
Muskit: A Mutation Analysis Tool for
Quantum Software Testing

Eñaut Mendiluze
Simula Research Laboratory

Fornebu, Norway
enaut@simula.no

Shaukat Ali
Simula Research Laboratory

Fornebu, Norway
shaukat@simula.no

Paolo Arcaini
National Institute of Informatics

Tokyo, Japan
arcaini@nii.ac.jp

Tao Yue
Nanjing University of Aeronautics and Astronautics, China

Simula Research Laboratory, Norway
taoyue@ieee.org

Abstract—Given that quantum software testing is a new area
of research, there is a lack of benchmark programs and bugs
repositories to assess the effectiveness of testing techniques. To
this end, quantum mutation analysis focuses on systematically
generating faulty versions of Quantum Programs (QPs), called
mutants, using mutation operators. Such mutants can be used
as benchmarks to assess the quality of test cases in a test suite.
Thus, we present Muskit – a quantum mutation analysis tool for
QPs coded in IBM’s Qiskit language. Muskit defines mutation
operators on gates of QPs and selection criteria to reduce the
number of mutants to generate. Moreover, it allows for the
execution of test cases on mutants and generation of results for
test analyses. Muskit is provided as command line interface,
GUI, and web application. We validated Muskit by using it to
generate and execute mutants for four QPs.
Muskit code: https://github.com/Simula-COMPLEX/muskit
Web app: https://qiskitmutantcreatorsrl.pythonanywhere.com/
Video: https://youtu.be/EbPHJOK AEA

Index Terms—quantum programs, software testing, mutation
analysis, quantum circuits

I. INTRODUCTION

Quantum programming languages (e.g., IBM’s Qiskit and
Microsoft’s Q#) provide necessary constructs to program
quantum computers that aim to solve extremely complex
computational problems. Testing Quantum Programs (QPs) is
challenging due to their special characteristics (e.g., superpo-
sition and entanglement) that require the development of new
testing techniques. To this end, a few quantum software testing
techniques have started to emerge, which focus on different
testing aspects such as coverage criteria [1], property-based
testing [2], fuzz testing [3], and runtime projections [4].

One way to assess the quality of test cases produced by
a testing technique is to execute them on benchmark QPs.
However, in the context of quantum programming, there do
not exist bug repositories and benchmark programs to assess
the quality of test cases produced by testing techniques. An
alternative is to apply mutation analysis [5] to produce, using

This work is supported by the Qu-Test project (Project#299827) funded by
Research Council of Norway. Paolo Arcaini is supported by ERATO HASUO
Metamathematics for Systems Design Project (No. JPMJER1603), JST.

mutation operators, faulty versions of a correct QP, which
serve as the baseline to assess the quality of test cases.
Mutation analysis has been recently applied [2], [1] to assess
the effectiveness of test cases developed for QPs; however, no
tool was provided and so mutants were generated manually.

We present a mutation analysis tool called Muskit (MU-
tation testing for QisKIT), for QPs coded in IBM’s Qiskit
framework [6]. We envision that Muskit is mainly intended
for quantum software testing researchers interested in assess-
ing the quality of their developed techniques for testing QPs;
moreover, it could also be used by practitioners who want to
estimate the quality of their test suites. Given a QP, Muskit
applies a set of mutation operators to systematically generate
mutated versions of the QP (i.e., mutants), by focusing on
the gates and locations of the quantum circuit. Muskit also
allows to execute provided test cases on the generated mutants
and produce execution results. These results can be used to
perform various analyses depending on the requirements of a
testing technique. To validate this aspect, we implemented a
test analyzer based on an existing published work [1].
Muskit is available as command line interface or as GUI.

Command line is recommended when one is interested in
running a lot of experiments and can do so within their code.
The GUI version is convenient when one wants to try out a few
QPs. Finally, one can also try Muskit as a web application.

To demonstrate the working of Muskit, we also generated
and executed mutants for four QPs and reported the results.

The rest of the paper is organized as follows: Sect. II
presents the necessary background and a running example,
Sect. III introduces the tool architecture and methodology,
and Sect. IV provides the validation of the tool. We present
discussions in Sect. V, and conclude the paper in Sect. VI.

