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Abstract Analysis of medical videos from the human gastrointestinal (GI) tract for detec-
tion and localization of abnormalities like lesions and diseases requires both high precision
and recall. Additionally, it is important to support efficient, real-time processing for live
feedback during (i) standard colonoscopies and (ii) scalability for massive population-based
screening, which we conjecture can be done using a wireless video capsule endoscope
(camera-pill). Existing related work in this field does neither provide the necessary
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combination of accuracy and performance for detecting multiple classes of abnormalities
simultaneously nor for particular disease localization tasks. In this paper, a complete end-to-
end multimedia system is presented where the aim is to tackle automatic analysis of GI tract
videos. The system includes an entire pipeline ranging from data collection, processing and
analysis, to visualization. The system combines deep learning neural networks, information
retrieval, and analysis of global and local image features in order to implement multi-class
classification, detection and localization. Furthermore, it is built in a modular way, so that
it can be easily extended to deal with other types of abnormalities. Simultaneously, the
system is developed for efficient processing in order to provide real-time feedback to the
doctors and for scalability reasons when potentially applied for massive population-based
algorithmic screenings in the future. Initial experiments show that our system has multi-
class detection accuracy and polyp localization precision at least as good as state-of-the-art
systems, and provides additional novelty in terms of real-time performance, low resource
consumption and ability to extend with support for new classes of diseases.

Keywords Medical · Automatic disease detection · Algorithmic screening · Global and
local image features · Deep learning neural networks · Information retrieval · Performance
evaluation

1 Introduction

Rapid development of technologies in areas of sensors, imaging devices and diagnostic
methods shifts the paradigm in medical diagnostic from manual analysis by trained doctors
to wide usage of automated computer-assisted diagnostic systems. In our research, we are
working at the intersection between computer science and pathological medicine, where we
target a scalable, real-time, multi-disease detection system for the gastrointestinal (GI) tract.
Our aim is to develop both a computer-aided, live analysis system of endoscopy videos and
a scalable detection system for population-wide screening using a wireless video capsule
endoscope (VCE). This small capsule with one or more image sensors is swallowed and
captures videos while it traverses the entire GI tract.

In the context of object detection, localization and tracking in images and videos, a lot
of research carried out. Particularly, current systems have been developed to detect general
objects from the surrounding world, for example human faces, cars and logos. Our research
targets a totally different domain, which is inside the body of a human being. Both the gen-
eral objects and the GI tract irregularities can have different sizes, shapes, textures, colors
and orientations, they can be located anywhere in the frame and also partially be hidden
and covered by other objects and obstacle. However, GI tract findings can also have a color,
texture and shape properties similar for the different diseases, as well as different for the
similar diseases on the various developing stages. The GI findings can be covered by the
biological substances, like for example seeds or stool, and lighted by direct and reflected
light. Moreover, the images coming from the endoscopic equipment itself can be inter-
leaved, noisy, blurry and over- or under-exposed, and it can contain borders, sub-images and
a lot of specular reflections (flares) caused by endoscope’s light source. Therefore, detect-
ing abnormalities and diseases in the GI tract is very different from detecting the objects
from the surrounding world listed above. The GI tract can potentially be affected by a wide
range of diseases with visible lesions (see Fig. 1d–e), but endoscopic findings may also
include benign (normal) or man-made lesions. The most common diseases are gastric and
colorectal cancer (CRC), which are both lethal when detected in a late stage. The 5-year
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(a) Colon mucosa (normal) (b) Cecum (landmark) (c) Z-line (landmark)

(d) Polyps (disease) (e) Tumor (disease) (f) Blurry frames (notuseful)

Fig. 1 Example frames from human colon showing normal tissue (a)–(c), abnormal findings (d)–(e) and
useless frames (f)

survival rate of CRC ranges from 93% in stage I to 8% in stage IV [29]. Consequently, early
detection is crucial. There are several ways of detecting pathology in the GI tract, but sys-
tematic population-wide screening is important. However, current methods have limitations
regarding sensitivity, specificity, access to qualified medical staff and overall cost.

In this scenario, both high precision and recall are important, but so is the frequently
ignored system performance in order to provide feedback in real-time. The most recent and
most complete related work is the Polyp-Alert polyp detection system [52], which can pro-
vide near real-time feedback during colonoscopies. However, it is limited to polyp detection,
it uses edges, colors and texture in the images, and, at the moment, it is not fast enough for
live examinations.

To further aid and scale such examinations, we have earlier presented EIR1 [32, 37],
an efficient and scalable automatic analysis and feedback system for medical videos and
images. The system is designed to support endoscopists in the detection and interpreta-
tion of diseases in the GI tract. EIR has initially been tested in video analysis of the lower
portions (large bowel) of the GI tract. However, our main objective is to automatically
detect abnormalities in the whole GI tract. Therefore, we are developing a complete sys-
tem for detection and in-frame position localization of different endoscopic findings like
polyps, tumors, diseases and landmark objects (like the Z-line and cecum). The aim is to
use next-generation-EIR for both (i) a computer assisted diagnosis tool for live endoscopic
examinations and (ii) a future fully automated and scalable screening system used together
with VCEs. These goals impose strict requirements on the accuracy of the detection to max-
imize number of true positives and to avoid false negatives (overlooking a disease), as well
as low computational resource consumption to provide massive population screening with
VCEs. The live-assisted system also introduces a real-time processing requirement defined

1In Scandinavian mythology, EIR is a goddess with medical skill.
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as being able to process at least 30 HD frames per second, i.e., a common frame rate and
resolution in modern endoscopic devices.

Our first version [32, 37] was developed for detection of polyps, i.e., possible cancer pre-
cursors, and it was built on content-based information retrieval methodology using global
image features for image content analysis. In this paper, the next generation of our system
is presented, where we extend our system using out-of-the-box and improved deep learning
neural network approaches and multi-class global-feature classification methods for detec-
tion and localization of endoscopic findings. We evaluate our prototype by training new
and improved classifiers that are based on various image-recognition approaches. We com-
pare the performance of feature-based analysis and neural network-based analysis in terms
of accuracy and real-time processing, and thereby evaluate the different approaches for
feasibility of multi-class detection and colonic polyp localization in real use-case scenarios.

The results from our experimental evaluation show that, (i) the detection and localiza-
tion accuracy can reach the same performance or outperform other current state-of-the-art
methods, (ii) the processing performance enables frame rates for real-time analysis at high
definition resolutions, (iii) the localization-system performance can be improved further
using a combination of our basic localization algorithms and neural network approaches,
(iv) in our experiments, the global-feature multi-class detection approach slightly outper-
forms the deep learning neural network approach both in training speed and detection
performance, and (v) the system proves to be easily extended by adding new types of
abnormalities. Thereby, a system based on global features seems to be preferable and gives
better performance in multi-class object detection than given existing deep learning network
approaches. For the localization, additional research is needed to achieve better performance
using a combination of local feature detection and deep learning neural networks.

The rest of the paper is organized as follows: First, in Section 2, we briefly introduce
our medical case study. Next, we present related work in the field and compare it to the
presented system in Section 3. This is followed by a presentation of the complete system in
Section 4. We present an evaluation of the system in Section 5, and in Section 6, we discuss
two cases where our system will be used in two medical examinations by medical experts.
Finally, we conclude our results in Section 7.

