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ABSTRACT The smart grid is widely considered as an efficient and intelligent power system. With the aid
of communication technologies, the smart grid can enhance the efficiency and reliability of the grid system
through intelligent energy management. However, with the development of new energy sources, storage and
transmission technologies together with the heterogeneous architecture of the grid network, several new
features have been incorporated into the smart grid. These features make the energy trading more complex
and pose a significant challenge on designing efficient trading schemes. Based on this motivation, in this
paper, we present a comprehensive review of several typical economic incentive approaches adopted in the
energy-trading control mechanisms. We focus on the technologies that address the challenges specific to
the new features of the smart grid. Furthermore, we investigate the energy trading in a new cloud-based
vehicle-to-vehicle energy exchange scenario. We propose an optimal contract-based electricity trading
scheme, which efficiently increases the generated profit.

INDEX TERMS Energy trading, economic incentive, smart grid.

I. INTRODUCTION
Internet of Things (IoT) is regarded as an indispensable part
of smart cities for improving the power management by
providing timely and efficient information and communica-
tions [1], [2]. With the aid of IoT technologies, in the smart
grid, power generation, storage, transmission, distribution
and consumption are interconnected through a communica-
tion network [3]–[9]. Thus, the smart grid can make use of
the two-way flows of electricity and information to deliver
power efficiently and reliably [10]–[13].

Energy management plays a critical role in balancing and
shaping the electricity demand and supply. Among energy
management mechanisms, energy trading is an effective
mechanism that accounts the interest of both the supply and
the demand sides. In energy trading, the electricity providers
aim to schedule power generation among generators accord-
ing to the power demand obeying the physical constraints of
the power system [14]. On the consumers side, they reshape
their demand profiles in response to the supply conditions.

As both sides are rational, thereby aiming to maximize their
own profits, incentive-based schemes naturally offer great
potential for efficient and effective energy trading.

Among incentive-based energy trading schemes, pricing is
one of the most common tools for energy flow control and
energy management. The power demand from the consumers
is a function of the unit price, which will in turn influence the
supply strategies of the providers. To model the electricity
market mechanisms, game theory, a powerful economic tool
to analyze the rational interactions between two or more
individuals, is a natural choice for modeling a wide range
of scenarios. Besides pricing and game theoretic approaches,
there are some other incentive-based approaches to improve
the efficiency of the electricity dispatch and consumption,
such as auction, bargain and contract theories, which are
able to depict the behaviors of self-serving energy trading
participants.

Fig. 1 shows an architecture of the smart grid.
Recently, with the development of IoT, power technologies
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FIGURE 1. The smart grid network architecture with new features.

and smart transportation, several important features have
been integrated into the smart grid. The new features are
described as below.
• Distributed Architecture: The smart grid can be mod-
eled as a hierarchical architecture with some interactive
micro-grids [15]. The variation of load balancing of each
micro-grid together with the interconnections between
those micro-grids make the energy management of the
smart grid even more complex.

• Heterogeneous Renewable Energy Sources: Large-scale
integration of heterogeneous distributed Renewable
Energy Sources (RESs), which include solar, wind and
hydroelectric power sources, etc., has a great impact on
power grid operation [16].

• Distributed Energy Storage: To mitigate the variability
and intermittency of RESs, distributed energy storage
can be exploited to shift energy consumption in time,
where the coordination of supply, demand and storage
should be investigated [17].

• Widespread Electric Vehicles (EVs):With thewidespread
adoption of EVs, their flexible mobile energy storage
functionality should be effectively utilized. The bidirec-
tional energy flow between EVs and the grid can help to
archive demand balance in local area. Furthermore, as
EVs always travel among different areas, their function
of the energy transportation from one place to another
may improve the energy reliability among different
areas [18].

The features above increase the scale of the energy
management. In addition, the heterogeneous energy sources,
consumers and transmission technologies may vary in time,
space and energy trading preference. Taking into account
these essential characteristics of the energy management,
the power trading mechanism becomes complicated, and
it is challenged to improve the social welfare of the

transaction parties as well as to make the power system more
reliable. Thus, we are motivated to investigate the incentive
approaches for the smart grid energy trading.

In this paper, we present the requirements and challenges
of energy trading mechanisms, review existing economic
incentive based approaches, and propose an optimal con-
tract theoretic energy trading scheme in a new cloud-based
Vehicle-to-Vehicle (V2V) power exchange scenario. Specifi-
cally, we will discuss the following topics in this paper.
• Incentive-Based Economic Theories: Due to their high
potential of modeling the strategies and decisions of
rational transaction parties, incentive-based economic
theories are widely adopted in the designing of energy
trading control schemes. Thus, we first present a review
of these theories, providing the sketch and some essen-
tial information of them.

• Incentive-Based Energy Trading Schemes: To incorpo-
rate the features in the smart grid, several schemes
have been proposed for energy trading. We focus on
the schemes of Demand ResponseManagement (DRM),
where some technical components, e.g., RESs, energy
storage and Vehicle-to-Grid (V2G), may be integrated
into the energy trading process. We present some discus-
sions on the incentive-based approaches adopted in these
mechanisms, including the advantages and limitations of
the existing solutions.

• A New Energy Exchange Scheme: The charging demand
of a large EV population is inhomogeneous in space
and time. This inhomogeneity may result in unprece-
dented challenges in the already strained grid. Although
traditional energy management schemes can mitigate
load-imbalance of the grid, they may cause power trans-
mission cost. To address the problem, we propose a new
cloud-based V2V energy trading framework, where the
electricity trading takes place at a local level and the
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process is modeled and solved by a contract theoretic
approach. We also conduct a simulation study to illus-
trate the efficiency of the proposed schemes.

The rest of the paper is organized as follows. In Section II,
we introduce the theoretic concepts and methodologies of the
incentive-based approaches associated with the energy trad-
ing in the smart grid. Some efficient incentive-based energy
trading schemes are presented and discussed in Section III.
In Section IV, we provide a case study where a new contract-
based energy trading scheme and its performance evaluation
are presented. Finally, we conclude our work in Section V.

