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ABSTRACT
Association rule mining is an unsupervised learning technique
that infers relationships among items in a data set. This
technique has been successfully used to analyze a system’s
change history and uncover evolutionary coupling between
system artifacts. Evolutionary coupling can, in turn, be used
to recommend artifacts that are potentially affected by a
given set of changes to the system. In general, the quality of
such recommendations is affected by (1) the values selected
for various parameters of the mining algorithm, (2) character-
istics of the set of changes used to derive a recommendation,
and (3) characteristics of the system’s change history for
which recommendations are generated.

In this paper, we empirically investigate the extent to
which certain choices for these factors affect change recom-
mendation. Specifically, we conduct a series of systematic
experiments on the change histories of two large industrial
systems and eight large open source systems, in which we
control the size of the change set for which to derive a rec-
ommendation, the measure used to assess the strength of the
evolutionary coupling, and the maximum size of historical
changes taken into account when inferring these couplings.
We use the results from our study to derive a number of
practical guidelines for applying association rule mining for
change recommendation.
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•Software and its engineering → Software evolution;
Software reverse engineering; •Information systems →
Recommender systems; Association rules;
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1. INTRODUCTION
A well-know effect of the continued evolution of a software
system is the increasing disorder or entropy in the system:
as a result of repeated changes, the number and complexity
of dependencies between parts of the code grows, making
it increasingly difficult for developers to foresee and reason
about the effects of changes they make to a system.

Automated change impact analysis techniques [1, 2, 3, 4]
aim to support a developer during system evolution by iden-
tifying the artifacts (e.g., files, methods, or classes) affected
by a given change. Traditionally, these change impact anal-
ysis techniques are based on static or dynamic dependency
analysis [5] (for example, by identifying the methods that
call a changed method). More recently, promising alternative
techniques have been proposed that identify dependencies by
means of evolutionary coupling. These alternative approaches
avoid certain limitations in existing techniques. For exam-
ple, static and dynamic dependency analysis are generally
language-specific, making them unsuitable for the analysis
of heterogeneous software systems [6]. In addition, they can
involve considerable overhead (e.g., dynamic analysis’ need
for code-instrumentation), and tend to over-approximate the
impact of a change [7].

Evolutionary couplings differ from the ones found through
static and dynamic dependency analysis, in that they are
based on how the software was changed over time. In essence,
evolutionary coupling aims to build on the developer’s inher-
ent knowledge of the dependencies in the system, which can
manifest themselves by means of commit-comments, bug-
reports, context-switches in an IDE, etc. In this paper, we
consider co-change as the basis for uncovering evolutionary
coupling. Co-change information can, for example, be ex-
tracted from a project’s version control system [8], from its
issue tracking system, or by instrumenting the development
environment [9].

The most frequently used method for mining evolutionary
coupling from co-change data is association rule mining (also
called association rule learning) [10]. Various variants on
the approach have been described in the software engineer-
ing literature [11, 12, 13, 14]. All of these approaches have
in common that the technique is tuned with a number of
parameters. While studying the literature, we found that
there is little to no practical guidance on the tuning of these
parameters, nor has there been a systematic evaluation of
their impact on change recommendation quality. Moreover,
we conjecture that, in addition to parameters of the min-
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ing algorithm, the recommendation quality is also affected
by characteristics of the change set that is used to derive
the recommendation, and by characteristics of the system’s
change history from which the recommendation is generated.

In this paper, we empirically investigate the extent to which
these factors affect change recommendation. Specifically, we
conduct a series of systematic experiments on the change
histories of two large industrial systems and eight large open
source systems. In these experiments we control the size
of change set used to derive recommendations, the measure
used to assess the strength of the evolutionary coupling, and
the maximum size of historical changes taken into account
when inferring association rules. We use the results from our
study to derive practical guidelines for applying association
rule mining to construct software change recommendations.
Contributions: This paper presents three key contribu-
tions: (1) we investigate a previously unexplored area of tun-
ing association rule mining parameters for software change
recommendation; (2) we evaluate how recommendation qual-
ity is impacted by both characteristics of the change set used
to derive a recommendation, and characteristics of change
history used for learning; (3) we derive practical guidelines
for improving the application of association rule mining in
the derivation of software change recommendations.
Overview: The remainder of this paper is organized as
follows: Section 2 provides background on targeted associa-
tion rule mining. Section 3 describes limitations of classical
approaches. Section 4 describes the setup of our empirical
investigation whose results are presented in Section 5. Fi-
nally, Section 6 presents the related work and then Section 7
provides some concluding remarks.

2. ASSOCIATION RULE MINING
Agrawal et al. introduced the concept of association rule
mining as a discipline aimed at inferring relations between
entities of a dataset [10]. Association rules are implications of
the form A→ B, where A is referred to as the antecedent, B
as the consequent, and A and B are disjoint sets. For example,
consider the classic application of analyzing shopping cart
data: if multiple transactions include bread and butter then
a potential association rule is bread → butter. This rule can
be read as “if you buy bread, then you are also likely to buy
butter.”

In the context of mining evolutionary coupling from co-
change information, the entities involved are the files of the
system1 and a collection of transactions, denoted T (e.g.,
a history of commits to the version control system). A
transaction T ∈ T is the set of files that were either changed
or added while addressing a given bug or feature request,
hence creating a logical dependence between the files [15].

As originally defined [10], association rule mining generates
rules that express patterns in a complete data set. However,
some applications can exploit a more focused set of rules.
Targeted association rule mining [16] focuses the generation
of rules by applying a constraint. One example constraint
specifies that the antecedent of all mined rules belongs to a
particular set of files, which effectively reduces the number of
rules that need to be created. This reduction can drastically
improve rule generation time [16].