2 Gastrointestinal endoscopy

The GI tract can potentially be affected by various abnormalities and diseases. Some exam-
ples of possible findings are shown in Fig. 1b–e. CRC is a major health issue world-wide,
and early detection of CRC or polyps as predecessors of CRC is crucial for survival. Sev-
eral studies demonstrate that a population-wide screening program improves the prognosis
and can even reduce the incidences of CRC [17]. As a consequence, in the current Euro-
pean Union guidelines, screening for colorectal cancer is recommended for all people over
50 years old [50]. Colonoscopy, a common medical examination and the gold standard for
visualizing the mucosa and the lumen of the entire colon, may be used either as a pri-
mary screening tool or in a second step after other positive screening tests [25]. However,
traditional rectal endoscopic procedures are invasive and may lead to great discomfort for
patients, and extensive training of physicians and nurses is required to perform the exami-
nation. They are performed in real-time, and, therefore, it is challenging to scale the number
of examinations to a large population. Additionally, the classical endoscopic procedures
are expensive. In the US, for example, colonoscopy is the most expensive cancer screening
process, with an annual cost of 10 billion dollars (1,100$-6,000$/person) [47], and a time
consumption of about one medical doctor-hour and two nurse-hours per examination.
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In our research, we aim for an algorithmic system that detects multiple mucosal patholo-
gies in videos of the GI tract. The idea is to assist endoscopists (physicians, who are highly
trained in the procedure) during live examinations. Additionally, alternatives to traditional
endoscopic examinations have recently emerged with the development of non-invasive
VCEs. The GI tract is visualized using a pill-sized camera (available from vendors such as
Medtronics/Given and Olympus) that is swallowed and then records a video of the entire
GI tract. The challenge in this context is that medical experts still need to view the full-
length video. Our system should provide a scalable tool that can be used in a first-order
population screening system where the VCE-recorded video is used to determine whether
an additional traditional endoscopic examination is needed or not. As a first step, we tar-
get the detection and the localization of colorectal polyps, which are known precursors of
CRC (see for example Fig. 1d). The reason for starting with this scenario is that most colon
cancers arise from benign, adenomatous polyps (around 20%) containing dysplastic cells,
which may progress to cancer. Detection and removal of polyps prevent the development of
cancer, and the risk of getting CRC in the following 60 months after a colonoscopy depends
largely on the endoscopist’s ability to detect polyps [20]. Next, we extend our system to sup-
port detection of multiple abnormalities and diseases of the GI tract (see Fig. 1) by training
the classifiers using multi-class datasets.

3 Related work

Detection of diseases in the GI tract has so far primarily focused on polyps. This is most
probably due to the lack of alternative data in the medical field, but also that polyps are
precursors of CRC. Several algorithms, methods and partial systems have, at first glance,
achieved promising results [37] in their respective testing environment. However, none of
the related works is able to perform real-time detection or support doctors by computer-
aided diagnosis in real-time during colonoscopies. Furthermore, all of them are limited to
a very specific use case, which in most cases is polyp detection for a specific type of cam-
era [37]. Furthermore, in some cases, it is unclear how well the approach would perform as
a real system used in hospitals. Most of the research conducted in this field uses rather small
amounts of training and testing data, making it difficult to generalize the methods beyond
the specific cleansed and prepared datasets and test scenarios. Therefore, overfitting for the
specific datasets can be a problem and can lead to unreliable results.

The approach fromWang et al. [52] is the most recent and probably best-working system
in the field of polyp detection. This system, called Polyp-Alert [52], is able to give near
real-time feedback during colonoscopies. It uses an advanced edge-finding procedure to
locate visual features and a rule-based classifier to detect an edge along the contour of a
polyp. The system can recognize the same polyp across a sequence of video frames and
can process up to 10 frames per second. The researchers report a performance of 97.7%
correctly detected polyps with around 4.3% of frames incorrectly marked as containing
polyps. Their results are based on a dataset that consists of 53 videos taken from different
colonoscopes. Despite the promising polyp detection rate, the relatively high false positive
rate makes the overall system detection performance not good enough for medical use cases.
Unfortunately, the dataset used in this research is not publicly available, and therefore, a
direct detection-performance comparison with our system is not possible. Moreover, most
of the existing publications about polyp detection systems (see Tables 6 and 7 in Section 5)
report detection accuracy on a per-polyp basis, counting the fact of successfully detected
or missed polyp across the number of frames or even across the full video, which makes it
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difficult to perform a fair comparison. In our evaluation, we use a per-frame polyp detection
and localization performance measurement. This gives a more realistic and better estimation
of the performance of the developed method in the medical domain.

Other promising polyp detection approaches utilize quite old, but recently reborn neural
networks and their advanced implementation called deep learning neural networks. Neural
networks are conceptually easy to understand, and large amounts of research has been done
in this direction in the last years. Results recently reported on, for example, the ImageNet
dataset, look promising [13] in the areas of indexing, retrieving, organizing and annotating
multimedia data. Despite the fact that the neural network model training process is very
complicated and time-consuming [12], their ability to detect and localize various objects
can potentially help us to improve our system. However, such an improvement is possible
only after careful investigation, to ensure that our system will still run in real-time and be
able to deal with the required amount of lesion categories. This is important since we deal
with patient health, and the outcome can make the difference between life and death.

Most modern deep learning frameworks state that they can be used out-of-the-box for
different types of input data. This statement sounds promising, but most state-of-the-art neu-
ral networks in multimedia research are designed to process images from everyday life, like
cats, dogs, bicycles, cars, pedestrians, etc. It needs to be proven that they can be used in med-
ical domains, because it is difficult to evaluate their performance and robustness properly
[28] due to the lack of relevant training and test data. In fact, obtaining such datasets is
one of the biggest challenges related to deep learning approaches in connection with the
medical field, due to a lack of medical experts needed to annotate data, and legal and eth-
ical issues. Some common conditions, like colon polyps, may already have the number of
collected images and videos required to perform training of a neural network, while other
endoscopic findings, like tattoos from previous endoscopic procedures (black-colored parts
of the mucosa), are not that well documented, but still interesting to detect [40]. Recent
research [8] on the topic of transfer learning promises a solution for the problem of insuf-
ficient amounts of available training data. Transferring the knowledge learned by the deep
network on a large dataset, e.g. ImageNet, to train a specialized network on a small med-
ically oriented dataset, together with a saliency prediction used to emphasize key image
points, can result in better performance of the endoscopic finding detection and localiza-
tion. Thus, in this research, we perform some preliminary experiments to see how neural
networks can deal with small training datasets.

In summary, related work primarily targets specialized problems or elements of the more
general, holistic medical problem we are attempting to solve. Existing systems are either
(i) too narrow for a flexible, multi-disease detection system; (ii) have been tested on lim-
ited datasets too small to show whether the method would work in a real scenario, or; (iii)
provide a processing performance too low for a real-time system or ignore the system per-
formance entirely. Last, but not least, we are targeting a holistic end-to-end system where
a VCE that traverses the entire tract with its video signals is algorithmically analyzed. To
solve the fundamental systems problems, we are targeting and developing a close to fully
automated, accurate, low false positive, scalable, privacy-preserving and low-cost screening
system that will, if we may say so, have significant potential impact on the society.

4 The EIR system

Our objective is to develop a system that supports doctors in multi-disease detection in the
GI tract. The system must (i) be easy to use and less invasive for the patients than existing
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methods, (ii) support multiple classes of detected GI objects, (iii) be easy to extend to new
different diseases and findings, (iv) handle multimedia content in-real time (30 frames per
second or more for Full HD videos), (v) be usable for real-time computer-aided diagno-
sis, (vi) achieve high classification performance with minimal false-negative classification
results and (vii) have a low computational resource consumption. These properties poten-
tially provide a scalable system with regard to reduced number of specialists required for
a larger population, and dramatically increased number of users potentially willing to be
screened. Therefore, EIR consists of three parts: the annotation subsystem [2], the detec-
tion and automatic analysis subsystem and the visualization and computer-aided diagnosis
subsystem [35].

