
Scope Creep or Embrace Change? A Survey of the
Connections Between Requirement Changes,

Use of Agile, and Software Project Success

Abstract

Traditionally, a high degree of requirement

change has been considered harmful for the success
of software projects. Software professionals who use
agile software development methods tend to view this
topic differently. They tend to view requirement
changes more as opportunities, which should be
welcomed. Possibly, both views are correct but valid
in different software development contexts. This
paper aims at increasing the understanding of the
connections between the degree of requirement
change, choice of development method, and project
success. Seventy software professionals were asked to
provide information about their last software project.
A higher degree of requirement changes, here
defined as more than 30% of the requirements added,
deleted, or changed during the project’s execution,
was connected with a higher proportion of successful
projects in an agile development context, but only
when this included frequent deliveries to production.
Our results consequently support that the agile claim
of “embrace change” has merit, but only in agile
contexts.

1. Introduction

When software professionals are asked what they

consider the main risk factors of software projects,
they tend to include factors related to the requirement
specifications. The survey reported in [1] is a good
illustration. In that survey, the respondents ranked
“misunderstanding the requirements” the second
most important risk factor, “lack of frozen
requirements” the sixth most important risk factor,
and “changing scope/objectives” the seventh most
important risk factor. Ranking incomplete and
changing requirement specifications as important risk
factors is in accordance with the traditional view of
software development and requirement engineering.
This view typically considers a requirement
specification as consisting of “a set of system
requirements which, as far as possible, is complete,
consistent, relevant and reflects what the customer
actually wants” [2].

Some software professionals seem to have
different views on changed requirements. Those who

use agile development methods recommend, among
others, valuing “responding to change over following
a plan,”1 and to promote the principle of “welcome
changing requirements, even late in development.”2
They also seem to think of requirement changes
during the project’s execution as opportunities to
increase client values rather than as threats to the
success of the project [3]. This corresponds with the
observation that agile methods to some extent are
designed for flexibility in scope and frequent
requirement changes, e.g., as implemented in the
common agile practice of flexible scope and frequent
deliveries to client with opportunities for feedback
and learning during the project execution.

The study reported in this paper tries to shed
some light on the connection between requirement
changes, development methods, and project
outcomes. This include the goal of examining
whether both viewpoints could be right, that is, that
many requirement changes are connected with better
outcomes for agile software projects, but worse
outcomes for non-agile software projects. The main
research questions are:

RQ1: How is the connection between amount of
requirement changes and project outcome dependent
on the development method?

RQ2: Among agile software projects, is there a
difference in the connection between amount of
requirement change and project outcome for project
with and without frequent delivery to clients?

The second research question is motivated by our
previous research, see [4], where frequent delivery to
client were found to be one of the practices with
strongest connection to project success.

The remainder of this paper is organized as
follows: Section 2 describes selected related work on
the effect of requirement changes, Section 3
describes the design and the results of the survey,
Section 4 discusses the results and concludes.

2. Related work

A study by Serrador and Pinto [5], which

examined 1002 software projects, suggests that the

1 www.agilealliance.org/agile101/the-agile-manifesto/. Retrieved
May 22, 2018.
2 www.agilealliance.org/agile101/12-principles-behind-the-agile-
manifesto/. Retrieved May 22, 2018.

most successful projects were those with most effort
spent on specifying the requirements before the
projects were initiated. The survey, and review, paper
[6] reports “functional, performance, and reliability
requirements and scope are not documented” as the
second most important software project risk factor. A
survey of software managers reports that they
considered requirement volatility among the top
software failure risk factors [7].

The project survey reported in [8] finds a negative
correlation between requirement changes and cost
control. Similarly, the study in [9] reports a negative
effect of requirement changes on product
performance, measured as system reliability, ease of
use, ability to meet users’ requirements, and user
satisfaction. The same study also reports a negative
effect of requirement changes on project performance
measured as budget and schedule control.

