linear forms in
Eq. (2) are spelled out using grad and inner to indicate the gradient operator and dot
product.

2.3 Compiling variational forms

The FEniCS form compiler, or FFC, is responsible for translating a variational form
written in UFL into kernels that compute element vectors and matrices. FFC follows
standard principles of compiler design, with stages for parsing and analysis, followed
by optimisation and code generation based on suitable intermediate representations.
Further details are found in the FEniCS book [Logg et al. 2012] or in references given
in Section 6.

112

Finite element methods and automated code generation

element = FiniteElement (" Lagrange",tetrahedron ,1)
coords = VectorElement (" Lagrange",tetrahedron ,1)
mesh = Mesh(coords)
V = FunctionSpace(mesh , element)
u = TrialFunction(V)
v = TestFunction(V)
f = Coefficient(V)
kappa = Constant(mesh)

a = kappa * inner(grad(u), grad(v)) * dx
L = inner(f, v) * dx

Algorithm 1. Variational form for Poisson’s equation expressed in Unified Form Language.

Most users interact with FEniCS through its Python API. When operating in this
mode, UFL forms are embedded in a Python program. Internally, FEniCS automatically
generates C code for finite element assembly kernels from those UFL forms, before
invoking a C compiler to compile the generated kernels into a shared library. The
shared library is then loaded and the compiled kernels can thereafter be executed to
assemble linear systems.

Alternatively, FEniCS can be used as a library from a C++ application, still providing
the same functionality that is available through Python. However, in this case, UFL
forms are placed in standalone UFL scripts (in Python syntax). The objective of these
scripts is to define one or more UFL forms. The user is then responsible for invoking
the form compiler on these scripts before compiling and linking the generated code to
their application.

In this paper, we use FEniCS in the second manner described above, mostly because
it is more amenable to carrying out performance benchmarks, such as those presented
in Section 5.

2.4 GPU computing

Compared to traditional CPUs, GPUs use a larger portion of their transistors on
compute units and registers, and fewer transistors on cache, branch prediction and out-
of-order execution. Memory latencies are primarily hidden by using a large number
of concurrent threads rather than cache. Consequently, GPUs offer a much higher
parallel performance but a far lower sequential one. Scientific computations, such
as finite element assembly, often involve applying the same computation to a large
number of mesh elements thereby allowing for very wide parallelism and thus GPU
acceleration.

While there are several ways of programming GPUs, CUDA [NVIDIA Corporation
2019a] is by far the most common as of now. CUDA extends C++ and FORTRAN to
allow offloading subprograms, called kernels, from a host CPU by launching them on
a device (i.e., GPU). Typically, a kernel launch contains a large number of concurrent
threads, each corresponding roughly to a loop iteration on a CPU. Parallel execution
of these threads is scheduled by the GPU hardware.

113

III. GPU-accelerated FEM with auto-code generation

1. Partition mesh T into T0,T1, . . . ,T%−1
2. for ? = 0, 1, . . . , % − 1 in parallel do
3. for all mesh cells) ∈ T? do
4. G ← cell_coords()) — Vertex coordinates
5. 2 ← cell_coeffs()) — Coefficients
6. `, a ← cell_mapping()) — Local-to-global mappings
7. �4 ← tabulate_tensor(G, 2) — Compute element matrix
8. for 9 = 0 to< − 1 and : = 0 to = − 1 do
9. if ` (9) or a (:) subject to boundary conditions then
10. (�4)9,: ← 0

11. end if
12. end for
13. MatSetValues(�,�4 , `, a) — Add �4 to global matrix �
14. end for
15. end for

Algorithm 2. Pseudocode of a CPU-based algorithm for finite element assembly of a global
matrix � from a bilinear form.

Though host and device memory are separate, CUDA allows accessing both through
a shared address space. Thus, a pointer implicitly carries information on whether it
points to host or device memory. CUDA also offers routines for explicitly moving
data between host and device memory. If a particular host-side array is repeatedly
involved in data transfers, then it is recommended to use page-locked (or pinned)
memory. Doing so ensures that no page faults are caused by copying to or from the
page-locked host memory. As a consequence, the CUDA runtime copies data directly
to its destination without using an intermediate buffer, significantly improving the
effective bandwidth of data transfers between host and device.

As CUDA is proprietary, it is restricted to NVIDIA GPUs. With the increased
popularity of GPUs by other vendors, platform-independent alternatives such as
OpenCL become more and more interesting.

3 GPU implementation of finite element assembly

In this section, we begin with the existing CPU-based assembly algorithm in FEniCS,
and then explain how the form compiler is extended to generate CUDA C++ kernels,
based on two algorithmic approaches, for GPU-based finite element assembly.

3.1 Baseline CPU implementation

As the starting point, let us briefly discuss the current CPU-based finite element
assembly algorithm used in FEniCS. Algorithm 2 shows a high-level pseudocode for
the case of assembling a global coefficient matrix from a bilinear form.

Note that prior to assembly, FEniCS partitions the computational mesh, assigning
each part to a different processor. The global vector or matrix can thus be distributed

114

GPU implementation of finite element assembly

among the participating processors. Each processor then performs assembly over its
portion of the mesh and communicates with others using MPI (when needed).

If a linear or bilinear form consists of more than one integral, then assembly is
performed for one integral at a time. For each integral, a loop is carried out over a set
of mesh entities, most often the cells of the mesh. It is sometimes necessary to loop
over boundary faces to handle boundary conditions.

For each mesh cell, the first step is to read from memory the vertex coordinates of
the mesh cell. It may also be necessary to fetch some problem-dependent constants or
coefficient values. Second, an element vector or matrix is computed by invoking the
tabulate tensor kernel that was generated by the form compiler. This kernel uses the
cell’s vertex coordinates and coefficients, plus the PDE-specific details.