The subsystems for algorithmic analysis are designed in a modular way, so that they can
be extended to different diseases or subcategories of diseases, as well as other tasks like
size determination, etc. Currently, we have implemented two types of analysis subsystems:
the detection subsystem that detects different irregularities in video frames and images, and
the localization subsystem that localizes the exact position of the disease (only polyp local-
ization is supported at the moment) in the frame. The detection subsystem is not designed
to determine the location of the detected irregularity. The exact lesion position finding is
done by the localization subsystem, so that we can use the same localization subsystem for
different detection subsystems. The localization subsystem uses the output of the detection
system as input and processes only frames marked as containing a localizable disease.

4.1 Detection subsystem

The detection subsystem performs lesion recognition and classification. It is intended for
abnormality-presence detection without searching for the precise position of the lesion. The
detection is performed using various visual similarity finding techniques. For each lesion
that has to be detected, we use a set of reference frames that contains examples of this lesion
occurring in different parts of the GI tract. This set can be seen as the model of the spe-
cific disease. We also use sets of frames containing examples of all kinds of healthy tissue,
normal findings like stool, food, liquids, etc. The final goals of the detection subsystem is
to decide if this particular frame analyzed contain any lesion or not, and to detect the exact
type of the lesion. The detection system is designed in a modular way and can easily be
extended with new diseases. This would, for example, allow not only to detect a polyp, but
to distinguish between a polyp with low or high risk for developing CRC by using the NICE
classification.2

4.1.1 Basic EIR system

In our previous work, we presented our basic EIR system [32, 36, 37] that implements
a single-class global-feature-based detector able to recognize the abnormalities in a given
video frame. Global image features were chosen, because they are easy and fast to calcu-
late, and the exact lesion’s position is not needed for detection, i.e., identifying frames that
contain a disease. We showed that the global features we chose, Tamura feature [45] and
Joint Composite Descriptor (JCD) [53], which is a combination of Fuzzy Color and Texture
Histogram (FCTH) [10] and Color and Edge Directivity Descriptor (CEDD) [9], can indeed
outperform or at least reach the same results as local features.

2http://www.wipo.int/classifications/nice/en/

http://www.wipo.int/classifications/nice/en/
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Fig. 2 Detailed steps for the multi-class global-feature-based detection implementation

The basic algorithm is based on an improved version of a search-based method for image
classification. The overall structure and the data flow in the basic EIR system is depicted
in Fig. 2. First, we create the index containing the visual features extracted from the train-
ing images and videos, which can be seen as a model of the diseases and normal tissue.
The index also contains information about the presence and type of the disease in the par-
ticular frame. The resulting size of the index is determined by the feature vector sizes and
the number of required training samples, which is rather low compared to other methods.
Thus, the size of the index is relatively small compared to the size of the training data, and
it can be easily fit into main memory on a modern computer. Next, during the classifica-
tion stage, a classifier performs a search of the index for the frames that are visually most
similar to a given input frame (see Section 4.1.3 for a detailed description of the method).
The whole basic detector is implemented as two separate tools, an indexer and a classifier.
We have released the indexer and the classifier as an open-source project called OpenSea3

[37].
The indexer is implemented as a batch-processing tool. Creating the models for the clas-

sifier does not influence the real-time capability of the system and can be done off-line,
because it is only done once when the training data is first inserted into the system. Visual
features to calculate and store in the indexes are chosen based on the type of the disease
because different sets of features or combinations of features are suitable for different types

3https://bitbucket.org/mpg projects/opensea

https://bitbucket.org/mpg_projects/opensea
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of diseases. For example, bleeding is easier to detect using color features, whereas polyps
require shape and texture information.

The classifier can be used to classify video frames from an input video into as many
classes as the detection subsystem model consists of. The classifier uses indexes gener-
ated by the indexer. In contrast to other classifiers that are commonly used, this classifier is
not trained in a separate learning step. Instead, the classifier searches previously generated
indexes, which can be seen as the model, for similar visual features. The output is weighted
based on the ranked list of the search results. Based on this, a decision is made. The clas-
sifier is parallelized and can utilize multiple CPU cores for the extraction of features and
the searching in indexes. To increase performance even more, we implemented the most
compute intensive parts of the system with GPU computation support.

4.1.2 Deep-EIR

The neural network version of EIR called Deep-EIR is based on a pre-trained convolutional
neural network architecture and transfer learning [8]. We trained a model based on the
Inception v3 architecture [43] using the ImageNet dataset [13] and then re-trained and fine-
tuned the last layers. We did not perform complex data augmentation at this point and only
relied on transfer learning. We are currently in the process of data collection, and for future
work, we will also look into data augmentation and training a network from scratch using the
newly collected data, which might lead to better results than transfer learning. Figure 3 gives
a detailed overview of the complete pipeline for the neural network-based implementation
of the detection.

Inception v3 achieves good results regarding single-frame classification and has reason-
able computational resource consumption. The top one result error is 21.2%, and the top
five error is 5.6% with less than 25 million parameters. The training of the Inception v3
network is performed from scratch using Google Tensorflow v1.2rc [1]. The training takes
several weeks on a single modern computer with GPU support. Tensorflow is an open source
framework that allows all kinds of numerical computations using graphs. Nodes within the
flow graphs represent mathematical operations, and the edges represent data arrays (called
tensors in Tensorflow). It is especially built to support scalable machine learning, which
includes neural network-based architectures [1].

The trained Inception v3 model is then used in a retraining step. For this step, we fol-
low the approach presented in [14]. Basically, we froze all the basic convolutional layers of

Fig. 3 Detailed steps for the neural network approach based detection implementation



Multimed Tools Appl

the network and only retrained the two top fully connected (FC) layers. The FC layers were
retrained using the RMSprop [48] optimizer that allows an adaptive learning rate during the
training process. After 1,000 epochs, we stopped the retraining of the FC layers and started
fine-tuning the convolutional layers. For that step, we did the analysis of the Inception v3
model layer structure and decided to apply fine-tuning on the top two convolutional layers.
This step finalizes the transfer-learning scenario and performs an additional tuning of all
the NNs layers according to our dataset. For this training step, we used a stochastic gradi-
ent descent method with a low learning rate of 10−4 to achieve the best effect in terms of
speed and accuracy [27]. This comes with the advantage that little training data is needed
to train the network, which is an advantage for our medical use case. Additionally, it is fast,
requiring just about one day to retrain the model. The re-trainer is based on an open source
implementation of Tensorflow.4 To increase the number of training samples, we also per-
formed distortion operations on the images. Specifically, we performed random cropping,
random rescaling and random change of brightness. The grade of distortion was set to 25%
per image. After the model has been retrained, we use it for a multi-class classifier that
provides the top five classes based on probability for each class.

4.1.3 Multi-class global-feature-based EIR

The new multi-class global-feature-based version of EIR is based on the initial version of
EIR with some extensions. The basic search-based classification part of EIR is used to create
a classifier for each disease that we want to classify. Figure 2 gives a detailed overview of
the classifier’s pipeline for the global-feature-based implementation of the detection. The
difference to the basic EIR version is that the ranked lists of each search-based classifier are
then used in an additional classification step to determine the final class.

For features extraction in the detection step and for the training procedure, the index-
ing is performed using the basic EIR indexer implementation [32, 37]. The same set of two
global features, namely Tamura and JCD, is used. These features were selected by a simple
features efficiency estimation by testing different combinations of features on smaller ref-
erence datasets to find the best combinations in terms of processing speed and classification
accuracy. The selected features can be combined in two different ways. The first is called
feature values fusion or early fusion, and it basically combines the feature value vectors of
the different features into a single representation before they are used in a decision-making
step. The second one is called decision fusion or late fusion where the features are combined
after a decision-making step. Our multi-class global-feature-based approach implements
feature combination using the late fusion.

