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Quantum Computing (QC)

*BLUE
FORS

* QC promises to revolutionize classical computing.

* Quantum Computers
* Gate-based quantum computers, e.g., IBM’s Osprey, Google’s
Sycamore,
* Annealing-based quantum computers, e.g., D-Wave R——
* Photonic quantum computers: e.g., USIC’s Jiuzhang, Xanadu's X24... ===
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* Platforms
* IBM Quantum Experience
* D-Wave
* Quantum Inspire from QuTech
* Microsoft Quantum computing platform...

* High level programming languages [ ok NIl
¢ OpenQL by TU Delft, Q# by MiCI'OSOft, QlSkIt by IBM, Cqu by QAL 9000 quantum Computer
Google Chalmers/Wallenberg Centre for

Quantum Technologies, Sweden




Why quantum is different?
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Quantum Software Engineering
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Quantum Software Engineering

AN

Quantum Software Engineering

Quantum Algorithms Library

Quantum Languages & Compilers

Quantum Operating System

Instruction Set Architecture

Micro-Architecture

Quantum Computers/Emulators
/Classical Computers

Layered QC Architecture
(Prof. Koen Bertels’s Vision)

Quantum software is at the core of the
promised revolutionary QC applications.

Quantum software engineering enables
cost-effective and scalable development
of dependable quantum software.
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Why Quantum Software Engineering?

* Application domains are hard to

Chemist Al and ML
comprehend. B
- Quantum software engineers need to Drug Design & Development
have basic knowledge about quantum
mechanics, algorithms and their Weather Forecasting
analysis, and more.
* Therefore, we need tools, Financial Modeling

methodologies, standards,
education, etc. to help.
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Quantum program, circuit and its execution

Code Quantum Circuit Execution Result
1 OPENQASM 2.0; Line 4
2 include "gelibl.inc"; al, —ﬂ
> . % 100
4 greg gl[l]; Line 5 N>
5 greg g2[1]; q20 4:3,80
6 creg glc[l]; o 60
7 ereg g2c[l]: Line 6 o
3 1 \ 4 o 40
dicy 3
9 h gl[0]; H 20
10 ex gl1[0],g2[0]~ ) L1 9 . ) 0
11 measure gl[0] -> glc[0]; nge 7 ine Line 10 Line 11 Line 12 00 01 10 11
12 measure g2[0] -> g2c[0]: T« Co Computational basis states before
_ 50% 00 50% 00 Either 00 measurement
State(qglg2): 00 502 01 50% 11 or 11
Description:
Lines 4-5 initialize two quantum registers (gl and g2) in O states. Each register holds one qubit. Lines 6-7 initialize
two classical registers that will store the qubit values after the measurement (Lines 11-12). Line 9 puts gl in

superposition with the Hadamard gate (h), whereas Line 10 entangles gl and g2 with the Conditional NOT gate (cx). As a
result, whenever gl and g2 are measured (e.g., in Lines 11-12), they will have the same values, i.e., either 00 or 11.
Each value, i.e., 00 or 11 has an equal probability to be observed. Note that for simplicity, we show the states for the
quantum circuit in terms of only probabilities and not as state vectors.



Developing dependable (quantum) software entails
following a software development life cycle.

Quantum Software Engineering

Quantum Software
Requirements Engineering
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Shaukat Ali, Tao Yue, and Rui Abreu. 2022. When software engineering meets quantum computing. Commun. ACM 65, 4 (April 2022), 84-88. https://doi.org/10.1145/3512340



Requirements Engineering

STEM

* Quantum application domains are

often complex. PROJECT #» CONTRACT
STAKEHOLDERS

* Need ttO K ilasle d commu?gciﬁor} TOOLS SO FTWARE USER
among stakenolaers, raise tne leve NEE{SéREQUIREMENTS

of abstractlon in }mderstandmg VAL IDATION S SR ERING L] 7=orca
domains and linking them to "= g CONDITION
downstream activities.