Once an element vector or matrix has been computed, its values are added to
the global vector or matrix. In the case of a vector, each entry of an element vector
corresponds to an entry in the global vector as determined by a local-to-global mapping.
Otherwise, for a bilinear form, each entry of an element matrix corresponds to a row
and a column of the global matrix as determined by local-to-global mappings of the
test and trial spaces. So an additional step is needed to locate the correct position
in the array of non-zero matrix values of the global, sparse matrix. The current
assembly algorithm of FEniCS delegates this step to PETSc [Balay et al. 2019], a library
that FEniCS generally uses to handle sparse matrices and linear solvers. Specifically,
element matrix values are added to the global matrix by calling PETSc’s MatSetValues
function, which finds the location of each non-zero value by performing a binary
search among the column indices of the relevant row in the global matrix.

There are some additional details concerning Dirichlet boundary conditions. First,
element vector or matrix values subject to Dirichlet conditions are set to zero before
being added to the global vector or matrix. Second, after the assembly of all the form
integrals, the global matrix is modified by setting the diagonal equal to one for rows
where Dirichlet conditions apply.

3.2 CUDA kernels for element vector and matrix

Recall that the form compiler, FFC, is responsible for translating a variational form
written in UFL into a tabulate tensor kernel needed for computing element vectors or
matrices. Our first step towards offloading assembly to a CUDA device is to extend FFC
to emit a tabulate tensor kernel compatible with CUDA C++. Since the PDE-specific
variational forms are usually provided at runtime, we use NVIDIA’s runtime compila-
tion API (NVRTC) [NVIDIA Corporation 2019b]. Given a string of CUDA C++ source
code, NVRTC produces compiled and optimised assembly language code for the PTX
instruction set architecture. The PTX assembly is then loaded using the CUDA driver
API [NVIDIA Corporation 2019a] by calling the function cuModuleLoadDataEx, which
further compiles PTX assembly to CUDA device code for a specific GPU model. Once a
module is loaded, one can obtain device-side functions annotated with the __global__
keyword, and the host may launch CUDA kernels to execute those functions on a
CUDA device.

Luckily, the C code generated by the original FFC for the usual tabulate tensor
kernel is almost compatible with CUDA C++. Only minor adaptations are needed

115

III. GPU-accelerated FEM with auto-code generation

Copy input
to device

Local assembly

Copy element
matrices to host

Global assembly

Data
transfer

Device

Host Solve

(a) GPU-based local assembly

Copy input
to device

Local and global
assembly

Copy global matrix
values to host

Solve

(b) GPU-based global assembly

Figure 1. Diagram of host- and device-side operations and memory transfers for two GPU-based
assembly algorithms.

to satisfy the NVRTC compiler (otherwise some standard library headers cannot be
directly included in the source code passed to NVRTC). Moreover, the C code is already
sufficiently optimised to be used directly for GPU-based assembly.

3.3 GPU-based local assembly

The simplest strategy for migrating assembly to a GPU is to offload only the computa-
tion of element matrices/vectors, keeping PETSc to add the computed values to a global
matrix/vector on the host. Because each element vector or matrix is independent, this
“local” assembly is easily parallelised. The left side of Figure 1 illustrates how the work
is divided between the host and device.

Before assembly, the required input data is copied from host memory to device
memory, including vertex coordinates of the mesh, local-to-global mappings, boundary
markers for Dirichlet boundary conditions, etc. The majority of this data usually does
not change over the course of an application that repeatedly assembles linear systems.
Thus, a large part of the cost associated with these transfers is paid only once.

As shown in Algorithm 3, the auto-generated main assembly kernel is a grid-stride
loop, where thread 8 computes element vectors or matrices for cells 8 , 8 + # , 8 + 2# ,
and so on, with # being the total number of threads. The cell vertex coordinates are
stored in per-thread arrays with automatic storage duration, which means that the
CUDA compiler will try to place the data in registers. If that is not possible, local
memory is used, potentially transferring to and from GPU device memory. Each call
to tabulate_tensor computes an element matrix, placing the computed values in
global memory. Moreover, element matrix values are set to zero whenever Dirichlet
boundary conditions apply. Afterwards, element matrices are transferred from device
memory to host memory, where each element matrix is added to the global matrix by
calling the PETSc function MatSetValues.

Discussion

The main drawback of offloading local assembly to a GPU and performing global
assembly on the host is the intermediate transfer of element matrices/vectors from
device to host, moving a large volume of data over a connection with relatively low
bandwidth. For example, a mesh with ten million cells and a discretisation with 4 × 4

116

GPU implementation of finite element assembly

void __global__ cuda_local_assembly(
int num_active_cells ,
const int * active_cells ,
const int * vertices_per_cell ,
const double * vertex_coords ,
int num_coeffs_per_cell ,
const double * coeffs , const double * constants ,
const int * dofmap0 , const int * dofmap1 ,
const char * bc0 , const char * bc1 ,
double * values)

{
for (int i = blockIdx.x*blockDim.x+threadIdx.x;

i < num_active_cells;
i += blockDim.x * gridDim.x)

{
// Set element matrix values to zero
double* Ae = &values[i*4*4];
for (int j = 0; j < 4; j++) {

for (int k = 0; k < 4; k++)
Ae[j*4+k] = 0.0;

}

// Gather cell vertex coords and coefficients
int c = active_cells[i];
double cell_vertex_coords [4*3];
for (int j = 0; j < 4; j++) {

int vertex = vertices_per_cell[c*4+j];
for (int k = 0; k < 3; k++) {

cell_vertex_coords[j*3+k] =
vertex_coords[vertex *3+k];

}
}
const double * cell_coeffs = &coeffs[

c*num_coeffs_per_cell];

// Compute element matrix
tabulate_tensor(

Ae, cell_coeffs , constants ,
cell_vertex_coords);

// Handle Dirichlet boundary conditions
(...)

}
}

Algorithm 3. Generated CUDA C++ code for the local assembly approach. This example uses
4 × 4 element matrices, corresponding to first-order elements on a tetrahedral mesh.

117

III. GPU-accelerated FEM with auto-code generation

element matrices will lead to transferring 1.28GB, taking at least 80ms over a typical
16GB/s PCIe connection. This is far longer than it takes for the GPU to compute the
element matrices themselves.

Moreover, many applications use low-order finite elements for which calculating
the element matrices is not very expensive. Instead, most of the time is spent adding
values to the global matrix. So it does not pay off to only offload local assembly to
GPU. In the next section, we extend FFC to also offload the global assembly, letting the
GPU add element matrices/vectors to the global matrix/vector.

