
Towards Extending the Range of Bugs That
Automated Program Repair Can Handle

Omar I. Al-Bataineh
Simula Research Laboratory

Oslo, Norway
omar@simula.no

Leon Moonen
Simula Research Laboratory

Oslo, Norway
leon.moonen@computer.org

Abstract—Modern automated program repair (APR) is well-tuned
to finding and repairing bugs that introduce observable erroneous
behavior to a program. However, a significant class of bugs does
not lead to such observable behavior (e.g., liveness/termination
bugs, non-functional bugs, and information flow bugs). Such bugs
can generally not be handled with current APR approaches, so,
as a community, we need to develop complementary techniques.

To stimulate the systematic study of alternative APR ap-
proaches and hybrid APR combinations, we devise a novel bug
classification system that enables methodical analysis of their
bug detection power and bug repair capabilities. To demonstrate
the benefits, we analyze the repair of termination bugs in
sequential and concurrent programs. The study shows that
integrating dynamic APR with formal analysis techniques, such
as termination provers and software model checkers, reduces
complexity and improves the overall reliability of these repairs.

Index Terms—automated program repair, bug classification,
non-observable and liveness bugs, hybrid techniques.

I. INTRODUCTION

Corrective maintenance, i.e., finding and repairing software
defects, is one of the main categories of software maintenance,
and responsible for a large part of the overall costs of software
development [1]. Automated program repair (APR) promises
to increase developer productivity and drastically reduce the
costs of corrective maintenance [2, 3]. Despite the advances of
APR for real-world programs [4], these approaches can only
handle certain types of bugs because they generally rely on
dynamic analysis for functional verification, where a test suite
is used to simulate the input and monitor the output to check
correct behavior. However, this is only viable if the effects of
a bug can be observed when executing the program.

Detecting and repairing non-observable bugs and liveness
bugs (i.e., bugs that do not lead to incorrect results or crashes)
pose a far greater challenge. For example, identifying a live-
ness bug requires finding an infinite execution that will never
satisfy the desired liveness property [5]. It is not known how
long one would need to run the program to reveal an existing
liveness bug, making it impractical to find such cases using dy-
namic analysis. Another critical challenge that makes detection
and repair of liveness bugs notoriously hard is that the effects
that a liveness bug is triggered are generally unobservable
(i.e., they typically produce little debugging information). One
option for finding this class of bugs is applying formal program

This work has been financially supported by the Research Council of
Norway through the secureIT project (RCN contract #288787).

analysis techniques that use correctness specifications to detect
liveness bugs. Such a rigorous analysis can both help to detect
the presence of liveness bugs as well as assure the absence of
these bugs in automatically generated patches.

The question which (combinations of) techniques will be
most effective at handling certain bugs is an open research
question that forms the foundation of this paper. To stimulate
the systematic study of alternative APR approaches and hy-
brid APR combinations, we devise a novel bug classification
system that enables methodical analysis of their bug detection
power and bug repair capabilities. In earlier work, various bug
classification schemes were developed to understand when and
why specific bugs arise, and how they are fixed. These classi-
fications use a number of criteria, such as cause-impact [6, 7],
severity-priority [8], and bug complexity [9]. However, since
they were designed for different goals, they do not capture
the properties required to determine if a bug is amenable
to a particular technique. To that end, we introduce a bug
classification system explicitly aimed at comparing different
techniques and evaluating the feasibility of their integration.
Contributions: (1) We propose a novel bug classification sys-
tem based on three fundamental properties: bug observability,
bug reproducibility, and bug tractability. This classification
provides the APR community with a tool to methodologically
explore and compare alternative and hybrid APR approaches
by (i) analyzing the detection power of different bug detection
techniques, (ii) distinguishing APR approaches based on their
bug repair capabilities, and (iii) providing a common termi-
nology that helps identify gaps in current APR research.
(2) We discuss four APR approaches that can handle different
classes of bugs: dynamic APR, static APR, dynamic-static
APR, and formal APR. Moreover, we identify the conditions
under which each approach can be effectively applied.
(3) To demonstrate the benefits of our method, we study
termination bugs in sequential and concurrent programs, and
sketch novel hybrid APR algorithms for repairing such bugs.
The study shows that termination bugs in sequential programs
can be effectively addressed using dynamic-static APR, by
first generating plausible patches using test cases and then
using termination provers [10–12] to check their correctness.
The non-deterministic nature of termination bugs in concurrent
programs makes them challenging for dynamic analysis, and
they are best addressed with formal APR that combines
termination provers with software model checkers [13–19].



II. BUG CLASSIFICATION SCHEMES

There are many different ways to expose bugs in programs,
including manual inspection, dynamic analysis (testing), static
analysis, model checking, or a combination of these tech-
niques. Effective bug classification schemes can help under-
stand why bugs arise and how to fix them. Classification
can also help identify the most appropriate analysis technique
for handling each class of bugs. Next, we discuss three
existing bug classification systems, analyze their limitations,
and introduce a new classification system that addresses them:

1) Cause-impact criteria [6, 7]: Bugs are classified based on
their cause: algorithmic, concurrency, memory, generic
programming, and unknown, as well as based on their
impact: security, performance, failure, and unknown.

2) Severity and priority criteria: This classification is used
in many bug tracking systems [8]. Severity indicates the
impact of the bug on the program’s functionality and can
be categorized as critical, major, moderate, minor, etc.
Priority indicates how soon the bug should be fixed and
is categorized into levels such as low, medium, and high.

3) Bug complexity criteria [9]: These criteria distinguish
four main categories: (i) easy to detect, easy to repair
bugs, (ii) easy to detect, difficult to repair bugs, (iii)
difficult to detect, easy to repair bugs, and (iv) difficult
to detect, difficult to repair bugs.

These three existing bug classification systems were not de-
signed for comparing the capabilities and limitations of dif-
ferent bug detection or program repair techniques. As a result,
their criteria do not capture the specific properties needed
to determine whether a bug b is amenable to a particular
technique T . To address this gap, we propose a new bug
classification system that is based on three key properties of
bugs, namely bug observability, bug reproduciblity, and bug
tractability. In Sections III and IV, these properties are then
used to analyze the power of different bug detection techniques
and APR approaches.

Before proceeding further, let us first define a program bug.
We base ourselves on a specification of expected behavior: the
expected responses (output) of the program to a given input.

DEFINITION 1: Program bug. Let P be a program, I a set of
inputs, and φbeh be a specification of expected behavior of P .
We say that P suffers from a bug iff there exists at least one
input i ∈ I that leads to an execution trace under which program
P violates φbeh, formalised as (P, i) /⊧ φbeh.

Since a complete specification of a program’s expected
behavior is often not available, test cases are generally used
to model the expected behavior of a program P . We assume
there exists (i, oexp), where oexp is the expected output for
input i ∈ I . When the observed output oobs = (P, i) does not
match the expected output oexp, we say that P contains a bug.

DEFINITION 2: Observable bug. Let P be a program containing
bug b. We say that b is an observable bug iff there exists an
execution of P where, in a finite number of execution steps, the
erroneous behavior of b can be seen by an observer O.

DEFINITION 3: Classifying bugs by observability. We classify
bugs based on the notion of observability in three types:

1) observable bugs whose erroneous behavior is fully observ-
able in finite execution steps (e.g., arithmetic bugs),

2) partially observable bugs whose erroneous behavior is
only partially observable at runtime because the faulty
trace is infinite, so not all output of the program can be
observed (e.g., termination bugs),

3) non-observable bugs whose erroneous behavior is fully
unobservable at runtime (e.g., non-functional bugs).

Note that observability is a relative notion that depends
on the observation power of O. In the simplest case, the
observer can witness the output produced by P and the
corresponding execution time. If we increase the observation
power of O (i.e., the amount of information O can gather about
the program’s execution), some non-observable bugs may
become observable. For example, bugs that adversely affect
the memory or energy consumption can easily go unnoticed
during the execution of the program. Such bugs can be exposed
by using monitoring at the virtual machine or operating system
level [20–23]. Alternatively, the program can be augmented
with additional variables and checks that help to keep track
of these non-functional aspects at runtime [24]. However,
increasing observation power also increases the chance of
affecting the program’s execution [25].

We distinguish five common types of observable erroneous
behavior: EB = {crash, exception, incorrectResult, softHang,
hardHang}. While most types in EB are easy to understand,
we will define the notions of soft and hard hang bugs. Hang
bugs are a particular type of bugs that concern (temporary or
permanent) lack of progress in observable behavior [26, 27].
Hang bugs can have various causes, such as iteration errors
or communication deadlocks. To define hang bugs, we use
a temporal specification [28, 29] that checks if any of the
locations where the program might terminate can be reached.

DEFINITION 4: Halting Statements. We refer to a statement s
in a program P as a halting statement iff the expected behavior
of P is that execution terminates after executing statement s.

Examples of halting statements include special termination
statements such as exit, or simply the final statement in a
program. Observe that programs whose expected behavior is to
never terminate have no halting statements (e.g., a webserver).