II. INCENTIVE-BASED ECONOMIC THEORIES
In this section, some theoretic issues of the incentive-based
economic approaches are presented, with the focus on pric-
ing, game theory, bargain, auction and contract theories.

A. PRICING
Pricing is a powerful tool to stimulate consumers to behave
in an economically optimal way. In other words, when elec-
tricity prices are high, users naturally reschedule their energy
consumption or curtail it, and consequently, the demand at
peak times decreases.

As the load of the smart grid varies with time, the cor-
responding electricity prices are different at different times.
According to the characteristics of their variation, the pricing
schemes can be classified into following three types [19].

1) REAL-TIME PRICING (RTP)
The RTP is time-varying according to the current energy
load conditions. By using RTP, the current cost of electric
consumption can be informed to consumers accurately and
timely. Thus, it has been taken as one of the most effi-
cient approaches to improve the performance of the energy
market [20].

2) TIME OF USE (ToU) PRICING
Unlike RTP changing frequently, the determination of ToU
pricing is based on the energy load levels in a relatively
long time period, such as an hour, daytime and night-time.
Furthermore, ToU pricing is released in advance and is con-
stant for a long period. Based on the basic rate structure
of ToU pricing, when the grid is facing a critical jeopardy,
Critical Peak Pricing (CPP) can be employed to shave the
peak load.

3) INCLINING BLOCK RATE (IBR) PRICING
The IBR pricing is designed with multi-level rate structures
where various prices correspond to different electricity con-
sumption levels. These levels are determined by the average
electricity consumption in a period with the fixed thresholds.

By using these pricing schemes, the change of the energy
usage patterns induced by the varying prices can be feedback
to the providers timely, which will in turn affect the gener-
ation level of the supply side. In economics literature, this
feedback information is called consumer’s price elasticity ε

which can be shown as

ε =
1L/L
1P/P

, (1)

where 1L and 1P are the changes of consumer’s load and
the change of price, respectively. P is the forecasted energy
price, and L is the consumer’s base load [21]. This equation
indicates that the larger ε means the higher sensitivity of
the consumers to the price. In the case where the price
elasticity is negative, the load will decrease as the price
grows.

B. GAME THEORY
In the smart grid, both supply and demand sides are rational
and self-interested. For efficient energy management, while
energy providers need to adjust their generations, dispatch
strategies and electricity prices under different operating con-
ditions, consumers respond to the changes of the provider by
rescheduling their demands to maximize their own utilities.
Since both sides are participating in the energy market, and
the changes of one side can impact the strategies of the other,
game theory is a natural choice to model and analyze the
trading strategies and decisions [22].

In a game-theoretic framework, there are three main com-
ponents: the set of players denoted asN , the player i’s action
set Ai, and its corresponding utility function ui, i ∈ N . In a
game, each player i chooses an action ai ∈ Ai to maximize
its utility function ui(ai, a−i), which not only depends on its
own action ai but also on the actions taken by the players other
than i, denoted as {a−i}.
The objective of the players is to optimize their utilities by

adjusting their strategies. One of the most important strategy
concepts for game theory is called Nash equilibrium. The
Nash equilibrium is a state where no player can improve its
utility by changing its action unilaterally, given the actions of
the other players. For a static game, the Nash equilibriumwith
pure strategies can be formally defined as a vector of actions
a∗ ∈ A, provided ui(a∗i , a

∗
−i) ≥ ui(ai, a∗−i) holds, ∀ai ∈ Ai,

i ∈ N [23].
According to whether players coordinate or compete with

each other, games can be classified into two types, namely
noncooperative games and cooperative games. In the smart
grid, noncooperative games can be used to model the dis-
tributed energy trading between the competitive providers
and consumers. Cooperative games are instead suitable for
the scenarios where energy trading participants cooperate
with the aid of communication networks, so as to improve
the social welfare or efficiency of the collaborators.

C. AUCTION THEORY
Auction is a market mechanism used for trading the com-
modity from a number of sellers to several buyers who want
to improve their utilities by obtaining these goods. There
are four basic types of auctions, namely the ascending-bid
auction, the descending-bid auction, the first-price sealed-
bid auction and the second-price sealed-bid auction [24].
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The outcome of the auction is the final price and the amount
of good of the trade.

In auction, different bidders value the objects for sale with
various evaluation criteria. For example, for buying the same
amount of electricity, the micro-grid can obtain a higher
profit during peak hours compared to that during off-peak
hours. As the evaluation information is private for each bid-
der, there is asymmetric information in the auction process.
In the asymmetric information scenario, to get more profit,
self-interested bidders may misrepresent their valuations by
bidding untruthfully. This cheating, which may harm the effi-
ciency and fairness of the trade, can be implemented individu-
ally or collusively. The classic Vickrey-Clarke-Groves (VCG)
auction mechanism is proved truthful and is thus widely
deployed [24].

The hierarchical architecture of the smart grid together
with the proliferation of distributed energy resources make
an open market where energy can be exchanged at local
and regional levels. To improve the efficiency of electricity
distribution, an autonomous and distributed energy manage-
ment is imperatively needed. In this context, the distributed
auction scheme, which incentivizes energy trading between
small scale energy providers and local customers, is suitable
for the autonomous management. By employing this scheme,
bidding information is shared among local nodes, and elec-
tricity is dispatched within adjacent areas, which greatly
improve the transmission efficiency of the communication
network and the power network. However, considering the
integrity of the smart grid, an auction scheme, which only
concerns power optimization within a local area, may cause
energy imbalances between different districts and degrade the
grid reliability. Hence, adaptive hierarchical auction based
energy trading schemes are necessary for the electricity
management.

Due to the limited capacity of the distributed generations
and the ever-increasing demands, one consumer may pur-
chase electricity from several providers, where a multi-item
energy auction scheme is required. Furthermore, with the
proliferation of the RESs, the Renewable Energy (RE) gener-
ators can also participate in the energy trade. The intermittent
nature of RESs makes the trading of RE stochastic. Thus, the
risk of shortfall from contracted amounts of RE should be
taken into consideration in the design of the auction schemes.