During the detection step, a term-based query from the hashed feature values of the query
image is created for each image, and a comparison with all images in the index is performed,
resulting in a ranked list of similar images. The ranked list is sorted by a distance or dis-
similarity function associated with the low-level features. This is done by computing the
distance between the query image and all images in the index. The distance function for our
ranking is the Tanimoto distance [46]. A smaller distance between an image in the index and
the query image means a better rank [46]. The final ranked list is used in the classification

4https://github.com/eldor4do/Tensorflow-Examples/blob/master/retraining-example.py

https://github.com/eldor4do/Tensorflow-Examples/blob/master/retraining-example.py
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step, which implements a simple k-nearest neighbors algorithm [4]. This algorithm can be
used for supervised and unsupervised learning, two or multi-class classification and differ-
ent types of input data ranging from features extracted from images to videos to meta-data.
Its main advantages are its simplicity, that it achieves state-of-the-art classification results
and that it is very fast in terms of processing time.

For the final classification, we use the random forest classifier [6], an ensemble learn-
ing method for classification that operates by constructing a multitude of decision trees at
training time and outputting the class that is the mode of the classes of the individual trees.
A decision tree can be seen as a classifier, which basically performs decision-based classi-
fication on the given data. To get the final class, the classifier combines decision trees into
a final decision implementing a late fusion for the multi-class classification. The advantage
of the random forest algorithm is that the training of the classifier is very fast because the
classification steps can be parallelized since each tree is processed separately. Additionally,
it is shown that the random forest is very efficient for large datasets due to the ability to find
distinctive classes in the dataset and also to detect the correlation between these classes.
The disadvantage is that the training time increases linearly with the number of trees, which
means a longer training time when many trees are used at the same time. However, this is
not a problem for our use-case since the training is done offline, where time is less critical.
Our implementation of the random forest classifier uses the version provided by the Weka
machine learning library5 [16], which is a collection of algorithms for machine learning
and data mining. We chose the random forest approach, because it is fast and achieves good
results [49]. It is important to point out that for this step, another classification algorithm
can also be used.

4.2 Localization subsystem

The localization subsystem is intended for finding the exact positioning of a lesion, which
is used to show markers on the frame containing the disease. This information is then used
by the visualization subsystem. All images that we process during the localization step
come from the positive frames list generated by the detection subsystem. Processing of the
images is implemented as a sequence of intra-frame pre- and main-filters. Pre-filtering is
needed because we use local image features to find the exact position of objects in the
frames. Lesion objects or areas can have different shapes, textures, colors and orientations.
They can be located anywhere in the frame and also partially be hidden and covered by
biological substances, like seeds or stool, and lighted by direct light. Moreover, the image
itself can be interlaced, noisy, blurry and over- or under-exposed, and it can contain borders
and sub-images. Apart from that, images can have various resolutions depending on the
type of endoscopy equipment used. Endoscopic images usually have a lot of flares and
flashes caused by a light source located close to the camera. All these nuances affect the
local feature-based detection methods negatively and have to be specially treated to reduce
localization precision impact. In our case, several sequentially applied filters are used to
prepare raw input images for the following analysis. These filters are border and sub-image
removal, flare masking and low-pass filtering. After pre-filtering, the images are ready to
be used for further analysis.

5http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 4 Detailed steps of the basic EIR localization algorithm implementation

4.2.1 Basic EIR system

Previously, we have implemented the localization of colon polyps using our hand-crafted
approach based on local image features [35]. The main idea of the localization algorithm is
to use the polyp’s physical shape to find the exact position in the frame. In most cases, the
polyps have the shape of a hill located on a relatively flat underlying surface or the shape of
a more or less round rock connected to an underlying surface with stalks of varying thick-
ness. These polyps can be approximated with an elliptically shaped region consisting of
local features that differ from the surrounding tissue with high probability. To detect these
types of objects, we process the frames marked by the detection subsystem as containing
polyps by a sequence of various image processing procedures, resulting in a set of possible
abnormality coordinates within each frame. Figure 4 gives a detailed overview of a local-
ization pipeline for the basic EIR algorithm implementation. The pipeline consists of the
following steps: non-local means de-noising [7]; 2D Gaussian blur and 2D image gradient
vector extraction; border extraction by gradient vector threshold binarization; border line
isolated binary noise removal; estimation of ellipses locations; ellipse size estimation by
analyzing border pixel distribution; ellipse fitting to extracted border pixels; selection of a
predefined number of non-overlapping local peaks and outputting their coordinates as pos-
sible polyp locations. For the possible locations of ellipses, we use the coordinates of local
maxima in the insensitivity image, created by additive drawing of straight lines starting at
each border pixel in the direction of its gradient vector. Ellipse fitting is then performed
using an ellipse fitting function [15]. This version of the subsystem is implemented in C++,
and it uses the OpenCV6 open source library for routine image content manipulation and
the CUDA7 toolkit for GPU computation support.

4.2.2 Deep-EIR

The existing localization scheme can be extended to support different diseases by imple-
mentation of lesion-specific shape, color and texture detection, but such an extension

6http://opencv.org/
7http://developer.nvidia.com/cuda-toolkit

http://opencv.org/
http://developer.nvidia.com/cuda-toolkit
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requires experimental studies for each new type of abnormality. In order to reduce the sys-
tem improvement costs, we performed an evaluation of two universal object localization
frameworks, based on deep learning neural network approaches. First is TensorBox8 [41],
which extends Google’s reference implementation of the machine-learning framework
called Tensorflow [1]. Second approach is based on the Darknet [33] open-source deep
learning neural network implementation called YOLO9 [34]. Both of these frameworks are
designed to provide not only object detection, but also object localization inside frames.
They implement GPU-accelerated deep learning algorithms that can work with near to
real-time performance and provide the capability of locating various objects out-of-the-box.

The TensorBox approach introduces an end-to-end algorithm for detecting objects in
images. As input, it accepts images and directly generates a set of object bounding boxes
as output. The main advantage of the algorithm is the capability of avoiding multiple detec-
tions of the same object by using a recurrent neural network (RNN) with long short-term
memory (LSTM) units together with fine-tuned image features from the implementation of
a convolutional neural network (CNN) for visual objects classification and detection called
GoogLeNet [42].

The Darknet-YOLO approach introduces a custom CNN, designed to simultaneously
predict multiple bounding boxes and class probabilities for these boxes within each input
frame. The main advantage of the algorithm is that the CNN sees the entire image during
the training process, so it implicitly encodes contextual information about classes as well as
their appearance, resulting in a better generalization of objects’ representation. The custom
CNN in this approach is also inspired by the GoogLeNet [42] model.

As initial models for both approaches, we used database models pre-trained on Ima-
geNet [19] . Our custom training and testing data for the algorithms consists of frames and
corresponding text files describing ground truth data with defined rectangular areas around
objects: a JSON file for TensorBox and one text file per frame for Darknet-YOLO. Ground
truth data was generated using a binary-masked frame set (example shown in Fig. 5) by the
localization validation software used in our experimental studies. Both frameworks were
trained using the same training dataset, where all frames contained one or more visible
polyps. No special filtering or data preprocessing was used, thus the training dataset con-
tained high quality and clearly visible polyp areas as well as blurry, noisy, over-exposed
frames and partially visible polyps. The models were trained from scratch using correspond-
ing default-model training settings [34, 41]. After the training, the test dataset was processed
by both neural networks in testing mode. As a result, the frameworks output JSON (Tensor-
Box) and plain-text (Darknet-YOLO) files containing sets of rectangles, one set per frame,
marking possible polyp locations with corresponding location confidence values. These
results have been processed using our localization algorithms.