1 Other granularities are possible, and our choice of file-level
changes is without loss of generality as our algorithms are gran-
ularity agnostic: if fine-grained co-change data is available, the
algorithms will relate methods or variables just as well as files.

When performing change impact analysis, rule constraints
are based on a change set, for example, the set of files that
were modified since the last commit. This set is also referred
to as a query for which to search for potential impact. In
the constrained case, only rules with at least one changed
entity in the antecedent are created. The output of change
impact analysis is the set of files from the system historically
changed alongside the elements of the change set. For ex-
ample, given the change set {a, b, c}, change impact analysis
would uncover files that were changed when a, b, and c were
changed. The resulting impacted files are those found in the
rule consequents. These files can be ranked based on the
rule’s interestingness measure.

To our knowledge, only a few targeted association rule min-
ing algorithms have been considered in the context of change
impact analysis: Zimmerman et al. [11], Ying et al. [12],
Kagdi et al. [13], and our previous work [14]. In contrast,
simpler co-change algorithms have been well studied in a
variety of contexts [15, 17, 18, 19]. Existing targeted associ-
ation rule mining algorithms and the co-change algorithms
differ in terms of which subsets of the change set are allowed
in the antecedent of generated rules. Consider, for example,
the subsets of the change set C = {a, b, c, d}:

powerset(C) = {{}, (1)

{a}, {b}, {c}, {d}, (2)

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, (3)

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, (4)

{a, b, c, d}} (5)

Both Zimmerman’s and Ying’s algorithms constrain the
antecedent of rules to be equal to the change set, and hence
only generate rules based on Line 5 (i.e., rules of the form
{a, b, c, d} → X). At the other end of the spectrum, co-
change algorithms only generate rules from the singleton sets
in Line 2, such as {a} → X or {b} → X. In our previous work,
we introduced Tarmaq, the most versatile among the existing
algorithms [14]. Tarmaq generates rules whose antecedent
can be from any of Lines 2, 3, 4, or 5. The particular line
used is dynamically chosen based on the maximal overlap
between the change set C and the transactions that make
up the history.

3. PROBLEM DESCRIPTION
Change impact analysis takes as input a set of changed
entities (e.g., the files changed in a system), referred to as a
change set or query, and outputs a set of potentially impacted
entities. A common strategy for change impact analysis is
to use association rule mining to capture the evolutionary
couplings between such entities. In particular, entities are
considered to be coupled if they have changed together in
the past. Furthermore, the strength of a coupling depends
on how frequently the entities have changed together. The
stronger the coupling between two entities, the more likely it
is that the entities are related to each other, and hence that
one is impacted by changes to the other.

The strength of an evolutionary coupling is usually assessed
using an interestingness measure applied to the association
rules. The literature reports over 40 of these measures, which
have been applied in a variety of domains [20]. It has been
shown that the particular measure chosen has a significant
impact over the ranking of rules, and consequently on the
quality of the recommendations generated [21, 22, 23].



The following four examples illustrate how performance is
affected by the two configuration parameters interestingness
measure and the filter size, the size of the query and expected
outcome, and finally the system characteristics.

Example 1 Consider the following history T of transactions:

T =
[
{a, c}, {b, c}, {a, b, c}, {a, b, x, y, z}, {y, z}, {x, y, z}

]
and the change set C = {a, b} where, based on T and C, the fol-
lowing four rules have been mined.2 For each rule three measures,
confidence κ, prevalence φ, and recall ρ [21] are given in parenthe-
ses. The confidence (recall) measures the ratio between the number
of transactions where the antecedent and consequent changed, and
the number of transactions where only the antecedent (consequent)
changed. Prevalence measures the percentage of transactions in
the history where the consequent changed.

a, b→ c (κ = 1/2, φ = 3/6, ρ = 1/3)

a, b→ x (κ = 1/2, φ = 2/6, ρ = 1/2)

a, b→ y (κ = 1/2, φ = 3/6, ρ = 1/3)

a, b→ z (κ = 1/2, φ = 3/6, ρ = 1/3)

In the example, the confidence values suggest that the four
rules are all equally likely to hold, while prevalence suggests
that a, b→ x is inferior to the others, because x is changed
only twice in T . On the other hand, recall suggests the
opposite, that a, b→ x is more likely than the others, because
the co-occurrence of {a, b} and x in {a, b, x, y, z} is more
significant than the co-occurrence of {a, b} and other files
that changed more often without both a and b. However,
one’s intuition matches the suggestion made by φ since a
and b have a stronger relation with c than with x. This is
because c appears also singularly with a and b, while x tends
to change together with y and z.

In general, the particular interestingness measure (or com-
bination thereof) used to rank the rules is a parameter of the
change recommendation algorithm. There exist a number
of such parameters that affect how rules are ranked, and
recommendations are generated.

Example 2 Consider again the history T of transactions:

T =
[
{a, c}, {b, c}, {a, b, c}, {a, b, x, y, z}, {y, z}, {x, y, z}

]
and the change set C = {a, b}. However, assume that transac-
tions larger than three files are discarded from the history when
generating rules and calculating their interestingness. Based on
C and the filtered history, only the rule a, b→ c is mined.

In this second example, x, y, and z will not be recommended,
because {a, b, x, y, z}, the change set containing evidence
for their recommendation, has been filtered out of T . In-
tuitively, filtering out larger transactions from the history
avoids generating rules from change sets that contain po-
tentially unrelated files, and is a strategy used by most
approaches [11, 12, 14]. However, filtering too aggressively
may remove legitimate evidence of evolutionary coupling.

Values for configurable parameters are not the only criteria
that can affect the recommendations generated.