The survey of software projects reported in [10],
which examined the connection between increases in
the requirement scope and the degree of client
satisfaction with the project, found that a large
requirement increase was connected with more
project failures for traditional projects but not for
agile projects. Although this finding is highly
relevant for the study in this paper, and indicates that
the choice of development method matters for the
effect of requirement changes on project outcomes,
the study had limitations. The traditional projects, on
average, were much larger (and were likely to be
more complex) and had a higher number of
requirement changes than the agile projects. The
difference in how requirement changes and client
satisfaction were connected, therefore, could be a
result of factors other than the choice of development
method.

A survey of 399 agile software projects [11]
reports that agile teams’ ability to respond to
requirement changes, measured as the proportion of
change requests implemented (response
extensiveness) and the speed (response efficiency),
was positively connected to the ability of the
software functionality delivered to meet the
requirements, achieve goals, and satisfy users. A high
response extensiveness had no large effect on the
other project success dimensions, suggesting that
responding to additional requirement changes was
connected to better client satisfaction and benefits,
without harming the other project success measures.

The survey reported in [4] found that agile
projects with a flexible scope had almost twice as
high a success rate as agile projects without a flexible
scope. This result may be interpreted as supporting
the benefit of adopting the agile principle of
welcoming change.

An inherent problem in studying requirement
specifications and requirement volatility is that we do
not have commonly accepted and easy-to-implement
measures of the size and complexity of a requirement

change, the types of requirement changes, or the
degree of change of a requirement specification [12].
The negative, or positive, consequences of a
requirement change may depend, for example, on
whether the change is only minor or leads to a large
amount of rework, whether due to improved insight
into client needs or external changes, and whether the
change appears early or late in the project.

The great majority of previous research results, as
far as we can see, suggest that more requirement
changes are connected with more problematic and
less successful software development. However, most
of the research was conducted in a non-agile software
development context. Therefore, whether the
“embrace change” claim made by agile software
professionals has some merit remains unproved. This
is in particular the case, taking into account that more
recent studies [4, 10, 11] give some hope for positive
effects of requirement changes in the context of agile
projects.

3. The survey

3.1. Design

The survey requested the participants, who were

project managers and software developers from
different organizations participating in a seminar on
software cost estimation, to provide information
about their last completed software projects with
budgets of more than €100,000. Seventy-five
responses were received. Five of the responses were
incomplete, i.e., included “don’t know” responses,
and therefore removed, leaving 70 complete
responses. Each response included information about
the following:
• The respondent’s role (free text) and length of

experience (years).
• The budget category of the project: €100,000–1

million3, €1–10 million, >€10 million.
• The type of development method used: Agile,

Waterfall/Traditional, Mixed/other.
• Frequency of completed software functionality

delivered to production or to user evaluation
with feedback (this variable was included based
on the results in [4], where delivery frequency
was an essential variable for success with agile
projects): None, 1–4 per year, More than 4 per
year.

• Percentage of requirements added, removed,
and/or updated: 0–10%, 10–30%, More than
30%.

• Reasons why the requirements were added,
removed, and/or updated:4 Learned about client

3 The original questions were in Norwegian and used Norwegian
currency. The budget values are approximate monetary values
assuming that EUR 1 = NOK 10.

needs or gained insight during the project
execution, External changes, Insufficient
requirement analysis before the project started,
Other reasons.

• Perceived project outcome (for each of the
project success dimensions below, the
respondent was requested, based on his/her
evaluation, to choose one of the outcome
categories: Very successful – Successful –
Acceptable – Problematic – Very problematic):
Client benefits, Technical quality of software,
Cost control, Time control, Work efficiency.

We categorized the total performance (outcome)

of a project as follows:
• Successful: The project was evaluated as very

successful or successful on all five success
dimensions (client benefits, technical quality of
software, cost control, time control, and work
efficiency)

• Acceptable: The project was not successful but
was evaluated as at least acceptable on all five
success dimensions.

• Problematic: The project was evaluated as
problematic or very problematic on at least one
of the success dimensions.

In the analysis section, we mainly present
analyses based on the proportion of successful and
problematic projects. The proportion of acceptable
projects can be derived from the proportion of
successful and problematic projects.