4.3 Visualization and computer aided diagnosis subsystem

The visualization subsystem is developed as a flexible multi-purpose tool. First, it should
help in evaluating the performance of the system and get insights into why things work well
or not. Second, it can be used as a computer-aided diagnostic system for medical experts.
Third, it should help us in the creation of new datasets, allow us to extend the number of
detected diseases and help doctors to create annotations in a time-saving manner. Previously,

8https://github.com/Russell91/TensorBox
9https://github.com/pjreddie/darknet

https://github.com/Russell91/TensorBox
https://github.com/pjreddie/darknet
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Polyp ground truth(b)Frame with polyp(a)

Fig. 5 Example frames showing polyp and it’s body ground truth area. This is an example of polyps local-
ization task complexity. Polyp body has the same color, texture properties and light flares as surrounding
normal mucosa

we have developed the TagAndTrack subsystem [2] that can be used for visualization and
computer-aided diagnosis. We developed a web-based visualization toolkit that can be used
to support medical experts while being very easy to use and distribute. This tool takes the
output of the detection and localization subsystems and creates a web-based representation
of the detection and localization results. The web-based visualization is then combined with
a video sharing and annotating platform where doctors are able to watch, archive, annotate
and share information. To break through low availability of high quality training and testing
datasets for different GI track diseases, we developed a new ClusterTag application for
the visualization subsystem. The main purpose of ClusterTag is to provide an easy-to-use
and convenient user interface to huge image and video frame collections captured during
endoscopic procedures, including conventional colonoscopies and VCEs.

Figure 6 illustrates our ClusterTag application while processing a dataset containing
36, 476 images with the exact lesion areas marked. The application implements image and

Zooming closer to images set.(b)Main window.(a)

Fig. 6 ClusterTag application usage example. The loaded dataset contains 36, 476 images with ground truth
(marked by pink rectangles on images)
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ground truth loading and analyzing, image tagging, creation and editing of ground truth
data, global feature extraction and semi-automatic dataset clustering using our previously
developed algorithms [38]. With the main focus on the interactive visual representation of
huge image collections, the visualization module helps users create and interact with the
new or already defined clusters. We use the Weka library to help the user in building clus-
ters. For the image attribute extraction required for machine-learning-based classification
we use global image features, which are extracted using the image retrieval framework
called LIRE.10 In our approach, we use global features describing the image in terms of dif-
ferent visual attributes, such as sharpness, color distribution and histogram of brightness. A
detailed description of the used global features, the corresponding clustering algorithm and
the clustering performance metrics can be found in [38]. Both theWEKA and LIRE libraries
can be easily replaced by other machine learning or feature extraction libraries if desired.

Applying unsupervised clustering on huge unsorted and unannotated datasets signifi-
cantly reduces the amount of work required from skilled doctors during image labeling and
grouping. Together with unsupervised clustering, our application provides the users with the
ability of tagging and analyzing multiple single images at once and putting them into appro-
priate groups together. The ClusterTag application is released as open-source software11

and might help other research groups in the creation and analysis of new datasets.

5 Evaluation

For our experimental evaluation, we use two different use-cases. First, we evaluated
the performance of our multi-class classification and detection algorithms in automated
colonoscopy video processing. Here, we tested our system using six different classes of
endoscopic findings that can be found in the colon (shown in Fig. 1). The classes to be
detected are (a) frames with normal colon mucosa (healthy colon wall), (b) frames of the
cecum area which is an intraperitoneal pouch that is considered to be the beginning of the
colon (an anatomic landmark helping doctors and VCE video analysis algorithms to orien-
tate in the colon), (c) frames displaying the Z-line which is the gastroesophageal junction
that joins the esophagus to the stomach (an anatomic landmark), (d) frames containing one
or more polyps, (e) frames with visible tumor areas, and (f) useless blurry frames with-
out any visible and recognizable objects. Thus, the developed multi-class classification and
detection system should split all the video frames into six classes that can be observed in
the human GI tract. The developed method allows us to implement a new generation of
endoscopy video processing systems able to efficiently detect various lesions of the GI tract.

Second, we evaluated the performance of the state-of-the-art object localization
approaches based on deep learning algorithms, and then we compared it with our basic
polyp localization algorithm. In this use-case, we compared the ability of different methods
to find the location of polyps inside a frame. The main goal of this evaluation is to decide
if we can improve the polyp localization performance of our system using a combination of
different algorithms.

During the evaluation, wherever it was possible, we compared the performance of our
method with the best state-of-the-art competitors. Nevertheless, a direct comparison is hard

10http://www.lire-project.net/
11https://bitbucket.org/mpg projects/clustertag

http://www.lire-project.net/
https://bitbucket.org/mpg_projects/clustertag
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as different datasets and detection measures are used in state-of-the-art system evaluations.
Thus, we compared the metrics we found in the relevant publications.

For all of the subsequent measurements, we used the same computer. It has an Intel Core
i7-6700K CPU running at 4.00GHz, 16 GB of RAM, a GeForce GTX TITAN X GPU, and
it runs a 64-bit Ubuntu Linux v16.04.

5.1 Multi-class classification

In the multi-class classification experiments, we used cross-validation because of the rela-
tively small number of images in the annotated dataset. For the performance measurement,
we used the standard tool from WEKA for evaluating multi-class classifiers. This tool uses
the ground truth to compute a confusion matrix and the common standard metrics: recall
(sensitivity), precision, specificity, accuracy and F1 score. We created a new dataset from
colonoscopy images that we got from Vestre Viken Hospital, Norway. From the whole unan-
notated dataset, we manually selected 50 different frames of 6 different classes (described
in Section 2): blurry frames, cecum, normal colon mucosa, polyps, tumor, and Z-line. The
selected frames were used to create 10 separate datasets, each containing training and test
subsets with equal numbers of images. Training and test subsets were created by equally
splitting random-ordered frame sets for each of the 6 classes. The total number of frames
used in this evaluation is 300: 150 in the training subsets and 150 in the test subsets. Each
training and test subset contains 25 images per class. Multi-class classification is then per-
formed on all 10 splits and then combined and averaged. Following this strategy, an accurate
enough estimation about the performance can be made even with a smaller number of
images.

5.1.1 Deep-EIR

First, we performed an evaluation of Deep-EIR that implements the deep learning neural
network multi-class detection approach. Table 1 shows the resulting confusion matrix. The
detailed performance metrics presented in Table 2 and the results can be considered as good,
they confirm that Deep-EIR performs well. All blurry and Z-line frames were classified cor-
rectly. Cecum and normal colon mucosa were often cross-mis-classified, which is a normal
behavior, because from a medical point of view, normal colon mucosa is part of the cecum,
and under real-world circumstances, this would not be a relevant mistake. Interesting polyps

Table 1 A confusion matrix for the six-classes detection performance evaluation for the Deep-EIR detection
subsystem

Detected class

Blurry Cecum Normal Polyps Tumor Z-line

Actual class Blurry 250 0 0 0 0 0

Cecum 0 183 64 3 0 0

Normal 0 34 197 19 0 0

Polyps 1 17 45 183 4 0

Tumor 0 0 1 4 245 0

Z-line 0 0 0 0 0 250

Bold numbers shows the correct detection result for each class
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Table 2 Performance evaluation of the six-classes detection for the Deep-EIR detection subsystem

True
Pos.

True
Neg.

False
Pos.

False
Neg.

Recall
(Sensitivity)

Precision Specificity Accuracy F1 score

Blurry 250 1249 1 0 100.0% 99.6% 99.9% 99.9% 99.8%

Cecum 183 1199 51 67 73.2% 78.2% 95.9% 92.1% 75.6%

Normal 197 1140 110 53 78.8% 64.2% 91.2% 89.1% 70.7%

Polyps 183 1224 26 67 73.2% 87.6% 97.9% 93.8% 79.7%

Tumor 245 1246 4 5 98.0% 98.4% 99.7% 99.4% 98.2%

Z-line 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Overall 1308 7308 192 192 87.2% 87.2% 97.4% 95.7% 87.2%

Bold numbers shows the balanced F-score of each proposed method

and tumors were detected correctly in most cases, as well as the Z-line landmark, which is
important for our medical use case.

