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Abstract—It is often believed that a ”race-to-finish” approach,
where processing is finished quickly, is the best way to conserve
energy on modern mobile architectures. However, from earlier
work we know that for continuous multimedia workloads, the best
way to conserve energy is to minimise processor frequency such
that application deadlines are met. In this paper, we investigate
the reasons behind this. We develop an original method to
model dynamic and static power on individual power rails of
the Tegra K1 by only measuring the total power usage of the
board. Our model has an average error of only 8 %. We find
that the way an application scales performance with frequency
is very important for energy efficiency. We demonstrate a 37 %
energy saving by minimising processor and memory frequency
of a video processing filter such that a framerate of 20 FPS is
met.

I. INTRODUCTION

Modern mobile architectures such as NVIDIA’s Tegra K1
SoC [5] have impressive power management capabilities. The
Tegra K1 includes among other components a Low-Power (LP)
core and a High-Performance (HP) quad-core application clus-
ter. The operating system and applications can be hardware-
migrated between the HP cluster and the LP core, the HP
cluster cores can be turned on and off, and the processor
and memory frequencies can be dynamically adjusted to meet
an application’s demands. A challenge for developers of such
heterogeneous architectures is to understand the power usage
of the platform because existing models are too simple and
model the device as one unit, making it hard to optimise the
energy usage of applications.

A particularly challenging type of workload is continuous
multimedia processing, which must generate results according
to a sequence of deadlines. For example, in a scenario where
video is being recorded on a mobile phone, multiple filters are
used for image stabilisation, debarreling, horizon detection,
feature extraction, sharpening and finally encoding in order
to produce the final video. These must be able to process
incoming video frames at a certain framerate while consuming
as little energy as possible. In our preliminary studies [10],
we observed that for such workloads, energy can be saved
by minimising CPU frequency such that application deadlines
are still met. This contradicts the popular belief that a race-
to-finish approach, where CPU frequency is maxed out until
the processing is done, is the most energy-efficient alternative.
Standard Linux frequency scaling algorithms are also easily
outperformed following this heuristic.

In this paper, we investigate the reasons for this, i.e.,
where and how energy is lost under computation on the
Tegra K1. We develop an original method to model individual

static and dynamic power of different hardware blocks of the
Tegra K1 based on extensive measurements of different parts
of the heterogeneous system. This is challenging because it
is impossible to install power usage sensors in series with the
power rails. In this respect, we are the first to provide a method
to model and quantify static and dynamic power on individual
power rails (the HP cluster, LP core and memory rails) for the
Tegra K1 by only measuring the total power usage of the board.
Our experiments show that, for example, the HP cluster with
one core active adds about 0.4 A to the leakage current on the
HP rail. Each additional core adds between 0.15 and 0.20 A.
This analysis is useful to understand static power loss which
is always present, independently of the workload. Dynamic
processor and memory power is workload-specific and must
be re-modelled for each workload. Our model has an average
error of 8 %.

We then implement a set of continuous multimedia work-
loads to study how processor and memory frequency impacts
energy efficiency. We find that the way our workloads scale
performance with memory and processor frequency is a key
aspect to energy efficency. Dynamic power alone grows at
least linearly with frequency, while application performance
typically grows sublinearly. In practice, this means that a lot
more power is needed for a marginal increase in performance,
and performance per watt decreases. We demonstrate a 37 %
energy saving for one of our workloads by minimising pro-
cessor and memory frequency, and choosing the best number
of cores active, such that a target framerate of 20 FPS is still
met. This translates to a 37 % increased battery lifetime in a
continuous video recording scenario.

II. RELATED WORK

There are several works for Tegra SoCs and other em-
bedded mobile platforms that study performance and power
usage of different applications. Many of these consider the
gain in terms of energy efficiency and performance of of-
floading computationally expensive tasks to different types of
application processors, such as GPUs and DSPs. Wang et.
al. [13] consider common image processing operations such
as the fast fourier transform and matrix multiplication on the
Tegra 2, Snapdragon S2 and OMAP platforms. Power usage
and performance have been evaluated on the CPU, GPU and
DSP, or a combination of these. Rister et. al. [8] optimise the
scale-invariant feature transform by partitioning the workload
between the CPU and the GPU of a Tegra 250. However, these
studies have the limitation that, while they are attempting to
investigate power-performance tradeoffs of applications using
different processors, they do not delve deeply into the physical



aspects of modern heterogeneous processors and electrical
components.

