
Algorithmic Differentiation for shape derivatives with PDE-constraints

Jørgen S. Dokken, Simon W. Funke and Stephan Schmidt

Automatically derive shape derivatives of FEniCS models

•We present an extension to dolfin-adjoint which computes
shape derivatives.

•The extension computes shape derivatives of time-dependent,
linear and non-linear FEniCS models with minimal code
changes.

Highlights

For shape optimization problems, the design variable is the com-
putational domain Ω of the functional J and state equations.
For efficient optimization, one needs to introduce the notion
of a shape derivative

dJ(Ω)[s] := lim
ε→0+

J(Ω(ε)[s])− J(Ω)

ε
,

where a change in the domain Ω is described with a displace-
ment function s

Ω(ε)[s] := {x + εs(x) : x ∈ Ω} .
If the functional is a combination of volume and surface inte-
grals, shape calculus can be employed to find an integral repre-
sentation of the shape derivative.

Mathematical formulation

While the FEniCS model is executed, dolfin-adjoint [1] records
operations in a computational graph. Our extension records
all Mesh initializations and ALE.move calls. Using this graph,
dolfin-adjoint uses FEMORPH [2], which employs shape cal-
culus to compute shape derivatives of the recorded output.

from dolfin import *

from dolfin˙adjoint import *

mesh = Mesh(UnitSquareMesh(100, 100))

V = VectorFunctionSpace(mesh, ”CG”, 1)

s = Function(V)

ALE.move(mesh, s)

J = assemble(1*dx(mesh))

c = Control(s)

Jhat = ReducedFunctional(J, c)

Jhat.derivative()

M Code: Complete code for computing a shape derivative. The

control is the mesh deformation vector s .

Figure: .

Visualization of the computation graph after executing the above

code. The control variable is shown in red.

s

ALE.move(mesh, s)

mesh

assemble(1*dx)

J

mesh

How it works

•Support strong enforcement of Dirichlet boundary conditions
at control boundaries.

•Add re-meshing with gmsh as an alternative to ALE.move to
update the computational domain.

•Add support for time-dependent domains and tube derivatives.

Future work

References
[1] S. W. Funke, S. Mitusch. A new algorithmic differentiation tool (not only) for FEniCS,

Poster at FEniCS 17, 2017.

[2] S. Schmidt. Weak and Strong Form Shape Hessians and their Automatic Generation,

Journal of Scientific Computing, in press.

Application examples
Consider the linear elasticity equation

∇ · σ = f in Ω, σ · n = g on Γ, u = 0 on ∂Ω \ Γ,

where σ = 2µε(u) + λtr(ε(u))I, ε(u) = 1
2(∇u + (∇u)T),

u is the unknown displacement and Ω is a 3D beam. Here f are
the body forces, g the surface forces. The goal is to minimize
the structural compliance:

min
u,Ω

J(u) = min
u,Ω

∫
Ω

σ(u) : ε(u) dx.

ALE.move(mesh, s)

a = inner(sigma(u), grad(v))*dx

L = inner(f, v)*dx + inner(g, v)*ds

solve(a==L, u˙, bcs)

J = assemble(inner(sigma(u˙),sym(grad(u˙)))*dx)

Jhat = ReducedFunctional(J, Control(s))

s˙optimal = minimize(Jhat)

M Code: Simplified FEniCS code for the linear elasticity problem. The complete optimiza-

tion code is ' 120 lines.

Figure: Initial beam and optimized beam. The vectors on the initial beam illustrates the

traction σ·n on the top of the beam. The colors indicate the magnitude of the displacement

on a logarithmic scale. The optimization takes 13 iterations, where JInitial = 1162,

Joptimized = 184.

Example: 3D linear elasticity

Consider the heat equation and corresponding functional

∂u

∂t
− ∆u = f , in Ω× (0, T ), J(u) =

∫ T

0

∫
Ω

u2 dx dt.

In these equations, Ω is the domain below. We impose a homo-
geneous Neumann condition on Γ, the boundary of the ellipsoid,
and a Dirichlet condition on the remaining boundary.

M Figure: The solution u(t) at t
T = 0.8. The L2(Γ) Riesz-representation of the shape

derivative is shown as vectors.

ε = 1 ε/2 ε/4 ε/8 ε/16
R2 2.4 · 10−2 6.0 · 10−3 1.5 · 10−3 3.5 · 10−4

Rate - 2.00 2.03 2.07

Table: Taylor Test for the shape derivative. The second order residual R2 = J(Ω(ε)[s])−
J(Ω)− εdJ(Ω)[s], s = 0.03 cos(6πx)n, where n is the outward pointing normal vector.

Example: Heat equation