On a related note, GPU-based local assembly has previously been used inmatrix-free
methods [Ljungkvist 2014], where global assembly is avoided entirely. This however
requires a matrix-free linear solver that runs on the GPU. Matrix-free methods are
beyond the scope of this paper, and we focus only on global assembly in the following.

3.4 GPU-based global assembly

To improve the GPU-based local assembly described above, we have further extended
the form compiler by a “global” approach. This has the goal of migrating the global
assembly also to GPU, as shown on the right-hand side of Figure 1.

If we assume that the global matrix is stored in compressed sparse row (CSR)
format, then the row pointers and column indices of non-zero matrix entries are copied
to device memory prior to assembly. This is done once, since the matrix structure
usually does not change. Afterwards, the newly computed global matrix values are
copied from device memory to host memory. The amount of data transferred depends
on the connectivity of the mesh and the particular discretisation used, but it is always
much smaller than the local assembly approach. In Section 4.3, we discuss scenarios
where even copying the global matrix values can be avoided.

The auto-generated global assembly kernel is shown in Algorithm 4, with two
main differences compared to Algorithm 3. First, element matrices are now stored in
per-thread arrays with automatic storage duration, meaning that the compiler will use
registers or local memory. Second, for each cell, a final step is carried out, where a
binary search is used for each entry of the element matrix to find the corresponding
position in the array of global matrix values. Once the location is found, the element
matrix value is added to the global matrix value using an atomic operation, which is
necessary to avoid race conditions between threads that may attempt to update the
same value simultaneously.

4 Optimisations

In this section, we explore several optimisations for the GPU-based finite element
assembly kernels described in the previous section. Our choice of optimisations is
primarily guided by profiling assembly kernels for the Poisson problem. We expect
most of the ideas discussed here to generalise to assembly kernels for other problems.
However, some caution is warranted, since other assembly kernels are likely to have
a different balance between computations and memory accesses, rendering some
optimisations less helpful.

118

Optimisations

void __global__ cuda_global_assembly(
(...) // Input arguments (see Algorithm 3)
const int * row_ptr ,
const int * column_indices ,
double * values)

{
for (int i = blockIdx.x*blockDim.x+threadIdx.x;

i < num_active_cells;
i += blockDim.x * gridDim.x)

{
(...) // Set element matrix values to zero
(...) // Gather vertex coords and coefficients
(...) // Compute element matrix

// Add values to global matrix , skipping
// degrees of freedom subject to Dirichlet cond.
for (int j = 0; j < 4; j++) {

int row = dofmap0[c*4+j];
if (bc0 && bc0[row]) continue;
for (int k = 0; k < 4; k++) {

int column = dofmap1[c*4+k];
if (bc1 && bc1[column]) continue;
int r = binary_search(

row_ptr[row+1] - row_ptr[row],
&column_indices[row_ptr[row]], column);

r += row_ptr[row];
atomicAdd (& values[r], Ae[j*4+k]);

}
}

}
}

Algorithm 4. Generated CUDA C++ code for global matrix assembly. Some parts of the kernel
are identical to Algorithm 3 and have therefore been abbreviated.

119

III. GPU-accelerated FEM with auto-code generation

4.1 Lookup table for global matrix values

Investigating the GPU-based global assembly kernel for the Poisson problem, the
NVIDIA profiler clearly shows that performance is limited by memory latency, rather
than computations or memory bandwidth. In fact, the profiler reveals that for 95 % of
program counter samples retrieved during execution, threads are stalled waiting on
memory dependencies. For this kernel, the observed latency is closely correlated with
thread divergence caused by branching during binary searches and handling boundary
conditions.

In most applications, assembly is carried out repeatedly with local-to-global map-
pings and boundary condition markers remaining the same between iterations of
a non-linear solver or time steps in a time-dependent problem. In this case, it suf-
fices to perform binary searches for element matrix entries only once as a precom-
putation, storing the results in a lookup table. During assembly, the lookup table
(nonzero_locations in Algorithm 5) is consulted to find the locations of global ma-
trix non-zeros. Both the computation of the lookup table and the global assembly
routine are automatically generated by our extended form compiler.

The lookup table itself requires an additional 4"=2 bytes to be read from global
memory, where " is the number of mesh cells and = is the number of rows and
columns of an element matrix. On the other hand, it is no longer necessary to read
local-to-global mappings, markers for Dirichlet boundary conditions, row pointers or
column indices of the global matrix, which amount to 4# , # , 4(# + 1), and 4 bytes,
respectively, where # is the number of rows and columns and is the number of
non-zeros of the global matrix. Moreover, accesses to the lookup table are easily
coalesced and therefore enjoy the high bandwidth of the device memory.

4.2 Rowwise assembly

Based on an idea explored by Cecka et al. [2010], we also automatically generate
code for a variant of the GPU-based global assembly algorithm, where assembly is
performed row by row with respect to the global matrix, rather than cellwise. The
resulting algorithm, shown in Algorithm 5, requires a mapping from the global degrees
of freedom of the test space to the mesh cells that contain them. A drawback of
rowwise assembly is that some redundant operations are carried out whenever a
thread computes an element matrix for a given row and cell, but discards computed
values unrelated to the current row. However, the advantage is that accesses to the
global matrix values are more regular compared to cellwise assembly, and therefore
usually faster overall.

4.3 Avoiding CPU-GPU communication

GPU computing inevitably requires copying data between host and device. Since
these transfers are time consuming, it is crucial to avoid such data transfers wherever
possible to prevent them from becoming a performance bottleneck. For example, if a
linear system is assembled on a GPU and the subsequent linear solver also runs on

120

Optimisations

void __global__ cuda_rowwise_assembly(
(...) // Input arguments (see Algorithm 3)
const int * cells_per_dof_ptr ,
const int * cells_per_dof ,
const int * nonzero_locations , // Lookup table
const int * element_matrix_rows ,
int num_rows ,
double * values)

{
for (int p = blockIdx.x*blockDim.x+threadIdx.x;

p < cells_per_dof_ptr[num_rows];
p += blockDim.x * gridDim.x)

{
(...) // Set element matrix values to zero
(...) // Gather vertex coords and coefficients
(...) // Compute element matrix

// Add values to the global matrix , skipping
// degrees of freedom subject to Dirichlet cond.
for (int j = 0; j < 4; j++) {

if (j != element_matrix_rows[p]) continue;
for (int k = 0; k < 4; k++) {

int l = ((p/warpSize)*4+k) * warpSize +
p % warpSize;

int r = nonzero_locations[l];
if (r < 0) continue;
atomicAdd (& values[r], Ae[j*4+k]);

}
}

}
}

Algorithm 5. Generated CUDA C++ code for rowwise assembly of a global matrix.

the same device, then there is no need to copy the matrix or vector to the host in the
meantime.

