
Quantum Software Testing
A Brief Introduction

Shaukat Ali1, 2 and Tao Yue1

1Simula Research Laboratory, Oslo, Norway
2Oslo Metropolitan University, Oslo, Norway

ICSE 2023 Technical BriefingMay 17, 2023

Outline
•Quantum Computing: A Brief Introduction

•Quantum Software Engineering: Our Vision

•Quantum Software Testing: the State of the Art

•Quantum Software Testing Techniques

Quantum Computing (QC)
• QC promises to revolutionize classical computing.
• Quantum Computers

• Gate-based quantum computers, e.g., IBM’s Osprey, Google’s
Sycamore,

• Annealing-based quantum computers, e.g., D-Wave
• Photonic quantum computers: e.g., USIC’s Jiuzhang, Xanadu’s X24…

• Platforms
• IBM Quantum Experience
• D-Wave
• Quantum Inspire from QuTech
• Microsoft Quantum computing platform…

• High level programming languages
• OpenQL by TU Delft, Q# by Microsoft, Qiskit by IBM, Cirq by

Google

QC is becoming a reality!

QAL 9000 quantum computer
Chalmers/Wallenberg Centre for
Quantum Technologies, Sweden

Why quantum is different?

Quantum Circuit

⟩|0

⟩|0

⟩|0

⟩|0

𝐺!

𝐺!

𝐺!"#

𝐺"

… 𝐺#

𝐺"

𝐺"

…

Quantum Gates Measurements

1 (true/on)

0 (false/off)

Bit

or

Z

X
Y

⟩|𝜓 = α ⟩|0 + ⟩𝛽|1

⟩|0

⟩|1

Qubit

Bloch Sphere (1 qubit)

Quantum Software Engineering

Quantum software is at the core of the
promised revolutionary QC applications.

Quantum software engineering enables
cost-effective and scalable development
of dependable quantum software.

Layered QC Architecture
(Prof. Koen Bertels’s Vision)

Quantum Software Engineering

Shaukat Ali, Tao Yue, and Rui Abreu. 2022. When software engineering meets quantum computing. Commun. ACM 65, 4 (April 2022), 84–88. https://doi.org/10.1145/3512340

Why Quantum Software Engineering?

• Application domains are hard to
comprehend.
• Quantum software engineers need to

have basic knowledge about quantum
mechanics, algorithms and their
analysis, and more.
• Therefore, we need tools,

methodologies, standards,
education, etc. to help.

Chemistry AI and ML

Drug Design & Development

Financial Modeling

Weather Forecasting

Quantum program, circuit and its execution

Developing dependable (quantum) software entails
following a software development life cycle.

Shaukat Ali, Tao Yue, and Rui Abreu. 2022. When software engineering meets quantum computing. Commun. ACM 65, 4 (April 2022), 84–88. https://doi.org/10.1145/3512340

Requirements Engineering

• Quantum application domains are
often complex.
• Need to ease communication

among stakeholders, raise the level
of abstraction in understanding
domains and linking them to
downstream activities.

Requirements engineering for quantum
software is an uncharted area of research!

Abstraction and Modeling

mapping

mapping

There is no abstraction!

From: IBM Quantum Composer

Abstraction and Modeling
S1

S3

S2

e1/action1
e2/action2

e3/action3

Automatic code/circuit generation

Novel and intuitive QSE methodologies, with:
• Quantum modeling notations
• V&V with quantum software models
• Code/circuit generation

Abstraction

Quantum Software Testing
• Software quality assurance
• Process of ensuring that a software product meets and complies with

established and standardized quality specifications.
• Testing
• “Software testing is a way to assess the quality of the software and to

reduce the risk of software failure in operation.” – from ISTQB

Quantum software testing is challenging, because:
• Computation in superpositions
• Use of advanced features (e.g., entanglement)
• Destructive measurements
• Lack of precise test oracles…

Quantum Software Testing
• Research actions being taken or to be taken:
• Define and check quantum test oracles without destroying

superposition
• Cost-effectively find test data to break a quantum program
• Devise noise-aware testing techniques
• Build theoretical foundations on coverage criteria, test models,

and test strategies, etc.
• Need practical applications, extensive empirical evaluations
• Need benchmarks…