D. BARGAIN THEORY
In the smart grid, the consumers can reschedule electricity
consumption and strive for their preferred payment by a
bargain mechanism. The bargaining process starts with the
initial bids of both sides, and is terminated by the successful
deals [25]. Unlike auction theory, which concentrates on
the utility maximization of auctioneers and bidders, bargain
theory aims at achieving a fair, and thus self-enforcing, gain
or cost allocation.

To enhance the winning chances and the revenues in a
bargain, the participants in the same side always form some
coalitions. Nash Bargaining Solution (NBS) concept, which

develops in the realm of the game theory and bases on a
cooperative game-theoretical framework, can be used in this
scenario to distribute bidding goods and bidding cost among
these collaborators.

For a bargaining taking place among a set of players
denoted as N , the Nash bargaining problem can be formally
expressed as

max5n∈N
{B∗i }

(U c
n − U

d
n )

s.t. U c
n ≥ U

d
n , ∀n ∈ N, (2)

where U c
n and Ud

n are the utilities of player n gained with
and without collaboration, respectively. {B∗i } is the NBS,
which determines a fare and Pareto optimal sharing strategies
for dividing the jointly archived profit or cost among the
collaborative players.

The energy trading in the smart grid usually involves mas-
sive participants, such as distributed electricity generators,
EVs and a wide variety of electric devices. Taking all of
these players directly into a centralized bargaining process
will heavily increase the complexity in obtaining the NBS.
We can resort to a distributed algorithm, where energy trading
participants bargain with the others in a limited area. Thus,
some local optimal bargaining solutions can be obtained with
limited information exchange.

To make distributed bargain schemes scalable and effi-
cient, a number of trading participants can be classified into
groups according to their correlation in the trading process.
In this scenario, a representative scheme, which treats groups
of individuals as single bargainers, can be utilized in the
bargaining process. Thus, the operation complexity of bar-
gaining process can be greatly reduced. However, the mecha-
nism of grouping individuals efficiently in the context of the
smart grid, and the determination of a fair welfare allocation
between and within groups make the bargain scheme design
a challenge [26].

E. CONTRACT THEORY
The participants of the energy trading process can be
classified into several types according to their characteris-
tics, such as energy generation and consumption preferences.
Intuitively, different reward or cost should be implemented
to these participants according to their trading features.
However, due to their rational and selfish nature, each partic-
ipant may attempt to gain more profit by disguising its type,
which brings difficulty to the trading scheme design. Further-
more, this problem may be exacerbated by the information
asymmetry in the energy market, where one side can not be
aware of the actual types of the participants belonging to the
other side.

To address the problem, contract theory, which is a power-
ful tool from microeconomics, can be adopted to incentivize
the trading participants based on their true types under infor-
mation asymmetry [27]. Considering N types of participants,
the trading contract for each type can be presented as (ai, qi),
where i ∈ N , N = {1, 2, . . . ,N }. Here ai is the reward
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FIGURE 2. Demand response in the smart grid.

or payment for the type-i participant trading electricity of
amount qi.
To be a feasible scheme, the designed contracts should

satisfy the Individual Rationality (IR) constraint and the
Incentive Compatibility (IC) constraint, which are defined as
follows.
Definition 1: IR constraint: A contract satisfies the indi-

vidual rationality constraint if the utility of each type of
participants is guaranteed to be nonnegative, i.e.,

Ui(ai, qi) ≥ 0, i ∈ N , (3)

where, Ui is the utility of type-i participants.
The IR constraint motivates the trading of the self-

interested participants, since positive profit can be gained
from the trading.
Definition 2: IC constraint: A contract satisfies the incen-

tive compatible constraint if the contract (ai, qi) chosen by
the participants of type-i attains the highest utility they could
obtain, i.e.,

Ui(ai, qi) ≥ Ui(aj, qj), i, j ∈ N , i 6= j. (4)

The IC constraint makes the participants of type-i prefer
the contract (ai, qi) over all other options.

As the contracts are made by the dominant side in the
trade, a well-designed contract mechanism can be utilized to
maximize the profit of the dominant side by making other
participants to behave in the desired way.

III. INCENTIVE-BASED APPROACHES IN DEMAND
RESPONSE MANAGEMENT
DRM is a key component in the smart grid, which can
effectively reduce consumer payments and electricity gener-
ation costs [28]. Fig. 2 illustrates the interaction between the
power supply and demand sides, where RESs, energy storage
and EVs are incorporated into the interaction. As they are
applicable to stimulate both consumers and power utilities

to adaptively reschedule load and supply profiles, incentive-
based approaches are widely used in DRM. In the following,
we present some typical incentive-based approaches imple-
mented in the design of DRM schemes. Specifically, the
energy trading schemes for DRM incorporating with techni-
cal components, such as RESs, energy storage and V2G, are
illustrated. Table 1 shows the taxonomy of these schemes.

There are several incentive-based approaches focusing on
optimizing DRM. One of the typical examples of these
approaches is the pricing scheme. In [21], the authors pro-
posed an agent-based model that simulates the deregulated
electricity markets. The relationship between energy load L
and electricity price P can be written as

L = a · Pε, (5)

where a is a constant, and ε is the price elasticity defined
in (1). In [29], in order to optimize the energy providers’
benefit as well as to satisfy consumers, a real time pricing
based DRM scheme was proposed.

In energy trading management, as it is hard to obtain accu-
rate price elasticity in practice, many studies resort to game
theory, which is an effective way of modeling the rational
interaction between two or more individuals. The game the-
ory based schemes incentivize the demand and supply sides
to adapt their trading strategies, which may lead to optimal
profits to these trading participants. With the expansion of
participants in the energy trading, the interaction among them
becomes complicated, thus hierarchical games shall be lever-
aged to solve the demand response problem. For instance,
the studies in [30] modeled the DRM interaction as a two-
level game, where the competition between utility companies
is formulated as a non-cooperative game, and the interaction
among residential users forms an evolutionary game. In [31],
the authors presented a hierarchical system model consisting
of power generation units, utility companies and electricity
end users. A Stackelberg game between these three parts,
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TABLE 1. A taxonomy of typical incentive-based energy trading schemes.

where the energy providers behave as leaders and end users
act as the followers, was proposed.