5.1.2 Multi-class global-feature-based EIR

Second, we performed an evaluation of the multi-class global-feature-based EIR, which
implements a global-feature multi-class detection approach. The multi-class global-feature-
based EIR classifier allows us to use a number of different global image features for the
classification. The more image features we use, the more precise the classification becomes.
We generated indexes containing all possible image features for all frames of all differ-
ent classes of findings from our training and test dataset. These indexes were used for
multi-class classification, different performance measurements and also for leave-one-out
cross-validation. Using our detection system, the built-in metrics functionality can provide
information on the different performance metrics for benchmarking. Further, it provides us
with the late fusion of all the selected image features and performs the selection of the exact
class for each frame in test dataset. All used features are described in detail in [24].

Table 3 shows the resulting confusion matrix, which shows, like the Deep-EIR results,
that the global feature-based detection approach performs well, too. Again, all blurry and
Z-line frames were classified correctly. Cecum and normal colon mucosa were sometimes

Table 3 A confusion matrix for the six-classes detection performance evaluation for the multi-class global-
feature-based EIR detection subsystem

Detected class

Blurry Cecum Normal Polyps Tumor Z-line

Actual class Blurry 250 0 0 0 0 0

Cecum 0 226 21 3 0 0

Normal 0 85 165 0 0 0

Polyps 0 10 8 226 6 0

Tumor 0 0 0 8 242 0

Z-line 0 0 0 0 0 250

Bold numbers shows the correct detection result for each class
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Table 4 Performance evaluation of the six classes detection for the multi-class global-feature-based EIR
detection subsystem

True
Pos.

True
Neg.

False
Pos.

False
Neg.

Recall
(Sensitivity)

Precision Specificity Accuracy F1 score

Blurry 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Cecum 226 1155 95 24 90.4% 70.4% 92.4% 92.1% 79.2%

Normal 165 1221 29 85 66.0% 85.1% 97.7% 92.4% 74.3%

Polyps 226 1239 11 24 90.4% 95.4% 99.1% 97.7% 92.8%

Tumor 242 1244 6 8 96.8% 97.6% 99.5% 99.1% 97.2%

Z-line 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Overall 1359 7359 141 141 90.6% 90.6% 98.1% 96.9% 90.6%

Bold numbers shows the balanced F-score of each proposed method

cross-misclassified. Polyps and tumors were detected correctly in most cases. The detailed
performance metrics are presented in Table 4 and can also be considered as good.

5.1.3 Deep-EIR vs multi-class global-feature-based EIR

The comparison of these two approaches shows that both approaches have equal excellent
overall F1 score of 100% in Z-line detection. The global-feature approach with the 100% F1
score outperforms the neural network approach by a small margin in blurry frame detection.
The neural network F1 score detection for tumors is 98.2%, which is 1% better than the
global-feature approach. Detection of other classes is better for the global-feature approach,
giving the F1 scores of 79.2% and 74.3% for cecum and normal mucosa. Most importantly
for our case study, polyp detection performedmuch better using the global-feature approach,
giving the 92.8% F1 score (13.1% better than the neural network approach).

The performance evaluation of the cross-validation for both multi-class classification
approaches (see Table 5) confirms the high stability of the models used for the classification.

The processing performance of both Deep-EIR and global-feature-based EIR in terms of
processing speed meets real-time demands with a good margin for the real-time medical use
case. Both can process Full HD images at a frame rate of 30 frames per second.

Our experimental comparison of the Deep-EIR and the global-feature-based EIR of the
detection system shows clearly that the global-feature approach outperforms the deep learn-
ing neural network approach and gives better accuracy for almost all target detection classes
(except several cases of misclassification of tumors) in conjunction with high 92.8% and
97.2% F1 scores for the most important findings: polyps and tumors. Moreover, when a

Table 5 Performance evaluation of the cross-validation for the Deep-EIR and the multi-class global-feature-
based EIR detection subsystems

Approach Mean absolute
error

Root mean
squared error

Relative absolute
error, %

Root relative
squared error, %

Deep-EIR 0.07284 0.20574 26.21936 55.21434

Multi-class
global-feature-
based EIR

0.09242 0.19644 33.2672 52.7148
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sufficiently large training dataset covering all possible detectable lesions of the GI tract is
used, the proposed global-feature approach for multi-class detection requires relatively lit-
tle time for training [35] compared to days and weeks for the deep learning neural network
approach.

A comparison of Deep-EIR and global-feature-based EIR with existing competitive
approaches is shown in Table 6. The basic-, Deep- and multi-class global feature-based EIR
detector versions are depicted in the last table’s rows. As one can see, the global feature-
based EIR approach gives the best performance in terms of precision (90.6%), specificity
(98.1%) and accuracy (96.9%), and comparable recall/sensitivity (90.6%). In other words,
the results indicate that we can detect different classes of GI tract findings with a precision
of almost 91%. If we compare this to the best performing system in Table 6, we see that
Polyp-Alert reaches slightly higher detection accuracy on a different dataset. However, our
system is faster and can detect colonoscopic findings in real-time, and furthermore, it is not
designed and restricted to detect only polyps, it can detect multiple classes of diseases, and
EIR can further be expanded to any additional diseases if we have the correct training data.

The performance comparison of different multi-class detection and classification
approaches in terms of frame processing speed is depicted in Fig. 7. Deep-EIR, multi-class
global feature-based EIR and basic EIR perform better in terms of speed than competitors.
The single-class basic EIR detector can process up to 300 Full HD frames per second
(for a GPU-accelerated implementation) [35]. Deep- and global feature-based EIR classi-
fiers showed 30 frames per second, which fits our medical use case. For further processing
speed improvements, we plan to implement additional GPU acceleration for a random-trees

Table 6 A performance comparison of GI findings detection approaches

Publ./System Detection
Type

Recall
(Sensitivity)

Precision Specificity Accuracy FPS Dataset
Size,
images

Wang et al. [52] polyp / edge, texture 97.70% – – 95.70% 10 1.8m

Wang et al. [51] polyp / shape,
color, texture

81.4% – – – 0.14 1,513

Mamonov et al. [26] polyp / shape 47% – 90% – – 18,738

Hwang et al. [18] polyp / shape 96% 83% – – 15 8,621

Li and Meng [23] tumor / textural
pattern

88.6% – 96.2% 92.4% – –

Zhou et al. [54] polyp / intensity 75% – 95.92% 90.77% – –

Alexandre et al. [3] polyp / color pattern 93.69% – 76.89% – – 35

Kang et al. [21] polyp / shape, color – – – – 1 –

Cheng et al. [11] polyp / texture, color 86.2% – – – 0.076 74

Ameling et al. [5] polyp / texture 95% – – – – 1,736

Basic EIR [35] polyps / 30 features 98.50% 93.88% 72.49% 87.70% 300 18,781

Deep-EIR abnormalities /
neural network

87.20% 87.20% 97.40% 97.50% 30 300

Multi-class
global-feature-
based EIR

abnormalities /
30 features

90.60% 90.60% 98.10% 96.90% 30 300

Not all performance measurements are available for all methods, but including all available information gives
an idea about each method’s performance



Multimed Tools Appl

Fig. 7 The chart shows a comparison of different GI tract finding detection approaches. The presented
Deep-EIR and multi-class global-feature-based EIR (GFB-EIR) systems show performance of 30 frames per
second, which is higher comparing to other systems

classifier and feature index search, as we have for our initial polyp detection version of
EIR [32].

