
Quantum Software Testing
A Brief Introduction

Shaukat Ali1, 2 and Tao Yue1

1Simula Research Laboratory, Oslo, Norway
2Oslo Metropolitan University, Oslo, Norway

ICSE 2023 Technical BriefingMay 17, 2023



Outline
•Quantum Computing: A Brief Introduction

•Quantum Software Engineering: Our Vision

•Quantum Software Testing: the State of the Art

•Quantum Software Testing Techniques



Quantum Computing (QC)
• QC promises to revolutionize classical computing.
• Quantum Computers

• Gate-based quantum computers, e.g., IBM’s Osprey, Google’s 
Sycamore, 

• Annealing-based quantum computers, e.g., D-Wave
• Photonic quantum computers: e.g., USIC’s Jiuzhang, Xanadu’s X24…

• Platforms
• IBM Quantum Experience
• D-Wave
• Quantum Inspire from QuTech
• Microsoft Quantum computing platform…

• High level programming languages 
• OpenQL by TU Delft, Q# by Microsoft, Qiskit by IBM, Cirq by 

Google

QC is becoming a reality!

QAL 9000 quantum computer 
Chalmers/Wallenberg Centre for 
Quantum Technologies, Sweden



Why quantum is different?

Quantum Circuit

⟩|0

⟩|0

⟩|0

⟩|0

𝐺!

𝐺!

𝐺!"#

𝐺"

… 𝐺#

𝐺"

𝐺"

…

Quantum Gates Measurements

1 (true/on)

0 (false/off)

Bit

or

Z

X
Y

⟩|𝜓 = α ⟩|0 + ⟩𝛽|1

⟩|0

⟩|1

Qubit

Bloch Sphere (1 qubit)



Quantum Software Engineering



Quantum software is at the core of the
promised revolutionary QC applications.

Quantum software engineering enables
cost-effective and scalable development
of dependable quantum software.

Layered QC Architecture
(Prof. Koen Bertels’s Vision)

Quantum Software Engineering

Shaukat Ali, Tao Yue, and Rui Abreu. 2022. When software engineering meets quantum computing. Commun. ACM 65, 4 (April 2022), 84–88. https://doi.org/10.1145/3512340



Why Quantum Software Engineering?

• Application domains are hard to 
comprehend.
• Quantum software engineers need to 

have basic knowledge about quantum 
mechanics, algorithms and their 
analysis, and more.
• Therefore, we need tools,

methodologies, standards, 
education, etc. to help. 

Chemistry AI and ML

Drug Design & Development

Financial Modeling

Weather Forecasting



Quantum program, circuit and its execution



Developing dependable (quantum) software entails 
following a software development life cycle.

Shaukat Ali, Tao Yue, and Rui Abreu. 2022. When software engineering meets quantum computing. Commun. ACM 65, 4 (April 2022), 84–88. https://doi.org/10.1145/3512340



Requirements Engineering

• Quantum application domains are
often complex.
• Need to ease communication

among stakeholders, raise the level
of abstraction in understanding
domains and linking them to
downstream activities.

Requirements engineering for quantum 
software is an uncharted area of research!



Abstraction and Modeling

mapping

mapping

There is no abstraction!

From: IBM Quantum Composer



Abstraction and Modeling
S1

S3

S2

e1/action1
e2/action2

e3/action3

Automatic code/circuit generation

Novel and intuitive QSE methodologies, with: 
• Quantum modeling notations
• V&V with quantum software models
• Code/circuit generation

Abstraction



Quantum Software Testing
• Software quality assurance
• Process of ensuring that a software product meets and complies with

established and standardized quality specifications.
• Testing
• “Software testing is a way to assess the quality of the software and to 

reduce the risk of software failure in operation.” – from ISTQB

Quantum software testing is challenging, because:
• Computation in superpositions
• Use of advanced features (e.g., entanglement)
• Destructive measurements
• Lack of precise test oracles… 



Quantum Software Testing
• Research actions being taken or to be taken:
• Define and check quantum test oracles without destroying 

superposition
• Cost-effectively find test data to break a quantum program
• Devise noise-aware testing techniques 
• Build theoretical foundations on coverage criteria, test models, 

and test strategies, etc.
• Need practical applications, extensive empirical evaluations
• Need benchmarks…



Quantum Software Testing
State of the Art



Quantum Software Testing at ICSE



Measurements and Assertions
• Output Check: Similar to classical, e.g., observed and expected 

outputs are compared [2-4]
• Statistical Assertion: Observed and expected distributions are 

compared [2-4, 8,11] 
• Dynamic Assertions: With ancilla qubits collect information 

during program execution about qubits for asserting [12]
• Projection-based: Projective measurements to reduce the number 

of read operations [10]