Example 3 Consider the same history T of transactions:

T =
[
{a, c}, {b, c}, {a, b, c}, {a, b, x, y, z}, {y, z}, {x, y, z}

]
2 As a notational convenience, we write association rules without
the set designation, for example, a→ X in place of {a} → X.

and the change sets C1 = {a} and C2 = {a, b}. The following
rules are mined for C1 and C2.

rules for C1

a→ b

a→ c

a→ x

a→ y

a→ z

rules for C2

a, b→ c

a, b→ x

a, b→ y

a, b→ z

C1 and C2 have different sizes, and hence, when used as
queries they provide different amounts of evidence from which
to make a recommendation. For example, consider the recom-
mendation of c. In this case, C1 contains only a in support of
the recommendation while C2 contains both a and b and thus
likely provides stronger support. While intuitively, larger
queries can be expected to lead to stronger recommendations,
queries that are too large may contain potentially unrelated
files, degrading the quality of the recommendation.

An inverse argument applies to the expected outcome, the
set of files that we seek to recommend. First consider the
goal of predicting any one file from the expected outcome.
Clearly, the larger the expected outcome, the easier the task
of predicting one of them correctly. However, our goal is
to recommend all of the files in the expected outcome. In
that case, intuitively, a smaller expected outcome should be
easier to recommend, as it is easier for a query to provide
the necessary supporting evidence.

Finally, characteristics of the change history can affect the
precision of a recommendation.

Example 4 Consider two transaction histories T1 and T2 from
systems S1 and S2, respectively. Assume that the transactions of
T1 are on average larger than those of T2 because of differences in
development processes. For example, S1 might be developed with
an agile process, where small change sets are committed frequently
while S2 was developed with a less nimble process, where large
change sets are committed less often.

In this last example, queries and expected outcomes for T1
are likely to be smaller than those for T2. Thus entailing the
implications discussed in Example 3, and also potentially dif-
fering impacts from transaction filtering which was described
in Example 2.

4. EMPIRICAL STUDY
We perform a large empirical study to assess the extent to
which the quality of change recommendations generated us-
ing targeted association rule mining is affected by (1) the
values of various parameters of the mining algorithm, (2)
characteristics of the change set used to derive the recom-
mendation, and (3) characteristics of the system’s change
history. We use as a reference mining approach from our
previous work, which has proven to perform consistently
better than the previous state-of the art for software change
impact analysis [14]. Our study investigates the performance
of targeted association rule mining in the context of several
software-systems, and several parameters configurations.

Specifically, we investigate the following four research ques-
tions:

RQ 1 To what extent does the interestingness measure affect the
precision of change recommendation?

RQ 2 To what extent does the size limit used to filter the transac-
tions of the history affect the precision of change recommendation?



Table 1: Characteristics of the last 30 000 transactions of the evaluated software systems

Software System Nr. of Avg. commit History covered Languages used*
files size (in years)

Cisco Norway 41701 6.20 1.07 C++, C, C#, Python, Java, XML, other build/config (% undisclosed)
Kongsberg Maritime 35111 5.08 15.97 C++, C, XML, other build/config (% undisclosed)
Git 3574 1.95 10.42 C (45%), shell script (35%), Perl (9%), 14 other (11%)
HTTPD 10021 4.80 19.78 XML (56%), C (32%), Forth (8%), 19 other (4%)
Linux Kernel 19768 2.14 0.48 C (94%), 16 other (6%)
LLVM 20745 4.41 2.15 C++ (71%), Assembly (15%), C (10%), 16 other (4%)
JetBrains IntelliJ 36162 3.38 1.58 Java (71%), Python (17%), XML (5%), 26 other (7%)
Ruby on Rails 5346 2.25 5.78 Ruby (98%), 6 other (2%)
Subversion 2915 2.76 7.61 C (61%), Python (19%), C++ (7%), 15 other (13%)
Wine 6679 2.47 4.61 C (97%), 16 other (3%)

* data on the languages used by the open source systems obtained from http://www.openhub.net.

RQ 3 To what extent do query size and expected outcome size
affect the precision of change recommendation?

RQ 4 To what extent does the average commit (transaction) size
of the history affect the precision of change recommendation?

The remainder of this section details our evaluation setup,
and is organized as follows: in Section 4.1 we describe the
software-systems included in the study. Sections 4.2 and 4.3
describe the interestingness measures and the history fil-
tering. Section 4.4 describes two central concepts for the
evaluation, query generation and query execution. Section 4.5
explains the generation of change recommendations. Finally,
Section 4.6 explains how we measure performance.

4.1 Subject Systems
To assess change recommendation in a variety of conditions,
we selected ten large systems having varying size and trans-
action frequency. Two of these systems come from our indus-
try partners, Cisco Norway and Kongsberg Maritime (KM).
Cisco Norway is the Norwegian division of Cisco Systems,
a worldwide leader in the production of networking equip-
ment. In particular, we consider a software product line for
professional video conferencing systems developed by Cisco
Norway. KM is a leading company in the production of sys-
tems for positioning, surveying, navigation, and automation
of merchant vessels and offshore installations. Specifically,
we consider a common software platform KM uses across
various systems in the maritime and energy domain.

The other eight systems are well known open-source
projects. Table 1 summarizes descriptive characteristics of
the software systems used in the evaluation. The table shows
that the systems vary from medium to large in size, with
up to forty thousand different files committed in the trans-
action history. For each system, we considered the 30 000
most recent transactions (commits). This value represents
a balance between too short a history, which would lack
sufficient connections, and too long a history, which is hard
to process efficiently and can contain outdated couplings
caused by, for example, architectural changes. Across all ten
systems, 30 000 transactions covers a significantly different
development time span, ranging from almost 20 years in the
case of HTTPD, to 6 months in the case of the Linux kernel.
Most of the systems are heterogeneous, being developed in
more than one programming language. Finally, we note that
the median commit size for all the selected systems is one.