DEFINITION 5: Hang bugs. Let P be a program with a set of
inputs I and H be the set of halting statements of P . Let
φtemp be a temporal property that puts an upper bound on
the execution time of P , and φreach be a temporal property
that checks whether P reaches a halting statement. Let also
EB′ = EB / {softHang,hardHang}. We distinguish:

1) Soft hang bugs occur when there exists an input i ∈ I that
makes P unresponsive for a finite amount of time before
execution is resumed and a halting statement is reached:
S ∶ (P, i) /⊧ φtemp ∧ (P, i) ⊧ φreach ∧ output(P, i) /⊆ EB′

2) Hard hang bugs, also known as termination bugs, occur
when there exists an input i ∈ I that makes P unresponsive



for an unbounded amount of time, never resuming to
normal execution or reaching a halting statement:
H ∶ (P, i) /⊧ φtemp ∧(P, i) /⊧ φreach ∧ output(P, i) /⊆ EB′

Hang bugs are also referred to as liveness violations in model
checking and formal program analysis literature [30–33], and
we will use these terms interchangeably in the remainder.

We now turn to discuss the property of bug reproducibility.

DEFINITION 6: Bug reproducibility. Let P be a program con-
taining a bug b and tb be a test case that exposes b. We say that
b is a reproducible or deterministic bug iff every time program
P is executed under test tb, bug b is exposed and the same
erroneous behavior is observed. On the other hand, we say that
b is a hard-to-reproduce or non-deterministic bug iff bug b is
exposed in rare circumstances when repeating the execution of
P under test tb (i.e., the result of program P depends not only
on the code of P but also on the timing of the execution).

Reproducible bugs are easy to detect, provided that the
bug is observable (see Definition 2). Not surprisingly, hard-
to-reproduce bugs are also hard to detect. Arithmetic bugs are
examples of easy-to-reproduce bugs, while concurrency bugs
are examples of hard-to-reproduce bugs. The last property we
study is bug tractability, which depends on the depth of the
bug and the size of the faulty trace it produces.

DEFINITION 7: Bug tractability. Let P be a program containing
bug b and L be the set of reachable locations of P and ℓb ∈ L
be the buggy location to the bug b. We say that the trace of b
is a tractable trace iff for each execution of P that is buggy to
b, the number of execution steps that are required to reach ℓb is
bounded and that ℓb is not part of a loop that can be executed
infinitely often. On the other hand, we say that the trace of b is
intractable iff ℓb is visited infinitely often during the execution
of P (i.e., ℓb is part of an infinite loop).

The presence of loops plays a crucial role in determining
the tractability of a bug. The size of faulty traces for non-
loop programs is typically shorter than those in loop programs.
Based on the size of the faulty trace, we can further distinguish
the class of tractable bugs: (i) shallow bugs are tractable bugs
with finite short faulty traces, (ii) deep bugs are tractable bugs
with finite but long faulty traces. For example, a bug in a loop
program P that does not occur until a vast number of iterations
are executed can be viewed as an example of a deep bug.
Bug Classification System: Table I summarises the three
properties in our classification system with their distinguishing
attributes and impact on bug detection. Our classification
system associates each bug with a three-tuple of concrete
attributes for {observability, reproducibility, tractability}. For
example, an arithmetic bug has the properties: {observable,
easy-to-reproduce, shallow}.

III. BUG DETECTION TECHNIQUES

Various bug detection techniques can be used to expose bugs
in programs. In this work, we are interested in studying three
well-known bug detection techniques: dynamic analysis, static
analysis, and model checking. While dynamic analysis detects

bugs in programs by executing them, static analysis and model
checking use different techniques in bug detection that perform
bug checking statically, without running the program. We start
by discussing the requirements needed to expose bugs in each
technique, the advantages and disadvantages of the techniques,
and the theoretical foundation and detection power of each
(i.e., the classes of bugs that each technique can handle).

A. Dynamic Analysis

Dynamic analysis is a technique to identify bugs and vul-
nerabilities in programs by exercising various runs through
the program based on valid inputs. Dynamic analysis can be
performed using a test suite, which can be developed manually
or via test case generation, or through fuzzing, which system-
atically explores a large amount of automatically generated
tests. Fuzzing is one of the most common methods used to
find vulnerabilities in programs [34, 35]. Early fuzz testing
was based on sending random inputs to a program to check
if it could be made to crash. The techniques have evolved to
systematically explore the input space using knowledge from
the source code or input formats to discover bugs that are
hidden deep in the code.

Dynamic analysis has several advantages over the other
program analysis techniques: (i) the program behavior can
be monitored, and bugs can be exposed while the program
is running; (ii) it allows for analysis of programs for which
we do not have access to the actual code; (iii) it can be
conducted against any program; and last but not least, (iv)
it can identify bugs that are hard to find using static analysis.
We now discuss the conditions under which bugs may be
discovered in dynamic analysis.

DEFINITION 8: Bug detection in dynamic analysis. Let P be
a program containing bug b, and D be a dynamic program
analysis checker (i.e., an automated testing tool such as a
fuzzer). We say that b is detectable in D iff

1) P is given in an executable form,
2) bug b is observable in some executions of P ,
3) there exists a test suite T containing at least one failing test

t by which bug b can be exposed in P .

However, many bugs whose detection requires the analysis
of infinite traces or the satisfaction of complex composite
properties cannot be found using an approach solely relying
on test cases. Examples of such classes of bugs include (i)
bugs in non-executable programs, (ii) liveness bugs such as
termination and starvation bugs, and (iii) non-observable bugs
such as non-functional and information flow bugs [36, 37].

OBSERVATION 1: Dynamic analysis techniques can handle ob-
servable classes of bugs with finite execution traces, provided
that a testing mechanism is implemented by which the bug can
be exposed, and provided that the program is executable.

To address these limitations, we need to pair dynamic anal-
ysis with complementary bug detection techniques to improve
the detection power of the approach. The remainder of this
section discusses static analysis and model checking, which
instead of using the program itself as in dynamic analysis,



TABLE I
A SUMMARY OF THE KEY PROPERTIES FOR BUG CLASSIFICATION WITH THEIR ATTRIBUTES AND IMPACT

bug property property attributes impact on bug detection techniques

observability {observable, partially-observable, non-observable} affects detection power
reproducibility {easy-to-reproduce, hard-to-reproduce} affects efficiency and scalability

tractability {shallow, deep, liveness} affects detection power and efficiency

analyzes abstractions of the program, to improve observability
and tractability and enable the detection of deeper bugs [38].

B. Static Program Analysis

Static program analysis is an approach for analyzing a com-
puter program without actually executing it. The most sig-
nificant advantage of static analysis is the ability to quickly
and automatically examine the complete code of the program
to find flaws that might be missed by dynamic analysis. The
literature on static program analysis for bug detection is rich
and mature [39–41]. Many of these techniques build on auto-
matically evaluated analysis rules and bug detection patterns
that capture the general conditions under which specific bugs
can occur, providing a systematic way for their detection.

To capture the notion of bug detectability in static analysis,
one needs to ensure the availability of the source code of the
buggy program at which the bug b occurs and the availability
of some valid solid theory for the detection of bug b.

DEFINITION 9: Bug detection in static analysis. Let P be a
program containing bug b and S be a static program analyzer
that can be used to expose bugs of type b. We say that b is a bug
detectable by analyzer S if all of the following conditions hold:

1) the source code of P is available, and
2) S contains sound and complete detection method for b, and
3) P is written in a language that is accepted by S.

The increasing complexity of (loop) programs and the large
variety of vulnerabilities make it difficult for static code
analyzers to detect and identify vulnerabilities in a precise
manner. One of the most significant disadvantages of the static
code analysis methodology is the presence of false-positive
warnings: the tool may signal possible bugs where there are
none. However, reducing the number of false positives in static
analysis tools is still an open problem.

OBSERVATION 2: Static checkers can handle observable, non-
observable, reproducible, and non-reproducible bugs, provided
that the checker is built based on some solid mathematical
foundation, and provided that the source code of the program is
available in a programming language accepted by the checker.

Dynamic and static analysis techniques have different bug
detection powers as they rely on distinct assumptions and
use orthogonal detection methods. Overall, these techniques
have complementary strengths and weaknesses that are worth
combining to improve the reliability of APR systems.

C. Model Checking

Model checking [42–44] is an automated formal method for
checking whether a finite-state model of a system meets a
given specification. The technique has been used successfully

to debug complex computer hardware, concurrent systems, and
real-world safety-critical systems.

Model checking has several advantages. It can detect errors
that would be very difficult to notice with other methods, such
as in concurrent programs. The properties that can be verified
are more expressive than with traditional testing, depending on
the formalism used to express them. For example, properties
that require something to happen infinitely often, or properties
that require that some alternative is always available. In addi-
tion, because every possible behavior of the model is checked,
the result is inevitable, provided that the model checking tool
itself has no serious errors.

Model checking can be an expensive procedure in a repair
process because of its exhaustive nature. Expressing both the
model of the system and the properties formally requires great
care and expertise. Moreover, one of the most significant
problems with model checking in practice is the so-called
“state explosion problem”: When the number of state variables
in the system increases, the size of the system state space
grows exponentially. However, abstractions can be applied
to bring the verification within feasible bounds of model
checking technology.

Software model checking tools [13–19] verify the correct-
ness of software models in a rigorous and automated fashion.
Most tools construct a (symbolic) reachability graph for the
program-under-analysis (i.e., a graph that contains reachable
run-time states of the program) without running the program.
This graph is then used to check if a property of interest
holds. They typically implement sophisticated data structures
that enable clever search algorithms and optimizations.

The answer returned by a model checker is either a notion
of a successful verification (i.e., the specification holds), or
a counterexample – an execution path that violates a given
property. However, if the program being verified has an infinite
state space, certain types of abstractions are needed, or the
analysis may simply not terminate.