ANALYS
SOLV
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Abstraction and Modeling

ql[1]

c2

mapping
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© mapping

from giskit import QuantumRegister,
ClassicalRegister, QuantumCircuit
from numpy import pi

qreg_q =
creg_c =

circuit

circuit.
circuit.
circuit.
circuit.
.measure(qreg_ql[0], creg_c[0])
.measure(qreg_ql[1], creg_c[l]ﬂ

circuit
circuit

QuantumRegister(2, 'q')
ClassicalRegister(2, 'c')
= QuantumCircuit(qreg_qg, creg_c)

reset(qreg_q[0])

h(qreg_ql[0])
reset(qreg_ql1])

cx(qreg_ql[0], qreg_q[1])

1 OPENQASM 2.0;

2 include "qelibl.inc";
3

4  qreg q[2];

5 creg c[2];

6

7 reset q[0];

8 h qlo];

9 reset q[1];
10 cx q[0],ql[1];
11  measure q[0] -> c[0];
12  measure q[1] -> c[1];

From: IBM Quantum Composer
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Abstraction and Modeling

[

from qiskit import QuantumRegister,

o ; . ; ; 1 OPENQASM 2.0;
S e3/act10n3 ClassicalRegister, QuantumCircuit . . .
1 X . 2 include "gelibl.inc";
2 from numpy import pi 3
3
4 qreg_q = QuantumRegister(2, 'q') 4 qreg q[2];
5 creg_c = ClassicalRegister(2, 'c') 5 creg c[2];
Abstraction 6  circuit = QuantumCircuit(qreg_q, creg_c) 6
83 7 7 reset q[0];
8 circuit.reset(qreg_q[0]) ) h q[0];
. 9 circuit.h(qreg_ql[0]) 9 t 11:
el/actlonl 10 circuit.reset(qreg_q[1]) 10 ziS: [0? [q][i] .
o 11 circuit.cx(qreg_q[0], qreg_ql[1l]) ! '
v e2/act10n2 12 circuit.measureEqreg_q[O] , creg_c [G)]z 11 measure q[0] -> c[0];
Sz 13 circuit.measure(qreg_q[1], creg_c[1] )| 12 measure q[1] -> c[1];
o B B
Automatic code/circuit generation
o B o

/ 0 1
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Quantum Software Testing

* Software quality assurance
* Process of ensuring that a software product meets and complies with
established and standardized quality specifications.
* Testing

» “Software testing is a way to assess the quality of the software and to
reduce the risk of software failure in operation.” — from ISTQB
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* Research actions being taken or to be taken:
* Define and check quantum test oracles without destroying
superposition
* Cost-etfectively find test data to break a quantum program
* Devise noise-aware testing techniques

* Build theoretical foundations on coverage criteria, test models,
and test strategies, etc.

* Need practical applications, extensive empirical evaluations
* Need benchmarks...



Quantum Software Testing
State of the Art
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Quantum Software Testing at ICSE

2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER)

On Testing Quantum Programs

Andriy Miranskyy and Lei Zhang
Department of Computer Science, Ryerson University, Toronto, Canada
{avm, leizhang} @ryerson.ca

2020 IEEE/ACM 42nd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)

Is Your Quantum Program Bug-Free?

Andriy Miranskyy Lei Zhang Javad Doliskani
Ryerson University Ryerson University Ryerson University
Department of Computer Science Department of Computer Science Department of Computer Science
Toronto, Canada Toronto, Canada Toronto, Canada

avm(@ryerson.ca leizhang@ryerson.ca javad.doliskani@ryerson.ca
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* Output Check: Similar to classical, e.g., observed and expected
outputs are compared [2-4]

* Statistical Assertion: Observed and expected distributions are
compared [2-4, 8,11]

* Dynamic Assertions: With ancilla qubits collect information
during program execution about qubits for asserting [12]

* Projection-based: Projective measurements to reduce the number
of read operations [10]



Coverage criteria

* Quito: Coverage of inputs and outputs of quantum programs [3-4]
vInput coverage
v'Output coverage
v Input-output coverage

* QSharpTester: Equivalent class partition of quantum variables [5]
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* Metamorphic testing
v'"Metamorphic testing of oracle quantum programs [19]

v'"MorphQ: Testing quantum computing platforms (ICSE 2023, presentation later
today) [6]

* Property-based testing: QSharpCheck framework for Q# [8]
* Fuzz testing: QuanFuzz framework for quantum programs [9]



Techniques (2/3)

* Search-based testing

v'QuSBT: Maximizing the number of failing test cases in a test suite with a genetic
algorithm [13-14]

vMutTG: Finding a minimum number of test cases to kill the maximum number
of mutants with NSGA-II [15]