Due to few responses for some of the categories,
we decided to join the categories “Mixed/other” and
“Waterfall/traditional”, creating the category “Non-
agile”. This gives very rough development method
categories, but enables a comparison of what was
considered agile by the respondents with the other
projects. Similarly, the few responses with less than
10% requirement changes led us to join this category
with the 10-30% category. The choice of 30% as our
boundary value is to some extent arbitrary, but
hopefully useful to gain some insight into difference
of project with much and with less requirement
changes.

3.2. Limitations

When interpreting the survey results, the

following limitations should be kept in mind:
• The sample of respondents and their projects is

not necessarily representative of other contexts.
While this may strongly affect the characteristics
of the data set, it may have less impact on the
connections we focus on in this study. There is
clearly a need for more studies to assess the

4 It was possible to give more than one reason for the requirement
changes. Twenty-five percent of the respondents did this.

generality and context dependencies of the
results identified.

• The survey asked for the perceived (subjective)
performance related to the success dimensions
and did not use more objective measures of the
project outcome, what they meant by use of agile
or non-agile development methods, and a
requirement change. Although this makes the
evaluations highly subjective, and there will be
differences in use of terms among the
respondents, it may also have advantages. It may
be, for example, that delivering the software one
month late is acceptable in one project context
but leads to large problems in another context.
Mechanical evaluations of measured time
overrun may not enable such meaningful
distinctions.

• The respondents (34% were project managers or
team leaders and 66% were software developers)
were all from the provider side of the projects.
This may have affected the assessment of the
projects’ success. The results of a similar survey
(see [4]) found, however, that providers and
clients tend to give similar evaluations of
software projects, even when evaluating the
client benefits. In addition, a role bias is mainly a
problem for the main (interaction) analyses in
this paper if the role bias is different for different
development methods, which we believe is not
the case.

• The number of responses is low for the
interaction analyses of this paper, especially for
non-agile projects. This limits the robustness of
the results, excludes the use of tests for statistical
significance, and points to the need for follow-up
studies to validate the findings.

There is no guarantee that the respondents had the
required information about the project, even though
they chose to respond and had the option of leaving
questions unanswered or using the don’t know
category. The respondents’ experience, which, on
average, was 14 years (only 6 respondents had less
than 4 years of experience), gives some confidence
that they were sufficiently competent to possess the
required information.

3.3. Results

As can be seen in Table 1, 43% of the projects
had more than 30% requirement changes (inserted,
removed or updated requirements) during project
execution. On average, the projects with more than
30% requirement changes were somewhat more
successful (27% of them were successful) than those
with less than 30% requirement changes (18% of
them were successful). The projects with more than
30% requirement changes were also, on average,
slightly less problematic (33% of them were
problematic) than those with less than 30% changes

(37% of them were problematic). This not substantial
difference in project outcomes related to requirement
changes hides, however, a large difference when the
development method is included as an interacting
variable (see Fig. 1 and Fig. 2).

Table 1. Project characteristics

Variable Characteristics
Project size 58% less than €1 million

33% more than €1 million
9% larger than €10 million

Development
method

74% agile
26% non-agile

Delivery frequency

36% 4 or fewer per year
64% more than 4 per year

Requirement
changes

57% less than 30%
43% more than 30%

Reason for change
(more than one
reason possible)

78% learning/insight
16% external change
27% insufficient up-front
analysis

Project outcome 25% successful
39% acceptable
36% problematic

Fig. 1 shows that the proportion of successful

projects increased (from 15% to 31%) with more
requirement changes for agile projects but decreased
(from 25% to 0%) for non-agile projects. Notice that
the proportion of successful non-agile projects is
higher than that of the agile projects when there are
fewer than 30% requirement changes but
substantially lower when there are more requirement
changes. There were only four non-agile projects
with more than 30% requirement changes, which
means that we should interpret the decrease in the
success rate for the non-agile projects with great care.
Previous research (see Section 2), however, supports
a decrease in the success rate for non-agile software
projects with many requirement changes. The results
for non-agile projects with many requirement
changes, although based on very few observations,
therefore, are in accordance with some previous
results.

Figure 1. Development methods, requirement
change, and proportion of successful projects.