Unfortunately, PETSc, which FEniCS relies on for its linear solvers, does not entirely
support this mode of operation at the moment. Although PETSc provides an API for
accessing pointers to CUDA device memory for its CUDA-based vectors, there is no
such API available for accessing pointers to the non-zero values of sparse matrices
stored on the device. To be more specific, suppose one of PETSc’s CUDA-based linear
solvers is to be used and that an array of non-zero matrix values is computed on a
CUDA device, for instance, using one of the GPU-based assembly algorithms presented
here. To provide PETSc with the newly computed matrix values, it is necessary to
first copy them from GPU device memory to host memory before PETSc once more
copies the same values from host memory back to the device to update its internal
representation.

121

III. GPU-accelerated FEM with auto-code generation

Table 1. Hardware used in our experiments.

NVIDIA V100 Intel Xeon Gold 6130 AMD Epyc 7601

Instruction set PTX x86-64 x86-64
Microarchitecture Volta Skylake (server) Zen
SMs/CPU cores 80 32 64
Core frequency 1.46GHz 1.9 to 3.6GHz 2.7 to 3.2GHz
DP FLOP rate 7 450Gflop/s 1 946Gflop/s 1 382Gflop/s
Max. bandwidth 898GB/s 256GB/s 342GB/s
STREAM Triad
bandwidth

887GB/s 147.1GB/s 161.4GB/s

The cost of copying data in this manner is illustrated in numerical experiments
in Section 5.2, where we show that it, in fact, dominates the assembly performance.
To avoid this issue, we added functions to PETSc that allow the user to directly
access pointers to device-side storage of matrix values for PETSc’s CUDA-based sparse
matrices.

5 Numerical experiments

In this section, we measure our GPU-based finite element assembly implementations
to highlight strengths and weaknesses of various approaches and the effectiveness of
the proposed optimisations. We also validate our GPU-enabled form compiler using
a non-linear solid mechanics problem and a detailed comparison of CPU and GPU
performance.

5.1 Experimental setup

Hardware

Our GPU experiments were carried out on an NVIDIA V100 GPU that belongs to
an NVIDIA DGX-2 system. The DGX-2 consists of two Intel Xeon Platinum 8168
CPUs and sixteen V100 GPUs. In addition, some experiments were carried out on two
multi-core CPU systems: a dual-socket Intel Xeon Gold 6130 and a dual-socket AMD
Epyc 7601. An overview is found in Table 1, including measurements of achievable
bandwidth based on BabelStream [Deakin et al. 2018] for NVIDIA V100 and the
STREAM benchmark [McCalpin 2013] for Intel Xeon and AMD Epyc. Throughout the
benchmarks presented here, we use CUDA 10.1, GCC 9.2.0 and the compiler flags -O3
-march=native.

Computational meshes

The following experiments use unstructured, tetrahedral meshes made up of about 6
to 17 million tetrahedral cells, as shown in Table 2. First, there is a standard, uniform
mesh of the unit cube, consisting of 100 × 100 × 100 cubes, each subdivided into six

122

Numerical experiments

Table 2. Computational meshes used in numerical experiments.

Mesh Vertices Cells

Uniform mesh 1 030 301 6 000 000
Cardiac mesh 1 1 255 775 6 735 654
Cardiac mesh 20 3 019 809 16 907 270
Cardiac mesh 41 2 226 802 12 255 517
Cardiac mesh 44 1 958 816 10 697 116

Table 3. Performance (in Mcell/s) of assembling a matrix for the Poisson problem.

Mesh Xeon Epyc Local Global
Lookup
table Rowwise

Uniform mesh 41.1 58.4 3.7 1100.5 1336.9 1626.9
Cardiac mesh 1 35.4 56.1 2.1 1232.5 1183.1 1720.0
Cardiac mesh 20 34.6 58.0 2.1 582.5 996.6 1601.4
Cardiac mesh 41 35.1 58.7 1.9 469.7 909.8 1607.5
Cardiac mesh 44 35.0 56.1 2.0 533.7 983.6 1692.3

tetrahedra. Second, we employmeshes from a cardiacmodelling application [Marciniak
et al. 2017], based on patient data from a Danish study on cardiac disease [Jabbari
et al. 2015]. These meshes are more representative of real-world applications involving
unstructured meshes.

5.2 GPU-based finite element assembly

In this section, we consider the performance of different GPU-based assembly al-
gorithms for the Poisson problem. The main results are shown in Table 3, which
compares the performance of assembling a matrix for the Poisson problem using dif-
ferent CUDA-based assembly algorithms on NVIDIA V100. Performance is reported as
the number of mesh cells processed per second, in millions, or Mcell/s. For comparison,
the performance of FEniCS’s parallel, CPU-based assembly on Xeon and Epyc is also
shown.

The ineffectiveness of the local assembly approach is apparent. Its poor perfor-
mance is attributed to expensive data transfers and that adding element matrices to
the global matrix is performed on a single core of the host. In contrast, a tremendous
acceleration is achieved by offloading global assembly. With global assembly perfor-
mance varying from about 450 to 1 250Mcell/s, the structure of the computational
mesh has a significant performance impact. This is at least partly explained by the fact
that larger, unstructured meshes, such as Cardiac mesh 20, 41 and 44, are less likely to
benefit from caching on NVIDIA V100 when accessing vertex coordinates and global
matrix data.

