
Algorithmic differentiation for mixed
FEniCS-TensorFlow models

Simon W. Funke, Sebastian Mitusch

FEniCS 2018, Oxford

21 March 2018



“[...] researchers in deep learning appear to have a very strong
bias against including prior knowledge even when (as seen in the
case of physics) that prior knowledge is well known.”



Can we improve clinical decisions of aneurysm
removals?

Patient specific data
Aneurysm geometry,
patient age, diet, 
genetic properties

Clinical 
decision

Physical simulations

K.A.Maradal et al



Can we improve clinical decisions of aneurysm
removals?

Patient specific data
Aneurysm geometry,
patient age, diet, 
genetic properties

Clinical 
decision

Physical simulations

K.A.Maradal et al

Patient specific 
data PDE Model

 

Clinical decisionML Model



The software landscape is currently divided

pyadjoint



We consider a minimal mixed PDE-NN problem

Model

Input di

i

i

i

Neural network

Source term f

Solution u

Poisson problem

i i

Training
Given:

I training inputs d1, ..., dN ,
I training outputs y1, ..., yN ,

Solve:

min
m

N∑
i=1

‖ui − yi‖

subject to:

fi = N (di;m) ∀i
−∇2ui = fi ∀i



TensorFlow is a generic tensor computation platform

I TensorFlow creates a
computation graph of tensor
operations.

I Tensor models use lazy
evaluation to optimization for
CPUs/GPUs computations.

import tensorflow as tf

t1 = tf.Variable([[3., 3.]])

t2 = tf.Variable([[2.],[2.]])

product = tf.matmul(t1, t2)

with tf.Session() as sess:

result = sess.run(product)

print(result)



Implementation of a neural network with one hidden
layer

Image: cs231n.github.io

I b1, b2,W1,W2 are the
training parameters.

I We use tanh as activation
function and identity for the
output layer.

d = tf.placeholder(...)

W1 = tf.Variable(...)

b1 = tf.Variable(...)

W2 = tf.Variable(...)

b2 = tf.Variable(...)

a1 = tf.matmul(d, W1) + b1

z1 = tf.tanh(a1)

f = tf.matmul(z1, W2) + b2



The FEniCS models is added as a custom
TensorFlow operation

I We implemented
convenience functions1in
pyadjoint to

I convert FEniCS and
TensorFlow data
structure.

I register function as a
TensorFlow operation.

I Lazy evaluation of FEniCS
model is achieved by
pass-as-function.

1 still under active development

from fenics import *

from pyadjoint import *

def poisson(f):

...

f = tf_to_fenics(f, V)

solve(a==f*v*dx, u)

return fenics_to_tf(u)

y=register_tf_function(poisson)(f)



Define loss function and optimiser. Are we done?

loss = tf.losses.mean_squared_error(labels=y_, predictions=y)

optimizer = tf.train.GradientDescentOptimizer()

optimizer.minimize(loss)

TensorFlow computation graph



... No! TensorFlow uses back-propagation to evaluate
gradients during model training

I Gradients of TensorFlow operations are automatically derived.
I Custom operations require manual gradient implementation.

A custom function

x→ J(x)

Rm → Rn

needs implementing

y → yTJ ′(x)

Rn → Rm



FEniCS models require an adjoint solve to compute
the gradient

I We have J(u, x), where u is the solution of a PDE
F (u, x) = 0.

I In this case, we need to compute

y → yT
(
∂J

∂u

du
dx

+
∂J

∂x

)
I This is computed efficiently by solving the adjoint problem of

yTJ(u, x)

subject to

F (u, x) = 0



We rely on pyadjoint to automate the adjoint of
FEniCS models

I pyadjoint creates a
computation graph of the
FEniCS model

I On TensorFlow’s request,
pyadjoint defines the
auxiliary functional and
solves the adjoint problem.



We rely on pyadjoint to automate the adjoint of
FEniCS models

I pyadjoint creates a
computation graph of the
FEniCS model

I On TensorFlow’s request,
pyadjoint defines the
auxiliary functional and
solves the adjoint problem.



We obtain correct gradients for the minimal neural
network Poisson problem

Setup:
I Input: d
I Single layer neural network f = N (d, b1,W1, b2,W2)

I PDE: −∆u = f

I 20 nodes in the hidden layer, random training set of size
N = 50

Results:

2nd order Taylor test results with respect to b2

Perturbation size convergence order
1 -

1/2 2.00
1/4 2.00
1/8 2.00



We also obtain correct gradients with respect to PDE
coefficients

Setup:
I Input: f
I PDE: −λ∆u = f

I Single layer neural network y = N (u, b1,W1, b2,W2).
I 20 nodes in the hidden layer, random training set of size
N = 50.

Results:

2nd order Taylor test results with respect to λ

Perturbation size Convergence order
1 -

1/2 2.00
1/4 2.00
1/8 2.00



Optimisation problem

Ground truth model:
I Input: f
I PDE: u− λ∆u = f

I Output: Point evaluation y = u(x)

Setup:
I Input: f
I PDE: u− λ∆u = f

I 0-level “neural network”:
y = N (u, b1)

I Training data: 100 data points
generated from random source
terms f

I Optimiser: RMSProp, 500
iterations

Results:

True evaluation function

Optimised neural network
weights



Thank you for listening!

Follow us on bitbucket.org/dolfin-adjoint/pyadjoint


	Examples
	Conclusion