* Combinatorial testing for quantum programs [21]
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Techniques (3/3)

* Quantum mutation analysis
v'Muskit: Mutation generation framework for Qiskit [2]
v QMutPy: Generates realistic mutants by following real bug patterns [1]

* Quantum platform testing
v QDiff: Differential testing of quantum software stacks [7]
v MorphQ: Metamorphic testing of quantum computing platforms [6]
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Bug repositories and benchmarks

* Bug respository for quantum computing platforms [16]

* Bug repositories for quantum programs (Bugs4Q and Qbugs)

17]

* A multi-lingual benchmark for property-based testing of
quantum programs [20]
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Quantum Software Testing Techniques
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 Work 1 Quito (QUantum InpuT Output coverage)

* Three coverage criteria based on inputs and outputs

* Two test oracles. (1) Wrong output (WOO); (2) Significant
difference in distributions (OPO)

* A procedure determining passing or failing of test suites

\\
| No Yes : J
|
Pass Oracle Pass Oracle [
WOO? ’ OPO? _

comparing with quantum
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Assessing the Effectiveness of Input and Output s I I I l u I a

Coverage Criteria for Testing Quantum Programs
[ICST 2021] [3]



Inputs and Outputs of a Quantum Program (QP)

* Inputs

* Values of qubits after QP initialization

* Outputs
* Values of qubits obtained after measurement

Entangle Qubits

Qubit1 (0x1 >—H o -
Qubit2 (0x1 > .
_/

Entangle Qubits
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Entangle Qubits

1 gc.reset (2); f——\

> var a = gint.new(l, 'a'); Qubit1 (0x1 O%Hﬁo'—
3 var b = gint.new(l, 'b'); QUbit2 0x1 0> XU CS'—
4 qc.reset (2); Entan\ggéubits

5 gc.write (0); // Initialize with O

6 gc.nop () ;

7 gc.label ('entangle') ;

g . ; // Hadamard Gate. Place into superposition

9 // Control-NOT Gate. Entangle

10 gc.label () ;

11 gc.nop () ;

15 var a_result = a.read(); // The two bits will be random, 0)

13 var b result b.read(); // but always the same.

14 gc.print (a_result); Q Q Q
15 gc.print (b _result); ‘0

[5] M. Gimeno-Segovia, N. Harrigan, and E. Johnston, Programming Quantum Computers: Essential Algorithms and Code Samples.O’ Reilly Media, §Jmu Ia

[Online].



Program Specification (PS) of a QP

Entangle Qubits

* Valid Inputs _ |
* Input values that are valid according to PS 83:::; 8:: :> . WX ::
* Valid Outputs Values Entangle Qubits
* Output values that can be produced with at least one valid
input

* Probabilities

* Given a valid input, expected probabilities of occurrence of all
the valid output values

Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2

00 00 50% 11 50%

(o) (o) o
01 00 50% 11 50% -|mUIa




Quito: A Framework for Quantum Program
Testing

* Input Coverage
* Output Coverage
* Input-Output Coverage

3 Coverage
Criteria

* Wrong Output Oracle
2 Test Oracles * Output Probability Oracle

* Mutation Operators

Assessment * Mutation Analysis
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Input Coverage (IC)

* In one test suite, there exists a test for each

valid input

* A statically generated test suite can achieve IC

Program Specification for Entanglement

Probability 1

Qubit1 (0x1 >
Qubit2 (0x1 >

Entangle Qubits

& |

Entangle Qubits

One Possible Test Suite

Valid Output 2

Input

00
01

Output
0

0

Probability 2

Valid Input  Valid Output 1
00 0
01 0

50%
50%

11
11

50%
50%




Entangle Qubits

Output Coverage (OC) qubir gm >

Qubit2 (0x1 >

\Q/ \Q/

* In one test suite, there exists a test for Entangle Qubits
sech walldl Gt put. One Possible Test Suite
o . Input Output
* The criterion cannot be achieved P P
. 00 00
statically.
01 00
Program Specification for Entanglement 00 11
Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2
00 00 50% 11 50%

01 00 50% 11 50% M
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Input-Output Coverage (10C)

 In one test suite, there exists a test for
each input-output pair.
 The criterion cannot be achieved

statically.