Considering the fairness of the profit in the DRM, several
bargain theory based approaches have been proposed in the
energy trading management. In [32], the authors studied the
energy trading among multiple connected micro-grids and
proposed a bargain theory based energy trading scheme,
where the interconnected micro-grids cooperatively decide
the amount of energy trade and the associated costs. The work
in [33] focused on a distributed reactive power compensation
problem where distributed generation units can contribute
to the local voltage control. The interaction between one
electric utility company and multiple users is modeled and
analyzed by using Nash bargaining theory. In order to cope
with the complex energy management which incorporates
numerous devices, the authors in [26] designed an algorithm
that employs the group bargaining concept of game theory.
In this algorithm, each representative, who represents on
behalf of the group it belongs to, bargains with each other.
By distinguishing between inter- and intra-group bargaining
processes, the complexity of energy distribution is greatly
reduced, and energy can be efficiently allocated to various
devices according to their actual requirements.

As an important part of economic theory, auction pro-
vides an efficient way to carry out demand response between
energy trading participants of different sides. The work
in [34] explored the modeling and design of demand response
auctions, with the focus on adjustable power, information

truthfulness, computational efficiency, and economic profits.
Due to their rationality, consumers may cheat in the energy
demand request for obtaining more profit, which may cause
extra cost for the energy providers. To prevent users’ cheat-
ing in the energy trading, the authors in [35] proposed an
efficient auction method, where users’ payment is related
to their consumption credit records. Low credit records will
bring extra pay to the cheating users. In the case where the
DRM optimization problem has several complex constraints,
auction can be employed to solve the problem. In [36], an
auction-based distributed algorithm and consensus protocols
were proposed to solve a non-convex economic power dis-
patch problem in the smart grid, where the generation cost is
minimized.

A. DEMAND RESPONSE MANAGEMENT WITH
RENEWABLE ENERGY SOURCES
As it is environmentally friendly and cost effective, integrat-
ing RESs into the power grid is one of the highly emphasized
features of the smart grid. However, the inherent intermit-
tence of RESs heavily impact their utilization, which makes
energy trade more sophisticated. To address the RE intermit-
tence issue, in [37], the authors focused on the pricing scheme
employed in the household-based energy management.
To keep the consumption below a pre-defined acceptable
level, optimal energy price signals, which incentivize house-
holds to adaptively schedule their consumption, are estimated
and broadcast in advance. The authors in [38] considered both
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renewable and nonrenewable energy sources, and attempted
to optimize the tradeoff between the two types of energy
sources. Based on an analytic model of a multi-leader and
multi-follower Stackelberg game approach, a bi-level hybrid
evolutionary algorithm was proposed to leverage affordable
electric power while minimizing carbon emissions.

Besides these studies, auction theory is commonly used
in the RE management. The authors in [40] studied the
participation of wind power producers in a deregulated
electricity market, and proposed an auction paradigm where
RE suppliers bid probability distributions of generation.
In [41], a reverse auction model for micro-grid market oper-
ations was presented. The model is utilized to obtain an
efficient power supply, by scheduling the electricity commit-
ment of conventional and distributed RESs in an hour-ahead
market.

B. DEMAND RESPONSE MANAGEMENT
WITH ENERGY STORAGE
Energy storage constitutes a key element in the smart grid,
which can help flatten the power load and counter the inter-
mittence of RESs by bidirectional energy exchange. In [42],
the authors proposed a decentralized charging scheme of
households’ storage batteries, where the households’
electricity consumption is reduced by using an appropriate
electricity price structure. To utilize the energy storage units
efficiently, the authors in [43] studied the demand side man-
agement problem in the scenario where energy consumers
are equipped with energy storage devices. A non-cooperative
game between residential energy consumers, and a Stackel-
berg game between utility providers and energy consumers
were proposed. The paper [44] analyzed the complex inter-
actions between energy storage units that want to sell part of
their stored energy to grid elements. In this energy exchange
market, the energy trading price is determined via a double
auction mechanism.

Due to the high cost of energy storage systems’ deploy-
ment, the storage users should deploy and share these devices
collaboratively. However, the utilization of these devices
depends on the energy distribution losses, electricity prices
and users’ various profiles. The studies in [45] focused on the
RESs aided houses’ charging and discharging of the deployed
energy storage devices, as well as the corresponding cost each
house should pay. By employingNash bargaining framework,
a fair and self-enforcing cost sharing scheme between these
houses was proposed, which incentivizes the collaborative
utilization of storage devices to save significant energy.

C. DEMAND RESPONSE MANAGEMENT
WITH VEHICLE-TO-GRID
V2G is a promising technology to balance the load level
of the smart grid through bidirectional energy flow between
EVs and the smart grid. The key problem in V2G is the
determination of the amount and the time of the energy
exchange between EVs and the grid. To address this issue, the
authors in [46] presented amathematical model for evaluating

the reaction of EVs in response to electricity price. In [47],
a hierarchical game approach was adopted to coordinate the
charging and discharging processes of EVs in a decentralized
fashion. In the designed hierarchical game, the V2G capacity
of each EV was obtained through an evolutionary game in
the upper level, while the charging sequence of the EVs was
determined by a noncooperative game at the lower level.
In [25], the authors designed a bargaining mechanism for
EV aggregators and power system dispatchers scheduling the
EV charging and discharging behaviors.

Considering the huge electricity demands and the limited
electricity capacity of an EV, the authors in [48] proposed
an incentivized auction-based group-selling V2G scheme,
which consists of a two-level auction process. In the first
level, the auction takes place between a group of EVs and an
aggregator, and in the second level, the auction is between
aggregators and the smart grid. This hierarchical auction
scheme efficiently reduces the complexity of the auction
process between a large number of participants, and benefits
the load balance management.