DEFINITION 10: Bug detection in model checking. Let P be
a program containing bug b and SMC be a software model
checker that can be used to expose bugs of type b. We say that
b is a detectable bug in the model checker SMC iff:

1) a formal property φb is available that is written in the
input specification language of SMC, which captures the
conditions under which b can occur, and

2) the source code of p is available, and
3) P has finite states or an equivalent finite abstract program

Pabs can be constructed for the properties of interest, and
4) the program P or its reduced equivalent program Pabs is

written in a modeling language that is acceptable by SMC.



TABLE II
A SUMMARY OF KEY DIFFERENCES AND SIMILARITIES OF DYNAMIC ANALYSIS, STATIC ANALYSIS, AND MODEL CHECKING

criteria dynamic analysis static analysis model checking

bug detection mechanism test cases pattern-based specifications formal correctness specifications
accuracy of the analysis accurate inaccurate (suffers from false positives) accurate relative to the accuracy of model

the need of code availability not needed needed to perform the analysis needed to construct the model
the need of bug observability needed to detect the bug not needed (performs code analysis) not needed (performs state analysis)
code coverage of the program incomplete code coverage complete code coverage complete code coverage
the need of code executability needed to detect the bug the program will not be executed the program will not be executed

language dependency language-independent language dependent language dependent
automation of the analysis can be automated (fuzz testing) fully automated a model needs to be manually written

OBSERVATION 3: Model checking tools can handle observable,
non-observable, reproducible, and non-reproducible bugs, pro-
vided that the size of the program is finite or a sound abstraction
can be developed to bring the program within the feasibility
bound of model checking, and provided that a specification is
available for the bug of interest.

Bug Detection Properties: Based on the characteristics of
the three bug detection techniques discussed, one can make
the following general observations. Model checking is more
expensive than static analysis, requiring longer running times
and more resources. Static analysis is not as accurate as model
checking, and testing is not as complete as model checking.
Testing suffers from coverage challenges: it is challenging to
cover all possible executions of the program, in particular for
programs with an infinite input space where this becomes
prohibitively expensive. To ensure the correctness of the
program for all inputs, a correctness specification must exist
that can be formally analyzed.

Table II summarises the key differences and similarities
between the three program analysis techniques using several
criteria: code coverage, the need for code executability, accu-
racy of the analysis, the need for bug observability, the need
for code availability, and automation of the technique. By code
coverage, we mean the number of feasible execution paths of
the program that the technique can cover during the analysis,
and accuracy indicates whether the detected bug is a real bug.

IV. APR APPROACHES

This section describes four APR approaches that can handle
different classes of bugs. The four approaches combine the de-
tection power of dynamic analysis, static analysis, and model
checking techniques to improve the reliability of existing APR
techniques. We discuss the applicability of these approaches
to three classes of bugs: arithmetic bugs (observable bugs),
non-functional bugs (non-observable bugs), and liveness bugs
(partially observable bugs).

An APR approach generally consists of four steps: fault
identification, fault localization, patch generation, and patch
validation. The most challenging step in the APR process
is the patch validation step, in which the generated patch is
extensively evaluated to ensure that the bug is resolved, and
that the patch does not introduce any unwanted behavior. In
dynamic APR, as the name implies, the patch validation step is
primarily performed using test cases. Since these rarely capture
the expected behavior in full detail, the technique suffers from

the so-called patch overfitting problem, where the patched
program may pass the tests in the given test suite, while it
is failing for valid inputs not covered by the test suite. It is
therefore desirable to combine the power of different analysis
techniques while taking into account the distinctive properties
of each class of bugs. This leads to our examination of the
following four APR approaches:

1) dynamic APR: in which fault identification and patch val-
idation are performed using dynamic analysis techniques.
GenProg [45] is an example of a dynamic APR tool;

2) static APR: in which fault identification and patch vali-
dation are performed using static analysis techniques;

3) dynamic-static APR: in which fault identification and
patch validation are performed using a combination of
static and dynamic analysis, i.e., using test cases and
static analysis tools developed for the same class of bugs;

4) formal APR: in which fault identification and patch
validation are performed using formal methods and ver-
ification techniques such as model checking.

A hybrid APR approach aims to improve the overall quality
of the generated repairs and alleviate the patch overfitting
challenge of dynamic APR systems.

A. Arithmetic Bugs

Arithmetic calculations affect a wide variety of applications,
including safety-critical systems such as control systems for
vehicles, medical equipment, and industrial plants. The key
properties of arithmetic bugs can be summarised as follows:

1) Arithmetic bugs are observable classes of bugs or can
be easily made observable to external observers: the root
causes of arithmetic bugs are limited and easy to identify.

2) Arithmetic bugs are tractable bugs with finite traces.
3) Arithmetic bugs introduce various erroneous behavior to

the program in which they occur: they may cause the
program to crash or may produce incorrect outputs.

These properties make them directly amenable to dynamic
(i.e., test-based) APR. Note that many of the available dynamic
APR systems rely explicitly or implicitly on observability
strategies to expose this class of bugs (e.g., integer overflow,
division by zero, etc.). There are also several static analysis
tools that can handle arithmetic bugs. Thus, arithmetic bugs
can be repaired using dynamic APR, static APR, or dynamic-
static APR. These repair approaches differ mainly in the
correctness specification used to validate generated patches
for the detected arithmetic bug. In dynamic APR, the spec-



ification is captured by the test cases, while in static APR, the
specification is captured by the formal bug detection rules.
EXAMPLE 1: Integer overflow (IO) is a type of arithmetic bug
that occurs when the computation of an arithmetic operation,
such as multiplication or addition, exceeds the maximum size of
the integer type used to store it. IO bugs are an observable class
of bugs, and thus they are amenable to dynamic APR. IO bugs
are also amenable to static APR, and there are several reliable
static analysis tools available that can address IO bugs [46,
47]. Thus, devising a hybrid static-dynamic APR system for
IO bugs is feasible and will help increase confidence about the
soundness of the generated repairs.
OBSERVATION 4: Arithmetic bugs are observable, tractable, and
reproducible classes of bugs with finite execution traces. They
are amenable to both dynamic and static APR since the root
causes of arithmetic bugs are easy to identify.

B. Non-functional Bugs
Non-functional bugs [24, 48, 49] are a class of bugs that affect
the way a program operates, rather than the functional behavior
of the program. Inefficiently written loops in programs and
synchronization issues in concurrent programs (i.e., using a
large unnecessary number of locks) can be viewed as examples
of non-functional bugs. Non-functional bugs are as important
as functional bugs. For example, energy consumption saving
is getting more urgent, particularly for applications running on
embedded systems and IoT in Smart Cities.

Fixing non-functional bugs is generally more complex than
fixing functional bugs, since non-functional bugs can hide
themselves well in the code. While most functional bugs can
be detected through observing the erroneous behavior of bugs,
a large percentage of non-functional bugs are detected through
manual code review [50–52]. Non-functional bugs usually
do not generate incorrect results or crashes. Therefore, they
cannot be observed by checking the program output. The key
properties of non-functional bugs can be described as follows.

1) Non-functional bugs are generally non-observable classes
of bugs: they do not introduce direct observable erroneous
behavior to the program in which they occur.

2) Non-functional bugs increase the anticipated running cost
of a program (execution time, memory and energy con-
sumption, etc.) due to the inefficient use of resources.

Depending on what quality attributes are considered, programs
may suffer from many different types of non-functional bugs.
For example, consider the class of non-functional bugs that
adversely affect the run-time costs of executing the program,
such as execution time, memory consumption, and energy
consumption. To expose such types of bugs, the program
may need to be augmented with additional variables or online
monitors that can be used to observe aspects at runtime [24].

Therefore, there is a need to develop effective bug detection
tools that can be used to expose non-functional bugs at the
early stages of the software development life cycle. Specif-
ically, this requires efficient profiling techniques and oracles
that help decide whether the program’s non-functional require-
ments are met under a particular workload. Unfortunately, the

lack of effective test oracles for non-functional bugs is a well-
known problem that will need to be addressed in the future.

OBSERVATION 5: Non-functional bugs are an example of non-
observable classes of bugs (i.e., a program that suffers from
a non-functional bug executes normally and terminates nor-
mally). Thus, they are not directly amenable to traditional
dynamic bug detection techniques that rely on test cases and
observing a program’s outputs.

C. Liveness Bugs

In this section, we discuss a class of bugs that has received
little attention from the APR community, namely liveness
bugs. A liveness property asserts that “something good will
eventually occur when executing a program” [30, 31]. Free-
dom of starvation and program termination are examples of
liveness properties. A program that violates a liveness property
cannot make progress and thus suffers from a liveness bug.

Two fundamental properties make detecting and repairing
liveness bugs far more challenging than other classes of bugs.
First, the behavioral effects of triggering a liveness bug are
generally unobservable. Second, identifying a liveness bug
requires finding an infinite execution that will never satisfy
the desired liveness property [5], making it impractical to find
such bugs using dynamic analysis. Therefore, detecting and
repairing liveness bugs generally require more sophisticated
repair algorithms since they must be able to generate a finite
representation of infinite counterexamples.