Program Specification for Entanglement

Qubit1

0
Qubit2 g)x1 o>

Probability 2

Valid Input Valid Output 1 Probability 1 Valid Output 2

00 | 00 50% | 11
01 | 00 50% | 11

50%
50%

Entangle Qubits

X1 oo>——

]

H

D¢

\Q/ \Q/

:

Entangle Qubits

One Possible Test Suite

Input
00
00
00
01
01

Output
00

00
11
00
11



Test Oracle — Wrong Output Oracle
(WOO)

Qubit1

WOO checks if the test outcome returned for a test

input is invalid, which reveals a definitely fail: wrong

outputs.

Ox1 &>>—H j\—D
Qubit2 g)x1 > 0

Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2 Input
00 | 00 50% | 1 50% 00
o | oo 50 | 11 50%

Entangle Qubits

<

Entangle Qubits

Output
01
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Test Oracle — Output Probability Oracle
(OPO)

* OPO checks if a QP returns an expected output with the expected
probability.

* Likely Fail: With a given confidence, multiple executions of a test show that the

outputs do not occur with the expected probabilities.

* Inconclusive: Multiple executions of the test do not allow to reject the null

hypothesis of a statistical test.
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* A less expensive coverage criterion (e.g., IC) may achieve higher
mutation scores.

* An expensive coverage criterion (i.e., IOC) may increase mutation
scores.

* If the fault in a program results in a wrong output (WOO), it can
possibly be caught with a lower number of test cases.

* If certain faults cannot be found with WOQO, the cost of finding
faults with OPO could be quite higher. However, it may be
reduced with a proper budget upper limit.



* Quito suffer from scalability issue with an increased
number of qubits.
* 2023: Deployed Quito on an HPC platform

* Quito does not deal with phases of qubits.
* Work in progress

* Quito’s mutation analysis can be further improved.
* 2023: Several tools are available such as Muskit, QMutPy, etc



 Work 1 Quito (QUantum InpuT Output coverage)

VI I B B D D D S S S S .y,

4. defines budgets 1
[— = == — = = = m — e — — - - - - -
— > 3. selects a statistical test for assessing OPO I— I
[ User = | — — — — — — — — — — — 4 - - - - - - - - - - - - ___ |
| r : E 2. selects one or more test coverage criteria l | |
b i T B B B A B B B
| - . REDVIEESey N I =y \E] |
| | - ‘ Test Suite Generation and Assessment \ | |
| l Input Information [ 0, il
| I | I i Test Coverage Criterion ] Test Oracle ] i | |
| l I = . 0 I Input Coverage (IC) I | |
| | o;lno P'spa = I Input-Output Wrong Output Output Probability |
| ' | I l I Output Coverage Coverage (I0C) Oracle (WOO) Oracle (OPO) l | |
. (oc) Il
1 |n|llt
| ! Pro '{ I !
gram Spec. (| | |
| | (PS) I | Budget = Statistical Test = I |
| | | I K: # TS to generate; One-sample |
' | QP under Test D I M: a constant with K mod M = 0 Wilcoxon Signed Significance Level JI |
I I (SUT) : ! Rank Test il
| - Budget_IOC Budget_OC
| lNI 43?;;'2? g:si'tt: D) (Time or Max. TC) | | (Time or Max. TC) J| !
l ——————————— l— —_—
| <~ '3
| ! | l generates inputs I produces
| | fetums generated test suites || Test suites [3| Inputs Quito =) 1 | | |TestAssessment 0 i
|\ - - - - - - - - = Test Execution | Results
| L returns test execution results r Test Execution [ J |
T T T T T T T T T T | T Results 'i - = |
____retumns test assessmentresults O — e e — — — — — — _— o

Quito: a Coverage-Guided Test Generator for Quantum Programs S I I I l u

[ASE Demo 2021] [4]



|
Work2  QuSBT (Quantum Search-Based Testing)

Goal: Generating a test suite with the maximum possible

number of failing test cases
* Genetic Algorithm (GA)
* Two failure types (WOO and OPO)

/"“““'l """"""""""""" ‘x‘
{ Yes No :
I
I Failing type 5 Failing type :
I
: comparing with quantum :
l S B R | No ]
N e program specification ___ _7