Quantum Software Testing
State of the Art

Quantum Software Testing at ICSE

Measurements and Assertions
• Output Check: Similar to classical, e.g., observed and expected

outputs are compared [2-4]
• Statistical Assertion: Observed and expected distributions are

compared [2-4, 8,11]
• Dynamic Assertions: With ancilla qubits collect information

during program execution about qubits for asserting [12]
• Projection-based: Projective measurements to reduce the number

of read operations [10]

Coverage criteria
• Quito: Coverage of inputs and outputs of quantum programs [3-4]

üInput coverage
üOutput coverage
üInput-output coverage

• QSharpTester: Equivalent class partition of quantum variables [5]

Techniques (1/3)
• Metamorphic testing

üMetamorphic testing of oracle quantum programs [19]
üMorphQ: Testing quantum computing platforms (ICSE 2023, presentation later

today) [6]
• Property-based testing: QSharpCheck framework for Q# [8]
• Fuzz testing: QuanFuzz framework for quantum programs [9]

Techniques (2/3)
• Search-based testing

üQuSBT: Maximizing the number of failing test cases in a test suite with a genetic
algorithm [13-14]

üMutTG: Finding a minimum number of test cases to kill the maximum number
of mutants with NSGA-II [15]

• Combinatorial testing for quantum programs [21]

Techniques (3/3)
• Quantum mutation analysis

üMuskit: Mutation generation framework for Qiskit [2]
üQMutPy: Generates realistic mutants by following real bug patterns [1]

• Quantum platform testing
üQDiff: Differential testing of quantum software stacks [7]
üMorphQ: Metamorphic testing of quantum computing platforms [6]

Bug repositories and benchmarks
• Bug respository for quantum computing platforms [16]
• Bug repositories for quantum programs (Bugs4Q and Qbugs)

[17]
• A multi-lingual benchmark for property-based testing of

quantum programs [20]

Quantum Software Testing Techniques

Assessing the Effectiveness of Input and Output
Coverage Criteria for Testing Quantum Programs
[ICST 2021] [3]

Work 1 Quito (QUantum InpuT Output coverage)

• Three coverage criteria based on inputs and outputs
• Two test oracles. (1) Wrong output (WOO); (2) Significant

difference in distributions (OPO)
• A procedure determining passing or failing of test suites

Generating test suites
with input-output
coverage criteria:

IC/OC/IOC

FailPass Oracle
WOO?

Pass Oracle
OPO?

Inconclusive

Yes

Yes

No

Executing
quantum
programs

Assessment: Mutation Analysis

comparing with quantum
program specification

Inputs and Outputs of a Quantum Program (QP)

• Inputs
• Values of qubits after QP initialization

• Outputs
• Values of qubits obtained after measurement

1 qc.reset(2);

2 var a = qint.new(1, 'a');

3 var b = qint.new(1, 'b');

4 qc.reset(2);

5 qc.write(0); // Initialize with 0

6 qc.nop();

7 qc.label('entangle');

8 a.had(); // Hadamard Gate. Place into superposition

9 b.cnot(a); // Control-NOT Gate. Entangle

10 qc.label();

11 qc.nop();

12
var a_result = a.read(); // The two bits will be random,

13 var b_result = b.read(); // but always the same.

14 qc.print(a_result);

15 qc.print(b_result);

[5] M. Gimeno-Segovia, N. Harrigan, and E. Johnston, Programming Quantum Computers: Essential Algorithms and Code Samples.O’Reilly Media, Incorporated, 2019.
[Online].

Program Specification (PS) of a QP
• Valid Inputs
• Input values that are valid according to PS

• Valid Outputs Values
• Output values that can be produced with at least one valid

input
• Probabilities
• Given a valid input, expected probabilities of occurrence of all

the valid output values

27

Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2

00 00 50% 11 50%

01 00 50% 11 50%

Quito: A Framework for Quantum Program
Testing

• Input Coverage
• Output Coverage
• Input-Output Coverage

3 Coverage
Criteria

• Wrong Output Oracle
• Output Probability Oracle2 Test Oracles

• Mutation Operators
• Mutation AnalysisAssessment

Input Coverage (IC)

Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2

00 0 50% 11 50%

01 0 50% 11 50%

Input Output

00 0

01 0
Program Specification for Entanglement

One Possible Test Suite

• In one test suite, there exists a test for each

valid input

• A statically generated test suite can achieve IC

Output Coverage (OC)

Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2

00 00 50% 11 50%

01 00 50% 11 50%

Input Output
00 00
01 00
00 11Program Specification for Entanglement

One Possible Test Suite

• In one test suite, there exists a test for

each valid output.