Fig. 2 shows a weak decrease (from 31% to 27%)

in the proportion of problematic projects with more
requirement changes for agile projects. The
corresponding observation for non-agile projects is
an increase (from 50% to 75%) in the proportion of
problematic projects. As before, the number of non-
agile projects with more than 30% requirement
changes are few, and the results for non-agile projects
with many requirement changes, consequently, are
not very robust.

Figure 2. Development methods, requirement
change, and proportion of problematic projects.

Table 2 shows the proportion of projects

evaluated as “very successful” or “successful” for
each of the success dimensions, development
methods, and requirement change categories. The
data suggest that the use of agile development
methods is connected with an increase in the
proportion of successes from less than 30% to more
than 30% requirement changes for all success
dimensions, but especially for the success dimensions
technical quality (72% - 48% = 24% point increase)
and cost control (50% - 38% = 12% point increase).

Table 2. Proportion projects evaluated to be
“successful” or “very successful” for each success
dimension, development method, and requirement

change category
Requirement
change

Less than
30% change

More than
30% change

Development
method

Agil
e

Non
-
agile

Agil
e

Non
-
agile

Succes
s dim.

Client
benefits

77% 54% 85% 25%

Technica
l quality

48% 42% 72% 0%

Cost
control

38% 50% 50% 0%

Time
control

46% 50% 54% 0%

Work
efficienc
y

62% 42% 67% 50%

In total, answering our RQ1, the results displayed

in Fig. 1, Fig. 2 and Table 2 suggest that there is an
interaction effect from development method on the
connection between requirement change and project
outcome. The agile software projects performed
better in contexts with more requirement changes,
while the opposite was the case for the non-agile
projects.

Motivated by the results in [4], and answering
RQ2, we expected to see a difference in the success
rate between agile projects with many (more than
four per year) and with fewer (four or fewer per year)
deliveries of completed software functionality to
production or to user evaluation. This is what we see
in Fig. 3 and Fig. 4.

Figure 3. Delivery frequency, requirement change,

and success for agile projects.

As can be seen in Fig. 3 and Fig. 4, the agile

projects were more successful and less problematic in
contexts with many requirement changes when the
projects had frequent deliveries (more than 4 per
year) to production or proper user evaluation of
completed functionality. Frequent delivery did,
however, not make any difference in the project’s

success rate and gave only a slightly lower rate of
problematic projects when there were fewer
requirement changes. To what extent frequent
deliveries to production, with feedback, causes more
requirement changes, leads to project success in
situations with more requirement changes, or
indicates a development context with success
inducing elements, such as more involved clients, is
hard to see from the data. This is another topic for
future examination.

Figure 4. Delivery frequency, requirement change,

and problems for agile projects.

Requirement changes may differ considerably in

complexity, implications for rework, and how much
the changes disrupt the project execution. As an
initial step in understanding the influence of the type
of requirement change on the project performance,
we examined the effect of many requirement changes
on project performance for the three reasons (learning
or better insight, external changes, and insufficient
requirement analysis) individually. The results are
displayed in Table 3. We include only the results for
the agile projects, because there were too few
observations to give similar, meaningful results for
non-agile projects.

Table 3. Success and failure rate, per reason
(agile projects only)
Req.
change

Less than 30%
changes

More than 30%
changes

Reason

Le Ex In Le Ex In

Success 20
%

0% 0% 30
%

17
%

20
%

Accept. 55
%

33
%

50
%

33
%

50
%

20
%

Problem
.

25
%

67
%

50
%

22
%

50
%

60
%

i Le = Learning/insight, Ex = External, In = Insufficient analysis

The data in Table 3 do not reveal a clear pattern

connecting the reasons for and the degree of
requirement changes. The proportion of successful
projects increased and the proportion of problematic
projects decreased with more requirement changes
for all requirement change reasons. Notice, however,

the higher problem rates for agile projects where the
requirement changes were categorized as externally
induced or caused by insufficient analysis compared
to when the requirement changes were categorized as
caused by learning or better insight.