4.2 Interestingness Measures
Mining of change recommendations often uses or combines
the support and confidence measures from the data min-

ing community to separate interesting from uninteresting
rules [11, 12, 14, 24]. However, as introduced in Section 3,
over 40 interestingness measures have been defined in the lit-
erature to measure the strength of the evolutionary couplings
mined using association rules. These measures are usually
defined based on a probabilistic interpretation of the occur-
rence in the history of the rules antecedent and consequent.
For example, given the rule A→ B the probability P (A) is
the percentage of transactions from the history that include
A, while the probability P (A,B) is the percentage of trans-
actions in the history that contain both A and B. Therefore,
the interestingness of the rule A→ B is usually defined as a
function of P (A), P (B), and various combinations thereof
obtained through negations, fractions, and conditional oper-
ators. In this paper, we consider 39 interestingness measures
commonly used in several data mining and machine learning
applications. Due to space limitations, we only report their
names in Table 2, and refer the reader to the original sources
for the definitions [25, 26].

4.3 History Filtering
Several approaches for mining change recommendations start
by filtering the history to remove transactions larger than a
given size. This common heuristic seeks to avoid mining from
transactions that do not contain relevant information on the
evolutionary coupling of files, such as in the case of license
updates or refactoring [11, 12, 24, 27]. Removing transactions
from the history also has the effect of significantly speeding
up the rule generation process.

This paper considers seven different transaction filtering
sizes: 2, 4, 6, 8, 10, 20, and 30. Note that 30 is the threshold
used in the work of Zimmermann et al. [11]. Starting from
this value, we progressively consider more restrictive filtering.
For each filter size s, we generate a filtered history Hs,
from which we mine the association rules used to generate
recommendations. In addition, we also consider the unfiltered
history H. Since H can be thought of as filtered with an
infinite filter size, we simply refer to these as eight transaction
filtering sizes in the rest of the paper.

4.4 Query Generation and Execution
A challenge in evaluating change recommendation techniques
is what “gold standard” can be used to compare the gen-
erated recommendation against. A common strategy [11,
12, 13] is to take a transaction T from the change history
and randomly partition it into a non-empty query Q and a

non-empty expected outcome E
def

= T \Q. Since the files in a
transaction are considered to be logically coupled [15], this
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Table 2: Overview of the 39 interestingness measures considered in our study

# Interestingness Measure

1 Added Value
2 Casual Confidence
3 Casual Support
4 Collective Strength
5 Confidence
6 Conviction
7 Cosine
8 Coverage
9 Descriptive Confirmed Confidence
10 Difference Of Confidence
11 Example and Counterexample Rate
12 Gini Index
13 Imbalance Ratio

# Interestingness Measure

14 Interestingness Weighting Dependency
15 J Measure
16 Jaccard
17 Kappa
18 Klosgen
19 Kulczynski
20 Laplace Corrected Confidence
21 Least Contradiction
22 Leverage
23 Lift
24 Linear Correlation Coefficient
25 Loevinger
26 Odd Multiplier

# Interestingness Measure

27 Odds Ratio
28 One Way Support
29 Prevalence
30 Recall
31 Relative Risk
32 Sebag Schoenauer
33 Specificity
34 Support
35 Two Way Support
36 Varying Rates Liaison
37 Yules Q
38 Yules Y
39 Zhang

stategy provides a suitable gold standard. The evaluation
then assesses how well a change recommendation technique
can recover expected outcome E from query Q using the
transactions that came before T in the change history.

From the history of each system, we randomly sample 1500
transactions,3 which are used to generate 1500 queries (and
their related expected outcomes). Each query is executed for
each of the 39 interestingness measures reported in Table 2,
using each of the eight filtering sizes introduced in Section 4.3.
This setup yields a total of 1500 · 39 · 8 = 468 000 data points
for each system, where each data point is a recommendation
for a query.

4.5 Generating Change Recommendations
All queries are executed using Tarmaq, the targeted as-
sociation rule mining algorithm we introduced in previous
work [14]. Recall from Section 2 that executing a query Q
creates a set of association rules. In order to efficiently gen-
erate recommendations, Tarmaq only considers rules whose
consequent contains a single file [14]. Generating a change
recommendation for Q consists of sorting the rules generated
for Q according to their interestingness score, and returning
the ranked list of the consequents of the rules. We only
consider the largest interestingness score for each consequent,
i.e., we do not use rule aggregation strategies, such as the
ones we proposed in previous work [26].

4.6 Performance Measure
To evaluate a recommendation we use average precision (AP),
which is commonly used in Information Retrieval to assess
the quality of a ranked list [28]:

Definition 1 (Average Precision) Given a recommendation
R, and an expected outcome E, the average precision of R is
given by:

AP(R)
def
=

|R|∑
k=1

P (k) ∗ 4r(k) (6)

3 For a normally distributed population of 30 000, a minimum of
651 samples is required to achieve a 99% confidence level with a
5% confidence interval. Since we do not know the distribution of
transactions, we correct the sample size to the number needed for
a non-parametric test to have the same ability to reject the null
hypothesis. The correcting is done using the Asymptotic Relative
Efficiency (ARE). As AREs differ for various non-parametric tests,
we choose the lowest coefficient, 0.637, yielding a minimum sample
size of 651/0.637 = 1022 transactions. Hence, sampling 1500
transactions is more than sufficient to achieve a 99% confidence
level with a 5% confidence interval.