Castagnetti et. al. [1] investigate the power usage impact
of voltage regulators and static and dynamic processor power
on an Intel XScale mobile processor. They consider processor
frequency and rail voltage and their relation to power usage.
Dynamic and static power is modelled mathematically, as
similarly proposed by Kim et. al. [3]. Both works are similar
to ours, but we also model dynamic memory power. Pricopi
et. al. [6] propose a performance-counter based model for
power usage of the big.LITTLE architecture, as well as a
cycles-per-instruction based performance model for applica-
tions. The same authors also propose a power management
scheme [9] based on the same observations as we made in
earlier work [10]. To save power, processor frequency should
be minimised while meeting QoS requirements, such as a
specific framerate. Compared to existing work, we first take a
more fine-grained and quantitative approach to understanding
power usage of the heterogeneous Tegra K1 by modelling
power on individual power rails, and then, we investigate the
effects that make workloads energy-inefficient.

III. SYSTEM

A. Hardware Architecture

Insight into the relevant parts of the Jetson-TK1’s hardware
architecture is necessary for the methodology and results
derived in later sections. The Jetson-TK1 is a development
kit with an integrated NVIDIA Tegra K1 SoC and various
supporting infrastructure. This includes different IO compo-
nents such as HDMI and USB controllers, embedded buses,
memory, cooling, a power management controller and other
components. Because we focus on the CPU clusters and
the memory controller, only the Tegra K1 SoC and certain
details about the Jetson-TK1’s power regulators affect our
investigation.

The Tegra K1 consists of 20 power rails [4] which supply
the different functional blocks of the SoC with power. Most of
these are powered down. Figure 1 shows the most important
rails, because they power the components that are utilised by
our workloads. Only the power usage on those rails will vary.

• The core rail powers 40 clocks (most of which are
idle), the LP core and additional shared circuitry
between the LP and the HP cluster.

• The HP rail powers only the HP cluster and its clock.

• The memory rail powers the memory module and the
memory clock.

The clocks drive the different co-processors, memory and
buses. Higher clock frequency increases performance and
power usage of the connected component. An important side-
effect of clocking is that rail voltage increases with clock
frequency, which also increases static power usage. For exam-
ple, as processor frequency is increased, higher input voltages
on the respective rails are needed to sustain the current
throughput.

Table I shows a subset of the Tegra K1 clocks that are
powered-on as well as their frequency and voltage ranges.

Clock Rail Description Frequency Voltage RangeSteps Range [MHz]
cpu g HP Rail HP cluster 20 [204, 2320] [0.80, 1.20]
cpu lp Core Rail LP core 9 [51, 1092] [0.80, 1.05]

emc Core Rail Memory 9 [40, 924] [0.80, 1.01]
pciex Core Rail PCIe 1 250 [0.85]

mselect Core Rail Crossbar 1 204 [0.90]
sbus Core Rail Unknown 1 204 [0.85]

host1x Core Rail Unknown 1 81 [0.80]

TABLE I: The Tegra K1 clocks, voltage and frequency ranges.
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Fig. 1: Critical components of the Jetson-TK1 architecture.

Only the processor and memory clocks can vary; all other
clocks are restricted to one frequency. The HP rail voltage is
only governed by the HP core clock (cpu g). However, the
core rail drives more components, and therefore the core rail
voltage is the maximum voltage required by any of its clocks
at any point in time. Because the only variadic clocks on the
core rail are the cpu lp and emc clocks, and the mselect clock
is set statically, requiring 0.9 V, it is the maximum voltage
required by these that decides the actual core rail voltage (see
Figure 6b). Each rail is powered by at least one regulator.

B. Power Measurement and Synchronisation

The Jetson-TK1 is not fabricated with any power measure-
ment sensors. In previous work [10], we used a low-cost power
measurement sensor attached to the main power rail. This
approach had the disadvantage that the Tegra K1 had to poll the
sensor for readings. To avoid this, we use a Keithley 2280S
power source. In addition to supplying the Jetson-TK1 with
power, the 2280S continuously measures output current with
an accuracy of 0.05 % [2] and a configured sampling rate
of 1 kHz. It also has a small internal circular buffer to store
readings which can be queried over USB. Our experimental
setup can be seen in Figure 2. We use an external logger
machine to store readings. The Tegra K1 can start, stop and
retrieve power measurements directly from the logger machine.