Further, using a lookup table for the sparse matrix non-zero locations leads to a
notable speedup of about 1.7 to 1.9 for the larger meshes. Also, a further speedup of

123

III. GPU-accelerated FEM with auto-code generation

up to 70% is gained by employing the rowwise assembly algorithm for the Poisson
problem.

If global assembly for large meshes does indeed suffer from poor cache reuse and
latency induced by stalled threads waiting on memory dependencies, then replacing
binary searches and accompanying irregular memory accesses with a lookup table is
likely to improve the situation simply because of fewer memory dependencies, thus
allowing threads to be scheduled in a way that more latency is covered. For the same
reason, rowwise assembly also improves performance due to better cache reuse for
the global matrix values.

Finally, for a more fair comparison of GPU and CPU performance, we implemented
a simple benchmark, independent of FEniCS, of an OpenMP-parallel, CPU-based
assembler for the Poisson problem with first-order elements. This benchmark also uses
both the lookup table and rowwise assembly optimisations, which yield significantly
improved performance. Using 64 cores on AMD Epyc, the resulting performance for
assembling a matrix for Cardiac mesh 20 is about 390Mcell/s. Nonetheless, GPU-based
assembly on NVIDIA V100 is about four times faster.

Impact of CPU-GPU data transfers

Figure 2 compares the time spent performing assembly with the time required to
subsequently transfer data between host and device, as explained in Section 4.3.

Measurements obtained with the NVIDIA profiler indicate that the effective band-
widths of these transfers are 4.6 and 13.0GB/s for pageable and page-locked memory,
respectively. Thus, even in the case of page-locked memory, where the effective band-
width is quite close to the theoretical maximum bandwidth of 16GB/s, data transfers
nearly triple the overall global assembly time. Even worse, for the optimised, rowwise
assembly, transferring global matrix values back and forth would increase the assembly
time by a factor of about five.

5.3 Validating automated code generation for GPU-based PDE
solvers

Finally, we use the extended form compiler for GPU-based assembly and solution of
a real-world, solid mechanics problem described by Ølgaard and Wells [2012]. The
physical problem is posed as finding a 3D displacement field for a solid body by
minimising the total potential energy for a hyperelastic material model. Due to a
limited amount of space, we cannot dive into the mathematical details, but rather
refer the reader to Ølgaard and Wells [2012]. However, we point out that the problem
features a non-linear, vector PDE with variable coefficients, a mixture of boundary
conditions, and an unstructured computational mesh. This illustrates the generality
of the implemented form compiler and the automated code generation approach for
GPU-based assembly and solution of finite element problems.

124

Numerical experiments

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Global
pageable

Global
page-locked

Global
no copy

Lookup table
no copy

Rowwise
no copy

Ti
m
e
(s
ec
on

ds
)

Device-side assembly
Copy to host

Copy to device

Figure 2. Time (in seconds) spent in assembly and subsequently copying data between GPU
device memory and main memory for the Poisson problem with “Cardiac mesh 20” on NVIDIA
V100.

Solver

A Newton solver is used to solve the non-linear hyperelasticity problem. The solver
converges when the L2-norm of the difference in the approximate solutions from
one iteration to the previous iteration falls below a tolerance of 10−12. The linear
system that arises during each Newton iteration is solved using the conjugate gradient
method with a convergence tolerance of 0.1 for the relative residual, which was found
to give the overall fastest solution time. The conjugate gradient solver is implemented
by PETSc, which uses NVIDIA’s cuSPARSE library [NVIDIA Corporation 2020a] for
GPU-accelerated sparse matrix operations. Since rowwise assembly is not currently
optimised for the case of a vector PDE, the GPU implementation uses the global
assembly algorithm with a lookup table.

125

III. GPU-accelerated FEM with auto-code generation

Table 4. Performance of assembly and solution of linear systems for a hyperelasticity problem
on Intel Xeon Gold 6130, AMD Epyc 7601, and NVIDIA V100.

Assembly, Mcell/s Solve, iteration/s

Mesh Xeon Epyc V100 Xeon Epyc V100

Uniform mesh 3.50 5.24 35.25 78.57 157.91 328.85
Cardiac mesh 1 3.88 6.17 31.46 64.34 136.79 279.06
Cardiac mesh 20 3.94 5.71 31.04 25.41 48.19 114.45
Cardiac mesh 41 3.95 4.95 30.73 35.14 69.16 156.71
Cardiac mesh 44 3.96 5.87 30.94 39.58 81.94 178.92

Comparing CPU and GPU performance

Table 4 shows the performance on Intel Xeon Gold 6130, AMD Epyc 7601 and NVIDIA
V100 of both assembly and solution stages. The former is reported as the number of
mesh cells processed per second, in millions, and the latter is given in iterations per
second of the linear solver.

To summarise, NVIDIA V100 demonstrates a speedup of about 8 and 5 over Intel
Xeon and AMD Epyc, respectively, during assembly. The speedups for the linear solver
range from 4.2 to 4.5 and 2.0 to 2.4 for Intel Xeon and AMD Epyc, respectively.

Figure 3 shows the execution time of the hyperelasticity solver on our three
hardware platforms, though we omit initialisation steps that are required regardless of
the method, such as loading the mesh and creating sparse matrices. We have however
included costs that are incurred specifically due to using the GPU-based solver, such
as copying data to GPU device memory and computing the lookup table described in
Section 4.1.

Most of the time is spent by the linear solver, which sees a substantial acceleration
from moving to a GPU. This is accredited to the acceleration of matrix-vector multi-
plications, which tend to be limited by memory bandwidth. Recall that the memory
bandwidth of GPU device memory on NVIDIA V100 is considerably higher than the
memory bandwidth on either of the multi-core CPU platforms.

Assembling linear systems on NVIDIA V100 is also noticeably faster than on the
CPUs. Although the initial costs related to performing assembly on the GPU are
fairly high in this example, these are likely to become negligible in the case of a
time-dependent problem.