Baseline: Random Search

Generating Failing Test Suites for
Quantum Programs with Search
[SSBSE 2021] [13]




QuSBT: Quantum Search-based Testing

* Test case generation with a Genetic Algorithm (GA)

* 2 types of failures
v'Unexpected Output Failure

v'Wrong Output Distribution Failure
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Test Case Generation

 Generating M search variables x4, ..., x);, each representing one input
1 M

* Let D, be the domain of possible valid inputs,
M = [BX|D,]l

* Let ta = [faily, ..., faily; ] be the assessments of M tests,
* Fitness function:

max: f = ‘{failj S ta|faill- = true}‘

simula



* Frameworks: Qiskit 0.23.2, jMetalPy 1.5.5

* Baseline: Random Search (RS)

* Six benchmark programs (e.g., quantum cryptography)
* Faulty versions: 30

* Parameters:  as 5%; 30 repetitions

* GA: Population size 10; termination criterion is max
generation 50



* Research Questions:
* RQ1: Does QuSBT perform better than RS?
* RQ2: How does QuSBT perform on the benchmark programs?

 Evaluation Metric: Number of failed tests (NFT)

* The best final solution
* The best solution of each generation

» Statistical tests
* The Mann-Whitney U test as the statistical test
* The Vargha and Delaney’s A12 statistics



RQ1: Does QuSBT perform better than RS?

Comparison between GA and RS

AS

-

BV

CE

10

OR

Wl Ll Al O »nj B~

o O =l o o) -

SM

~—

difference between

~

No significant

GA and RS GA outperforms RS for 87% of the faulty
/ quantum programs.

For BV, CE and QR, GA consistently
performs better than RS.

.

GAis
significantly
better than RS

|
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RQ2: How does QuSBT perform on the
benchmark programs?

NFT of GA across 30 runs
9 I:"r== = (|7 ] In four groups of the most complex
5 o) %%% % e = = e o %% %% - benchmarks, the variability is usually
é 20l % HERY E ) _ high, but it can still find the maximum
S | e » S 0l = , number of failing inputs in some cases.

ASy AS; AS3z AS; ASsg BVy BV, BV3 BV, BVs CE; CE; CE3 CE; CEs
— == T — : TL— For the small program SM, the search
£, %é e %é% g can always find the maximum failing
=B %é % Iz é % | E st N - inputs of the test suite for two mutants.
: £ 15| 1IE 4 1
= 0| 1% 0l I E 5L ]

IQ; IQ, IQs IQ, IQs QR; QR; QR3 QR; QRs SM; SMy SMz SMy SMs

(d) IQ (e) QR () sM
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RQ2: How does QuSBT perform on the

benchmark programs?

Evolution of the fitness values over generations

I I I I I T 50 — T T
[—as.—as;— 48— as.— s | .
2 10 I 0} / A
7 e — — s 7 " —
& -~ — — ] P
- - 3 7
= 30 / = 30 s
& — k& — BV -
z > BV,
—BV2
201 20 — BV, |
—BVs
1 L 1 L L 1 1 L 1 L 1
0 10 20 30 10 50 0 10 20 30 40 0 0 10 20 30 10 50
Generatio Gen Generation
(a) AS (b) BV (c) CE
e
50 — T T T T T e [ T T T T i— T _‘v I I L — T
—IQ: 12— 1IQs IQ: —IQs e I—QRl QRz —— QR QR: —QRs /—’—7/
g 10 P z 0 ~ - % f . o
2 —— 51 2 If T
@ e 2 / g | |~
2l e
= 30} = — & /
& E & { — M
2 < | ——8SM2
10+ | —SMs
20 —
——SMg
! 1 ! 1 1 51 1 ! 1 ! 1 B =il ! 1 ! ! I
0 10 20 30 10 50 0 10 20 30 40 50 0 10 20 30 40 50
Generation Generation Generation
(d) IQ (e) Qr (f) SM

(Values are averages across 30 runs of the fitness of the best individual in the

population)

The first generations already find some
failing tests, the values keep increasing
across generations.

3 benchmarks of BV and 2 benchmarks of SM
almost find all failing tests.

The numbers failing tests vary across
benchmark programs, depending on the
types and locations of faults.
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* QuSBT is a search-based approach for testing quantum
programs with Genetic Algorithm, aiming at finding as
many failing tests as possible.