Coverage criteria
• Quito: Coverage of inputs and outputs of quantum programs [3-4]

üInput coverage
üOutput coverage
üInput-output coverage

• QSharpTester: Equivalent class partition of quantum variables [5]



Techniques (1/3)
• Metamorphic testing

üMetamorphic testing of oracle quantum programs [19]
üMorphQ: Testing quantum computing platforms (ICSE 2023, presentation later 

today) [6]
• Property-based testing: QSharpCheck framework for Q# [8]
• Fuzz testing: QuanFuzz framework for quantum programs [9]



Techniques (2/3)
• Search-based testing

üQuSBT: Maximizing the number of failing test cases in a test suite with a genetic 
algorithm [13-14]

üMutTG: Finding a minimum number of test cases to kill the maximum number 
of mutants with NSGA-II [15]

• Combinatorial testing for quantum programs [21]



Techniques (3/3)
• Quantum mutation analysis

üMuskit: Mutation generation framework for Qiskit [2]
üQMutPy: Generates realistic mutants by following real bug patterns [1]

• Quantum platform testing
üQDiff: Differential testing of quantum software stacks [7]
üMorphQ: Metamorphic testing of quantum computing platforms [6]



Bug repositories and benchmarks
• Bug respository for quantum computing platforms [16]
• Bug repositories for quantum programs (Bugs4Q and Qbugs) 

[17]
• A multi-lingual benchmark for property-based testing of 

quantum programs [20]



Quantum Software Testing Techniques



Assessing the Effectiveness of Input and Output
Coverage Criteria for Testing Quantum Programs
[ICST 2021] [3] 

Work 1 Quito (QUantum InpuT Output coverage)

• Three coverage criteria based on inputs and outputs
• Two test oracles. (1) Wrong output (WOO); (2) Significant 

difference in distributions (OPO)
• A procedure determining passing or failing of test suites

Generating test suites 
with input-output  
coverage criteria: 

IC/OC/IOC

FailPass Oracle 
WOO?

Pass Oracle 
OPO?

Inconclusive

Yes

Yes

No

Executing
quantum
programs

Assessment: Mutation Analysis

comparing with quantum
program specification



Inputs and Outputs of a Quantum Program (QP)

• Inputs
• Values of qubits after QP initialization

• Outputs
• Values of qubits obtained after measurement



1 qc.reset(2);

2 var a = qint.new(1, 'a');

3 var b = qint.new(1, 'b');

4 qc.reset(2);

5 qc.write(0);      // Initialize with 0

6 qc.nop();

7 qc.label('entangle');

8 a.had();          // Hadamard Gate. Place into superposition

9 b.cnot(a);        // Control-NOT Gate. Entangle

10 qc.label();

11 qc.nop();

12
var a_result = a.read();  // The two bits will be random,

13 var b_result = b.read();  // but always the same.

14 qc.print(a_result);

15 qc.print(b_result);

[5] M. Gimeno-Segovia, N. Harrigan, and E. Johnston, Programming Quantum Computers: Essential Algorithms and Code Samples.O’Reilly Media, Incorporated, 2019. 
[Online]. 



Program Specification (PS) of a QP
• Valid Inputs
• Input values that are valid according to PS

• Valid Outputs Values
• Output values that can be produced with at least one valid 

input
• Probabilities 
• Given a valid input, expected probabilities of occurrence of all 

the valid output values

27

Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2

00 00 50% 11 50%

01 00 50% 11 50%



Quito: A Framework for Quantum Program 
Testing

• Input Coverage
• Output Coverage
• Input-Output Coverage

3 Coverage 
Criteria

• Wrong Output Oracle
• Output Probability Oracle2 Test Oracles

• Mutation Operators
• Mutation AnalysisAssessment



Input Coverage (IC)

Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2

00 0 50% 11 50%

01 0 50% 11 50%

Input Output

00 0

01 0
Program Specification for Entanglement

One Possible Test Suite

• In one test suite, there exists a test for each 

valid input

• A statically generated test suite can achieve IC



Output Coverage (OC)

Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2

00 00 50% 11 50%

01 00 50% 11 50%

Input Output
00 00
01 00
00 11Program Specification for Entanglement

One Possible Test Suite

• In one test suite, there exists a test for 

each valid output.

• The criterion cannot be achieved 

statically. 



Input-Output Coverage (IOC)

Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2

00 00 50% 11 50%

01 00 50% 11 50%

Input Output

00 00

00 00

00 11

01 00

01 11

Program Specification for Entanglement

One Possible Test Suite

• In one test suite, there exists a test for 

each input-output pair.

• The criterion cannot be achieved 

statically. 