To better understand the complexity of repairing liveness
bugs, we study a subset of liveness bugs known as termination
bugs. There are two advantages to this choice: On the one
hand, a termination bug is a specific type of liveness bug whose
repair is essential for ensuring software reliability. On the other
hand, by examining techniques for handling termination bugs,
we gain knowledge that can help address other liveness bugs.
Termination bugs have the following specific properties:

1) Termination bugs are partially observable: an observer
monitoring the behavior of a non-terminating loop pro-
gram will not witness any erroneous behavior but rather
experience unexpectedly long execution times. The only
observable behavior of termination bugs is that the pro-
gram becomes non-responsive at runtime.

2) Termination bugs have infinite faulty traces: a counterex-
ample to a termination property violation is infinite.

OBSERVATION 6: Termination bugs are an example of partially
observable bugs with infinite execution traces. Termination
bugs are amenable to dynamic-static APR and static APR.

V. HYBRID APR FOR TERMINATION BUGS

This section describes a hybrid program repair approach for
termination bugs that combines the strengths of termina-
tion provers with those of software model checkers. Such a
combination has two key advantages. First, it considerably
reduces the overall computational complexity of the problem
by avoiding the exhaustive exploration of the program’s input
space. Second, it helps avoid the known overfitting problem
by generating verified repairs for termination bugs.



The presence of loops in programs can complicate the
detection of certain classes of bugs. Recall the two types of
hang bugs from Definition 5; It is not clear how one can
distinguish between the following two types of loops using
a dynamic analysis technique: (i) inefficiently written loops
that introduce a soft hang bug, and (ii) incorrect infinite loops
that introduce a hard hang or termination bug.

Earlier work [53] that evaluated the effectiveness of different
APR tools on the ManyBugs and IntroClass datasets, used a
simple timeout mechanism to handle termination bugs in these
two datasets: when the execution time of a program exceeds
some pre-specified period, they consider the program to be
likely non-terminating due to an infinite loop. Marcote and
Monperrus instrument loops with iteration counters that are
monitored to detect infinite loops [54]. Both options can lead
to false conclusions about the program under analysis (i.e.,
even when the watchdog triggers, the program may not have
a termination bug but suffer from a soft hang bug). Moreover,
hang bugs can have complicated causes: programs that become
unresponsive may contain deadlocks, infinite loops, or other
bugs that lead to non-termination but are not infinite loops.

An effective solution for addressing termination bugs is to
apply termination provers: tools that can check combinations
of many complex termination criteria. They take a program
as input and return one of three answers: terminating (TR),
non-terminating (NT), or unknown (UN). In general, when
the prover returns definite answer for a given program (i.e.,
answer ∈ {TR,NT}), the answer is valid with high confidence.
Termination provers have been successfully used to analyse
termination of a wide variety of loop programs [55–65].

DEFINITION 11: Valid Termination Bug Repair. Let P be a
buggy non-terminating program with a set of inputs I , φbeh a
specification of expected behavior of P , and φreach a specifi-
cation that checks the reachability of some halting statement of
P . We say that P ′ is a valid repair of P iff for every input i ∈ I
we have (P ′, i) ⊧ φbeh and (P ′, i) ⊧ φreach.

In other words, the patched version P ′ should preserve the
expected behavior of P , and it should terminate.

A. Termination Bugs in Sequential Programs

To repair termination bugs in sequential programs, we first
generate plausible patches, and then use termination provers
to check the correctness of these patches. AProVE [10] and
2LS [11] are among the most reliable candidates to analyze
the termination of sequential programs.

DEFINITION 12: Validity of Patches for Termination Bugs in
Sequential Programs. Let Ps be a non-terminating sequential
program and T = (Tp∪Tf) be a test-suite consisting of passing
test cases Tp and failing test cases Tf . Let P ′s be a candidate
patch of Ps and TP be a termination prover that returns one
of the verification answers {TR,NT,UN}. We say that P ′s is a
valid patch of Ps iff all of the following conditions hold:

1) all failing test cases from Tf pass on program P ′s,
2) none of the passing test cases from Tp fail on program P ′s,

3) termination prover TP returns “TR” when analyzing ter-
mination of P ′s.

The soundness of generated patches for termination bugs in
sequential programs can be captured formally as:

φseq = (∀t∈T (P ′s ⊢ t) ∧ TP(P ′s) = TR) (1)

where T is the set of available test cases, and P ′s ⊢ t indicates
that patch P ′s runs successfully against test t.

Figure 1 sketches a hybrid repair procedure for termination
bugs in sequential programs. The algorithm takes five inputs:
the buggy sequential program Ps, a specification of expected
behavior φbeh, a test suite Ts, a termination prover TP, and
the allocated time budget TimeBudget. It uses two functions:
(i) faultLocalizer(Ps,CE, Ts) computes the set of suspicious
statements SuspStats whose mutation may lead to generate a
valid patch. It finds these suspicious statements by combining
the counterexamples CE generated by termination prover TP
with the results of spectrum-based fault localization [66–
69] on the test suite (executed with a timeout mechanism
to avoid getting stuck in infinite loops); (ii) the function
mutate(Ps,SuspStats) is used to construct the patch space (i.e.,
patch generation) by mutating the computed set SuspStats that
may affect the truth value of the termination condition of the
detected buggy non-terminating loop in Ps.

B. Termination Bugs in Concurrent Programs

In the automated repair of concurrent programs, the goal is
to generate a patch that ensures that a concurrent program is
correct under all interleavings. It is difficult, if not impossible,
to examine all possible executions of a concurrent program
using dynamic analysis techniques. Therefore, a concurrent
program cannot be debugged and repaired in the same manner
as sequential programs. In the case of concurrency, it usually
refers to action interleaving. That is, if the processes pi and
pj are in parallel composition (pi ∥ pj) then the actions of
these will be interleaved. Each process executes a sequence of
actions (sub-program), then the set of possible interleavings
of several processes consists of all possible sequences of

1: Inputs: Ps, φbeh, Ts, TP, TimeBudget
2: Output: Prepaired

3: PatchSpace ∶= ∅, Prepaired ∶= NoPatchFound, found ∶= false
4: (∗,CE) ∶= TP(Ps) # get CE, verdict known to be NT
5: SuspStats ∶= faultLocalizer(Ps,CE, Ts)

6: PatchSpace ∶= mutate(Ps, SuspStats) # patch generation
7: while PatchSpace ≠ ∅ ∧ TimeBudget > 0 ∧ ¬found do
8: select patch from PatchSpace
9: if patch ⊧ φbeh then # 2-step patch validation

10: if TP(patch) = (TR,∗) then
11: Prepaired ∶= patch
12: found ∶= true
13: end if
14: end if
15: end while
16: return Prepaired

Fig. 1. Repair algorithm for sequential programs



actions. Before proceeding further, let us introduce the notion
of successful termination in concurrent programs.
DEFINITION 13: Termination of Concurrent Programs. Let
Pc = (p1 ∥ p2 ∥ ... ∥ pn) be a concurrent program that
consists of a collection of sub-programs, where each process pi
executes a sub-program. Let Hi be the set of halting statements
at the sub-program executed by process pi. We say that Pc

is terminating iff every sub-program is eventually terminating.
That is, the sub-program executed by process pi eventually
executes some halting statement s ∈Hi and terminates.

DEFINITION 14: Termination Failures in Concurrent Pro-
grams. Let Pc = (p1 ∥ p2 ∥ ... ∥ pn) be a concurrent
program that consists of a collection of sub-programs executed
by processes p1, ..., pn. The program Pc fails to terminate iff:

1) there exists a logical bug that leads to an infinite loop, or
2) there exists a concurrency bug, such as deadlock or live-

lock, that prevents the program from making any further
progress to reach a halting statement and terminate.

Thus, if deadlocks and livelocks are formally proven to never
occur in the program-under-analysis, and all loops in the sub-
programs are proven to be terminating, then one can conclude
that the concurrent program is terminating. The distinction
between the two causes of termination failures in concurrent
programs (logical bug or concurrency bug) helps to select a
strategy for fixing the detected termination bug.
Combining Model Checking and Termination Provers:
Repairing termination bugs in concurrent programs can be a
computationally complex task. This is mainly because termi-
nation bugs in concurrent programs can be caused by either
a logical or concurrency bug. Furthermore, the vast number
of possible interleavings of parallel processes of a given
concurrent program can increase the complexity of the repair
problem. Therefore, it is necessary to employ both termination
provers and model checking to reduce the computational
complexity of the problem. Fortunately, we know how to write
specifications to check the absence of concurrency bugs in
concurrent programs [70–72]. In Definition 15, we describe
the conditions that are necessary to ensure the correctness of
the generated patches for termination bugs in the buggy non-
terminating concurrent program.
DEFINITION 15: Validity of Generated Patches for Termina-
tion Bugs in Concurrent Programs. Let Pc = (p1 ∥ p2 ∥ ... ∥
pn) be a buggy non-terminating concurrent program, TP be a
termination prover, and SMC be a software model checker. Let
φdeadlock and φlivelock be specifications that check respectively
the absence of deadlocks and livelocks in Pc and φbeh be a
specification that captures the expected behavior of Pc. We say
that a candidate patch P ′c for the buggy program Pc is a valid
patch iff it meets the following requirements:

1) the prover TP returns “terminating” when analysing termi-
nation of the sub-program executed by process pi, and

2) the checker SMC returns “holds” when checking the spec-
ifications φdeadlock and φlivelock against P ′c, and

3) the checker SMC returns “holds” when checking the spec-
ification of expected behavior φbeh against the patch P ′c.