A challenge with this setup is that the measurements are not
synchronised with the Tegra K1. For example, when initiating
power measurements from the Tegra K1, up to 200 ms delay
until the measurements start on the 2280S can be expected.
The delay occurs as an effect of latency between the Tegra K1
and the logger machine, as well as between the logger and
the 2280S. The effect can be seen in Figure 3. We therefore
use a method suggested by Rice and Hay [7] to synchronise
the measurements and the Tegra K1. After initiating measure-
ments, the Tegra K1 cycles the platform between a low-power
and a high-power state in set intervals of 500 ms. This creates
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Fig. 3: A plot of a single synchronisation trace.

a power signature in the measurement trace as can be seen in
Figure 3, which is used to calculate and compensate for the
latency.

C. Workloads

Our workloads are continuous video processing operations
that are performed on raw video streams stored in the YUV
format. The operations are continuous and have per-frame
deadlines in the sense that the repeat the same task on
subsequent video frames. To achieve a framerate of 20 FPS, a
frame must be processed within 50 ms of its arrival. Frames
are read directly from RAM to avoid power usage due to disk
activity. We have implemented image rotation, debarreling and
the Discrete Cosine Transform (DCT) as workloads. In this
section, we explain the operations in more detail.

1) Debarreling: Barrel distortion is an effect that occurs
with wide [11]. Our “debarreling” workload computes a con-
stant debarreling map which only needs to be calculated once
and is subsequently applied to each frame. The debarreling
filter is the least compute-intensive filter we consider.

2) Image Rotation: In the image rotation tests, each frame
of a video stream is being rotated by a continuously increasing
angle. This emulates the operation of video stabilisers. The
pixel shifts need to be recalculated for each frame, which
makes this filter more compute-intensive than debarreling.

3) DCT: While DCT in itself is not a useful video process-
ing filter, it is a recurring part of others, for example compres-
sion. Our workload partitions each frame into macroblocks of
8x8 pixels and performs a naive 2D transformation.

IV. METHODOLOGY AND BACKGROUND

Building an accurate power model that separates the power
usage of the Tegra K1’s CPU clusters and memory is not
trivial, as it is impossible to install power measurement sensors

in series with the power rails. It is only possible to measure
the total power usage of the Jetson-TK1. In this section, we
outline the fundamental power models and summarise our
methodology used to build the power models.

Processor and memory power usage can be divided into
static and dynamic power [3], [12]. These are caused by
leakage current and switching activity within the processor’s or
memory’s transistors, respectively. An estimate of these power
components for an idle system can be seen in Figure 4. The
Jetson-TK1 has a base power usage caused by idle components
(USB controllers, bus adapters etc.). The total power usage can
be expressed by the following formula:

Pjetson = Pcpu,dyn + Php,stat + Pcore,stat + Pmem,dyn + Pbase (1)

where Pcpu,dyn is dynamic processor power (either on the core
or HP rail, depending on the active processor), Php,stat and
Pcore,stat is static power on the core and HP rails, Pmem,dyn
is dynamic memory power and Pbase is the power usage of all
other components and rails, also including static power on the
memory rail. It is important to note that the HP rail is powered
down whenever processing is restricted to the LP core (i.e.
Php,stat = 0).

A. Estimating Dynamic Power of Processor and Memory

Dynamic power for the processor or memory is modelled
as follows [3], [12]:

Pdyn = αCV
2
railf (2)

where Vrail is the rail voltage and f is the frequency of either
the processor or memory. The switching capacitance C and the
switching activity α are unknown variables. C can be viewed
as the potential maximum electric charge to be switched into
the processor or memory per cycle, and has units of coloumbs
per cycle. alpha ∈ [0, 1] is workload-specific, and indicates
(on average) how much of the maximum switching capacitance
C is being switched through the circuitry at every cycle. We
call αC the Dynamic Power Coefficient (DPC) of the processor
or memory.