* QuSBT was assessed with 30 faulty quantum programs.
QuSBT outperformed Random Search in 87% of the

programs.



~ Work 2 QuSBT (Quantum Search-Based Testing)

L 8 8 8 B B _§ _§ J

----------~

’ N

QuSBT: Search-Based Testing of Quantum Programs
[ICSE Demo 2021] [14]

Test Generation with Search

-
‘ [ 1 \ l‘;l \|
i Input | 4, rrouiden Configuration I
1 Program Spec. (PS) [ d — _I_ - = # of Test Cases to generate (M), or [} |J
1 % of # of QP Inputs (Beta)
! ap (naiskity 3] | R=or %ll :
1 under Test (SUT) | A | Significance Level 0 |
I l 4. outputs l |
A |

IDs of /O Qubits [ - -

l\ Total # of Qubits ' Final Resuits D r‘ Sasedings D I
Tmputs I 3. outputs 2. inputs
\ 2 \
Test Assessment =]

=

Genetic Algorithm with Default or
Given Parameter Settings

Wrong Output Distribution Failure
(wodf)

Individual
Encoding

Fitness Function

Unexpected Output Failure
(uof)

Search Operators with Given or
Default Settings

Pearson's chi-square Test with Given
or Default Significance Level

.

generates

produces

inputs

Test Execution [ ]|deployed
on
Calculation of —_—— >

numRepetitions (input i)

Qiskit
QasmSimulator

utputs| Test Execution [ )
. Results
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|
Work 3 | QuCAT (QUantum CombinAtorial Testing)

* Combinatorial testing

Each combination of k

variables can be covered at e Two failure types
least once in one test suite

* Two usage scenarios
Scenario 2

| Yes No
Failing type 5 Failing type
Woo °? OPO °?
Each quantum program has | No ‘
3 faulty versions :
imul
Application of Combinatorial Testing to Quantum Programs Baseline: Random TEStin g s I u a

[QRS 2021] [21]



 Work 4 - MutTG (multi-objective search-based approach)

Test Case Muts Obj 1: minimize test suite size
% Obj 2: minimize nun}ber of not killed mutants
t2 discount factor = estimating the probability of
t3 killed being an equivalent mutant
e L No |
t, Failing Failing
N =
woo ? OPO *

equivalent mutant Assessment:

« Baseline: (1) random search, (2) approach without
discount factor
* Benchmarks: Mutants with different difficulty

Mutation-based test generation for quantum programs with levels S I I I l u I a

multi-objective search. [GECCO “22][15]



| Noise-Aware Quantum Software Testing
Work 5 | (Ongoing)

 Problem: Hardware Noise

v'Environmental characteristics, e.g., magnetic fields,
radiations, interactions of qubits with environments

v'Unwanted interactions of qubits exist among
themselves (crosstalk noise)

v Imprecise quantum gate calibrations

Probability
State | 000 001 010 011 100 101 110 111
Ideal | 0.495 - - 0.505

= - - - L J
Noisy | 0.476 0.013 0.007 0.016 0.008 0.019 0.020 0.443 SII I lUIa




C Muskit: A Mutation Analysis Tool for Quantum
Work6 ~ Software Testing

* Problem: Lack of bug repositories and benchmarks to assess
quality of test cases generated for testing quantum programs

* Solution: Mutation analysis tool for quantum programs in
IBM'’s Qiskit
* Features

v'Mutation Operator Types: Add, Remove, Replace gates

v'"Mutation Selection Criteria: All, Gate selection (one qubit, two-qubit,
etc), ...
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Muskit: A Mutation Analysis Tool for Quantum

Work 6 | Software Testing

----------------------------------------------------------------

] GMUtﬂ Quantum Program (Qiskit) ‘:

enerator input ¢ Extension

E Mutant Mutant Generator input SO E

: Jants (Python) Generator :

\ output Configuration y

: input| Mutant Executor ] output :

' | »  Results .

: (Python) J :

5 —x 5

! Executor Input Mutants

3 Configuration Test Cases Executor |

- ¢ ‘ Test Analyzer input

: Statistics (Python and R) ]< :

: output :

lest input T - A?.alyzet.r .
: onfiguration :

Analyzer Program Specification J y SI m u I a
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