Formally, we can capture the above described requirements
in a 4-part correctness specification of the following form:

φcon = ∀pi∈P ′c(TP(pi) = TR) ∧ SMC(P ′c, φdeadlock) ∧

SMC(P ′c, φlivelock) ∧ SMC(P ′c, φbeh)

(2)

A key challenge when dealing with termination bugs is to
ensure that the generated repair guarantees not only the
termination of the program for each possible input, but also
the semantic preservation of the program. This requires the
analysis of a composite correctness property that checks both
termination and semantic preservation. By using formula (2),
we entirely avoid the patch overfitting problem, which is one
of the major problems of dynamic APR. Formula (2) uses
sequential termination provers to check the absence of infinite
loops in each individual process. This can be performed while
abstracting away concurrency details that are irrelevant to the
local computations of processes. Note that one cannot prove
the termination of program Pc by simply applying a sequential
termination prover: a sound proof of termination must consider
all possible interactions among the sub-programs of Pc.

An alternative way to use model checking in detecting and
repairing termination bugs of the concurrent program is to
reduce the termination problem to the reachability analysis
problem. That is, to check whether each process will even-
tually reach some halting location and terminate. However,
the feasibility of the approach relies mainly on the size and
number of processes of the buggy program under analysis
(i.e., computing state-reachability is known to be PSPACE-
complete when processes are finite state [73]). The reduction
of the termination problem to the reachability problem in
model checking leads to the following temporal formula

φ′con = ∀pi∈P ′c(AF(pi.ℓ
(j)
h ∣ ℓ

(j)
h ∈Hi)) ∧ SMC(P ′c, φbeh) (3)

where A is a temporal path quantifier which should be read as
“for all paths”, and F is the “future” temporal operator [28].
Intuitively, formula (3) checks whether for each reachable
execution path of process pi, some halting location ℓ

(j)
h ∈ Hi

will eventually be reached. However, the proper termination
analysis of the concurrent program Pc using formula (3)
requires the precise computation of the set of halting locations
Hi for each process pi of the patched concurrent program P ′c.

There are several software model checkers1 that can be used
to verify reachability properties and detect concurrency bugs,
including VeriSoft [14], Java Pathfinder [16], CMC [17], DI-
VINE [19], and GMC [74]. DIVINE is a modern, explicit-state
model checker that can verify programs written in multiple
real-world programming languages, including C and C++. On
the other hand, GMC is a model checker based on the generic
Monte-Carlo model-checking algorithm. It takes as input a
C program, the target program to be verified, and the linear
temporal logic specification that needs to be checked.

There are also a few termination provers that can be used to
analyze the termination of concurrent programs. For instance,

1 Unlike traditional model checking, a software model checker does not
require a user to manually construct an abstract model of the program to be
checked, but instead, the tool works directly on the program’s source code.



Cook et al. [75] have extended the termination prover T2 [12]
to support the analysis of concurrent programs, which can
be used to validate generated patches for termination bugs in
concurrent programs. Termination checker T2 supports nested
loops, recursive functions, pointers, side-effects, and function-
pointers, as well as concurrent programs. Of course, the prover
cannot handle termination of all concurrent programs since
the general problem is undecidable. The use of concurrent
termination provers leads to the following specification

φ′′con = ∀pi∈P ′c(TP(pi) = TR) ∧ SMC(P ′c, φbeh) (4)

The termination provers AProVE, 2LS, and T2 can be viewed
as complementary tools: it is possible that some tool fails to
detect certain forms of termination bugs while other succeeds,
depending on the implemented theory and the complexity of
the program under analysis. Therefore, termination checkers
can be run in parallel to expose termination bugs.

While checking the satisfaction of formula (2) may require
higher computational complexity than formulas (3) and (4)
(i.e., it employs both termination provers and software model
checkers to check the absence of deadlocks, livelocks, and
infinite loops), it has several advantages. First, it helps identify
the root causes of non-termination in the program-under-
repair. Second, the patch validation approach that uses formula
(2) can benefit from the counterexamples generated by both
termination provers and software model checkers. This helps
to develop effective program synthesis for termination bugs.
Repairing Termination Bugs in Concurrent Programs:
To fix termination bugs in concurrent programs, it is first
essential to identify the root cause of the termination bug since
both logical and concurrency bugs can cause non-termination.
On the one hand, there are several mechanisms for handling
deadlocks in concurrent programs [71, 72, 76]. On the other,
repair algorithms based on genetic programming can help fix
termination bugs that occur due to infinite loops [45, 77].

Figure 2 sketches a hybrid repair procedure for termination
bugs in concurrent programs. It uses three helper functions: (i)
faultLocalizer(Pc,CE) finds the statements that are suspected
to be faulty in Pc using the counterexamples CE generated
by termination prover TP and software model checker SMC,
(ii) mutateConcur(Pc,SuspStatsD) constructs the patch space
for a concurrency bug by mutating the synchronization prim-
itives of the program, and (iii) mutateLogic(Pc,SuspStatsL)
constructs the patch space for a logical bug by mutating
expressions that affect the control of faulty loops.

Generating verified repairs of termination bugs in both
sequential and concurrent programs is a challenging open
problem that requires formal analysis techniques. Our prelim-
inary investigation of using termination provers in sequential
programs shows that this is a rather promising approach that
can be effectively integrated with dynamic APR approaches to
generate verified repairs for termination bugs. The application
of the termination provers 2LS and AProVE on the programs
in the two datasets, SNU real-time benchmark and the Power-
Stone benchmark suite [78], show that the tools are able to
successfully prove termination of around 85% of the examined

1: Inputs: Pc, φbeh, φdeadlock, TP, SMC, TimeBudget
2: Output: Prepaired

3: PatchSpace ∶= ∅, Prepaired ∶= NoPatchFound, found := false
4: (Outcome1,CE1) ∶= SMC(Pc, φdeadlock)

5: if (Outcome1 = fails) then # Pc contains a deadlock
6: SuspStatsD ∶= faultLocalizer(Ps,CE1)

7: PatchSpace ∶= mutateConcur(Pc, SuspStatsD)
8: end if
9: (Outcome2,CE2) ∶= TP(Pc)

10: if Outcome2 = NT then # Pc contains an infinite loop
11: SuspStatsL ∶= faultLocalizer(Ps,CE2)

12: PatchSpace ∶= PatchSpace ∪mutateLogic(Pc, SuspStatsL)
13: end if
14: while PatchSpace ≠ ∅ ∧ TimeBudget > 0 ∧ ¬found do
15: select patch from PatchSpace
16: if patch ⊧ φbeh then # 2-step patch validation
17: if TP(patch) = (TR,∗) ∧

SMC(patch, φdeadlock) = (holds,∗) then
18: Prepaired ∶= patch, found ∶= true
19: end if
20: end if
21: end while
22: return Prepaired

Fig. 2. Repair algorithm for concurrent programs

programs using very little computational time (a few seconds).
This demonstrates the feasibility of using termination provers
to validate the generated patches of termination bugs.

Table III compares the complexity of termination bugs in
both sequential and concurrent programs using several criteria:
(i) root causes of termination bugs, (ii) feasible APR approach
to be applied for termination bugs in both classes of programs,
(iii) patch validation procedure to validate generated patches,
(iv) patch validation tool that can be used to check termination.

VI. RELATED WORK

We discuss the related literature on APR, bug classification,
use of formal specifications in APR, previous attempts to in-
tegrate different analysis techniques, and termination analysis.
Automated Program Repair: Source-based, automated pro-
gram repair approaches [3] can be separated into search-based
and semantic-based approaches. Search-based approaches
such as GenProg [45], Astor [79], and SCRepair [77] predom-
inantly use failing test cases to identify bugs, and then mutate
the source code until the program passes all failing test cases.
They do not provide patch correctness guarantees beyond
the fact that the provided test cases now pass. Recent work
introduced property-based testing to strengthen the validation
of candidate repairs and address overfitting [80]. Nevertheless,
these approaches require executing the program-under-repair,
first to find the bug, and then to generate and validate can-
didate repairs. Semantic-based approaches like SemFix [81],
Nopol [82], DirectFix [83], SPR [84], Angelix [85], and
JFIX [86] infer repair constraints for the buggy program via
symbolic execution of the given tests. The completeness of
inferred constraints relies on the available test suite. Similarly,
Infinitel [54] uses an SMT solver to synthesise a loop termi-
nation condition and then uses test cases for patch validation.