5.2 Polyp localization

The multi-class dataset from Vestre Viken Hospital does not contain the ground truth for
the localization of the findings. Therefore, in this experiment, we used the available ASU-
Mayo Clinic polyp database.12 It consists of training and test sets of images and videos with
corresponding ground truth showing the exact polyp location areas. This was the biggest
publicly available dataset (until recently, when the owners decided to withdrawn it from the
public), consisting of 20 videos from standard colonoscopies with a total of 18,781 frames
and different resolutions up to full HD [44]. For this particular evaluation, we selected
only frames containing polyps, which gave us 8,169 frames in total: 3,856 in the training
subset and 4,313 in the test subset. The frames with polyps contain various polyp types,
fully visible and particularly hidden, clearly visible and blurry, clean and covered by stool.
Figure 8 depicts variations in polyp sizes (in terms of number of pixels showing polyp bodies
within images) across the datasets. As one can see, there are huge variations in polyp sizes
in terms of video-frame pixels from very small up to one third of the full video frame size.
This reflects real colonoscopy video-capturing scenarios and introduces a big challenge for
object localization algorithms.

For the localization-performance measurement, we used the common metrics: recall
(sensitivity), precision, specificity, accuracy and F1 score. To count the corresponding local-
ization events correctly, we took into account that polyps can have different shapes, they
are often not located in compact pixel space areas (in contrast to, e.g., people faces). The

12http://polyp.grand-challenge.org/

http://polyp.grand-challenge.org/
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Fig. 8 The histogram shows huge variations in number of frame pixels, covered by polyp bodies, from very
small up to one-third of full frame size across whole ASU-Mayo Clinic polyp database

shape of the polyps is marked in the ground truth data by binary masks. Before comput-
ing the localization subsystem performance, we need to figure out how to convert output
of different localization algorithms into performance metrics. Our initial assumption (from
practical experience) was to count each of the neural networks’ location rectangles as a true
positive localization event if and only if it covers at least 10% of the corresponding ground
truth area. Otherwise, we count it as a false positive. In our use case, multiple detection of
the same polyp does not improve medical outcome. Therefore, we count multiple true pos-
itives on the same polyp ground truth area as one true positive. Polyp misses are counted
if, after processing all resulting rectangles for a particular frame, we still have one or more
ground truth areas without corresponding true positives. We count such misses as false neg-
atives. Thus, there is a possibility of multiple false negatives per one frame, in case we have
multiple lesions in the same frame. In this experiment, we process only frames that contain
one or more polyps. This means that we do not have true negatives. Therefore, specificity of
the algorithms can be assumed as 100%. To check our assumptions about minimal coverage
areas, we performed an initial performance evaluation and built a graph showing unfiltered
output from neural networks. In our EIR system, the base localization algorithm outputs
points instead of rectangular areas. Thus, we count a true positive if a point is located inside
of a polyp ground truth area, keeping other rules the same. An example of a polyp local-
ization algorithm output is depicted in Fig. 9. The polyp-location ground truth marked by
light green ellipses is computed based on the ground truth binary masks (see Fig. 5) using
the closest elliptical region approximation. Due to the limitations of the current version of
the localization algorithm, it produces four possible polyp locations per frame without any
location ranking. In this evaluation, we consider all four points as equal and always use all
of them for calculating the performance metrics. These points are marked by the green and
red crosses. The green crosses correspond to the true positive events, and the red crosses
show the false positive events.

The deep learning neural network frameworks tested in this experiment require training
before they are able to perform polyp localization. Thus, both networks were trained using
their default model training parameters. For TensorBox, the neural network model training
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Fig. 9 Example of the polyp localization algorithm output. The current version of the algorithm produces
four possible polyp locations per frame. The polyp location ground truth is marked by light green ellipses.
The green crosses correspond to the true positives, the red correspond to the false positives

took 6.5 days, and for Darknet-YOLO, we needed 5.1 days. After the training, we performed
model validation using the corresponding frameworks’ routines, and the training dataset
as input. The validation confirmed the correctness of the trained models for both Tensor-
Box and Darknet-YOLO. The deep learning approaches are capable of correctly localizing
polyps that were previously detected by the detection subsystem within the training dataset
with 98% accuracy for the TensorBox model and 95% accuracy for the Darknet-YOLO
model.

Next, we performed a main localization run of both frameworks on the test dataset and
validation using the corresponding ground truth. Both TensorBox and Darknet-YOLO can
be finely tuned by setting confidence threshold values, which limits the number of returned
location rectangles to only highly confident ones. In order to investigate how the output of
both can be affected by a confidence threshold value, it was set to zero during the first test
run, which should give us the full unfiltered localization output. The reason for studying
this dependency is that it is the only network tuning parameter in the unseen data process
mode, which can help us to maximize their localization accuracy. Figure 10 shows a his-
togram of true polyps’ area coverage by location boxes found by TensorBox. We counted
only location boxes that cover at least one pixel of a true polyp area. As one can see, the his-
togram has clearly visible maximum around 16% coverage rate, followed by an exponential
decrease to almost constant level. A comparable analysis with the same type of histogram
for the Darknet-YOLO output is depicted in Fig. 11. We observe a similar distribution for
coverage rate (higher than 10%). A much higher number of location rectangles with zero
coverage rate indicates that TensorBox implements additional localization result filtering.
Thus, the effect of the confidence threshold level adjustment cannot be as significant as
for Darknet-YOLO, which has the expected output with a high number of location boxes
covering small parts of true polyp areas. Therefore, Darknet-YOLO should show a strong
response to confidence threshold level. For the following validation and performance eval-
uation of both frameworks, we used 10% as the threshold value for the minimal required
polyp ground truth coverage for true positive events, i.e., 10% must be covered for the event
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Fig. 10 The histogram shows polyps area coverage by location boxes found by the TensorBox localization
algorithm with the maximum around 16% coverage rate with following exponential decrease to the almost
constant level. The low number of found location rectangles around zero coverage rate is an evidence of some
output results pre-filtering

to be counted. Figures 12 and 13 confirm our assumption about output result filtering in Ten-
sorBox. Its output contains a relatively small number of found locations with high number
of highly-confident locations compared to Darknet-YOLO, which has a large number of
low-confident locations, exactly as expected with the choice of a zero-confidence threshold.

Fig. 11 The histogram shows polyps area coverage by location boxes found by the Darknet-YOLO localiza-
tion algorithm with near to exponential distribution for coverage rate higher than 10%. The higher number of
found location rectangles around zero coverage rate gives clear indications that algorithm output unfiltered
results
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Fig. 12 The histogram shows confidence values for location boxes found by the TensorBox localization
algorithm. It shows the relatively low number of found locations with high number of highly-confident
locations

The performance results depending on the confidence threshold value are depicted in
Fig. 14 for TensorBox and Fig. 15 for Darknet-YOLO. As one can see, TensorBox local-
ization performance does not depend on the confidence threshold value in any significant
way. The best performance in terms of minimizing the number of false negative events with
an acceptable number of false positive events can be achieved by maximizing the algo-
rithm’s accuracy metrics. For TensorBox, the maximum accuracy reaches a level of 31.6%
for a confidence threshold value of zero with a corresponding polyp miss rate of 66.2%.
For TensorBox, this is the best value, and it cannot be improved by adjusting the confidence
threshold value. For Darknet-YOLO, maximum accuracy is reached at a 42.2% confidence

Fig. 13 The histogram shows confidence values and polyps area coverage by location boxes found by the
Darknet-YOLO localization algorithm. It shows the expected high number of low-confident locations
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Fig. 14 The graphs show TensorBox localization algorithms performance for different confidence threshold
values with no significant visible dependency. The maximum accuracy reaches level of 31.6% for zero-
confidence threshold value with the polyp miss rate of 66.2%

threshold. The accuracy is 8% with a corresponding polyp miss rate of 47.9%. Darknet-
YOLO showed more flexibility and a good response to the confidence threshold value. For
Darknet-YOLO, the polyp miss rate can be significantly reduced by decreasing the confi-
dence threshold value, but this gives a significant increase in the number of false positives,
making the whole system too noisy. Nevertheless, combining Darknet-YOLO and the basic
EIR localizer approaches can potentially give better overall system performance and better
polyp miss rate.