As EVs are selfish and have various preferences towards
energy switching based on their own constraints, the authors
in [49] proposed a contract-based mechanism to manage the
V2G process. Different types of EVs rationally choose the
corresponding contracts, that specifies the EVs’ charging/
discharging rates and the payments. Through the optimally
designed contracts, EVs are stimulated to provide ancillary
services to the grid and help match the service request of the
grid.

IV. OPTIMAL ENERGY EXCHANGE SCHEMES
EVs’ chargingmanagement is an important part of grid DRM.
The aggregation of charging demands from a large popula-
tion of EVs in an area may cause heavy-load of the grid.
In traditional DRM schemes, this burden can be alleviated
by energy dispatching between different areas. However, long
distance energy transmission results in high costs. To manage
EVs’ charging more efficiently, in this section, we present
a cloud-based Vehicle-to-Vehicle (V2V) energy exchange
framework. In the framework, the energy for EV charging
can be acquired from two sources, namely the discharg-
ing EVs or RESs. In addition, the discharging and the
corresponding charging processes are carried out at the same
Energy Switch Center (ESC), without long distance energy
transmission in the grid. Here the energy trading process
is modeled in a contract theoretic approach. We derive the
optimal feasible contracts which maximize the profit gen-
erated from the ESC. Furthermore, taking into account the
intermittence of RESs, we propose an optimal contract-based
electricity trading scheme.

A. SCENARIO DESCRIPTION
AlthoughV2G technology has the potential to efficiently alle-
viate the load during peak hours, the electricity fed back to the
grid always needs to be delivered and distributed through the
transmission and distribution networks, which may result in
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FIGURE 3. V2V electricity exchange via VEC in the smart grid networks.

high dispatch costs and eventually may challenge the stability
of the grid. These negative factors are likely to lower the
profits of electricity utilities, and consequently may hinder
the development and deployment of V2G technology.

To cope with this problem, several studies have focused on
the utilization of EVs for energy transmission. For instance,
the authors in [50] proposed a renewable energy transfer
scheme by operating electrical buses between two locations.
In [18], the authors studied the impact of EVs, which act as
energy transporters between different districts, on the DRM
of the smart grid. In [51], an EV energy network, where mov-
ing EVs are adopted for energy transmission and distribution
was proposed. However, few studies have considered the
V2V charging mechanism, which can be achieved with the
aid of aggregator devices [52]. Furthermore, various charac-
teristics of the discharging EVs, such as State of Charge (SoC)
and discharging cost, which play an important role in the
energy trade, have not been taken into account.

In this paper, we propose a new cloud-based V2V energy
exchange framework. As the batteries equipped on EVs
have limited capacities, to satisfy the charging demand, the
V2V energy switching needs to be realized through a large
number of discharging EVs. Considering discharging EVs
may have various discharging capacities and characteristics,
these EVs are categorized into multiple types based on the
defined Range Anxiety Levels (RAL) concept. We design
a contract scheme to maximize the profit generated from
the ESC, and meanwhile enhance the satisfactions of the
discharging EVs of different types. Unlike the contract-based
schemes in previous studies, the contracts in our scheme
are made by the buying side, which is dominant in this
trade. Furthermore, RE has been recognized as an environ-
mentally and economically beneficial solution for the smart
grid [53]. With the incorporated RESs, the cost reduction
together with the intermittence feature are inherently brought
to the energy trade process. Considering the fluctuation of
RESs, which may make the total supply capacity exceed the

charging demand, we design a contract theoretic mechanism
for the optimal trading energy under the stochastic nature of
the charging demand and RE supply.

B. SYSTEM MODEL
Fig. 3 shows a V2G smart grid network with Vehicle Energy
Cloudlets (VECs) to realize V2V energy exchange. Each
VEC has an ESC aided with an RE generator. The ESCs
are operated by electric utility companies. Each ESC acts
as a broker in the energy exchange process, which obtains
electricity from the discharging EVs or RES, and then resells
it to the charging EVs. The power availability of the RESs
is modeled as a Discrete Time Markov Chain (DTMC) [54].
The highest amount of the electricity which can be obtained
from the renewable generator isM units. Thus, the harvested
RE is represented as an M states DTMC. The steady state
probability of the RE generator is given as πi for the state i,
i.e., the generated RE is at i units, 0 ≤ i ≤ M ,

∑M
i=0 πi = 1.

Compared to the electricity drawn from the discharging EVs,
the cost of the energy obtained from the RE source is much
cheaper. Here, we consider the harvested RE is free to be used
by the ESC. To reduce its operation cost, the ESC is more
inclined to use RE. However, in the case where the RE is
inadequate for charging, some extra electricity needs to be
bought from the discharging EVs.

In order to concentrate on the study of the discharging
scheme, we consider a fixed price c for selling unit electricity
to the charging EVs, and model the charging demand at the
ESC as a Poisson process with arrival rate λd . The probability
of the charging demand d at n units electricity is given as

Pd (n) =
e−λdλd n

n!
, n ≥ 0. (6)

As the SoCs and the distance to reach the ESC are different
for the discharging EVs, we classify the EVs into different
types. The types are distinguished by the concept of RAL
of discharging EVs, which are heterogeneous in terms of the
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EVs’ SoCs and the electricity consumption to reach the ESC.
Let S inii , li and ri denote the initial SoC of discharging EV i
before discharging, the distance for EV i to reach the ESC,
and the electricity consumption per unit distance, respec-
tively. The definition of RAL of EV i can be given as

θi = f (S inii − rili), (7)

where f (·) is the range anxiety function, f ′(·) > 0 and
f ′′(·) < 0.
Considering the cost of energy for EV traveling to the ESC,

we assume that each discharging EV has at most one chance
to accomplish a discharging task. Given the profit incentive,
the discharging EVs with higher RAL prefer to sell more
electricity to the ESC. We consider there are a finite number
of RAL types with indices θ1, θ2, . . . , θN . Without loss of
generality, we assume that θ1 < θ2 < . . . < θN . βi is the
proportion of discharging EVs of type-θi in all the discharging
EVs, and

∑N
i=1 βi = 1. Each discharging EV knows perfectly

which type it belongs to. However, as the type is private
information for each EV, the ESC may not be well aware of
that, i.e., there is information asymmetry between the ESC
and discharging EVs. However, we assume that the ESC has
the knowledge of the probability distribution of discharging
EV types based on statistical information.