Table 3: Example of average precision calculation

Consider {c, d, f} as expected outcome in the following list:

Rank (k) File P (k) 4r(k)

1 c 1/1 1/3
2 a 1/2 0
3 f 2/3 1/3
4 g 2/4 0
5 d 3/5 1/3

AP = 1/1 · 1/3 + 1/2 · 0 + 2/3 · 1/3 + 2/4 · 0 + 3/5 · 1/3 ≈ 0.75

where P (k) is the precision calculated on the first k files in the
list (i.e., the fraction of correct files in the top k files), and 4r(k)
is the change in recall calculated only on the k − 1th and kth files
(i.e., how many more correct files were predicted compared to the
previous rank).

Since we consider only rules with a single consequent, 4r(k)
will always be equal to either zero or 1/|E|, because a rank
either does not contain a file from expected outcome E, or
it contains exactly one file from E. Table 3 illustrates the
computation of AP , P (k), and 4r(k) given the ranked list
[c, a, f, g, d] and the expected outcome {c, d, f}.

As an overall performance measure for a group of factors
(e.g., a given filtering size and interestingness measure) we
use the mean average precision (MAP) computed over all
the queries executed using the given factor combination.

5. RESULTS
This section presents the results of the study described in Sec-
tion 4. A replication package is provided online.4

We begin by analyzing a key descriptive statistic, the
commit size distribution, which is shown in Table 4. Because
the majority (90.4%) of the commits contains less than six
files, we focus the remainder of our analysis on this dominant
subset of the data.

5.1 Analysis of Explanatory Variables
Central to our analysis is an ANOVA, used to explore the
significance of the five explanatory variables program, filter

size, expected outcome size, interestingness measure (or measure for
short), and query size, together with all ten of their pairwise
interactions. The Q-Q Plot of the residuals (left out) finds
that these residuals follow a sufficiently normal distribution,
especially considering ANOVA’s performance in the presence
of large data sets such as the nearly five million data points
considered here.

4 http://evolveit.bitbucket.org/publications/ase2016/replication/
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Table 4: Commit size frequency and cumulative percentage of all transactions considered.

commit size 1 2 3 4 5 6 7 8 9 10 (10,20] (20,30] >30

frequency 157636 48903 23801 13767 8561 5546 3829 2814 2103 1611 6536 1778 2717
cumulative % 56.4% 73.9% 82.4% 87.3% 90.4% 92.4% 93.7% 94.7% 95.5% 96.1% 98.4% 99.0% 100.0%

Table 5: ANOVA Model - Explanatory variables and their
pair-wise interactions, ordered by F-value, which provides a
measure of the significance of the variable/interaction.

Explanatory Variable Df Mean Sq F-value p-value

expected outcome size 1 2244 15930 <0.0001
program 9 1643 11667 <0.0001
filter size 1 1411 10018 <0.0001
measure 38 452 3212 <0.0001
query size 1 130 923 <0.0001
expected outcome sz:filter size 1 122 864 <0.0001
program:query size 9 55 390 <0.0001
program:expected outcome size 9 47 332 <0.0001
program:filter size 9 27 194 <0.0001
query size:filter size 1 21 149 <0.0001
query size:measure 38 21 145 <0.0001
query size:expected outcome sz 1 20 142 <0.0001
expected outcome size:measure 38 5 38 <0.0001
filter size:measure 38 5 33 <0.0001
program:measure 342 4 28 <0.0001

The model is shown in Table 5, with terms ordered by their
F-value. Even though all fifteen terms are highly statistically
significant, the five variables make a larger contribution than
the interaction terms (i.e., have larger F-values).

5.2 Impact of Interestingness Measures
Using the ANOVA, we continue our analysis by considering
the first research question:

RQ 1 To what extent does the interestingness measure affect the
precision of change recommendation?

To visually explore the influence of interestingness measures,
Figures 1–4 show interaction plots of measure with respec-
tively program, query size, expected outcome size, and filter size

(where inf indicates no filtering). The overall pattern, evi-
dent in these graphs, is that measure is largely independent of
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Figure 1: Interaction plot of measure and program. The mea-
sures are shown unlabeled to avoid cluttering the plot.
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Figure 2: Interaction plot of measure and query size. The
measures are shown unlabeled to avoid cluttering the plot.

program, query size, expected outcome size, and filter size. Statis-
tically, the interactions are significant primarily due to a few
interestingness measures that “buck the trend” (producing
line crosses in the plots). This visually evident “mostly inde-
pendent” observation is supported by the comparatively low
F-values for the four interactions involving “measure” (they
are four of the five smallest in the model shown in Table 5).

The low F-values and the interactions plots support the
notion that there are consistent best measures for change
recommendation based on evolutionary coupling. Not sur-
prisingly, there is no single best measure. Tukey’s honestly
significant difference (HSD) test finds that eleven measures
populate the top equivalence class. These are shown in Ta-
ble 6. Note that even though their MAP values are slightly
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Figure 3: Interaction plot of measure and expected outcome
size. The measures are shown unlabeled to avoid clutter.
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Figure 4: Interaction plot of measure and filter size. The
measures are unlabeled to avoid cluttering the plot.

different, the measures in this class are not statistically dif-
ferent from each other. Also observe that Table 6 includes
the classic measures confidence and support. Their presence
reinforces a result from the recent work of Le and Lo [25].
While their work considers a different problem (the effect of
different interestingness measures in rule-based specification
mining), they too conclude that the standard measures work
well. Thus in summary for RQ1, we find that to a large
extent measure’s influence on average precision is consistent
across differences in other variables and that the traditional
measures are top performers.