6 Related work

The implementation of FEniCS is described in the FEniCS book [Logg et al. 2012],
alongside several applications to solving PDEs. During the course of the development
of FFC and other, related form compilers, numerous strategies have been explored with
regards to generating and optimising code for computing element vectors and matrices.
For example, a tensor representation [Kirby et al. 2005; Kirby and Logg 2006; Rognes
et al. 2009] or computer algebra [Alnæs and Mardal 2010; Russell and Kelly 2013] can

126

Related work

Figure 3. Execution time (in seconds) for solving a hyperelasticity problem on Intel Xeon Gold
6130, AMD Epyc 7601, and NVIDIA V100.

0

100

200

300

400

500

600

700

800

Xe
on

Ep
yc

V
10
0

Xe
on

Ep
yc

V
10
0

Xe
on

Ep
yc

V
10
0

Xe
on

Ep
yc

V
10
0

Ti
m
e
(s
ec
on

ds
)

CUDA initialisation
Assembly

Solve

Cardiac
mesh 44

Cardiac
mesh 41

Cardiac
mesh 20

Cardiac
mesh 1

127

III. GPU-accelerated FEM with auto-code generation

sometimes be used to simplify or compute integrals exactly. Other approaches include
optimising kernels based on numerical integration [Ølgaard and Wells 2010], various
low-level loop optimisations [Homolya et al. 2018; Luporini et al. 2017; Luporini et al.
2015], or explicit vectorisation [Sun et al. 2020]. In addition, Knepley and Terrel [2013]
and Banaś et al. [2014] were able to optimise GPU kernels for computing element
matrices through well-considered assignment of work to different threads and memory
layout for data in global memory, as well as the use of shared memory to speed up
certain memory accesses.

Cecka et al. [2010] studied several different GPU-based algorithms for global
assembly for the Poisson problem, including the usual cellwise algorithm, a rowwise
algorithm, which we adopted in Section 4.2, and a third algorithm that assigns each
non-zero of the global matrix to a separate thread. Experiments show that the third
method can be worthwhile, though there are challenges related to limited availability
of shared memory, load imbalance, and a large number of redundant operations being
carried out.

For a time-dependent, non-linear diffusion equation, Pichler and Haase [2017]
offload assembly to a GPU using the CUDA C++ template library Thrust [NVIDIA
Corporation 2020b], whose high-level interface is used to avoid writing CUDA ker-
nels. Moreover, global assembly is carried out using a precomputed lookup table to
add element matrix values to a global matrix, in the same way that is described in
Section 4.1.

The translation from Unified Form Language to low-level kernels for GPUs has
previously been considered by Markall et al. [2010], where a prototype compiler is
discussed. At the same time, the authors also advocate bypassing global assembly to
avoid the costly process of searching for global matrix non-zeros during assembly (see
also Markall et al. [2013]). The result, which is called a local matrix approach, is similar
to a matrix-free method, although element matrices are explicitly stored in GPU device
memory instead of being recomputed as they are needed.

An example of GPU acceleration of both assembly and solution of linear systems
for a finite element problem is given by Fu et al. [2014], including a more advanced
linear solver based on the conjugate gradient method with an algebraic multigrid
preconditioner. Reguly and Giles [2015] thoroughly investigate GPU acceleration for
both assembly and solution of linear systems for the Poisson problem, comparing
global assembly using different sparse matrix formats to the local matrix approach and
matrix-free methods. Roughly speaking, the linear solver benefits from global assembly
whenever first-order elements are used, while other strategies may be advantageous
for second-, third- and fourth-order elements. Further research on matrix-free methods
has been conducted by Ljungkvist [2014] and Kronbichler and Ljungkvist [2019].

7 Conclusion

We have enabled automated generation of GPU code for finite element assembly,
which lays the foundation for fully GPU-accelerated PDE solvers in FEniCS. The
GPU-accelerated solution of a real-world non-linear PDE demonstrates the achievable

128

References

speedup, while still retaining the ease of use offered by UFL as a high-level, domain-
specific language for finite element problems.

Furthermore, global assembly can be optimised by replacing costly binary searches
with the use of a precomputed lookup table. Performing the assembly row by row is
also shown to improve performance for the Poisson problem with first-order elements.

We stress the need for paying careful attention to CPU-GPU data transfers to
successfully accelerate finite element computations. Otherwise, the benefits of GPU-
based assembly can easily dissipate. Our strategy is different from that chosen by
many other libraries, which is based on separately offloading the assembly and solution
phases to a GPU. Indeed, a high-level view of the entire PDE solving procedure is
necessary to benefit from seamlessly integrated GPU acceleration.

Users of the FEniCS framework can use our GPU-enabled form compiler to ac-
cess the other advanced features of FEniCS, but also benefit from GPU-accelerated
computations.

Acknowledgements

This work was supported by the Research Council of Norway under contract 251186.
Also, the research presented in this paper has benefited from the Experimental Infras-
tructure for Exploration of Exascale Computing (eX3), which is financially supported
by the Research Council of Norway under contract 270053.

References

Alnæs, M. S., A. Logg, K. B. Ølgaard, M. B. Rognes, and G. N. Wells (Feb. 2014). “Uni-
fied form language: A domain-specific language for weak formulations of partial
differential equations”. In: ACM Trans. Math. Softw. 40.2. issn: 0098-3500. doi:
10.1145/2566630.

Alnæs, M. S. and K.-A. Mardal (Jan. 2010). “On the Efficiency of Symbolic Computations
Combined with Code Generation for Finite Element Methods”. In:ACM Trans. Math.
Softw. 37.1. issn: 0098-3500. doi: 10.1145/1644001.1644007.

Anzt, H., E. Boman, R. Falgout, P. Ghysels, M. Heroux, X. Li, L. Curfman McInnes,
R. Tran Mills, S. Rajamanickam, K. Rupp, B. Smith, I. Yamazaki, and U. Meier
Yang (2020). “Preparing sparse solvers for exascale computing”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
378.2166. doi: 10.1098/rsta.2019.0053.

Arnold, D. N. and A. Logg (Nov. 2014). “Periodic Table of the Finite Elements”. In: SIAM
News 47 (9). url: http://www.femtable.org/.

Balay, S., S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A.
Dener, V. Eijkhout, W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley, D. May, L. C.
McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. Smith, S. Zampini, H. Zhang,
and H. Zhang (2019). PETSc Web page. url: https://www.mcs.anl.gov/petsc.