In principle, our methodology to find the DPC is based on
the observation that increasing processor or memory frequency
does not always increase the rail voltage Vrail, and therefore,
regression can be used to estimate the DPC. For example, for
the HP rail, the rail voltage is approximately 0.81 V between
204 to 1224 MHz (see Figure 5a and 6). In this interval, we

51 181 311 441 572 702 832 962 1092
LP CPU Frequency [MHz]

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Po
w
er
 [W

]

Base Power
Leakage Power (Core)
Dynamic Power (Core)
Dynamic Power (Memory)

1.012 1.012 1.057
Core Voltage [V]

Fig. 4: Breakdown of different power components running the
LP core (Tegra K1 idle, and HP rail off).



0 200 400 600 800 1000 1200
LP CPU Frequency [MHz]

1.55

1.60

1.65

1.70

1.75

1.80
Po

w
er

 [W
]

Constant Voltage Range

aCV^2 = 4.9212E-11

Total Power
Regression Line

0.2

0.4

0.6

0.8

1.0

1.2

C
or

e 
R

ai
l V

ol
ta

ge
 [V

]

Core Rail Voltage

(a)

0.90 0.92 0.94 0.96 0.98 1.00 1.02
Core Rail Voltage [V]

1.54

1.56

1.58

1.60

1.62

1.64

1.66

Po
w
er
 [
W
]

Ileak = 0.67 A

Total Power (Dynamic Power Removed)
Regression Line

(b)

Fig. 5: Estimating DPC (a) and leakage current (b) using regression.
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Fig. 6: Measured rail voltages.

also see that the power usage grows linearly with frequency,
which is in accordance with Equation 2. R = αCV 2

rail
can therefore be estimated by applying single-variable linear
regression over the slope where the rail voltage Vrail is stable.

The DPC αC can then be found by dividing the regression
coefficient R over the rail voltage squared (αC = R

V 2
rail

). The
DPC varies depending on workload and core configuration. For
example, each workload utilises the hardware (α) in slightly
different ways, also depending on the cluster and number of
cores that are active. Therefore, the DPCs must be re-estimated
for each workload and core configuration.

Our method to estimate the DPC so far ignores the fact that
increasing processor frequency can affect memory hardware
utilisation αmem, and vice versa:

• If processor frequency increases while executing a
workload, memory utilisation (and memory dynamic
power) can also increase.

• If memory frequency increases, processor utilisation
(and processor dynamic power) can also increase,
for example if the processor is stalling, waiting for
memory requests to finish.

If these effects are not taken into consideration, an esti-
mated DPC may become too large (overfitting). In our initial
experiments, we noticed that this happened when estimating
processor DPC. Therefore, our workloads attempt to hide the
effects of memory latency with multithreading, so that the
rise in processor utilisation as memory frequency increases is

negligible. The memory DPC can be estimated and dynamic
memory power removed prior to estimating the processor DPC
(see Section VI-A for more details).

B. Static and Base Power

Static power Pstat on a rail is always present as long as
the rail is powered. Static power can be described as [3]:

Pstat = IleakVrail (3)

where Ileak is the leakage current on a power rail. Ignoring
temperature effects, the leakage current is always constant and
does not vary with workload. However, it varies when circuitry
is power gated. For example, a workload can be restricted to
the LP core, or running on the HP cluster, where it is possible
to use up to four cores. Turning off an HP core effectively
removes some leakage current, as that circuitry is power gated
in hardware. Restricting processing to the LP core effectively
disables the HP rail entirely. Therefore it is only necessary to
estimate leakage current once for each core configuration, and
not for each workload.

Leakage current can be estimated by observing the change
in total power usage as the rail’s voltage increases. How-
ever, dynamic (memory and processor) power must first be
estimated and removed. A simplified example is shown in
Figure 5b, where Ileak can be directly estimated by applying
single-variable linear regression to the slope where the rail
voltage Vrail is increasing.

Base power is found by subtracting the estimated dynamic
and static power for the processor and memory from the total
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Fig. 7: Idle power usage.