II. BACKGROUND AND RUNNING EXAMPLE

A. Quantum Program and Quantum Circuit

A Quantum Program (QP) works on quantum bits (qubits)
in contrast to bits in classical computing. In a normal com-
puter, the state is simply given by the bits values. In a quantum

https://github.com/Simula-COMPLEX/muskit
https://qiskitmutantcreatorsrl.pythonanywhere.com/
https://youtu.be/EbPHJOK_AEA

Simula Research Laboratory, Technical Report #978-82-92593-31-8, June 17, 2021

TABLE I: Definitions of Some Basic Gates

Name Description

Hadamard (h)

It puts a qubit into an equal superposition of states. For
example, if in a one-qubit program, an HAD is applied,
the program state will be an equal superposition of |0〉
and |1〉, i.e., it is 50% in |0〉 and 50% in |1〉.

NOT (x) It flips a qubit (i.e., |0〉 to |1〉, and |1〉 to |0〉).

Rotation (Rz) It is a phase gate that performs rotation across the z-axis
with a provided angle (e.g., between 0.0 and 360.0).

Controlled-X
(cx)

It is a two-qubit gate. It flips the target qubit, under the
condition that the control qubit is |1〉.

(a) Circuit Diagram

1 # Set up the program
2 qbit1 = QuantumRegister(1, name=’qbit1’)
3 qbit2 = QuantumRegister(1, name=’qbit2’)
4 qbit1c = ClassicalRegister(1, name=’qbit1c’)
5 qbit2c = ClassicalRegister(1, name=’qbit2c’)
6
7 qc.h(qbit1) # put qbit1 into superposition
8 qc.cx(qbit1, qbit2) # entangle qbit1 and qbit2
9 qc.measure(qbit1, qbit1c)

10 qc.measure(qbit2, qbit2c)

(b) Python code

Fig. 1: Entanglement in Qiskit

computer, instead, the state is defined by the values of the
qubits and by an amplitude (α)—a complex number, which
is described by its magnitude and phase. The square of the
absolute value of amplitude of a state s (i.e., |αs|2) indicates
the probability of the program being in state s (if the values of
the qubits are read). This probability is the magnitude. So, a
program can be in superposition of different states s1, . . . , sn
with different probabilities; this is represented in the bra-
ket/Dirac notation [7] as

∑n
i=1 αi |si〉, with

∑n
i=1 |αi|2 = 1.

A QP performs computations on qubits with quantum
gates. A quantum gate takes qubits as input and performs
computations resulting into changes of the state of the QP.
Table I describes a list of gates commonly used in QPs. Note
that this list is not complete.

Example 1. Fig. 1a shows the circuit diagram of the en-
tanglement program, and Fig. 1b its equivalent Python code
in IBM’s Qiskit framework. The program performs quantum
entanglement: given two input qubits, the program entangles
them, i.e., when their values are read, they are the same
(either both 0 or both 1). At Lines 2-3, the program initializes
qubits qbit1 and qbit2 (by default, they are initialized to 0),
while at Lines 4-5 it initializes two classical registers qbit1c
and qbit2c. At Line 7, the program applies the Hadamard
operation to qbit1 (gate h in the circuit diagram in Fig. 1a):
the effect of such operation is that the program enters in a
superposition state in which qbit1 can be both 0 and 1. At
Line 8, the two qubits are entangled using the conditional not
(cx gate in Fig. 1a). After this instruction, the program is in
the superposition of 00 and 11 with equal probability; this
means that reading the two qubits can lead to observe 00 or
11, both with 50% of probability. The measure operations at
Lines 9-10 destroy the superposition, and register one of these
two states in registers qbit1c and qbit2c.