5.3 Impact of Transaction Filtering
Next, we turn to answering our second research question:

RQ 2 To what extent does the size limit used to filter the transac-
tions of the history affect the precision of change recommendation?

The results for this question are rather surprising. When
filtering the history it is common to remove large commits
as they are assumed to reflect licencing changes and alike.
Prior work has typically used 30 as a cut off, while some
experiments have used values as high as 100 [11, 12].

One might wonder if filter sizes 10, 20, or 30 yield any differ-
ences, because the average commit sizes for the ten systems
studied are smaller than these filter sizes. The answer can
be in Figure 4, which shows that no filtering (filter size inf )
performs worse than filtering commits larger than 30, which
in turn performs worse than filtering commits larger than 20,
and similarly for filter size 10. Analysis using Tukey’s HSD

Table 6: Top group of Tukey’s HSD for measure

interestingness measure MAP group

casual confidence 0.446 a
klosgen 0.446 a
descriptive confirmed confidence 0.446 a
added value 0.445 a
collective strength 0.445 a
loevinger 0.445 a
confidence 0.444 a
leverage 0.443 a
example and counterexample rate 0.443 a
difference of confidence 0.443 a
support 0.442 a

Table 7: Tukey’s HSD for filter size (for the top measures).

filter size

size mean group

6 0.464 a
8 0.463 ab
10 0.459 bc
4 0.457 c

also shows that the MAPs continue to significantly decrease
for filter sizes 10, 20, 30, and no filtering.

For the eight filter sizes studied, Figure 5 shows the inter-
action between filter size and program for two subsets of the
data. On the left, the data for all measures is shown, while on
the right, the data for the top group of measures identified
in Table 6 is shown. It is clear from this figure that smaller
commits contain much more useful information than larger
commits as the best value for most systems occurs at a filter

size of only four or six when considering all measures, and at
a filter size of six to ten for the top group of measures.

Considering only the top group of measures, Tukey’s HSD
test, shown in Table 7, groups filter size six and eight in the
top equivalence class. Thus, in answer to RQ2, aggressive
history filtering appears to retain only high value commits
that support the creation of high quality association rules.

This is a noteworthy finding, as it suggests that filter-
ing should be applied much more aggressively. Although
small commits capture stronger couplings, prior work has
not exploited this fact. For example, as discussed in Sec-
tion 2, ROSE [11] only generates association rules whose
antecedent is equal to the query. In particular, this means
that the algorithm can not generate rules from transactions
smaller than the query. In contrast, the more recent algo-
rithm Tarmaq [14] can exploit partial matches between the
query and historical transactions, and can thus be used when
considering only small high-focus commits.

5.4 Impact of Query Size and Expected Out-
come Size

Our third research question considers the impact of the query
and the expected outcome:

RQ 3 To what extent do query size and expected outcome size
affect the precision of change recommendation?

Because all the explanatory variables and all their inter-
actions are statistically significant, the resulting coefficient
equation is very complex (it includes almost 100 terms!).
Rather than state this equation, we zoom in on a few of its
key terms. Specifically those involving query size, expected

outcome size, and commit size, which is the sum of query size

and expected outcome size. These three include three signif-
icant interactions and thus the interpretation of even just
this subset is complex.

Fortunately the practical range of these explanatory vari-
ables is limited (as shown in Table 4, where 90% of the data
is covered by commit sizes less than or equal to 5). The use
of a small range of values makes it is viable to enumerate all
possible combinations. Table 8 unravels the interactions for
the various combinations of query size and expected outcome size

and uses color to indicate entries with the same commit size.
For example, the hardest case (where the MAP value gets
the lowest contribution) is for a query size of 1 and an expected

outcome size of 4. This high-challenge level is expected as this
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Figure 5: Interactions of filter size and program. To the left for all measures, and to the right for the top group of measures.

case aims to predict the largest of the outcomes based on
minimal information.

The table makes it possible to look at trends. Starting with
commit size, following the diagonal with green cells, which
have a commit size of five, we see that the prediction gets
easier (the contribution to MAP increases) as the expected

outcome size decreases, and the query size increases. This same
pattern is seen with the other commit sizes (other colors). A
similar pattern is also clear for a fixed query size (any given
column of the table). In this case, the prediction gets more
difficult (the contribution to MAP decreases) as expected

outcome size grows.
Finally, for a fixed expected outcome size (a given row in the

table) the trend is less clear: one might expect the prediction
to get easier as query size increases, because there is more
information to build on. We can indeed see this pattern in
the row for expected outcome size of three. However, the row
where expected outcome size is two is approximately flat, and
most surprisingly, the top row where expected outcome size is
one shows a clearly decreasing trend. Thus, the data shows
that the prediction of a single result gets more difficult (the
contribution to MAP decreases) as query size grows.

We can not completely explain this decrease, but conjecture
that it is an effect related to small commits (such as those
shown in yellow and blue) being more focussed than larger
commits. In other words, larger commits are more likely to
introduce noise into the recommendation. It may also be
an artifact of using coarse-grained (file level) change data,
and thus the expected trend would be visible with more fine-

Table 8: Relative impact of query size and expected outcome
size and their interactions. The colors indicate the commit
size, as shown in the legend on the right.

expected query size
outcome size 1 2 3 4

1 10 9 8 5

2 5 5 4

3 2 3

4 1

commit
size

2

3

4

5

grained (method level) change data. We plan to investigate
this phenomena in more detail in our future work.

5.5 Impact of Average Transaction Size
Finally, we consider our last research question:

RQ 4 To what extent does the average commit (transaction) size
of the history affect the precision of change recommendation?