Core Configuration
LP HP-1 HP-2 HP-3 HP-4

Leakage Currents [A]
Core Rail 0.78 0.76 0.82 0.78 0.80
HP Rail 0.0 0.38 0.54 0.68 0.80

Base Power [W ] 0.82

TABLE II: Estimated leakage currents and base power over
the five different core configurations.

power usage. Estimation of leakage current on the memory rail
is impossible, because the rail voltage is always 1.35 V and
does not change with frequency. It is instead an implicit part
of the base power.

V. ESTIMATION OF LEAKAGE CURRENTS AND BASE
POWER

In this section, we describe our experiments to estimate
leakage currents and base power on the Tegra K1 using the
methodology presented in Section IV. As already mentioned,
leakage current estimation must be done for each core con-
figuration (LP or HP cluster with up to four cores) because
of power-gating, but it must only be done once because it is
independent of the workload. The final leakage currents can
be seen in Table II.

In the following experiments, we discovered that there is
a discrepancy between driver-reported rail voltages and those
measured with a voltmeter. This happens on both rails supplied
with a DCDC regulator (core and HP rails, see Figure 6a and
6b). The best estimates for the leakage current are achieved
by using voltage measurements on the rail.

A. Collecting Power Usage Data

We first have to collect power usage data for all possible
combinations of processor and memory frequencies, in each of
the five core configurations. There are a total of nine LP core
and memory frequencies, as well as twenty HP frequencies
(see Table I). We found that collecting this data when the
Tegra K1 is idle achieves the best estimations. At each step,
we let the Tegra K1 idle for five seconds, log the power usage
over that time, and proceed to the next frequency combination.

B. Estimating Dynamic Memory and LP Core Power

Figure 7a shows the total idle power versus the memory
frequency. The lines in the plot represent different LP core
frequencies. The steeper climb of the curves at higher frequen-
cies is due to increased static power, as voltage on the core
rail is increased at these frequencies. For frequencies below

this point, voltage is stable, and the memory DPC (αmemC)
can be estimated, noting the following points:

• Between the third and the fourth memory frequencies
of Figure 7a (102 MHz and 204 MHz), the increase
in power is less than for the other frequencies.

• At memory frequencies above this, several driver-
reported but undocumented clocks are automatically
activated on the core rail, having a negative impact on
the estimation.

Due to the different growth in power over memory fre-
quency, we do regression over the three lowest memory
frequencies (40 to 102 MHz), and then the next three (204
to 600 MHz) according to our methodology in Section IV-A.
Figure 8 shows the estimated memory DPCs, which are plotted
over the LP core frequencies.

Figure 7b shows the remaining total power over LP core
frequencies when dynamic memory power has been removed.
We see that the power grows linearly with LP core frequency
until the rail voltage starts to increase. We repeated the process
above to estimate the LP core DPC over different memory
frequencies. The result can be seen in Figure 8, where the
remaining power is plotted over memory frequencies. With
these results, dynamic LP core power can be estimated and
removed for all frequency combinations.

In Figure 8, we see that the DPC is approximately constant.
Increasing processor frequency for an idle system does not
increase memory utilisation, and vice versa. This may seem
illogical because, even for an idle system with no workloads,
there is still overhead in the running kernel. We believe this is
due to caching. All data in memory operated on by the kernel
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Fig. 9: Estimated DPC (αC) for processor and memory.

has most likely been cached in the processor’s internal L1 and
L2 caches, effectively making memory traffic negligible.

C. Estimating Leakage Current

When all dynamic power (memory and processor) has been
removed, the leakage current can be estimated. In Figure 7c
we show the remaining power as a function of the core rail
voltage. We use regression over the curves to estimate the
leakage current. We derive a leakage current on the LP rail
of 0.78 A, with a standard deviation of 0.12 A. The standard
deviation is high because the estimated leakage current over
the memory lines in Figure 7c is closer to 0.9 A, while for the
LP core lines, it is closer to 0.7 A. However, we believe that
this estimate is reasonable, as the approximations for the core
rail leakage current in the other core configurations are nearly
the same.

D. Leakage Current on the HP Rail

The leakage current is also modelled on the HP rail, which
requires that processing is restricted to the HP cluster. Dynamic
memory and processor power is removed as in the previous
section, but the rail leakage currents are estimated differently.
The difference is that when HP cluster frequency is increased,
the voltage of the HP rail increases. In practice this means
that only the “memory” lines in Figure 7c must be used to
estimate HP rail leakage, while the others must be used to
estimate the core rail leakage. The resulting leakages can be
seen in Table II.

