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“[...] researchers in deep learning appear to have a very strong
bias against including prior knowledge even when (as seen in the
case of physics) that prior knowledge is well known.”
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The software landscape is currently divided

pyadjoint



We consider a minimal mixed PDE-NN problem

Model

Input di

i

i

i

Neural network

Source term f

Solution u

Poisson problem

i i

Training
Given:

I training inputs d1, ..., dN ,
I training outputs y1, ..., yN ,

Solve:

min
m

N∑
i=1

‖ui − yi‖

subject to:

fi = N (di;m) ∀i
−∇2ui = fi ∀i



TensorFlow is a generic tensor computation platform

I TensorFlow creates a
computation graph of tensor
operations.

I Tensor models use lazy
evaluation to optimization for
CPUs/GPUs computations.

import tensorflow as tf

t1 = tf.Variable([[3., 3.]])

t2 = tf.Variable([[2.],[2.]])

product = tf.matmul(t1, t2)

with tf.Session() as sess:

result = sess.run(product)

print(result)



Implementation of a neural network with one hidden
layer

Image: cs231n.github.io

I b1, b2,W1,W2 are the
training parameters.

I We use tanh as activation
function and identity for the
output layer.

d = tf.placeholder(...)

W1 = tf.Variable(...)

b1 = tf.Variable(...)

W2 = tf.Variable(...)

b2 = tf.Variable(...)

a1 = tf.matmul(d, W1) + b1

z1 = tf.tanh(a1)

f = tf.matmul(z1, W2) + b2



The FEniCS models is added as a custom
TensorFlow operation

I We implemented
convenience functions1in
pyadjoint to

I convert FEniCS and
TensorFlow data
structure.

I register function as a
TensorFlow operation.

I Lazy evaluation of FEniCS
model is achieved by
pass-as-function.

1 still under active development

from fenics import *

from pyadjoint import *

def poisson(f):

...

f = tf_to_fenics(f, V)

solve(a==f*v*dx, u)

return fenics_to_tf(u)

y=register_tf_function(poisson)(f)



Define loss function and optimiser. Are we done?

loss = tf.losses.mean_squared_error(labels=y_, predictions=y)

optimizer = tf.train.GradientDescentOptimizer()

optimizer.minimize(loss)

TensorFlow computation graph



... No! TensorFlow uses back-propagation to evaluate
gradients during model training

I Gradients of TensorFlow operations are automatically derived.
I Custom operations require manual gradient implementation.

A custom function

x→ J(x)

Rm → Rn

needs implementing

y → yTJ ′(x)

Rn → Rm



FEniCS models require an adjoint solve to compute
the gradient

I We have J(u, x), where u is the solution of a PDE
F (u, x) = 0.

I In this case, we need to compute

y → yT
(
∂J

∂u

du
dx

+
∂J

∂x

)
I This is computed efficiently by solving the adjoint problem of

yTJ(u, x)

subject to

F (u, x) = 0



We rely on pyadjoint to automate the adjoint of
FEniCS models

I pyadjoint creates a
computation graph of the
FEniCS model

I On TensorFlow’s request,
pyadjoint defines the
auxiliary functional and
solves the adjoint problem.
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We obtain correct gradients for the minimal neural
network Poisson problem

Setup:
I Input: d
I Single layer neural network f = N (d, b1,W1, b2,W2)

I PDE: −∆u = f

I 20 nodes in the hidden layer, random training set of size
N = 50

Results:

2nd order Taylor test results with respect to b2

Perturbation size convergence order
1 -

1/2 2.00
1/4 2.00
1/8 2.00



We also obtain correct gradients with respect to PDE
coefficients

Setup:
I Input: f
I PDE: −λ∆u = f

I Single layer neural network y = N (u, b1,W1, b2,W2).
I 20 nodes in the hidden layer, random training set of size
N = 50.

Results:

2nd order Taylor test results with respect to λ

Perturbation size Convergence order
1 -

1/2 2.00
1/4 2.00
1/8 2.00



Optimisation problem

Ground truth model:
I Input: f
I PDE: u− λ∆u = f

I Output: Point evaluation y = u(x)

Setup:
I Input: f
I PDE: u− λ∆u = f

I 0-level “neural network”:
y = N (u, b1)

I Training data: 100 data points
generated from random source
terms f

I Optimiser: RMSProp, 500
iterations

Results:

True evaluation function

Optimised neural network
weights



Thank you for listening!

Follow us on bitbucket.org/dolfin-adjoint/pyadjoint
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