To provide reliable charging service while maximizing
its revenue, the ESC derives the amount of the electricity
required to buy from the discharging EVs according to the
difference between the energy demand and the RE supply.
Then the ESC broadcasts the demand information to the
discharging EVs in contract forms by using wireless commu-
nications technologies [55]–[57]. We consider the number of
discharging EVs in each VEC area is W . These discharging
EVs are rational and self-interested. They count their utilities
for discharging and choose whether to sell the electricity to
the ESC.

C. CONTRACT THEORETIC APPROACH
FOR ENERGY TRADING
In this subsection, we consider a scenario where the charging
electricity demand is higher than the sum of discharging and
RE supply, and propose a contract theoretic approach for the
cloud-based V2V electricity trading. In practice, however,
it is more reasonable that the total demand is comparable
to the sum of supply. For instance, the sum of supply may
higher than the demand due to the high energy generation of
photovoltaic panels at noon. This motivates us to propose a
trading scheme in a more practical scenario, which will be
discussed in the following subsection.

As there are N types of discharging EVs according to
their RAL, the ESC provides N different contracts. The con-
tract designed for type-θi discharging EVs is given as (ai, qi),
where qi is the amount of electricity that a type-θi discharging
EV sells to the ESC, and ai is the corresponding reward to
the EV.

With the offered contracts, each discharging EV can
choose to accept one contract or decline all of them based

on its utility of this energy trade. Here, the utility function of
a type-θi EV, selling electricity based on the contract (ai, qi)
is defined as

U i
EV = θiv(ai)− eqi, i ∈ N , (8)

where v(0) = 0, v′(ai) > 0, and v′′(ai) < 0 for all ai.
N = {1, 2, . . . ,N }. e is the cost of per unit electricity for
the discharging EVs before they arrive in the VEC area.

Due to the rationality of the discharging EVs, they will
not accept a contract that results in negative utility. Thus, the
IR constraint should be satisfied in these contracts, which can
be expressed as

U i
EV ≥ 0, i ∈ N . (9)

Besides the IR constraint, a feasible contract should also
satisfy the IC constraint, which incentivizes type-θi EVs to
prefer the contracts designed for their own type. Formally, in
this case, the IC constraint can be written as

θiv(ai)− eqi ≥ θiv(aj)− eqj, i 6= j, i, j ∈ N. (10)

In this scenario, the total utility generated from the ESC is
given as

U total
ESC = cm+

N∑
i=1

wi(cqi − ai), (11)

where c is the price for selling unit electricity to the charg-
ing EVs, and m is the amount of electricity obtained from
the RES. wi = βiW is the number of type-θi discharging
EVs in this trading. Note that, as the charging demand is
higher than the total supply, the improvement ofU total

ESC mainly
depends on the participation of EVs to discharge electricity.
Thus, we focus our study on the optimization of the second
part of (11).

Given above definitions and the IR and IC constraints,
the contract-based optimization problem for maximizing the
revenue generated from the ESC can be formulated as

max
{qi,ai}

UESC =
N∑
i=1

wi(cqi − ai)

s.t. θiv(ai)− eqi ≥ 0, i ∈ N ,
θiv(ai)− eqi ≥ θiv(aj)− eqj, i 6= j, i, j ∈ N . (12)

In (12), the total number of the constraints is N 2. The com-
putational complexity of solving the optimization problem
grows rapidly as N increases. To get a solution with higher
practical use, the constraints should be reduced. Here, we
derive the necessary and sufficient conditions for simplifying
the problem, and propose an efficient algorithm to obtain the
optimal contracts.
Lemma 1: Monotonicity: Both the monetary reward {ai}

and the amount of trading electricity {qi} are monotonically
increasing in {θi}, i ∈ N , i.e., for any feasible contract items,
ai ≥ aj and qi ≥ qj if and only if θi > θj.

Proof: See Appendix A. �
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Lemma 2: IR Constraints Reduction: Under the condition
that the IR constraint of type-θ1 is satisfied, the other
IR constraints automatically hold.

Proof: See Appendix B. �
Here, we give the definitions of some special IC constraints

as follows [27]. The IC constraints between type-θi and θj,
j ∈ {1, . . . , i − 1} are defined as Downward Incentive
Constraints (DICs). Especially, the IC constraints between
θi and θi−1, 1 < i ≤ N , are Local Downward Incentive
Constraints (LDICs), which can be represented as

θiv(ai)− eqi ≥ θiv(ai−1)− eqi−1. (13)

Similarly, the IC constraints between type-θi and θj, j ∈ {i+
1, . . . ,N } are Upward Incentive Constraints (UICs), and the
IC constraints between θi and θi+1, 1 ≤ i < N , are Local
Upward Incentive Constraints (LUICs). It can be proved that
with the LDICs, all the DICs hold, and with the LUICs, all
the UICs hold. Further more, according to the monotonicity
condition ai−1 < ai, 1 < i ≤ N , the LUIC can be easily
drawn from LDIC [58]. Thus, we get the conclusion that
with LDIC, both DICs and UICs can be reduced.
Lemma 3: LDICs are binding for the contract-based

optimization problem.
Proof: See Appendix C. �

Given the condition that all the LDICs are binding, together
with the monotonicity proved in Lemma 1, the optimization
problem in (12) can be rewritten as

max
{qi,ai}

UESC =
N∑
i=1

wi(cqi − ai)

s.t. θ1v(a1)− eq1 = 0,

θiv(ai)− eqi = θiv(ai−1)− eqi−1, 1 < i ≤ N ,

0 ≤ a1 ≤ a2 ≤ . . . ≤ aN ,

qi ≥ 0, i ∈ N . (14)