Banaś, K., P. Płaszewski, and P. Macioł (2014). “Numerical integration on GPUs for
higher order finite elements”. In: Computers & Mathematics with Applications 67.6,
pp. 1319–1344. issn: 0898-1221. doi: 10.1016/j.camwa.2014.01.021.

129

https://doi.org/10.1145/2566630
https://doi.org/10.1145/1644001.1644007
https://doi.org/10.1098/rsta.2019.0053
http://www.femtable.org/
https://www.mcs.anl.gov/petsc
https://doi.org/10.1016/j.camwa.2014.01.021

III. GPU-accelerated FEM with auto-code generation

Cecka, C., A. J. Lew, and E. Darve (Aug. 2010). “Assembly of finite element methods on
graphics processors”. In: International Journal for Numerical Methods in Engineering
85.5, pp. 640–669. doi: 10.1002/nme.2989.

Ciarlet, P. G. (2002). The Finite Element Method for Elliptic Problems. Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics. isbn: 0-89871-514-8.

Deakin, T., J. Price, M. Martineau, and S. McIntosh-Smith (2018). “Evaluating attainable
memory bandwidth of parallel programming models via BabelStream”. In: Inter-
national Journal of Computational Science and Engineering 17.3, pp. 247–262. doi:
10.1504/IJCSE.2018.095847.

Fu, Z., T. J. Lewis, R. M. Kirby, and R. T. Whitaker (Feb. 2014). “Architecting the finite
element method pipeline for the GPU”. In: Journal of Computational and Applied
Mathematics 257, pp. 195–211. doi: 10.1016/j.cam.2013.09.001.

Homolya, M., L. Mitchell, F. Luporini, and D. A. Ham (June 2018). “TSFC: A Structure-
Preserving Form Compiler”. In: SIAM Journal on Scientific Computing 40.3, pp. 401–
428. issn: 1064-8275. doi: 10.1137/17M1130642.

Jabbari, R., T. Engstrøm, C. Glinge, B. Risgaard, J. Jabbari, B. G. Winkel, C. J. Terkelsen,
H.-H. Tilsted, L. O. Jensen, M. Hougaard, S. E. Chiuve, F. Pedersen, J. H. Svendsen,
S. Haunsø, C. M. Albert, and J. Tfelt-Hansen (Jan. 2015). “Incidence and risk factors
of ventricular fibrillation before primary angioplasty in patients with first ST-
elevation myocardial infarction: a nationwide study in Denmark”. In: Journal of the
American Heart Association 4.1. issn: 2047-9980. doi: 10.1161/JAHA.114.001399.

Kirby, R. C., M. Knepley, A. Logg, and L. R. Scott (2005). “Optimizing the Evaluation of
Finite Element Matrices”. In: SIAM Journal on Scientific Computing 27.3, pp. 741–
758. issn: 1064-8275. doi: 10.1137/040607824.

Kirby, R. C. and A. Logg (Sept. 2006). “A compiler for variational forms”. In: ACM Trans.
Math. Softw. 32.3, pp. 417–444. issn: 0098-3500. doi: 10.1145/1163641.1163644.

Knepley, M. G. and A. R. Terrel (2013). “Finite Element Integration on GPUs”. In: ACM
Transactions on Mathematical Software 39.2. doi: 10.1145/2427023.2427027.

Kronbichler, M. and K. Ljungkvist (May 2019). “Multigrid for Matrix-Free High-Order
Finite Element Computations on Graphics Processors”. In: ACM Trans. Parallel
Comput. 6.1. issn: 2329-4949. doi: 10.1145/3322813.

Ljungkvist, K. (2014). “Matrix-Free Finite-Element Operator Application on Graphics
Processing Units”. In: Euro-Par 2014: Parallel Processing Workshops. Ed. by L. Lopes,
J. Žilinskas, A. Costan, R. G. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro,
L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, S. L. Scott, S. Lankes,
C. Lengauer, J. Carretero, J. Breitbart, and M. Alexander. Springer International
Publishing, pp. 450–461. isbn: 978-3-319-14313-2. doi: 10.1007/978-3-319-14313-
2_38.

Logg, A., K.-A. Mardal, G. N. Wells, et al. (2012). Automated Solution of Differential
Equations by the Finite Element Method. Berlin: Springer. isbn: 978-3-642-23098-1.
doi: 10.1007/978-3-642-23099-8.

Luporini, F., D. A. Ham, and P. H. J. Kelly (Mar. 2017). “An Algorithm for the Optimiza-
tion of Finite Element Integration Loops”. In: ACM Transactions on Mathematical
Software 44.1. issn: 0098-3500. doi: 10.1145/3054944.

Luporini, F., A. L. Varbanescu, F. Rathgeber, G.-T. Bercea, J. Ramanujam, D. A. Ham,
and P. H. J. Kelly (Jan. 2015). “Cross-Loop Optimization of Arithmetic Intensity for

130

https://doi.org/10.1002/nme.2989
https://doi.org/10.1504/IJCSE.2018.095847
https://doi.org/10.1016/j.cam.2013.09.001
https://doi.org/10.1137/17M1130642
https://doi.org/10.1161/JAHA.114.001399
https://doi.org/10.1137/040607824
https://doi.org/10.1145/1163641.1163644
https://doi.org/10.1145/2427023.2427027
https://doi.org/10.1145/3322813
https://doi.org/10.1007/978-3-319-14313-2_38
https://doi.org/10.1007/978-3-319-14313-2_38
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1145/3054944

References

Finite Element Local Assembly”. In: ACM Transactions on Architecture and Code
Optimization 11.4. issn: 1544-3566. doi: 10.1145/2687415.

Marciniak, M., H. Arevalo, J. Tfelt-Hansen, T. Jespersen, R. Jabbari, C. Glinge, K. A.
Ahtarovski, N. Vejlstrup, T. Engstrom, M. M. Maleckar, and K. McLeod (Jan. 2017).
“From CMR Image to Patient-Specific Simulation and Population-Based Analysis:
Tutorial for an Openly Available Image-Processing Pipeline”. In: STACOM 2016:
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling
Challenges. Ed. by T. Mansi, K. McLeod, M. Pop, K. Rhode, M. Sermesant, and A.
Young. Springer International Publishing, pp. 106–117. isbn: 978-3-319-52718-5.
doi: 10.1007/978-3-319-52718-5_12.