VI. ENERGY USAGE OF VIDEO PROCESSING FILTERS

A. Estimating Dynamic Power of Workloads

We follow our methodology described in Section IV to
estimate dynamic power for our workloads. Each workload is
run over all possible frequency combinations, while logging
average power usage for each run. We then estimate the DPCs
for the HP cluster and memory (see Figure 9a and 9b). We
see that the memory DPC increases with processor frequency,
because the memory access rate also increases. Processor DPC,
however, remains almost constant over the range of memory
frequencies. Even when the memory frequency is low, memory
latency is hidden by computation because of the multithreaded
benchmarks, and so the processor utilisation does not go down.

B. Power Model Verification

To verify our model, we use Equation 1 and the estimated
dynamic power coefficients, leakage currents and base power
to predict total power. The result can be seen in Figure 10,
where measured power (top row) and model error (bottom

row) have been plotted over all frequency combinations. Due
to space restrictions, we do not show the results for all
benchmarks1.

Studying Figure 10 we see that our prediction generally
follows the measured total power. This is also true for the
other benchmarks (rotation and DCT). Our model has an error
over all frequency combinations of at most 13.4 %, but in most
cases between 6-8 % (see Table III). A characteristic of our
model is that it consistently overpredicts at least 0.15 W. We
believe this is due to an overestimation of core rail leakage
current because the LP core is off when the HP cluster is
active. Looking at Table II, we see that each HP core (which
is the same type as the LP core) adds between 0.15 to 0.20 A
to the leakage current, translating to about 0.15 W.

C. Energy Efficiency

From earlier work [10], we know that energy can be saved
compared to the standard Linux frequency scaling algorithms
by minimising processor frequency so that performance re-
quirements are met. We now add another dimension to the
problem and consider memory frequency as well. We have
already identified leakage currents as a source of energy
inefficieny, because the power loss due to leakage increases
with rail voltage at higher operating frequencies.

Figure 11 illustrates the Frame Processing Time (FPT)
over all possible memory and processor frequencies for each
benchmark (3 cores). In a live streaming scenario, a simple
requirement is that frames are processed at a certain rate.
We choose 20 FPS, which gives an FPT budget of 50 ms
per frame. The frequency combinations that achieve this are
marked with green, indicating a possible area of operation.
This area is largest for the DCT benchmark, followed by
debarreling and rotation. The reason for the differently sized
areas of operation is that the benchmarks scale differently with
operating frequencies. The DCT benchmark is for example
highly optimised with SIMD instructions, while the rotation
benchmark underutilises threads and recalculates pixel shifts
for each frame.

We see that the decrease in FPT (Figure 9a) is highest for
low processor and memory frequencies. Expressed differently,
more performance is gained per increase in processor and
memory frequency at low frequencies. From the experimental
data, we can see that the performance is at best growing
linearly with frequency. At high frequencies, the slope flattens
out, and performance increases sublinearly. This is another
source of energy inefficiency. Even when not considering
power loss due to leakage currents, a doubling in processor
frequency will at least double the dynamic power, but FPT is
not necessarily halved in return.

D. Race to Finish Versus Frequency Minimisation

To see the difference between race-to-finish and frequency
minimisation, we run our workloads on the minimum proces-
sor and memory frequency combination that satisfy the FPS
requirement (the “optimal” strategy). We compare with two
race-to-finish strategies, RTF-HP and RTF-LP. The results are

1All experimental data is available for download from http://folk.uio.no/
krisrst/papers/mcsoc/experiments.ods or on request.
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Fig. 10: Comparison of measured (top row) versus model error for some of the filters.