TABLE III
A COMPARISON OF THE COMPLEXITY OF THE REPAIR PROBLEM OF TERMINATION BUGS IN SEQUENTIAL AND CONCURRENT PROGRAMS

program class root causes of non-termination feasible APR patch validation procedure patch validation tools

sequential programs infinite loops dynamic-static test cases and termination provers AProVE, 2LS, T2, and GMC
concurrent programs infinite loops, deadlocks, or livelocks static or formal termination provers and SMC T2 and GMC

Bug Classification Systems: Several works target bug clas-
sification using a wide variety of classification criteria and for
different goals. The work of Tan et al. [6, 7] introduced a
bug classification system based on the cause-impact criteria.
They studied bug characteristics of around 2,060 real-world
bugs in three representative open-source projects. They con-
cluded that semantic bugs are the dominant root cause of
bugs, and memory-related bugs have decreased due to the
development of effective detection tools. Many bug tracking
systems classify bugs using severity and priority criteria, where
severity indicates the seriousness of the bug on the program
functionality and priority indicates how soon the bug should
be fixed [8]. Cotroneo et al. present a maintenance-oriented
bug classification system in which the characteristics of the
bug manifestation are studied [9]. The study identifies the set
of failure-exposing conditions under which a bug may occur.
Neither of these classification systems considers properties that
can be used to analyze the detection power of different bug
detection techniques and the conditions under which they can
be integrated, which we add with the classification system
proposed in this paper. Abbaspour et al. [87] do use bug
observability to study the erroneous behavior of a wide variety
of concurrency bugs. However, the authors restrict themselves
to concurrency bugs and do not study the detection power of
different bug detection techniques.
Integrating Bug Detection Techniques: Few attempts have
been made to integrate different program analysis techniques
to alleviate the impact of the patch overfitting problem. Al-
Bataineh et al. used the static detection patterns/rules as the
source for formulating formal specifications and discussed the
possibility of integrating static and dynamic analysis tech-
niques to improve the overall quality of generated patches [47].
There also exists a few examples of using information from
debugging to aid APR: Facebook’s APR tool SapFix takes
information generated during the bug detection process and
applies various techniques, including templates specific to
given bug types, to fix the program [4].
Termination Analysis of Programs: A huge body of work
has been published on proving termination of programs based
on a variety of techniques, such as abstract interpretation [55,
58, 59], bounds analysis [60, 61], ranking functions [62,
63], recurrence sets [64, 65], and transition invariants [56,
57]. Based on these techniques, a number of program termi-
nation checkers have been developed in the prior literature
including AProVE [10], 2LS [11], T2 [12], and ARMC [88].
Unfortunately, termination provers have not yet been used to
validate the generated candidate patches of termination bugs
in the previous APR approaches. We strongly believe that
integrating APR approaches with contemporary termination

checkers would help advance the current state-of-the-art of
APR, not only for repairing termination bugs, but also for
other classes of concurrency bugs. This is mainly because
fixing termination bugs in concurrent programs would ensure
the absence of certain classes of concurrency bugs, such as
deadlock and livelock bugs. It would also help avoid the
patch overfitting problem by generating verified repairs for
termination bugs in both sequential and concurrent programs.

VII. CONCLUDING REMARKS

A significant class of bugs cannot be handled with current
APR approaches, and there is a need to study complemen-
tary techniques. To stimulate this work, we propose a novel
bug classification system based on three key properties: bug
observability, bug tractability, and bug reproducibility. This
provides a tool to methodologically explore and compare
alternative and hybrid APR approaches by (i) analyzing the
detection power of different bug detection techniques, (ii)
distinguishing APR approaches based on their bug repair
capabilities, and (iii) providing a common terminology that
helps identify gaps in current APR research. Moreover, it
allows analysis of how techniques can be combined to handle
challenging classes of bugs. As a demonstrating example, we
study termination bugs in sequential and concurrent programs,
and present novel hybrid algorithms for their repair by inte-
grating termination provers and software model checkers in
the APR pipeline. Such integration reduces the complexity of
the repair algorithms and improves the overall reliability.

We identify the following directions for future research:
(1) we are in the process of empirically validating the ideas
described in this work by combining a selection of APR tools
with some of the termination provers and software model
checkers mentioned earlier; (2) there is a need for efficient
fault localization mechanisms for termination and liveness
bugs, since these create infinite traces that cannot be handled
with the current spectrum-based fault localization approaches;
We currently circumvent this with a timeout mechanism, but
more efficient techniques could find a more precise set of sus-
picious statements; (3) the combination of CounterExample-
Guided Inductive Synthesis (CEGIS) [89] with termination
provers and software model checkers could enable efficient
patch space exploration without the user guidance that is nor-
mally needed for CEGIS; (4) aside from the termination bugs
studied in Section V, various other bugs cannot be handled
by APR approaches solely based on dynamic analysis. One
particularly interesting class of non-observable bugs for future
research are security-related vulnerabilities where sensitive
information may be disclosed to unauthorized parties as a
result of violations of information flow security [36, 37].



REFERENCES

[1] E. B. Swanson. “The Dimensions of Maintenance.” In: Int’l Conference
on Software Engineering (ICSE). IEEE, 1976, pp. 492–497.

[2] C. Le Goues, M. Pradel, and A. Roychoudhury. “Automated Program
Repair.” In: Communications of the ACM 62.12 (2019), pp. 56–65.
DOI: 10/gkgf29.

[3] M. Monperrus. “Automatic Software Repair: A Bibliography.” In: ACM
Computing Surveys 51.1 (2018), pp. 1–24. DOI: 10/ggssbj.

[4] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A.
Mols, and A. Scott. “SapFix: Automated End-to-End Repair at Scale.”
In: Int’l Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP). 2019, pp. 269–278. DOI: 10/gkgf2c.

[5] B. Alpern and F. B. Schneider. “Recognizing Safety and Liveness.”
In: Distributed Computing 2.3 (1987), pp. 117–126. DOI: 10/fmbptq.

[6] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. “Have Things
Changed Now? An Empirical Study of Bug Characteristics in Modern
Open Source Software.” In: Workshop on Architectural and System
Support for Improving Software Dependability. ACM, 2006, pp. 25–33.
DOI: 10/cqsw86.

[7] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai. “Bug
Characteristics in Open Source Software.” In: Empirical Software
Engineering 19.6 (2014), pp. 1665–1705. DOI: 10/f6m38x.

[8] N. Serrano and I. Ciordia. “Bugzilla, ITracker, and Other Bug Track-
ers.” In: IEEE Software 22.2 (2005), pp. 11–13. DOI: 10/fbgs99.

[9] D. Cotroneo, K. Trivedib, S. Russoa, and R. Pietrantuonoa. “How
Do Bugs Surface? A Comprehensive Study on the Characteristics of
Software Bugs Manifestation.” In: Journal of Systems and Software
113 (2016), pp. 27–43. DOI: 10/gpd4t5.

[10] J. Giesl et al. “Proving Termination of Programs Automatically with
AProVE.” In: Int’l Joint Conference on Automated Reasoning (IJCAR).
Ed. by S. Demri, D. Kapur, and C. Weidenbach. Springer, 2014,
pp. 184–191. DOI: 10/f3ssz2.

[11] H.-Y. Chen, C. David, D. Kroening, P. Schrammel, and B. Wachter.
“Synthesising Interprocedural Bit-Precise Termination Proofs (T).” In:
Int’l Conference on Automated Software Engineering (ASE). 2015,
pp. 53–64. DOI: 10/gp6krb.

[12] M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman.
“T2: Temporal Property Verification.” In: Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). Ed. by M. Chechik
and J.-F. Raskin. Springer, 2016, pp. 387–393. DOI: 10/gp6kq9.

[13] R. Jhala and R. Majumdar. “Software Model Checking.” In: ACM
Computing Surveys 41.4 (2009), pp. 1–54. DOI: 10/fd3pxq.

[14] P. Godefroid. “VeriSoft: A Tool for the Automatic Analysis of Con-
current Reactive Software.” In: Int’l Conference on Computer Aided
Verification (CAV). Ed. by O. Grumberg. Springer, 1997, pp. 476–479.
DOI: 10/b7ntq3.

[15] G. Holzmann. “The Model Checker SPIN.” In: IEEE Transactions on
Software Engineering 23.5 (1997), pp. 279–295. DOI: 10/d7wqxt.

[16] K. Havelund and T. Pressburger. “Model Checking JAVA Programs
Using JAVA PathFinder.” In: International Journal on Software Tools
for Technology Transfer 2.4 (2000), pp. 366–381. DOI: 10/d2pmx6.

[17] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill.
“CMC: A Pragmatic Approach to Model Checking Real Code.” In:
Symposium on Operating Systems Design and Implementation (OSDI).
Usenix, 2002.

[18] S. J. Thompson, G. Brat, and A. Venet. “Software Model Checking
of ARINC-653 Flight Code with MCP.” In: NASA Formal Methods
Symposium. NASA, 2010.

[19] Z. Baranová, J. Barnat, K. Kejstová, T. Kučera, H. Lauko, J. Mrázek,
P. Ročkai, and V. Štill. “Model Checking of C and C++ with DIVINE
4.” In: Automated Technology for Verification and Analysis. Ed. by
D. D’Souza and K. Narayan Kumar. Springer, 2017, pp. 201–207.
DOI: 10/gp6kq7.

[20] Y. Hebbal, S. Laniepce, and J.-M. Menaud. “Virtual Machine In-
trospection: Techniques and Applications.” In: Int’l Conference on
Availability, Reliability and Security. 2015, pp. 676–685. DOI: 10 /
gp6kq4.

[21] P. Dovgalyuk, N. Fursova, I. Vasiliev, and V. Makarov. “QEMU-based
Framework for Non-Intrusive Virtual Machine Instrumentation and In-
trospection.” In: Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 2017, pp. 944–948. DOI: 10/gp6kqz.

[22] B. Gregg. Systems Performance: Enterprise and the Cloud. 2nd Ed.
Addison-Wesley, 2020.

[23] B. Gregg. BPF Performance Tools: Linux System and Application
Observability. Addison-Wesley.

[24] O. Al-Bataineh, D. J. X. Ng, and A. Easwaran. “Monitoring Cumu-
lative Cost Properties.” In: Int’l Conference on Formal Methods in
Software Engineering (FormaliSE). 2021, pp. 19–30. DOI: 10/gp6kqw.

[25] T. Mytkowicz, P. F. Sweeney, M. Hauswirth, and A. Diwan. Observer
Effect and Measurement Bias in Performance Analysis. Technical
Report CU-CS-1042-08. University of Colorado at Boulder, 2008.

