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Automatically derive shape derivatives of FEnICS models

e \We present an extension to dolfin-adjoint which computes Consider the linear elasticity equation
shape derivatives. V-o=f In2, o-n=g onl, u=0 ondQ\T,
e T he extension computes shape derivatives of time-dependent, where o = 2ue(u) + Atr(e(u))!, e(u) = %(Vu +(Vu)h),
inear and non-linear FENICS models with minimal code u 1s the unknown displacement and €2 1s a 3D beam. Here f are
changes. the body forces, g the surface forces. The goal Is to minimize
) ’ the structural compliance:

min J(u) = min

~ MATHEMATICAL FORMULATION ~ [ ot et ax

For shape optimization problems, the design variable is the com- .2 .2
putational domain €2 of the functional J and state equations. ALE .move (mesh, s)
For efficient optimization, one needs to introduce the notion a = inner(sigma(u), grad(v))*dx

L = inner(f, v)*dx + inner(g, v)*ds

f a sh rivatl
of a shape derivative solve(a==L, u_, bcs)

dJ(Q)[S] — |im J(Q(G)[S]) - J(Q) J = assemble(inner(sigma(u_),sym(grad(u_)))*dx)
e—0t € | Jhat = ReducedFunctional(J, Control(s))
where a change Iin the domain €2 i1s described with a displace- s_optimal = minimize(Jhat)
ment function s A Code: Simplified FEniCS code for the linear elasticity problem. The complete optimiza-
Qe)ls] = {x+es(x): x e Q}. e
If the functional is a combination of volume and surface inte- S
grals, shape calculus can be employed to find an integral repre- U NeeaEmw
sentation of the shape derivative.

While the FEnICS model is executed, dolfin-adjoint [1] records
operations In a computational graph. Our extension records
all Mesh nitializations and ALE.move calls. Using this graph,
dolfin-adjoint uses FEMORPH (2], which employs shape cal-

culus to compute shape derivatives of the recorded output.

Figure: Initial beam and optimized beam. The vectors on the initial beam illustrates the

r Tolfin - F— « traction o-n on the top of the beam. The colors indicate the magnitude of the displacement

rom do %n lmPOlj | @ on a logarithmic scale. The optimization takes 13 iterations, where Jj,itiap = 1162,
from dolfin_adjoint import * Jo. . 184
optimized — -

mesh = Mesh(UnitSquareMesh (100, 100))

V = VectorFunctionSpace(mesh, "CG", 1)
_ : ALE.move(mesh, s) .
 — Function(V) ~ EXAMPLE: HEAT EQUATION

ALE .move(mesh, s)
J = assemble(1*dx(mesh))

Consider the heat equation and corresponding functional

-
c = Control(s) @ ou . 5
. — X — .
Jhat = ReducedFunctional(J, c) Ot Au f, 4 (O’ T)’ J(U) 5 o u” dx dt
Jhat.derivative () J In these equations, €2 I1s the domain below. We impose a homo-
A Code: Complete code for computing a shape dervative. The | assemble(1*dx) geneous Neumann condition on I', the boundary of the ellipsoid,
control Is the mesh deformation vector s. . . ' ..
Figure: > and a Dirichlet condition on the remaining boundary.

Visualization of the computation graph after executing the above
code. The control variable 1s shown In red.

r FUTURE WORK ~

e Support strong enforcement of Dirichlet boundary conditions
at control boundaries.

e Add re-meshing with gmsh as an alternative to ALE.move to
update the computational domain.

e Add support for time-dependent domains and tube derivatives.

A Figure: The solution u(t) at + = 0.8. The L2(I") Riesz-representation of the shape
derivative 1s shown as vectors.
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