• The criterion cannot be achieved

statically.

Input-Output Coverage (IOC)

Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2

00 00 50% 11 50%

01 00 50% 11 50%

Input Output

00 00

00 00

00 11

01 00

01 11

Program Specification for Entanglement

One Possible Test Suite

• In one test suite, there exists a test for

each input-output pair.

• The criterion cannot be achieved

statically.

Test Oracle – Wrong Output Oracle
(WOO)

WOO checks if the test outcome returned for a test

input is invalid, which reveals a definitely fail: wrong

outputs.

Valid Input Valid Output 1 Probability 1 Valid Output 2 Probability 2

00 00 50% 11 50%

01 00 50% 11 50%

Input Output

00 01

Test Oracle – Output Probability Oracle
(OPO)
• OPO checks if a QP returns an expected output with the expected

probability.
• Likely Fail: With a given confidence, multiple executions of a test show that the

outputs do not occur with the expected probabilities.

• Inconclusive: Multiple executions of the test do not allow to reject the null

hypothesis of a statistical test.

Key findings
• A less expensive coverage criterion (e.g., IC) may achieve higher

mutation scores.
• An expensive coverage criterion (i.e., IOC) may increase mutation

scores.
• If the fault in a program results in a wrong output (WOO), it can

possibly be caught with a lower number of test cases.
• If certain faults cannot be found with WOO, the cost of finding

faults with OPO could be quite higher. However, it may be
reduced with a proper budget upper limit.

Limitations
•Quito suffer from scalability issue with an increased

number of qubits.
• 2023: Deployed Quito on an HPC platform

•Quito does not deal with phases of qubits.
• Work in progress

•Quito’s mutation analysis can be further improved.
• 2023: Several tools are available such as Muskit, QMutPy, etc

Quito: a Coverage-Guided Test Generator for Quantum Programs
[ASE Demo 2021] [4]

Work 1 Quito (QUantum InpuT Output coverage)

Generating Failing Test Suites for
Quantum Programs with Search
[SSBSE 2021] [13]

Work 2 QuSBT (Quantum Search-Based Testing)

• Genetic Algorithm (GA)

• Two failure types (WOO and OPO)
Generating test suites

with GA

FailFailing type
WOO？

Failing type
OPO？

Pass

No

No

Yes

Executing
quantum
programs

Goal: Generating a test suite with the maximum possible

number of failing test cases

comparing with quantum
program specification

Baseline: Random Search

•Test case generation with a Genetic Algorithm (GA)

• 2 types of failures

üUnexpected Output Failure

üWrong Output Distribution Failure

QuSBT: Quantum Search-based Testing

Test Case Generation
• Generating 𝑀 search variables 𝑥!, … , 𝑥", each representing one input
• Let 𝐷𝐼 be the domain of possible valid inputs,

• Let 𝑡𝑎 = [fail!, … , fail"] be the assessments of 𝑀 tests,

• Fitness function:

max: 𝑓 = fail# ∈ 𝑡𝑎 fail$ = 𝑡𝑟𝑢𝑒

𝑀 = 𝛽×|𝐷#|

Experiment Design

• Frameworks: Qiskit 0.23.2, jMetalPy 1.5.5

• Baseline: Random Search (RS)
• Six benchmark programs (e.g., quantum cryptography)

• Faulty versions: 30

• Parameters: 𝛽 as 5%; 30 repetitions

• GA: Population size 10; termination criterion is max
generation 50

Experiment Design
• Research Questions:
• RQ1: Does QuSBT perform better than RS?
• RQ2: How does QuSBT perform on the benchmark programs?

• Evaluation Metric: Number of failed tests (NFT)
• The best final solution
• The best solution of each generation

• Statistical tests
• The Mann-Whitney U test as the statistical test
• The Vargha and Delaney’s 𝐴12 statistics

RQ1: Does QuSBT perform better than RS?