[26] X. Wang, Z. Guo, X. Liu, Z. Xu, H. Lin, X. Wang, and Z. Zhang.
“Hang Analysis: Fighting Responsiveness Bugs.” In: ACM SIGOPS
Operating Systems Review 42.4 (2008), pp. 177–190. DOI: 10/b9chm8.

[27] D. J. Dean, P. Wang, X. Gu, W. Enck, and G. Jin. “Automatic Server
Hang Bug Diagnosis: Feasible Reality or Pipe Dream?” In: IEEE Int’l
Conference on Autonomic Computing. 2015, pp. 127–132. DOI: 10/
gp6kq5.

[28] A. Pnueli. “The Temporal Logic of Programs.” In: Annual Symposium
on Foundations of Computer Science (SFCS). 1977, pp. 46–57. DOI:
10/dn8cpn.

[29] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems: Specification. Springer, 1992.

[30] L. Lamport. “Proving the Correctness of Multiprocess Programs.” In:
IEEE Transactions on Software Engineering SE-3.2 (1977), pp. 125–
143. DOI: 10/d25dpw.

[31] B. Alpern and F. B. Schneider. “Defining Liveness.” In: Information
Processing Letters 21.4 (1985), pp. 181–185. DOI: 10/d97bw4.

[32] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. “Life, Death, and
the Critical Transition: Finding Liveness Bugs in Systems Code.” In:
USENIX Symposium on Networked Systems Design & Implementation
(NSDI 07). 2007.

[33] P. Li and J. Regehr. “T-Check: Bug Finding for Sensor Networks.”
In: Int’l Conference on Information Processing in Sensor Networks.
ACM, 2010, pp. 174–185. DOI: 10/djrwkg.

[34] B. P. Miller, L. Fredriksen, and B. So. “An Empirical Study of the
Reliability of UNIX Utilities.” In: Communications of the ACM 33.12
(1990), pp. 32–44. DOI: 10/fqnt9s.

[35] B. P. Miller, G. Cooksey, and F. Moore. “An Empirical Study of
the Robustness of MacOS Applications Using Random Testing.” In:
Int’l Workshop on Random Testing. ACM, 2006, pp. 46–54. DOI: 10/
bw7w9h.

[36] A. Sabelfeld and A. Myers. “Language-Based Information-Flow Se-
curity.” In: IEEE Journal on Selected Areas in Communications 21.1
(2003), pp. 5–19. DOI: 10/dnvjwg.

[37] G. Smith. “Principles of Secure Information Flow Analysis.” In:
Malware Detection. Ed. by M. Christodorescu, S. Jha, D. Maughan,
D. Song, and C. Wang. Springer, 2007, pp. 291–307. DOI: 10/fnfjff.

[38] C. David, P. Kesseli, D. Kroening, and M. Lewis. “Danger Invariants.”
In: Formal Methods. Ed. by J. Fitzgerald, C. Heitmeyer, S. Gnesi, and
A. Philippou. Springer, 2016, pp. 182–198. DOI: 10/gp6kqr.

[39] V. D’Silva, D. Kroening, and G. Weissenbacher. “A Survey of
Automated Techniques for Formal Software Verification.” In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 27.7 (2008), pp. 1165–1178. DOI: 10/frf7ww.

[40] A. Bessey et al. “A Few Billion Lines of Code Later: Using Static
Analysis to Find Bugs in the Real World.” In: Communications of the
ACM 53.2 (2010), pp. 66–75. DOI: 10/bj8r36.

[41] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C.
Jaspan. “Lessons from Building Static Analysis Tools at Google.” In:
Communications of the ACM 61.4 (2018), pp. 58–66. DOI: 10/ggsshq.

[42] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
“Symbolic Model Checking: 1020 States and Beyond.” In: Information
and Computation 98.2 (1992), pp. 142–170. DOI: 10/bvrsx5.

[43] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
P. Schnoebelen, and P. McKenzie. Systems and Software Verification:
Model-Checking Techniques and Tools. Springer, 2001.

[44] E. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model
Checking. 2nd Ed. MIT Press, 2018.

[45] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. “GenProg: A
Generic Method for Automatic Software Repair.” In: IEEE Transac-
tions on Software Engineering 38.1 (2012), pp. 54–72. DOI: 10/cfztf3.

[46] P. Muntean, M. Monperrus, H. Sun, J. Grossklags, and C. Eckert.
“IntRepair: Informed Repairing of Integer Overflows.” In: IEEE Trans-
actions on Software Engineering 47.10 (2021), pp. 2225–2241. DOI:
10/gh97rm.

https://doi.org/10/gkgf29
https://doi.org/10/ggssbj
https://doi.org/10/gkgf2c
https://doi.org/10/fmbptq
https://doi.org/10/cqsw86
https://doi.org/10/f6m38x
https://doi.org/10/fbgs99
https://doi.org/10/gpd4t5
https://doi.org/10/f3ssz2
https://doi.org/10/gp6krb
https://doi.org/10/gp6kq9
https://doi.org/10/fd3pxq
https://doi.org/10/b7ntq3
https://doi.org/10/d7wqxt
https://doi.org/10/d2pmx6
https://doi.org/10/gp6kq7
https://doi.org/10/gp6kq4
https://doi.org/10/gp6kq4
https://doi.org/10/gp6kqz
https://doi.org/10/gp6kqw
https://doi.org/10/b9chm8
https://doi.org/10/gp6kq5
https://doi.org/10/gp6kq5
https://doi.org/10/dn8cpn
https://doi.org/10/d25dpw
https://doi.org/10/d97bw4
https://doi.org/10/djrwkg
https://doi.org/10/fqnt9s
https://doi.org/10/bw7w9h
https://doi.org/10/bw7w9h
https://doi.org/10/dnvjwg
https://doi.org/10/fnfjff
https://doi.org/10/gp6kqr
https://doi.org/10/frf7ww
https://doi.org/10/bj8r36
https://doi.org/10/ggsshq
https://doi.org/10/bvrsx5
https://doi.org/10/cfztf3
https://doi.org/10/gh97rm


[47] O. I. Al-Bataineh, A. Grishina, and L. Moonen. “Towards More
Reliable Automated Program Repair by Integrating Static Analysis
Techniques.” In: IEEE Int’l Conference on Software Quality, Reliability
and Security (QRS). 2021, pp. 654–663. DOI: 10/gp6kq6.

[48] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. “Understanding and
Detecting Real-World Performance Bugs.” In: ACM SIGPLAN Notices
47.6 (2012), pp. 77–88. DOI: 10/f372jr.

[49] A. Radu and S. Nadi. “A Dataset of Non-Functional Bugs.” In: Int’l
Conference on Mining Software Repositories (MSR). IEEE, 2019,
pp. 399–403. DOI: 10/gp6kq2.

[50] M. E. Fagan. “Design and Code Inspections to Reduce Errors in
Program Development.” In: IBM Systems Journal 15.3 (1976), pp. 182–
211. DOI: 10/btfv3v.

[51] T. Gilb, D. Graham, and S. Finzi. Software Inspection. Addison-
Wesley, 1993.

[52] A. Bacchelli and C. Bird. “Expectations, Outcomes, and Challenges of
Modern Code Review.” In: Int’l Conference on Software Engineering
(ICSE). 2013, pp. 712–721. DOI: 10/gf2h2r.

[53] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S.
Forrest, and W. Weimer. “The ManyBugs and IntroClass Benchmarks
for Automated Repair of C Programs.” In: IEEE Transactions on
Software Engineering 41.12 (2015), pp. 1236–1256. DOI: 10/gpd4jv.

[54] S. R. L. Marcote and M. Monperrus. Automatic Repair of Infinite
Loops. 2015. DOI: 10/jb2f. arXiv: 1504.05078.

[55] J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. O’Hearn.
“Variance Analyses from Invariance Analyses.” In: SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM,
2007, pp. 211–224. DOI: 10/frk5km.

[56] D. Kroening, N. Sharygina, A. Tsitovich, and C. M. Wintersteiger.
“Termination Analysis with Compositional Transition Invariants.” In:
Computer Aided Verification. Ed. by T. Touili, B. Cook, and P. Jackson.
Springer, 2010, pp. 89–103. DOI: 10/b54tf5.

[57] A. Podelski and A. Rybalchenko. “Transition Invariants.” In: Sympo-
sium on Logic in Computer Science. 2004, pp. 32–41. DOI: 10/fbsbdm.

[58] A. Chawdhary, B. Cook, S. Gulwani, M. Sagiv, and H. Yang. “Ranking
Abstractions.” In: European Symposium on Programming Languages
and Systems (ESOP). Ed. by S. Drossopoulou. Springer, 2008, pp. 148–
162. DOI: 10/d4wm5s.

[59] A. Tsitovich, N. Sharygina, C. M. Wintersteiger, and D. Kroening.
“Loop Summarization and Termination Analysis.” In: Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS). Ed. by
P. A. Abdulla and K. R. M. Leino. Springer, 2011, pp. 81–95. DOI:
10/cd8sdb.

[60] S. Gulwani, S. Jain, and E. Koskinen. “Control-Flow Refinement and
Progress Invariants for Bound Analysis.” In: ACM SIGPLAN Notices
44.6 (2009), pp. 375–385. DOI: 10/fxdmzw.