Fig. 2: Muskit Architecture

B. Mutation Analysis

A common way to assess the quality of test cases developed
with testing techniques is through mutation analysis. With
mutation analysis, we define a set of mutation operators that
change a QP to produce a faulty version of it called a mutant.
When we execute a test case on a mutant, and QP fails
according to predefined criteria (e.g., a wrong output observed
for a given input) based on program specification of the QP
(including expected output), it means that the mutant is killed.
The mutation score is commonly used to assess the quality of
a test suite, where we calculate the number of mutants killed
by the test suite out of the total number of mutants; if the
number of equivalent mutants is known, it is deducted from
the total number of mutants during the calculation.
Muskit focuses on mutating features of quantum circuits,

in particular, the gates of a QP. To this end, we define two
concepts: gate number and location. Gate number refer to
a particular gate (e.g., h is G1) on a quantum circuit that
we want to mutate via the delete or replace operators). As
shown in Fig. 1a, G1 and G2 refer to an h gate and a cx
gate, respectively. A location refers to a particular place in the
quantum circuit, where we like to mutate by adding a new
gate. L1-L4 in Fig. 1a indicate a set of locations where we
can introduce gates. These two concepts will be used together
to define mutation operators in Sect. III.

III. TOOL DESCRIPTION AND METHODOLOGY

Muskit has two main components, Mutants Generator and
Mutants Executor, in addition to Test Analyzer, which can be
implemented by the user depending on the required types of
analyses. Fig. 2 shows an overview, and individual components
are described below. The current implementation of Muskit
is available as a command line application, a graphical user
interface, and as a web application. All features are available
in all implementation types, unless stated otherwise.

A. Mutants Generator

This component generates mutants for a given QP. In the
following, for the ease of presentation, we define mutation
operators at the circuit level; however, in the Muskit imple-
mentation, the Python code of QPs is mutated.

2

Simula Research Laboratory, Technical Report #978-82-92593-31-8, June 17, 2021

1) Mutation Operators: A mutation operator is defined
based on three Operator Types described below:

• Add Gate (AG): adding a quantum gate at a particular
location (e.g., L1-L4 in Fig. 1a).

• Remove Gate (RemG): deleting an existing quantum gate,
e.g., deleting cx, i.e., G2 in Fig. 1a.

• Replace Gate (RepG): replacing an existing gate with an
alternative one which is compatible, e.g., replacing single-
qubit gate h at G1 (Fig. 1a) with single-qubit gate x.

In the current implementation, we support 19 gates. Thus,
in total, we have 57 (3*19) mutation operators.

2) Mutation Selection Criteria: A large number of mutants
can be generated for a QP. Thus, we provide selection criteria
to reduce the number of mutants to be generated as:

• All. All possible mutants are generated.
• Operator Selection. A user selects one or more of the

operator types, i.e., AG, RemG, or RepG.
• Gate Selection. A user controls mutant generation by

selecting gates based on their number of input qubits.
We define three categories, i.e., one qubit, two qubits,
and more than two qubits.

• Gate Number Selection. A user selects particular gates by
specifying the gate numbers (see Sect. II). This selection
criterion is applicable only for the RemG and RepG
operator types. In the command line, one specifies gate
numbers in a configuration file, while in the GUI, one
selects them from an automatically generated list.

• Location Number. A user specifies one or more location
numbers (see Sect. II), on which to apply the AG op-
erators. In command line, the user specifies the location
numbers in the configuration file, whereas in the GUI,
one selects them from an automatically generated list.

• Phase Selection. A user specifies the possible phase val-
ues that can be used to generate mutants for phase gates.
Possible values can be specified between 0.0 and 360.0.
This criterion is not supported in the web application.

• Maximum Number. One can limit the maximum number
of mutants to be generated. Based on this, Muskit
generates mutants by equally distributing them among
the selection of operator types AG, RemG, and RepG. For
example, if a user selected operators AG and RemG, and
asked to generate 100 mutants, Muskit will generate 50
mutants of the AG type and 50 of the RemG type.

B. Mutants Executor

This component takes as input mutants and test cases, it
executes the test cases on the mutants, and produces execution
results. Given the probabilistic nature of QPs, each mutant is
executed with a test case for a specified number of times. This
component reads a configuration file (ExecutorConfiguration),
where a user specifies the required number of repeated execu-
tions (i.e., also called shots in Qiskit).