Program ≡
AS 4 1

BV 5 0

CE 5 0

IQ 4 1

QR 5 0

SM 3 2

Comparison between GA and RS

GA is
significantly

better than RS

No significant
difference between

GA and RS GA outperforms RS for 87% of the faulty
quantum programs.

For BV, CE and QR, GA consistently
performs better than RS.

RQ2: How does QuSBT perform on the
benchmark programs?

NFT of GA across 30 runs

In four groups of the most complex
benchmarks, the variability is usually
high, but it can still find the maximum
number of failing inputs in some cases.

For the small program SM, the search
can always find the maximum failing
inputs of the test suite for two mutants.

Evolution of the fitness values over generations

(Values are averages across 30 runs of the fitness of the best individual in the
population)

RQ2: How does QuSBT perform on the
benchmark programs?

The first generations already find some
failing tests, the values keep increasing
across generations.

3 benchmarks of BV and 2 benchmarks of SM
almost find all failing tests.

The numbers failing tests vary across
benchmark programs, depending on the
types and locations of faults.

Conclusions
• QuSBT is a search-based approach for testing quantum

programs with Genetic Algorithm, aiming at finding as
many failing tests as possible.

• QuSBT was assessed with 30 faulty quantum programs.
QuSBT outperformed Random Search in 87% of the
programs.

QuSBT: Search-Based Testing of Quantum Programs
[ICSE Demo 2021] [14]

Work 2 QuSBT (Quantum Search-Based Testing)

Application of Combinatorial Testing to Quantum Programs
[QRS 2021] [21]

Work 3 QuCAT (QUantum CombinAtorial Testing)
• Combinatorial testing

• Two failure types

• Two usage scenariosGenerating test suites
with combinatorial

testing with strength 𝑘

FailFailing type
𝑊𝑂𝑂？

Failing type
𝑂𝑃𝑂？

Pass

No

No

Yes

Executing
quantum
programs

Baseline: Random Testing

Each combination of 𝑘
variables can be covered at
least once in one test suite

𝑘 = 𝑘 + 1

Scenario 1Scenario 2

Each quantum program has
3 faulty versions

Mutation-based test generation for quantum programs with
multi-objective search. [GECCO ‘22][15]

Work 4 MutTG (multi-objective search-based approach)

Obj 1: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡𝑒𝑠𝑡 𝑠𝑢𝑖𝑡𝑒 𝑠𝑖𝑧𝑒Test Case

𝑡$
𝑡!
𝑡%
...

𝑡"

𝑀𝑢𝑡𝑠

𝑚$

𝑚!

𝑚%

...

𝑚&

killed

...
𝑚' not killed...
𝑚(

equivalent mutant

Obj 2: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑡 𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠

discount factor
Generating test

suites with MutTG

Fail
Failing

type
𝑊𝑂𝑂？

Failing
type
𝑂𝑃𝑂？

Pass

No

No

Yes
Executing
quantum
programs

Assessment:
• Baseline: (1) random search, (2) approach without

discount factor
• Benchmarks: 𝑀𝑢𝑡𝑎𝑛𝑡𝑠 with different difficulty

levels

estimating the probability of
being an equivalent mutant

Work 5
Noise-Aware Quantum Software Testing
(Ongoing)
• Problem: Hardware Noise

üEnvironmental characteristics, e.g., magnetic fields,
radiations, interactions of qubits with environments

üUnwanted interactions of qubits exist among
themselves (crosstalk noise)

üImprecise quantum gate calibrations

Challenges:
• Due to noise, a program can produce wrong output states or correct

output states with wrong probabilities
• Does quantum program really failed or is it due to noise?

Work 6
Muskit: A Mutation Analysis Tool for Quantum
Software Testing

• Problem: Lack of bug repositories and benchmarks to assess
quality of test cases generated for testing quantum programs
• Solution: Mutation analysis tool for quantum programs in

IBM’s Qiskit
• Features

üMutation Operator Types: Add, Remove, Replace gates
üMutation Selection Criteria: All, Gate selection (one qubit, two-qubit,

etc), …

Work 6
Muskit: A Mutation Analysis Tool for Quantum
Software Testing

MuskitQuito QuSBT

• Ali, Shaukat & Yue, Tao & Abreu, Rui. (2022). When software engineering meets quantum computing，Communications of
the ACM. 65. 84-88. 10.1145/3512340.