Markall, G. R., A. Slemmer, D. A. Ham, P. H. J. Kelly, C. D. Cantwell, and S. J. Sherwin
(Jan. 2013). “Finite element assembly strategies on multi-core and many-core
architectures”. In: International Journal for Numerical Methods in Fluids 71.1, pp. 80–
97. issn: 0271-2091. doi: 10.1002/fld.3648.

Markall, G. R., D. A. Ham, and P. H. Kelly (2010). “Towards generating optimised finite
element solvers for GPUs from high-level specifications”. In: Procedia Computer
Science 1.1. ICCS 2010, pp. 1815–1823. issn: 1877-0509. doi: 10.1016/j.procs.
2010.04.203.

McCalpin, J. D. (Jan. 2013). STREAM: Sustainable Memory Bandwidth in High Per-
formance Computers. Department of Computer Science School of Engineering
and Applied Science, University of Virginia. Charlottesville, Virginia. url: https:
//www.cs.virginia.edu/stream/.

NVIDIA Corporation (July 2019a). CUDA Driver API: API Reference Manual. NVIDIA
Corporation. url: https://docs.nvidia.com/cuda/cuda-driver-api/.

— (July 2019b). NVRTC – CUDA runtime compilation user guide. NVIDIA Corporation.
url: https://docs.nvidia.com/cuda/nvrtc/.

— (July 2020a). cuSPARSE Library. NVIDIA Corporation. url: https://docs.nvidia.
com/cuda/cusparse/index.html.

— (Aug. 2020b). Thrust Quick Start Guide. NVIDIA Corporation. url: https://docs.
nvidia.com/cuda/thrust/.

Ølgaard, K. B. andG. N.Wells (Jan. 2010). “Optimizations for quadrature representations
of finite element tensors through automated code generation”. In:ACMTransactions
on Mathematical Software 37.1. issn: 0098-3500. doi: 10.1145/1644001.1644009.

— (2012). “Applications in solid mechanics”. In: Automated Solution of Differential
Equations by the Finite ElementMethod. Ed. byA. Logg, K.-A.Mardal, andG. N.Wells.
Berlin: Springer. Chap. 26, pp. 505–526. isbn: 978-3-642-23098-1. doi: 10.1007/978-
3-642-23099-8.

Pichler, F. and G. Haase (Mar. 2017). “Finite element method completely implemented
for graphic processor units using parallel algorithm libraries”. In: The International
Journal of High Performance Computing Applications 33.1, pp. 53–66. doi: 10.1177/
1094342017694703.

Rathgeber, F., D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T.
Bercea, G. R. Markall, and P. H. J. Kelly (Dec. 2016). “Firedrake: Automating the
Finite Element Method by Composing Abstractions”. In: ACM Transactions on
Mathematical Software 43.3. issn: 0098-3500. doi: 10.1145/2998441.

131

https://doi.org/10.1145/2687415
https://doi.org/10.1007/978-3-319-52718-5_12
https://doi.org/10.1002/fld.3648
https://doi.org/10.1016/j.procs.2010.04.203
https://doi.org/10.1016/j.procs.2010.04.203
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
https://docs.nvidia.com/cuda/cuda-driver-api/
https://docs.nvidia.com/cuda/nvrtc/
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/thrust/
https://docs.nvidia.com/cuda/thrust/
https://doi.org/10.1145/1644001.1644009
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1177/1094342017694703
https://doi.org/10.1177/1094342017694703
https://doi.org/10.1145/2998441

III. GPU-accelerated FEM with auto-code generation

Reguly, I. Z. andM. B. Giles (Apr. 2015). “Finite Element Algorithms and Data Structures
on Graphical Processing Units”. In: International Journal of Parallel Programming
43.2, pp. 203–239. doi: 10.1007/s10766-013-0301-6.

Rognes, M. E., R. C. Kirby, and A. Logg (Nov. 2009). “Efficient Assembly of � (div) and
� (curl) Conforming Finite Elements”. In: SIAM Journal on Scientific Computing
31.6, pp. 4130–4151. issn: 1064-8275. doi: 10.1137/08073901X.

Russell, F. P. and P. H. J. Kelly (July 2013). “Optimized Code Generation for Finite
Element Local Assembly Using Symbolic Manipulation”. In: ACM Transactions on
Mathematical Software 39.4. issn: 0098-3500. doi: 10.1145/2491491.2491496.

Sun, T., L. Mitchell, K. Kulkarni, A. Klöckner, D. A. Ham, and P. H. Kelly (July 2020).
“A study of vectorization for matrix-free finite element methods”. In: The Inter-
national Journal of High Performance Computing Applications. doi: 10 . 1177 /
1094342020945005.

132

https://doi.org/10.1007/s10766-013-0301-6
https://doi.org/10.1137/08073901X
https://doi.org/10.1145/2491491.2491496
https://doi.org/10.1177/1094342020945005
https://doi.org/10.1177/1094342020945005

	Preface
	List of Papers
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	Research questions
	Summary of research papers
	Discussion and conclusions

	Bibliography
	Papers
	Cache simulation for irregular memory traffic on multi-core CPUs: case study on performance models for sparse matrix-vector multiplication
	Introduction
	Quantifying data traffic for irregular, parallel computations
	A performance model based on data traffic and bandwidth
	Sparse matrix-vector multiplication
	Numerical experiments
	Related work
	Conclusion
	References

	On memory traffic and optimisations for low-order finite element assembly algorithms on multi-core CPUs
	Introduction
	Background
	Cellwise finite element assembly
	Optimisations
	Memory traffic estimates
	Numerical experiments
	Related work
	Conclusion
	References

	Leveraging GPU-accelerated finite element computation with automated code generation: A holistic approach
	Introduction
	Finite element methods and automated code generation
	GPU implementation of finite element assembly
	Optimisations
	Numerical experiments
	Related work
	Conclusion
	References