Test Oracle – Wrong Output Oracle 
(WOO)

WOO checks if the test outcome returned for a test 

input is invalid, which reveals a definitely fail: wrong 

outputs.

Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2

00 00 50% 11 50%

01 00 50% 11 50%

Input Output

00 01



Test Oracle – Output Probability Oracle 
(OPO)
• OPO checks if a QP returns an expected output with the expected 

probability. 
• Likely Fail: With a given confidence, multiple executions of a test show that the 

outputs do not occur with the expected probabilities. 

• Inconclusive: Multiple executions of the test do not allow to reject the null 

hypothesis of a statistical test.



Key findings
• A less expensive coverage criterion (e.g., IC) may achieve higher

mutation scores.
• An expensive coverage criterion (i.e., IOC) may increase mutation 

scores.
• If the fault in a program results in a wrong output (WOO), it can

possibly be caught with a lower number of test cases.
• If certain faults cannot be found with WOO, the cost of finding

faults with OPO could be quite higher. However, it may be
reduced with a proper budget upper limit.



Limitations
•Quito suffer from scalability issue with an increased 

number of qubits.
• 2023: Deployed Quito on an HPC platform

•Quito does not deal with phases of qubits.
• Work in progress

•Quito’s mutation analysis can be further improved.
• 2023: Several tools are available such as Muskit, QMutPy, etc



Quito: a Coverage-Guided Test Generator for Quantum Programs
[ASE Demo 2021] [4] 

Work 1 Quito (QUantum InpuT Output coverage)



Generating Failing Test Suites for
Quantum Programs with Search
[SSBSE 2021] [13] 

Work 2 QuSBT (Quantum Search-Based Testing)

• Genetic Algorithm (GA)

• Two failure types (WOO and OPO)
Generating test suites 

with GA

FailFailing type
WOO？

Failing type
OPO？

Pass

No

No

Yes

Executing
quantum
programs

Goal: Generating a test suite with the maximum possible

number of failing test cases

comparing with quantum
program specification

Baseline: Random Search



•Test case generation with a Genetic Algorithm (GA)

• 2 types of failures

üUnexpected Output Failure

üWrong Output Distribution Failure

QuSBT: Quantum Search-based Testing 



Test Case Generation
• Generating 𝑀 search variables 𝑥!, … , 𝑥", each representing one input
• Let 𝐷𝐼 be the domain of possible valid inputs,

• Let 𝑡𝑎 = [fail!, … , fail"] be the assessments of 𝑀 tests,

• Fitness function:

max: 𝑓 = fail# ∈ 𝑡𝑎 fail$ = 𝑡𝑟𝑢𝑒

𝑀 = 𝛽×|𝐷#|



Experiment Design

• Frameworks: Qiskit 0.23.2, jMetalPy 1.5.5

• Baseline: Random Search (RS)
• Six benchmark programs (e.g., quantum cryptography)

• Faulty versions: 30

• Parameters: 𝛽 as 5%; 30 repetitions

• GA: Population size 10; termination criterion is max 
generation 50



Experiment Design
• Research Questions: 
• RQ1: Does QuSBT perform better than RS?
• RQ2: How does QuSBT perform on the benchmark programs?

• Evaluation Metric: Number of failed tests (NFT)
• The best final solution
• The best solution of each generation

• Statistical tests
• The Mann-Whitney U test as the statistical test
• The Vargha and Delaney’s 𝐴12 statistics



RQ1: Does QuSBT perform better than RS?

Program ≡
AS 4 1

BV 5 0

CE 5 0

IQ 4 1

QR 5 0

SM 3 2

Comparison between GA and RS

GA is 
significantly 

better than RS

No significant 
difference between 

GA and RS GA outperforms RS for 87% of the faulty 
quantum programs.

For BV, CE and QR, GA consistently 
performs better than RS.



RQ2: How does QuSBT perform on the 
benchmark programs?

NFT of GA across 30 runs

In four groups of the most complex 
benchmarks, the variability is usually 
high, but it can still find the maximum 
number of failing inputs in some cases.

For the small program SM, the search 
can always find the maximum failing 
inputs of the test suite for two mutants.



Evolution of the fitness values over generations

(Values are averages across 30 runs of the fitness of the best individual in the 
population)

RQ2: How does QuSBT perform on the 
benchmark programs?

The first generations already find some 
failing tests, the values keep increasing 
across generations.

3 benchmarks of BV and 2 benchmarks of SM 
almost find all failing tests.

The numbers failing tests vary across 
benchmark programs, depending on the 
types and locations of faults.



Conclusions
• QuSBT is a search-based approach for testing quantum

programs with Genetic Algorithm, aiming at finding as
many failing tests as possible.

• QuSBT was assessed with 30 faulty quantum programs.
QuSBT outperformed Random Search in 87% of the
programs.