Fig. 15 The graphs show Darknet-YOLO localization algorithms performance for different confidence
threshold values with good response to threshold value adjusting. The maximum accuracy reaches level of
42.2% for confidence threshold value of 8% with the polyp miss rate of 47.9%
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Performing a comparison with well-known existing approaches in polyp localization is
difficult due to lack of publicly available information (see Table 7) about other researchers’
algorithms’ performance and evaluation methods, and due to prevalent non-disclosure
restrictions that prevent sharing of datasets in the research community. The available data
shows, that our EIR basic localization approach has good performance with an F1 score of
41.6%.

The performance of the TensorBox approach (see Table 7) is too low for our real-time
use-case. But, as depicted in Table 7, Darknet-YOLO performs well in terms of processing
speed and can run at 45 frames per second. Our basic approach runs at 120 frames per
second, thus a combination of both approaches can give us better localization performance
while staying within the required real-time frame rate limits.

6 Real-world use cases

In this section, we describe two real-world use cases where the presented system can be
used. The first one is a live system that will assist medical doctors during endoscopies.
Currently, we are deploying a proof-of-applicabilty prototype in one of our partner hospitals.
The second is a system that will automatically analyze videos captured by VCEs. Several
hospitals are involved in this more concrete and applied research, and currently we are
setting up the data-sharing agreements and collect the data for a new multi-disease dataset
that will be released open-source. The first use case requires fast and reliable processing,
and the second requires a system that is able to process a large amount of data in a reliable
and scalable way.

6.1 Live system

The aim of the live system is to provide live feedback to the doctors, i.e., a computer-aided
diagnosis in real-time.While the endoscopist performs the colonoscopy, the system analyzes
the video frames that are captured by the colonoscope. To provide helpful information for
the operating doctor, we combine the visual information from the endoscope with our marks.
For the detection, we alter the frame borders and show the name of the detected finding
in the auxiliary area of the endoscope device monitor. For the implemented localization
classes, we put a cross on top of the localized findings (polyps in this system version). At
the moment, we have implemented a demo version of the live system [39]. The live demo
supports detection and localization of polyps. It is able to process a FullHD video streamwith 30
FPS in real-time. An example of the graphical output of the live system is depicted in Fig. 16.

Table 7 Performance comparison of polyp localization approaches

System True Pos. False Pos. False Neg. Sensitivity Precision Accuracy F1 score FPS

Basic EIR 1266 3150 398 76.1% 28.7% 26.3% 41.6% 120

TensorBox-EIR 1459 311 2854 33.8% 82.4% 31.6% 48.0% 15

Darknet-YOLO-EIR 2245 1005 2068 52.1% 69.1% 42.2% 59.4% 43

Wang et al. [52] – – – 95.7% – – 95.7% 10

Hwang et al. [18] – – – 96.0% 83.0% – – 15

Bold numbers shows the balanced F-score of each proposed method
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Fig. 16 A screenshot of the live system showing the combination of the visual information from the endo-
scope with feedback information from the detection and localization system. The pink fame surrounding
background shows a positive detection. The name of the detected finding is shown in the frame auxiliary
screen area, and the cross shows the location of the polyp

In addition to supporting the medical expert during the colonoscopy, we are working on
an extension of the system, where the system is used to document the examination proce-
dure. We will implement the generation of a document with an overview of the colonoscopic
procedure. The doctors will be able to make changes or corrections, and add additional
information to that document. The document will be stored or used as an appendix to the
written endoscopy report.

6.2 Wireless video capsule endoscope

The current existing VCEs have a resolution of around 256×256, frame rates of 3-35 frames
per second (adaptive frame rate with a feedback loop from the receiver to the transmitter).
They do not have optimum lighting, making it more difficult to detect endoscopic findings
in the captured images than in images from traditional endoscopes. Also, during VCE pro-
cedures, the intestine is not expanded, unlike in traditional endoscopy, where the expansion
allows for clear and non-obfuscated pictures of the intestine walls. Nevertheless, ongoing
research aims at improving the VCEs’ hardware capabilities and at improving the methods
and algorithms developed for colonoscopies to work also for VCEs [22]. The multi-sensor
VCE is swallowed in order to visualize the GI tract for subsequent diagnosis and detection
of GI diseases. Thus, people may in the future be able to buy VCEs at the pharmacy, and
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deliver the video stream from the GI tract to the phone over a wireless connection. In the
best case, the first screening results are available within eight hours after swallowing the
VCE, which is the time the camera typically spends traversing the GI tract. Thus, the abil-
ity to implement and perform mass-screening of the GI tract highly depends on two main
research areas. First, it requires the development of a new generation of VCEs with bet-
ter image quality and the ability to communicate with widely used mobile phones. Second,
mass-screening requires a new generation of lesion detection algorithms able to process the
captured GI tract multimedia data and video footage fully automatically in the mobile phone
with public cloud computing support. Here, a preliminary analysis and task-oriented com-
pression of a captured video footage before uploading into the cloud is important due to
huge amounts of video data generates by VCEs. In our future research for this use case, we
will work on the adaptation of the detection algorithms to the common mobile platforms.
We will create a new mobile application to demonstrate the ability of our system to perform
on hardware with the limited resources available.

7 Conclusion

In this paper, a complex automated diagnosis system built for different GI tract dis-
ease detection scenarios, colonic polyp localization and big dataset visualization has
been presented. We briefly described the whole system from data collection for medical
knowledge transfer and system learning, evaluation of the experimental results to visual-
ization of the findings. A detailed evaluation of detection of multiple endoscopic findings,
polyp-localization accuracy and system performance has been performed. We introduced
two new multi-class classification methods, one based on a deep learning neural network
approach and another new multi-class classification algorithm based on global image fea-
tures. For the localization, we evaluated existing localization approaches based on deep
learning neural networks and compared the results to our initial localization method.

The novelty of the research includes an end-to-end implementation of the whole EIR
system pipeline, from frame capture, annotation and analysis to user (doctor) feedback,
as a combination of many out-of-the-box and modified existing components, as well as
several new ones. The experiments showed that the proposed system (i.e., both the global
feature-based and the neural network-based implementations) can achieve equal results to
state-of-the-art methods in terms of detection performance for state-of-the-art endoscopic
data, and a comparable localization performance. Further, we showed that the new EIR
system outperforms state-of-the-art systems in terms of system performance, that it scales in
terms of data throughput and that it can be used in a real-time scenario. We concluded, based
on our initial experiments, that the global features multi-class detection approach slightly
outperforms the tested neural network approaches, and that the localization algorithm can
benefit from combining local features and neural network approaches. We also presented
automatic analysis of VCE videos and live support of colonoscopies as two real-world use
cases that can potentially benefit from the proposed system where clinical tests are currently
being planned in our partner hospitals. The experimental evaluation of the system as well
as dataset creation are performed in collaboration with the Cancer Registry of Norway, and
in the near future, the system will be tested in a real-world environment, i.e., it will have a
real societal impact.

For future work, we plan to further improve the multi-class detection and localization
accuracy of the system and support detection and localization of more abnormalities. In
this respect, we are currently working with medical experts to collect more training data,
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annotate them and create new, larger training and testing datasets [30, 31]. Finally, to fur-
ther improve the performance of the system, we work on a universal system extension that
will allow the system to utilize the computing power of one or more GPUs on single or mul-
tiple nodes. Implementing such an extension will allow parallelization of the detection and
localization workloads [32], which is important in our multi-disease analysis system of GI
tract [32, 35, 37–39].
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