Contextual differences may explain the
differences in how the requirement changes,
development method, and project performance are
connected. Many important contextual variables were
not collected, such as how late the requirement
change occurred and the skill of the development
team. It might nevertheless be interesting to examine
if there are essential differences between agile and
non-agile projects based on the data we collected; see
Table 4. The values related to “Reasons for changes”
are the proportion of projects where the reason was
believed by the respondent to have caused all or part
of the requirement changes, if any, in the project.
None, one, or more reasons could be provided for the
same project.

Table 4. Context differences between agile and
non-agile
Characteristic Measure or

category
Development
method
Agile Non-

agile
Respondent’s
experience

Mean length of
experience (years)

13 15

Budget size Proportion costing
less than €1
million

62% 44%

Proportion costing
more than €1
million

38% 56%

Requirement
change

Proportion with
less than 30%
change

50% 76%

Proportion with
more than 30%
change

50% 24%

Reason for
changes

Proportion due to
learning/insight
during project
execution

82% 67%

Proportion due to
external changes

25% 11%

Proportion due to
insufficient
requirement
analysis

22% 44%

As can be seen, there were fewer, but not

substantially fewer, agile projects (38% vs. 56%) in
the category of projects with a budget of more than
€1 million, more agile projects (50% vs. 24%) in the

category of projects with more than 30% requirement
changes, and for agile projects, respondents were
more likely to provide the requirement reasons
“learning/insight” (82% vs. 67%) and “external
changes” (25% vs. 11%) and less likely to give the
reason “insufficient requirement analysis” (22% vs.
44%). There were no large differences in the average
length of respondents’ experience for agile and non-
agile software projects (13 vs. 15 years). The
directions of the contextual differences shown in
Table 4 are not surprising. Agile development
methods are more commonly used for smaller
projects, agile projects receive more requirement
changes, and agile software professionals are less
likely to think about requirement changes caused by
insufficient requirement analysis, given less emphasis
on producing up front complete and detailed
requirement specifications. The higher degree of
externally induced requirement changes may indicate
that agile methods were more frequently used in
contexts with higher environmental (external factors-
based) uncertainty. All these differences point at
possible differences in development complexity, for
example, slightly larger projects for non-agile and
perhaps more requirement uncertainty for agile
projects, which, in turn, may explain some of the
observed differences in the project outcomes for agile
and non-agile projects. There is, however, little that
suggest that the identified differences in contexts,
which are not very large, explain the reported
differences in how well agile and non-agile software
projects succeed in situations with much requirement
changes.

4. Discussion and conclusion

Most software projects experience that

requirements are added, removed, or changed during
the project execution. In as much as 50% of the agile
and 24% of the non-agile projects included in our
survey, more than 30% of the requirements were
added, removed, or updated during the project
execution. Requirement changes may be viewed as a
threat or as an opportunity. Traditionally,
requirement changes have been viewed as a risk
factor, that is, a threat to the success of a software
project. Agile software developers, however, tend to
view requirement changes differently. They tend to
view changes as creating opportunities to deliver
more client benefits, and view them as something that
should be welcomed in software projects.

The present results provide support for both
views. When agile methods were used, but only when
used with frequent deliveries of completed
functionality to productions or user evaluation, many
requirement changes were connected to higher
proportions of successful projects and lower
proportions of problematic projects. For non-agile
projects and agile projects without frequent deliveries

to production, the outcome was the opposite. Many
requirement changes for such projects were
connected to less successful and more problematic
projects.

The connection examined in this paper, that is
how the development method influences the
connection between requirement changes and
software project success, has not been much
investigated empirically. The only previous study we
were able to identify is the one reported in [10]. As
reported in Section 2, that study found a positive
connection between a large increase in requirements
and more satisfied clients for agile but not for non-
agile software projects. Although limited to added
requirements, i.e., not including changed
requirements, and using client satisfaction as the only
success measure, this result is consistent with what
we found.

In the present study, non-agile projects (see Table
4) were larger than agile projects but not by much,
and we believe the difference is not large enough to
explain the differences in project outcomes. Indeed,
we found larger projects to be somewhat more
successful and less problematic (33% successful and
30% problematic projects) than smaller projects
(21% successful and 39% problematic projects).