To analyze this question we perform a linear regression using
the average commit size to predict the MAP value for each
system. This data is shown in Table 9. The regression finds
no significant correlation between the average commit size and
MAP. Thus in answer to RQ4: the average commit size in
the change history has no impact on the precision of change
recommendation. In retrospect, considering how Table 4
shows that the frequency of commit sizes is rather skewed, the
finding that the average commit size is not a good predictor of
the algorithm’s precision should come as no surprise.

5.6 Threats to Validity
Commits as a basis for evolutionary coupling: The
evaluation presented in this paper is grounded in predictions
made from analyzing patterns in change histories. However,
as pointed out by Herzig et al. [29, 30], the transactions in the
change histories could contain unrelated files, or could miss
related files added in subsequent transactions. In our case,
the software systems studied except KM use Git for version

Table 9: Average commit size and MAP for each program.

program
average

commit size
MAP

cisco 6.20 0.375
git 1.96 0.328

httpd 4.80 0.311
jetbrains 3.39 0.263

km 5.08 0.408
linux 2.15 0.468
llvm 4.42 0.360
rails 2.25 0.288

subversion 2.77 0.302
wine 2.47 0.482



control, which provides developers with tools for amending
commits and rewriting history. Therefore, we argue that
the impact of incomplete or entangled transactions is less
significant in our case than it would be using other version
control systems such as SVN or CVS. In our related work,
we also discuss methods for grouping related commits that
are orthogonal to our approach, and could be thus used to
refine the change history.
Variation in software systems: We conducted our ex-
periments on two industrial systems and eight large open
source systems. These systems vary considerably in size and
frequency of transactions (commits), which should provide
an accurate picture of the performance in various contexts
(see Table 1). However, despite our careful choice, we are
likely not to have captured all possible variations.
Random sampling errors: Our experiment is based on
taking a large number of random samples from the change
history of each system. Although we use uniform random
sampling, there is the possibility that our samples do not
accurately represent the actual change history, for example
the distribution of transaction sizes considered in the sample
may be different full history. We address this particular issue
applying a chi-squared test to validate that our samples are
representative of the population (the change histories). An
alternative approach would be to use a stratified sampling
strategy where one extracts samples of each transaction size
in proportion to their frequency in the complete history.
The results of the chi-squared test indicate that such an
alternative strategy is not necessary.
Implementation: We have implemented the experiments
using Ruby and thoroughly tested all algorithms and mea-
sures studied in this paper. We also performed the statistical
analysis using standard methods provided by R. However,
we can not guarantee the absence of implementation errors,
which may affect our results.

6. RELATED WORK
Recent research highlighted that the performance of data
mining algorithms is impacted by their configuration param-
eters [31]. A common strategy for tuning these parameters
consists in optimizing their values over half of the test set
(inner validation), and then using the other half to assess
the performance of the optimal parameters (outer valida-
tion) [32]. While this strategy is useful to fine-tune the
parameters for a particular type of data, it does not provide
insights on how the algorithm’s performance is affected by
the parameters [33]. In the context of association rule min-
ing, several authors have noted the need to investigate the
impact of parameter settings on the quality of the generated
rules [34, 35, 36].

Therefore, in this paper, we investigate the extent to which
the quality of change recommendation via association rule
mining is affected by three factors (1) the values selected for
various parameters of the mining algorithm, (2) character-
istics of the change set used to derive the recommendation,
and (3) characteristics of the system’s change history for
which recommendations are generated. In the rest of this
Section, we distinguish related work on these three aspects,
focusing on the area of software maintenance and evolution.
Parameters in Association Rule Mining: In general,
association rule mining algorithms differ from each other
in the data structures used to represent transactions, and
the strategy used to select transactions relevant to a given

query [37]. However, the majority of such algorithms are
characterized by similar parameters. Among those, this
paper focuses on the maximum size of transactions used
to generate rules (transaction filtering size), and on the
metric measuring the strength of evolutionary couplings
inferred by those rules (interestingness measure). In the
context of software change impact analysis, several studies
remark on the importance of discarding from the history
large change sets that are likely to contain unrelated files.
For example, Kagdi et al [24], Zimmermann et al. [11] and
Ying et al. [12] propose filtering transactions larger than
10, 30, and 100 items, respectively. However, these authors
generally do not report how such threshold values have been
chosen, nor do they explore the impact of alternative values
on recommendation precision. Several authors have also
remarked that selecting the right interestingness measure for
a problem domain can significantly affect recommendation
accuracy [20, 22, 23, 25]. In particular, Le and Lo compared
38 measures in the context of rule-based specification mining,
highlighting the need to look beyond standard support and
confidence to find interesting rules [25]. We are not aware of
similar studies carried out in the context of software change
impact analysis.
Characteristics of the Change Set: Targeted associa-
tion rule mining uses the query to drive the generation of
rules [16]. In general, particular characteristics of the query
can effect the quality of recommendations. For example, in
the context of software change impact analysis, we identified
in previous work a particular class of queries for which the
most common targeted association rule mining approaches
cannot generate recommendations [14]. Note that it is com-
mon practice to validate targeted association rule mining
approaches by sampling random queries from the change his-
tory [11, 12]. While this strategy ensures that the approach
is evaluated on a variety of change sets from the history,
authors in general do not consider how query size might
affect the quality of the recommendations. Among others,
Hassan and Holt investigated the effectiveness of evolutionary
coupling in predicting change propagation effects resulting
from source code changes, but did not evaluate whether the
size of transactions in the history affected the quality of the
predictions generated [19].
Characteristics of the Change History: Several past
studies have proposed strategies to group transactions in
the change history [11, 13, 38]. The reason for doing so is
that a developer might (accidentally) commit an incomplete
transaction, and update the remaining files related to the
same change in a separate transaction. As a consequence,
entities that are logically coupled via the same change might
become spread across several transactions in the change
history. Nevertheless, in modern version control systems
transactions are stashed in the user’s local repository and can
be amended before they are finalized at a later stage, thereby
reducing the risk of committing incomplete transactions.
In contrast, the question whether properties of the change
history, such as average commit size and frequency, affect
the quality of change recommendation is less studied. In this
direction, German carried out an empirical study on several
open source projects, finding that the revision histories of
most systems contains mostly small commits [39]. Alali et
al. also investigated the total number of lines modified in
the files and the total number of hunks (continuous groups
of lines) that were changed [40]. Kolassa et al. performed



a similar study on commit frequency, reporting an average
inter-commit time of about three days [41]. However, none
of these studies investigate how characteristics of the change
history affect the quality of the change recommendation.