Moreover, a user provides Test Cases (see Fig. 2). If a user
sets allInputs = True in Executor Configuration (see Fig. 2),
test cases corresponding to All Input Coverage [1] are used.
Otherwise, the user can specify inputs they would like to use

in Test Cases file as shown in Fig. 2. This file can contain
test cases created by the user with any testing strategy. After
test execution, results are produced in another file (Results in
Fig. 2) that can be used by customized analyzers implemented
in any implementation language of a user’s choice. For each
input, we produce the percentage of times that each output was
observed. For example, if an input a was repeated 100 times,
and we observed two outputs o1 and o2, then the results file
contains a percentage associated with each output (e.g., 40%
of o1 and 60% of o2). Mutant Executor is not supported in
the web application version.

C. Test Analyzer

Test Analyzer is implemented by the user with their own
test assessment criteria. To demonstrate the use of mutants, we
implemented a simple test analyzer in Python. This component
takes as input a configuration file (AnalyzerConfiguration),
where a user specifies three things: 1) chosen level of p-
value, e.g., 0.05; 2) qubit ids that are used as inputs; 3) qubit
ids that will be measured. Given a program specification
(e.g., specifying the expected outputs and their probabilities
corresponding to each input) and a test results file from Mutant
Executor, the component Test Analyzer can tell whether a
mutant was killed by a test case or not. We employed two
test assessment criteria from [1]. Simply speaking, we use the
following two oracles:
1) Wrong Output Oracle (WOO): it checks whether a “correct”

output is observed according to the program specification,
i.e., whether the output can be produced with the given
input. If not, the mutant is killed;

2) Output Probability Oracle (OPO): if all the observed outputs
corresponding to an input are valid, then we compare
their observed probabilities with the ones specified in the
Program Specification file. If the differences are statis-
tically significant (i.e., a p-value lower than the chosen
significance level), the mutant is killed.

Based on the test assessments, detailed results are produced.

D. Muskit Extensions

In terms of extensions, one can specify new gates in the
configuration file ExtensionConfiguration, which is read by
Muskit to generate mutants. This functionality is supported
in command line and GUI implementations. One can also
checkout the code from GitHub and provide more advanced
extensions to Muskit, such as integrating new test analyzers.

IV. VALIDATION

To validate Muskit, we experimented four QPs with
Muskit. Characteristics of the QPs are listed in Table II.
IQFT implements inverse quantum Fourier transform, QRAM
implements a simple quantum random access memory, BV
implements Bernstein–Vazirani cryptography algorithm, and
CE implements quantum conditional execution. For each QP,
we show the number of qubits and number of gates it has. In
addition, we show the numbers of single-qubit, multi-qubits
and phase gates in columns #s, #m, and #p of Table II. To

3

Simula Research Laboratory, Technical Report #978-82-92593-31-8, June 17, 2021

TABLE II: Characteristics of QPs and Test Cases*

#q #g #s #m #p #tc

IQFT 6 9 6 3 0 64
QRAM 7 9 3 6 1 128
BV 6 9 6 3 0 64
CE 6 12 6 6 1 64

*#q: Num. of qubits; #g: Num. of supported gates; s#: Num. of single qubit gates; m#:
Num. of multi-qubit gates; #p: Num. of phase gates; #tc: Num. of test cases

TABLE III: Results*

Number of mutants Mutation Score(%)
#AG #RemG #RepG #Total WOO OPO

IQFT 285 9 78 372 0 100
QRAM 304 9 58 371 87.27 6.66
BV 255 9 79 343 77.35 0
CE 342 12 104 458 99.26 0.74

demonstrate Muskit, we generated test cases with the all
inputs coverage [1], i.e., each possible input is a test case. For
instance, for the 6 qubits program IQFT, there are 64 possible
inputs (column #tc of Table II). Given the probabilistic nature
of QPs, we executed each input 100 times.

Table III shows the results. It reports the total number of
mutants generated, and the number for each mutation operator
type, i.e., AG, RemG, and RepG. Moreover, it reports mutation
score with respect to the two test oracles WOO and OPO. For
example, for IQFT, a total of 372 mutants were generated
and with 64 test cases, we reached 100% mutation score
with respect to OPO. For BV, a total of 343 mutants were
generated, and with 64 test cases, a mutation score of 77.35%
was obtained with WOO. The rest of 22.65% of mutants weren’t
killed by any test case. Regarding the mutants not killed for
QRAM and BV, it could be that either they are equivalent or
the test suite does not contain enough tests to kill them. Indeed,
regarding the latter case, in [1] we have shown that stronger
criteria, such as Input-Output coverage, may be needed in
some cases.