The limited number of variables and observations
in this study means that we were unable to gain much
insight into the underlying mechanisms that created
the difference in project performance for different
levels of requirement changes and different
development methods. We cannot, as discussed in
Section 3, be sure that the observed differences
between successful and problematic projects were
caused by, as opposed to just correlated with,
differences in development method.

It is perhaps not surprising that a development
method designed for flexibility in scope and frequent
requirement changes, that is, the agile software
development method, leads to better project
outcomes than traditional, non-agile, methods when
there are many requirement changes. What is perhaps
more surprising is that projects following the agile
method, when including the agile practice of frequent
delivery to client, did better when there were more
rather than fewer requirement changes. Currently, we
find it hard to suggest mechanisms that should make
it easier to succeed with more rather than fewer
requirement changes. We suspect that the use of agile
development methods, but mainly when
implementing a practice with frequent deliveries to
production, combined with many requirement
changes correlates with the presence of other,
essential success factors. This may include success
factors related to more competent and involved
clients, better and more frequent feedback and
learning during project execution, better benefits
management processes, more skilled developer
teams, and better software testing facilities [13].

These interpretation challenges, together with the
study limitations discussed earlier, mean that there is
a need for more, carefully designed studies that not
only try to replicate our results and examine the
connections, but also try to better understand the
context, patterns, and mechanisms that lead to the
differences. This may be important in an evidence-
based attempt to improve requirement management
practices and project outcomes.

Changes in requirements are here to stay, and our
ability to manage them is essential for success in
software development. The present results provide
some evidence in support of that agile development
methods, when implementing frequent deliveries to
production or to user evaluation with feedback, are a
good choice when expecting many requirement
changes.

5. References

[1] Schmidt, R., K. Lyytinen, and P.C. Mark Keil,
Identifying software project risks: An international Delphi
study. Journal of management information systems, 2001.
17(4): p. 5-36.

[2] Sommerville, I. and P. Sawyer, Requirements
engineering: a good practice guide. 1997: John Wiley &
Sons, Inc.

[3] Erickson, J., K. Lyytinen, and K. Siau, Agile modeling,
agile software development, and extreme programming: the
state of research. Journal of database Management, 2005.
16(4): p. 88.

[4] Jørgensen, M., A survey on the characteristics of
projects with success in delivering client benefits.
Information and Software Technology, 2016. 78: p. 83-94.

[5] Serrador, P. and J.K. Pinto, Does Agile work?—A
quantitative analysis of agile project success. International
Journal of Project Management, 2015. 33(5): p. 1040-1051.

[6] Kappelman, L.A., R. McKeeman, and L. Zhang, Early
warning signs of IT project failure: The dominant dozen.
Information systems management, 2006. 23(4): p. 31-36.

[7] Tiwana, A. and M. Keil, The one-minute risk
assessment tool. Communications of the ACM, 2004.
47(11): p. 73-77.

[8] Zowghi, D. and N. Nurmuliani. A study of the impact of
requirements volatility on software project performance. in
Software Engineering Conference, 2002. Ninth Asia-
Pacific. 2002. IEEE.

[9] Govindaraju, R., et al., Requirement volatility,
standardization and knowledge integration in software
projects: an empirical analysis on outsourced IS
development projects. Journal of ICT Research and
Applications, 2015. 9(1): p. 68-87.

[10] Suma, V. and K. LakshmiMadhuri. Influence of Scope
Creep on Project Success: AComparative Study between

Conventional ApproachVerses Agile Approach. in IEEE
International Conference on Advanced research in
Engineering and Technology (ICARET). 2013.

[11] Lee, G. and W. Xia, Toward agile: an integrated
analysis of quantitative and qualitative field data on
software development agility. Mis Quarterly, 2010. 34(1):
p. 87-114.
[12] McGee, S. and D. Greer, Towards an understanding of
the causes and effects of software requirements change:
two case studies. Requirements Engineering, 2012. 17(2):
p. 133-155.

[13] Jørgensen, M., P. Mohagheghi, and S. Grimstad,
Direct and indirect connections between type of contract
and software project outcome. International Journal of
Project Management, 2017. 35(8): p. 1573-1586.