QuSBT: Search-Based Testing of Quantum Programs
[ICSE Demo 2021] [14] 

Work 2 QuSBT (Quantum Search-Based Testing)



Application of Combinatorial Testing to Quantum Programs
[QRS 2021] [21] 

Work 3 QuCAT (QUantum CombinAtorial Testing)
• Combinatorial testing

• Two failure types

• Two usage scenariosGenerating test suites 
with combinatorial

testing with strength 𝑘

FailFailing type
𝑊𝑂𝑂？

Failing type
𝑂𝑃𝑂？

Pass

No

No

Yes

Executing
quantum
programs

Baseline: Random Testing

Each combination of 𝑘
variables can be covered at 
least once in one test suite

𝑘 = 𝑘 + 1

Scenario 1Scenario 2

Each quantum program has
3 faulty versions



Mutation-based test generation for quantum programs with 
multi-objective search. [GECCO ‘22][15] 

Work 4 MutTG (multi-objective search-based approach)

Obj 1: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡𝑒𝑠𝑡 𝑠𝑢𝑖𝑡𝑒 𝑠𝑖𝑧𝑒Test Case

𝑡$
𝑡!
𝑡%
...

𝑡"

𝑀𝑢𝑡𝑠

𝑚$

𝑚!

𝑚%

...

𝑚&

killed

...
𝑚' not killed...
𝑚(

equivalent mutant

Obj 2: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑡 𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠

discount factor
Generating test 

suites with MutTG

Fail
Failing

type
𝑊𝑂𝑂？

Failing
type
𝑂𝑃𝑂？

Pass

No

No

Yes
Executing
quantum
programs

Assessment: 
• Baseline: (1) random search, (2) approach without 

discount factor
• Benchmarks: 𝑀𝑢𝑡𝑎𝑛𝑡𝑠 with different difficulty 

levels

estimating the probability of 
being an equivalent mutant



Work 5
Noise-Aware Quantum Software Testing 
(Ongoing)
• Problem: Hardware Noise

üEnvironmental characteristics, e.g., magnetic fields, 
radiations, interactions of qubits with environments

üUnwanted interactions of qubits exist among 
themselves (crosstalk noise)

üImprecise quantum gate calibrations 

Challenges:
• Due to noise, a program can produce wrong output states or correct 

output states with wrong probabilities
• Does quantum program really failed or is it due to noise?



Work 6
Muskit: A Mutation Analysis Tool for Quantum 
Software Testing

• Problem: Lack of bug repositories and benchmarks to assess 
quality of test cases generated for testing quantum programs
• Solution: Mutation analysis tool for quantum programs in 

IBM’s Qiskit
• Features

üMutation Operator Types: Add, Remove, Replace gates
üMutation Selection Criteria: All, Gate selection (one qubit, two-qubit, 

etc), … 



Work 6
Muskit: A Mutation Analysis Tool for Quantum 
Software Testing



MuskitQuito QuSBT

• Ali, Shaukat & Yue, Tao & Abreu, Rui. (2022). When software engineering meets quantum computing，Communications of 
the ACM. 65. 84-88. 10.1145/3512340. 

• S. Ali, P. Arcaini, X. Wang, and T. Yue, Assessing the effectiveness of input and output coverage criteria for testing 
quantum programs, the 14th IEEE Conference on Software Testing, Verification and Validation (ICST), 2021, pp. 13–23. 

• X. Wang, P. Arcaini, T. Yue, and S. Ali, Quito: a Coverage-Guided Test Generator for Quantum Programs, the 36th 
IEEE/ACM International Conference on Automated Software Engineering (ASE) Tool Track, IEEE, 2021.

• X. Wang, P. Arcaini, T. Yue, and S. Ali, Generating failing test suites for quantum programs with search, in Search-Based 
Software Engineering, U.-M. O’Reilly and X. Devroey, Eds. Cham: Springer International Publishing, 2021, pp. 9–25.

• X. Wang, P. Arcaini, T. Yue, and S. Ali, QuSBT: Search-Based Testing of Quantum Programs, the 44th International 
Conference on Software Engineering (ICSE) Tool Track. ACM, 2022.

• X. Wang, P. Arcaini, T. Yue, and S. Ali, Application of combinatorial testing to quantum programs, the 21st International 
Conference on Software Quality, Reliability and Security (QRS). IEEE, 2021.

• E. Mendiluze, S. Ali, P. Arcaini and T. Yue, Muskit: A Mutation Analysis Tool for Quantum Software Testing, the 36th 
IEEE/ACM International Conference on Automated Software Engineering (ASE) Tool Track, 2021, pp. 1266-1270

MutTG QuCAT

Tools, datasets, and publications

14
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