7. CONCLUDING REMARKS
Conclusions: Association rule mining is an automated,
unsupervised, learning technique that has been successfully
used to analyze a system’s change history and uncover evo-
lutionary coupling between its artifacts. These evolutionary
couplings can be used to recommend artifacts that are po-
tentially impacted by a given set of changes to the system.
Doing so can help developers address the increasing entropy
caused by repeated software maintenance and evolution.

In this paper, we present a series of experiments using the
change histories of two large industrial systems and eight
large open source systems. For each system, we randomly
extract a representative sample of the transactions from the
change history, randomly split each of these transactions in
two parts, a query and an expected outcome, and analyzed
how several parameters affect the prediction of the expected
outcome based on the query.

We draw the following conclusions: first, our analysis shows
that the impact of interestingness measure is largely independent
of the particular program, query size, and expected outcome size.
This means that it is possible to identify the best measures
for change recommendations based on evolutionary coupling.
To do so, we clustered measures using Tukey’s HSD where the
measures in each cluster are not statistically different from
each other. We find that the standard measures confidence

and support are in the top equivalence class; thus statistically
no other measure provides better performance than these
two. This result is in line with the earlier findings by Lo
and Le [25], who conducted a related study of interestingness
measures for rule-based specification mining.

Second, learning from a change history that is filtered to
remove transactions larger than six to eight files yields the
best results, regardless of program, query size, and expected

outcome size. Furthermore, the average precision produced by
higher thresholds is significant worse.

Third, for smaller commits (up to a transaction size of five,
which includes just over 90% of all transactions), the smaller
the expected outcome, the higher the average precision. This
suggests that for relatively small commits the less information
you want to predict, the better the results. When we extend
the analysis to larger commits (which are the minority),
larger expected outcomes lead to higher precision. Combined
these two observations suggest that predicting a few missed
files is easy, while predicting a large number of missed files
from limited information is hard. A similar pattern is seen
when comparing smaller and larger commit sizes.

Fourth, for the smaller commits one would expect that
larger queries would produce better average precision. Our
data only partially supports this expectation. Looking at the
rows of Table 8 two effects are competing with each other.
A simplified version of the coefficient equation used to fill
in this table includes both +query size and −query size2. The
data in the table reflects these two factors. Initially the
linear term dominates and increased query size increases the
average precision. However, for larger values of query size the
negative quadratic term dominates and the average precision
is reduced. While there is insufficient data to establish a

trend, the peak value appears to be a function of the expected

outcome size. In the first row the value is less than or equal to
one, for the second row it is two while for the third and fourth
rows it is greater than two. Clearly, this effect warrants future
research consideration.
Guidelines: From our conclusions, we derive the following
practical guidelines for applying association rule mining in
the context of software change recommendation: (1) stick
with default interestingness measures, as they are in the
top perform class and have a long proven track record, (2)
learn from a subset of the change history that includes only
the smaller transaction sizes to avoid noise. We have good
experience with transaction sizes up to about eight, but
these values may depend on the actual transaction sizes in
the particular history being analyzed.
Future Work: We consider the following directions for
future extension of this work: (1) Use of fine-grained co-
change information. Although our algorithms are granularity
agnostic, we expect interesting differences in the change pat-
terns used to mine evolutionary coupling at different levels
of granularity. For instance, consider how multiple method-
level changes in the same file get abstracted into one change
at the file-level. These differences will likely have an ef-
fect on parameter values, such as the transaction filter size.
(2) Language-specific change recommendations. The change
recommendation mining in this paper is independent of the
programming language of the artifacts in the change his-
tory. This has advantages in the context of heterogeneous
systems, but it also potentially increases noise. Consider a
software development project that consists of a front-end
written in Java and a back-end written in C. In this case,
front-end Java developers are not likely to benefit from rec-
ommendations involving the C code. In contrast, full-stack
integrators, responsible for connecting the front and back
end, would benefit from multi-language recommendations. In
this context, there is value in being able to provide language-
specific change recommendations, i.e., recommendations that
are based on filtering the change history for artifacts of a
particular type. (3) Impact of software development styles.
The third area of related work will involve a deeper analy-
sis of the impact of various types of software systems and
their software development styles on the quality of change
recommendations. Aspects that may play a role here include
frequency of commits, tendency to piggyback/tangle com-
mits, and code ownership. The question is how to classify
systems based on these factors. An initial study might com-
pare industrial software systems with open source systems, as
there are often clear differences between the two styles. With
that comparison in mind, it is of interest to observe that the
two industrial systems that were considered in this study
could not be distinguished from the open source systems
based on the interaction plots (Figures 1 to 5), nor could
be distinguished in terms of MAP or using Tukey’s HSD
analysis. However, this observation is based on a very small
sample size. A more complete comparison should consider a
larger sample of industrial systems, unfortunately acquiring
such may not be an easy task. We welcome suggestions for
tackling this challenge.
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