The generation of all the mutants for each program took
less than 1 second. Execution of test cases on each mutant
will vary from program to program and the computer used to
execute them. However, in our experiments, executing one test
case on one mutant took on average 3 seconds.

V. DISCUSSION

Currently, we support mutation analysis only for IBM’s
Qiskit programs. However, we can see that transforming
to other quantum programming languages is possible. For
instance, there exist quantum programming frameworks (e.g.,
Quantum Programming Studio1) that can transform quantum
circuits into diverse programming languages such as Rigetti
Forest, IBM Qiskit, and Google Cirq.

Currently, Muskit is not able to detect equivalent mutants.
This is mainly due to the reason that there is no current body

1https://quantum-circuit.com/

of knowledge about equivalent mutants for QPs except for a
few examples reported in [1]. As more knowledge becomes
available about equivalent mutants and techniques to detect
them, we will implement them in Muskit.

We here proposed different mutation operators, but we do
not know how they relate each other in terms of killability
of their mutants. As future work, we plan to theoretically
study the mutation operators to check whether subsumption
relations exist between some of them (i.e., killing a mutant
of an operator always guarantee to kill a mutant of another
operator). Moreover, we also plan to conduct an extensive
empirical study to assess the difficulty to kill the different types
of mutants, and to check whether some practical subsumption
relations exist (i.e., although there is no theoretical subsump-
tion relation, killing the mutant of one operator guarantees
most of the times to kill a mutant of another operator).

In this paper, we implemented the test analyzer for an
existing testing technique [1] to demonstrate the applicability
of Muskit. However, users can implement test analyzers for
their own purpose by reading the results file from Muskit’s
Mutant Executor. Moreover, we only implemented two types
of test assessment criteria from [1]. However, these can also
be extended by users for their specific techniques.

VI. CONCLUSION

We presented Muskit – a mutation analysis tool for
quantum programs (QPs) developed in IBM’s Qiskit to help
assessing quality of test cases developed for QPs. Muskit
generates mutants based on gates in QPs and then has the
functionality to execute mutants based on the provided test
cases. Users can additionally implement their own test ana-
lyzers for their specific testing techniques using the results
provided by Muskit. We demonstrated the applicability of
Muskit by generating mutants for four QPs.

REFERENCES

[1] S. Ali, P. Arcaini, X. Wang, and T. Yue, “Assessing the effectiveness of
input and output coverage criteria for testing quantum programs,” in 2021
IEEE 14th International Conference on Software Testing, Validation and
Verification (ICST), 2021, pp. 13–23.

[2] S. Honarvar, M. R. Mousavi, and R. Nagarajan, “Property-based testing
of quantum programs in Q#,” in Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, ser. IC-
SEW’20. New York, NY, USA: Association for Computing Machinery,
2020, pp. 430–435.

[3] J. Wang, F. Ma, and Y. Jiang, “Poster: Fuzz testing of quantum program,”
in 2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST), 2021, pp. 466–469.

[4] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie, “Projection-based
runtime assertions for testing and debugging quantum programs,” Proc.
ACM Program. Lang., vol. 4, no. OOPSLA, Nov. 2020.

[5] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,
“Chapter six - mutation testing advances: An analysis and survey,” ser.
Advances in Computers. Elsevier, 2019, vol. 112, pp. 275–378.

[6] R. Wille, R. Van Meter, and Y. Naveh, “IBM’s Qiskit tool chain: Working
with and developing for real quantum computers,” in 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), 2019, pp.
1234–1240.

[7] M. Gimeno-Segovia, N. Harrigan, and E. Johnston, Programming Quan-
tum Computers: Essential Algorithms and Code Samples. O’Reilly
Media, Incorporated, 2019.

4

https://quantum-circuit.com/