Benchmark Debarrel Rotation DCT
Cores 1 2 3 1 2 3 1 2 3
Minimum FPT [ms] 77.4 42.9 33.1 64.3 50.6 45.1 20.7 11.2 0.94
Model Error [%] 6.1 7.0 9.6 5.1 8.9 13.4 6.2 7.0 8.8
Model Overprediction [W ] 0.15 0.20 0.31 0.12 0.24 0.39 0.15 0.20 0.29
Measured EPF (RTF-HP) [µWh] N/A 69.81 69.15 N/A N/A 68.27 37.92 36.04 36.36
Measured EPF (RTF-LP) [µWh] N/A 70.09 71.03 N/A N/A 68.39 40.35 39.93 41.38

Optimal

CPU Frequency [MHz] N/A 1224 696 N/A N/A 1734 828 564 564
Memory Frequency [MHz] N/A 924 792 N/A N/A 924 600 204 102
EPF (Predicted) [µWh] N/A 49.99 48.16 N/A N/A 57.80 34.11 33.46 35.13
EPF (Measured) [µWh] N/A 46.81 42.96 N/A N/A 52.56 32.88 30.38 31.21
Improvement (%) N/A 32.9 37.8 N/A N/A 23.0 13.2 15.7 14.16

TABLE III: Overview of model quality and most energy-efficient cpu and memory frequency (target framerate at 20 FPS).
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Fig. 11: Workload performance over memory and processor frequencies. The green lines mark configurations that achieve a
frame processing time of 50 ms or below.
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Fig. 12: Detailed breakdown of static, dynamic and base power.

shown in Table III, where energy usage is noted in Energy-
per-Frame (EPF). In both strategies, memory and processor
frequency is set to the maximum possible while a frame
is being processed. When the frame processing is complete,
RTF-HP scales down frequency to the minimum possible and
sleeps until the next frame is available. RTF-LP additionally
switches to the LP core. For some of the core configurations,
the required framerate of 20 FPS could not be met. These cases
are marked with N/A.

Table III shows that the RTF-LP strategy is consistently
outperformed by the RTF-HP strategy in terms of EPF by up
to 5µWh. The most likely reason for this is that switching
between the HP cluster and the LP core incurs large transi-
tion overheads in terms of both energy usage and time. For
example, the best- and worst-case switching overheads when
migrating to the HP cluster is 1.4 to 7.0 ms. The overhead
is strongly influenced by processor frequency. This result
indicates that the LP core should not be used to save energy
between frames.

Compared to the RTF-HP strategy, our approach to min-
imise frequency and power so that the target framerate of
20 FPS is met saves between 13.2 to 37.8 % energy. Based
on our power model, Figure 12 gives a detailed breakdown
of static, dynamic and base energy usage per frame between
some of the benchmarks. The core rail leakage and base
energy is roughly the same over the workloads. However, the
RTF-HP strategy consumes more dynamic power, as well as
more leakage energy on the HP rail. The increased HP rail
leakage energy is due to the high voltage required to sustain
the maximum frequency on the HP cluster. Furthermore, as
explained in Section VI-C, the modest performance increase at
high frequencies is not enough to compensate for the increase
in dynamic power usage. This makes it more efficient to use
lower frequency settings.

The debarreling and DCT benchmarks show that adding
cores can have positive effects in terms of energy usage. For
example, for the debarreling benchmark, using three cores
is more energy efficient than two. The extra leakage current
of adding a core pays for itself in that lower processor and
memory frequencies can be used. This is not always true,
however, when moving from two to three cores, the DCT
benchmark actually increases in energy consumption.

VII. CONCLUSION

In this paper, we investigate the power usage of the Jetson-
TK1 and how multimedia workloads can be energy-efficiently
processed using the Tegra K1 heterogeneous multicore SoC.
We look at three common video processing workloads and
ask which memory and processor frequencies yield the best
energy-efficiency. To accurately quantify energy consumption
and leakage for these heterogeneous systems, we have de-
veloped an original method to quantify leakage currents on
individual power rails by observing the increase in platform
power while varying rail voltage and clock frequencies. We
find that both leakage currents and architectural scaling (the
workload’s ability to scale performance with memory and
processor frequency) is very important for energy efficiency.
This is because lower memory and processor frequencies can
be used to process the workload, while meeting the workload’s
performance requirements. Furthermore, our experiments show
that the popular race-to-finish approach is inefficient in terms
of energy consumption for continuous workloads. For our
example workloads, we achieved between 13-37 % energy
saving by minimising memory and processor frequencies such
that a framerate of 20 FPS was met. Finally, the current system
accurately models the cores and memories of the Tegra K1.
However, modern systems also have various components like
GPUs and DSPs for offloading. We are therefore currently
extending our model to include such processors.
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