[61] S. Gulwani, K. K. Mehra, and T. Chilimbi. “SPEED: Precise and
Efficient Static Estimation of Program Computational Complexity.” In:
ACM SIGPLAN Notices 44.1 (2009), pp. 127–139. DOI: 10/fxgdsx.

[62] A. R. Bradley, Z. Manna, and H. B. Sipma. “Linear Ranking with
Reachability.” In: Int’l Conference on Computer Aided Verification
(CAV). Ed. by K. Etessami and S. K. Rajamani. Springer, 2005,
pp. 491–504. DOI: 10/fpjv58.

[63] P. Cousot. “Proving Program Invariance and Termination by Parametric
Abstraction, Lagrangian Relaxation and Semidefinite Programming.”
In: Verification, Model Checking, and Abstract Interpretation. Ed. by
R. Cousot. Springer, 2005, pp. 1–24. DOI: 10/dzfpc6.

[64] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu. “Proving Non-Termination.” In: SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM, 2008, pp. 147–
158. DOI: 10/dd76q5.

[65] W. R. Harris, A. Lal, A. V. Nori, and S. K. Rajamani. “Alternation for
Termination.” In: Static Analysis Symposium (SAS). Ed. by R. Cousot
and M. Martel. Springer, 2010, pp. 304–319. DOI: 10/djthds.

[66] J. A. Jones, M. J. Harrold, and J. Stasko. “Visualization of Test
Information to Assist Fault Localization.” In: Int’l Conference on
Software Engineering (ICSE). 2002, p. 467. DOI: 10/bxz64c.

[67] L. Naish, H. J. Lee, and K. Ramamohanarao. “A Model for Spectra-
Based Software Diagnosis.” In: ACM Transactions on Software En-
gineering and Methodology (TOSEM) 20.3 (2011), pp. 1–32. DOI:
10/c5xnmd.

[68] S. Heiden, L. Grunske, T. Kehrer, F. Keller, A. van Hoorn, A. Filieri,
and D. Lo. “An Evaluation of Pure Spectrum-Based Fault Localization
Techniques for Large-Scale Software Systems.” In: Software: Practice
and Experience 49.8 (2019), pp. 1197–1224. DOI: 10/gp6kq8.

[69] X. Xie and B. Xu. Essential Spectrum-based Fault Localization.
Springer, 2021. DOI: 10/jb2d.

[70] A. Gupta, V. Kahlon, S. Qadeer, and T. Touili. “Model Checking
Concurrent Programs.” In: Handbook of Model Checking. Ed. by
E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Springer,
2018, pp. 573–611. DOI: 10/jkpx.

[71] Y. Lin and S. S. Kulkarni. “Automatic Repair for Multi-Threaded
Programs with Deadlock/Livelock Using Maximum Satisfiability.” In:
Int’l Symposium on Software Testing and Analysis (ISSTA). ACM,
2014, pp. 237–247. DOI: 10/gp6krh.

[72] J. Zhou, S. Silvestro, H. Liu, Y. Cai, and T. Liu. “UNDEAD: Detecting
and Preventing Deadlocks in Production Software.” In: Int’l Confer-
ence on Automated Software Engineering (ASE). 2017, pp. 729–740.
DOI: 10/gp6kqx.

[73] D. Kozen. “Lower Bounds for Natural Proof Systems.” In: Annual Sym-
posium on Foundations of Computer Science (SFCS). 1977, pp. 254–
266. DOI: 10/dbkc79.

[74] S. Thompson and G. Brat. “Verification of C++ Flight Software with
the MCP Model Checker.” In: IEEE Aerospace Conference. IEEE,
2008, pp. 1–9. DOI: 10/ds9chc.

[75] B. Cook, A. Podelski, and A. Rybalchenko. “Proving Thread Ter-
mination.” In: Conference on Programming Language Design and
Implementation (PLDI). ACM, 2007, pp. 320–330. DOI: 10/dp236p.

[76] Y. Cai and L. Cao. “Fixing Deadlocks via Lock Pre-Acquisitions.”
In: Int’l Conference on Software Engineering (ICSE). ACM, 2016,
pp. 1109–1120. DOI: 10/gp6kq3.

[77] X. L. Yu, O. Al-Bataineh, D. Lo, and A. Roychoudhury. “Smart
Contract Repair.” In: ACM Transactions on Software Engineering and
Methodology 29.4 (2020), pp. 1–32. DOI: 10/gpd4hr.

[78] K. Ku, T. E. Hart, M. Chechik, and D. Lie. “A Buffer Overflow
Benchmark for Software Model Checkers.” In: Int’l Conference on
Automated Software Engineering (ASE). ACM, 2007, pp. 389–392.
DOI: 10/fds27b.

[79] M. Martinez and M. Monperrus. “ASTOR: A Program Repair Library
for Java.” In: Int’l Symposium on Software Testing and Analysis
(ISSTA). ACM, 2016, pp. 441–444. DOI: 10/gndn55.

[80] M. P. Gissurarson, L. Applis, A. Panichella, A. van Deursen, and D.
Sands. “PROPR: Property-Based Automatic Program Repair.” In: Int’l
Conference on Software Engineering (ICSE). 2022, pp. 1768–1780.
DOI: 10/gqhgs7.

[81] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. “SemFix:
Program Repair via Semantic Analysis.” In: Int’l Conference on
Software Engineering (ICSE). 2013, pp. 772–781. DOI: 10/gg82z6.

[82] J. Xuan, M. Martinez, F. DeMarco, M. Clément, S. L. Marcote, T.
Durieux, D. Le Berre, and M. Monperrus. “Nopol: Automatic Repair of
Conditional Statement Bugs in Java Programs.” In: IEEE Transactions
on Software Engineering 43.1 (2017), pp. 34–55. DOI: 10/gm5s3h.

[83] S. Mechtaev, J. Yi, and A. Roychoudhury. “DirectFix: Looking for
Simple Program Repairs.” In: Int’l Conference on Software Engineer-
ing (ICSE). Vol. 1. 2015, pp. 448–458. DOI: 10/gndpcr.

[84] F. Long and M. Rinard. “Staged Program Repair with Condition
Synthesis.” In: Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 2015, pp. 166–178. DOI: 10/gfvmzm.

[85] S. Mechtaev, J. Yi, and A. Roychoudhury. “Angelix: Scalable Multiline
Program Patch Synthesis via Symbolic Analysis.” In: Int’l Conference
on Software Engineering (ICSE). 2016, pp. 691–701. DOI: 10/ggsskp.

[86] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser. “JFIX:
Semantics-Based Repair of Java Programs via Symbolic PathFinder.”
In: Int’l Symposium on Software Testing and Analysis (ISSTA). ACM,
2017, pp. 376–379. DOI: 10/gp6krg.

[87] S. A. Asadollah, H. Hansson, D. Sundmark, and S. Eldh. “Towards
Classification of Concurrency Bugs Based on Observable Properties.”
In: Int’l Workshop on Complex Faults and Failures in Large Software
Systems (COUFLESS). 2015, pp. 41–47. DOI: 10/f3nh6c.

[88] A. Podelski and A. Rybalchenko. “ARMC: The Logical Choice for
Software Model Checking with Abstraction Refinement.” In: Practical
Aspects of Declarative Languages. Ed. by M. Hanus. Springer, 2007,
pp. 245–259. DOI: 10/dmrfmf.

[89] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat.
“Combinatorial Sketching for Finite Programs.” In: Int’l Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 2006, pp. 404–415. DOI: 10/fdsnnt.

https://doi.org/10/gp6kq6
https://doi.org/10/f372jr
https://doi.org/10/gp6kq2
https://doi.org/10/btfv3v
https://doi.org/10/gf2h2r
https://doi.org/10/gpd4jv
https://doi.org/10/jb2f
https://arxiv.org/abs/1504.05078
https://doi.org/10/frk5km
https://doi.org/10/b54tf5
https://doi.org/10/fbsbdm
https://doi.org/10/d4wm5s
https://doi.org/10/cd8sdb
https://doi.org/10/fxdmzw
https://doi.org/10/fxgdsx
https://doi.org/10/fpjv58
https://doi.org/10/dzfpc6
https://doi.org/10/dd76q5
https://doi.org/10/djthds
https://doi.org/10/bxz64c
https://doi.org/10/c5xnmd
https://doi.org/10/gp6kq8
https://doi.org/10/jb2d
https://doi.org/10/jkpx
https://doi.org/10/gp6krh
https://doi.org/10/gp6kqx
https://doi.org/10/dbkc79
https://doi.org/10/ds9chc
https://doi.org/10/dp236p
https://doi.org/10/gp6kq3
https://doi.org/10/gpd4hr
https://doi.org/10/fds27b
https://doi.org/10/gndn55
https://doi.org/10/gqhgs7
https://doi.org/10/gg82z6
https://doi.org/10/gm5s3h
https://doi.org/10/gndpcr
https://doi.org/10/gfvmzm
https://doi.org/10/ggsskp
https://doi.org/10/gp6krg
https://doi.org/10/f3nh6c
https://doi.org/10/dmrfmf
https://doi.org/10/fdsnnt

	Introduction
	Bug Classification Schemes
	Bug Detection Techniques
	Dynamic Analysis
	Static Program Analysis
	Model Checking

	APR Approaches
	Arithmetic Bugs
	Non-functional Bugs
	Liveness Bugs

	Hybrid APR for Termination Bugs
	Termination Bugs in Sequential Programs
	Termination Bugs in Concurrent Programs

	Related Work
	Concluding Remarks