Let1k = θk (v(ak )−v(ak−1)), 1 < i ≤ N and11 = 0 [49].
According to the first two constraints of (14), we have

qi = (θ1v(a1)+
∑i

k=1
1k )/e, i ∈ N . (15)

By substituting (15) into the object function of (14), the
optimization problem of (14) can be equally changed to a
problem only with variables {ai}, which is shown as

max
{ai}

UESC

=

∑N

i=1
{v(ai)(θi

∑N

k=i
wk−θi+1

∑N

j=i+1
wj)c/e−wiai}

s.t. 0 ≤ a1 ≤ a2 ≤ . . . ≤ aN . (16)

Let Gi = v(ai)(θi
∑N

k=i wk − θi+1
∑N

j=i+1 wj)c/e − wiai,

then we get UESC =
∑N

i=1 Gi. Since Gi is only related to
the discharging reward assigned to type-θi EVs, the opti-
mal rewards {a∗i } which maximize UESC can be computed
separately by setting âi = argmaxai Gi, i ∈ N . Noting
that d2Gi/da2i = v′′(ai)(θi

∑N
k=i wk − θi+1

∑N
j=i+1 wj)c/e, as

v′′(ai) < 0 for all ai, Gi is a concave function on ai under the

condition that θi/(θi+1−θi) >
∑N

j=i+1 wj/wi. In the following
sections, we consider the case that {θi} satisfy this condition.
Then, according to Fermat’s theorem, âi can be obtained by
setting dGi/dai = 0. If the obtained âi is a negative, set
âi = 0 due to the boundary condition. Then the corresponding
contract item is {0,Na} which means that the ESC will not
buy any electricity from type-θi EVs.
As each âi is obtained separately, the set {âi} may not fol-

low the constraint in (16), in other words, there may be some
sub-sequences which are not in the increasing order. This type
of sub-sequence is called as an infeasible sub-sequence [49].
For example, given âi > âj, {âi, âi+1, . . . , âj} is an infeasible
sub-sequence, if âi ≥ âi+1 ≥ . . . ≥ âj. Considering that {Gi}
are concave functions, these infeasible sub-sequences of {âi}
can be replaced by feasible sub-sequences iteratively [49].

Based on the obtained feasible set {âi}, the corresponding
set {q̂i} is easy to get according to (15). Thus, we can derive
the optimal contracts {âi, q̂i}, which maximize the profit gen-
erated from the ESC.

D. OPTIMAL CONTRACT-BASED ENERGY
TRADING SCHEME
In a practical scenario, due to the variability of the charging
demand and renewable energy supply, the charging demand
may be less than the sum of the RE generation and
discharging EVs’ supply capacity. Under this condition, to
maximize its profit, the ESC will set the purchase amount
of the electricity equal to the difference between the charging
demand d and the renewable energy supplym. However, since
both d and m are stochastic variables, it is hard to accurately
obtain the optimal purchase amount. Thus, the expected util-
ity generated from the ESC in a practical scenario can be
expressed as

ŪESC (q) = c · E[min(d,m+ q)]−
∑N

i=1
wiai, (17)

where q =
∑N

i=1 wiqi, and E represents expectation
over d and m.
As a rational broker, the ESC sets the selling price c higher

than the buying price ai, i ∈ N . According to (17), under
the condition that d < m+ q, the most economical purchase
electricity of the ESC may be less than the amount which the
discharging EVs can supply. Due to various supply capacities
of these discharging EVs and the corresponding payments,
the purchase priority among these different types will impact
the profit generated from the ESC.

Considering there are N types of discharging EVs, we
denote the utility that the ESC achieves from the electricity
trading with a type-θi EV as

Ri = cq̂i − âi. (18)

Then we have the following theorem:
Theorem 1: Adopting the optimal contract {âi, q̂i}, the

ESC achieves higher utility from a higher type discharging
EV than from a lower one, i.e., Ri < Ri+1.

Proof: See Appendix D. �
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Algorithm 1 The Contract-Based Electricity Trading
Algorithm
Initialization: The total supply capacity of the discharging

EVs q, expectations of RE m̄ and charging demand d̄
1: if d̄ ≥ m̄+ q then
2: Derive the optimal contracts {âi, q̂i} as described in

subsection IV. C.;
3: else
4: Get the optimal contracts {âi, q̂i} similarly as that in

step 2;
5: Compute the index of the critical type of the dis-

charging EVs, denoted as N0, which satisfies that∑N
i=N0+1 wiq̂i < m̄ + q − d̄ and

∑N
i=N0

wiq̂i ≥ m̄ +
q− d̄ ;

6: For type {θ1, θ2, ..., θN0−1} discharging EVs, the con-
tracts turns to {0,Na};

7: For type-θN0 discharging EVs, the contract is
changed to {âN0 , q̂N0}, where q̂N0 = (m̄+ q− d̄ −∑N

i=N0+1 wiq̂i)/wN0 ;
8: Set âN0 = eq̂N0e/θN0 − 1;
9: end if

10: ESC sends the contracts {âi, q̂i}, i ∈ N , to the discharg-
ing EVs and purchases energy from them.

Based on theorem 1, we propose the optimal contract-
based electricity trading algorithm as follows.

E. NUMERICAL RESULTS
In this section, we evaluate the performance of our pro-
posed contract-based electricity purchase schemes through
the presented simulations. We consider there are W = 30
discharging EVs in the proximity area of the ESC, which are
classified into N = 5 types with θ = {1.2, 1.3, 1.5, 1.8, 2.0}.
Correspondingly, the discharging EVs belong to these types
with the probabilities {0.17, 0.22, 0.28, 0.18, 0.15}. The cost
of unit electricity obtained by discharging EVs is set e = 0.5.
The highest renewable energy the ESC can get is given
as M = 9.

Fig. 4 compares the profit generated from the ESC adopt-
ing the contract-based electricity trading scheme with that
adopting the Real-time Pricing (RTP) scheme. Considering
the charging demand is different in a day, the unit electricity
selling price varies with time [59]. In the RTP-based scheme,
the unit electricity purchase price for the discharging EVs
only depends on the various selling prices, but ignores the
different characteristics of discharging EVs. It can be seen
from the figure that the contract-based scheme makes the
ESC gain more profit than the other one does. The reason
is that in the contract approach, each contract is designed for
the corresponding EV type, and the profit generated from the
ESC could be improved by binding the LDICs as described
in Lemma 3. However, in the RTP-based scheme, only the
reward for unit discharging electricity is specified by the ESC,
and each EV determines the discharging amount according to
its own utility. Thus, the ESC can not improve its profit.

FIGURE 4. Profit generated from the ESC with different schemes.

Fig. 5 shows the ESC profit gained from one discharging
EV of different types. We can see that an EV of a higher type
provides more profit for the ESC, which proves Theorem 1
of this paper. The difference between the profit gained from
various types of EVs at a given selling price is affected by
both the optimal amount of electricity and the corresponding
reward to an EV. Furthermore, it can be seen from this figure
that the profit gained from each type of EV increases as the
selling price grows up. The explanation is that more profit
can be gained by the contract binding with the increase of the
selling price.

FIGURE 5. Profit gained from one discharging EV of different types.

Fig. 6 shows the amount of the electricity in the opti-
mal contracts for different types of discharging EVs, in the
scenario where the charging electricity demand is less than
the total supply. It is clearly seen that as the average charg-
ing demand increases, more lower types discharging EVs
are included in the contracts to provide more discharging
electricity.

Fig. 7 evaluates the performance of the proposed optimal
electricity trading scheme with different average charging
demand. In this scheme, the discharging EVs’ type selection
is employed. The electricity of the discharging EVs that
belong to the more profitable types, are purchased by the
ESC with higher priority. In contrast, the other contract-
based scheme does not consider the difference of the profits
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FIGURE 6. Amount of the electricity in the optimal contracts for different
types of discharging EVs.

FIGURE 7. Profit generated from the ESC by using different
contract-based schemes.

obtained from various of EV types, and purchases electricity
from random types. We can find that the scheme with type
selection brings more profit to the ESC compared with the
other one.

V. CONCLUSION
In this paper, we investigated incentive-based energy trading
mechanisms in the smart grid. We started with the introduc-
tion of some economic theories that provide guidelines for the
design of efficient energy trading schemes. Then we reviewed
several typical incentive-based trading schemes. Specifically,
we focused on the schemes adopted in the DRM with some
technical components, which pose challenges on the scheme
design. To reduce electricity transmission cost and provide
efficient EV charging service, we proposed a cloud-based
V2V energy exchange framework. An optimal contract-based
electricity purchase scheme, which takes into account the
profit of ESC as well as various characteristics of discharg-
ing EVs, has been designed. In addition, we conducted a
simulation study, which corroborates our theoretical analysis
and clearly displays the profit enhancement in our proposed
scheme.

APPENDIX A
PROOF OF LEMMA 1
From the IC constraints of type-θi and θj discharging EVs,
i 6= j, i, j ∈ N , we get θiv(ai) − eqi ≥ θiv(aj) − eqj, and
θjv(aj) − eqj ≥ θjv(ai) − eqi. Adding these two inequalities,
we have (θi − θj)[v(ai) − v(aj)] ≥ 0. In addition, we have
v′(a) > 0, so we come to the conclusion that ai > aj must
hold whenever θi > θj in a contract satisfying IC constraint.
Given ai ≥ aj, according to the IC constraint, we get θj(v(aj)−
v(ai)) ≥ e(qj − qi). As v′(·) > 0, we have qi ≥ qj. Similarly,
under the condition that qi ≥ qj, due to θi(v(ai) − v(aj)) ≥
e(qi − qj) ≥ 0. Thus, we get ai ≥ aj.

APPENDIX B
PROOF OF LEMMA 2
We have θiv(ai) − eqi ≥ θiv(a1) − eq1 ≥ θ1v(a1) −
eq1 ≥ 0, 1 < i ≤ N , where the first inequality follows
from the IC constraints and the second inequality is obtained
through the definition of θi, i ∈ N . Thus, we only need to
keep the IR constraint of type-θ1 in the constraints of the
optimization problem.

APPENDIX C
PROOF OF LEMMA 3
If the type-θi discharging EVs’s LDIC is not binding, that is,
θiv(ai)− eqi > θiv(ai−1)− eqi−1, 1 < i ≤ N . In this case, all
qj for j ≥ i in the contract items can be raised by the ESC to
make the LDIC binding. Using this method, the maximum
utility generated from the ESC can be improved without
affecting all the LDICs of the other types of discharging EVs.

APPENDIX D
PROOF OF THEOREM 1
Based on (18), the difference between the ESC’s utility got
from type-θi+1 and θi EVs is shown as

Ri+1 − Ri = c(q̂i+1 − q̂i)+ (âi − âi+1)

= θi+1(v(âi+1)− v(âi))c/e+ (âi − âi+1). (19)

Let Q(θi+1, a) = θi+1v(a)c/e − a, then Ri+1 − Ri =
Q(θi+1, âi+1) − Q(θi+1, âi). We have ∂Q(θi+1, a)/∂a =
θi+1v′(a)c/e − 1 and ∂2Q(θi+1, a)/∂a2 = θi+1v′′(a)c/e.
As v′′(·) < 0, it is clear that Q(θi+1, a) is a concave func-
tion and it gets maximum at a∗ which satisfies ∂Q(θi+1, a)/
∂a|a=a∗=0. Recall that dGi+1/dai+1|ai+1=âi+1 = 0. Then, we
have

∂Q(θi+1, a)/∂a|a=âi+1

=
θi+1wi+1

θi+1
∑N

k=i+1 wk − θi+2
∑N

j=i+2 wj
− 1

>
θi+1wi+1

θi+1
∑N

k=i+1 wk − θi+1
∑N

j=i+2 wj
− 1

= 0. (20)

Considering the concave functionQ(θi+1, a) increases with a
if a < a∗, we have the inequalities âi < âi+1 < a∗ and get
the conclusion that Ri+1 > Ri.
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