• S. Ali, P. Arcaini, X. Wang, and T. Yue, Assessing the effectiveness of input and output coverage criteria for testing
quantum programs, the 14th IEEE Conference on Software Testing, Verification and Validation (ICST), 2021, pp. 13–23.

• X. Wang, P. Arcaini, T. Yue, and S. Ali, Quito: a Coverage-Guided Test Generator for Quantum Programs, the 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE) Tool Track, IEEE, 2021.

• X. Wang, P. Arcaini, T. Yue, and S. Ali, Generating failing test suites for quantum programs with search, in Search-Based
Software Engineering, U.-M. O’Reilly and X. Devroey, Eds. Cham: Springer International Publishing, 2021, pp. 9–25.

• X. Wang, P. Arcaini, T. Yue, and S. Ali, QuSBT: Search-Based Testing of Quantum Programs, the 44th International
Conference on Software Engineering (ICSE) Tool Track. ACM, 2022.

• X. Wang, P. Arcaini, T. Yue, and S. Ali, Application of combinatorial testing to quantum programs, the 21st International
Conference on Software Quality, Reliability and Security (QRS). IEEE, 2021.

• E. Mendiluze, S. Ali, P. Arcaini and T. Yue, Muskit: A Mutation Analysis Tool for Quantum Software Testing, the 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE) Tool Track, 2021, pp. 1266-1270

MutTG QuCAT

Tools, datasets, and publications

14

Acknowledgements
• Paolo Arcaini
• Students
• Xinyi Wang
• Eñaut Mendiluze
• Asmar Muqeet
• Tongxuan Yu

[1] Daniel Fortunato, José Campos, and Rui Abreu. 2022. QMutPy: A Mutation Testing Tool for Quantum Algorithms and Applications in Qiskit. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022). Association for Computing Machinery, New York, NY, USA, 797–800. https://doi.org/10.1145/3533767.3543296
[2] E. Mendiluze, S. Ali, P. Arcaini and T. Yue, "Muskit: A Mutation Analysis Tool for Quantum Software Testing," 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE),
Melbourne, Australia, 2021, pp. 1266-1270, doi: 10.1109/ASE51524.2021.9678563.
[3] S. Ali, P. Arcaini, X. Wang and T. Yue, "Assessing the Effectiveness of Input and Output Coverage Criteria for Testing Quantum Programs," 2021 14th IEEE Conference on Software Testing, Verification
and Validation (ICST), Porto de Galinhas, Brazil, 2021, pp. 13-23, doi: 10.1109/ICST49551.2021.00014.
[4] X. Wang, P. Arcaini, T. Yue and S. Ali, "Quito: a Coverage-Guided Test Generator for Quantum Programs," 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE),
Melbourne, Australia, 2021, pp. 1237-1241, doi: 10.1109/ASE51524.2021.9678798.
[5] QSharpTester: Peixun Long and Jianjun Zhao. 2022. Testing Quantum Programs with Multiple Subroutines. 1 (2022), 1–14. http://arxiv.org/abs/2208.09206
[6] Matteo Paltenghi, Michael Pradel, MorphQ: Metamorphic Testing of the Qiskit Quantum Computing Platform, 2023 International Conference on Software Engineering
[7] J. Wang, Q. Zhang, G. H. Xu and M. Kim, "QDiff: Differential Testing of Quantum Software Stacks," 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), Melbourne,
Australia, 2021, pp. 692-704, doi: 10.1109/ASE51524.2021.9678792.
[8] Shahin Honarvar, Mohammad Reza Mousavi, and Rajagopal Nagarajan. 2020. Property-based Testing of Quantum Programs in Q#. In Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops (ICSEW'20). Association for Computing Machinery, New York, NY, USA, 430–435. https://doi.org/10.1145/3387940.3391459
[9] J. Wang, F. Ma and Y. Jiang, "Poster: Fuzz Testing of Quantum Program," 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST), Porto de Galinhas, Brazil, 2021, pp. 466-469,
doi: 10.1109/ICST49551.2021.00061.
[10] Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie. 2020. Projection-based runtime assertions for testing and debugging Quantum programs. Proc. ACM Program. Lang. 4,
OOPSLA, Article 150 (November 2020), 29 pages. https://doi.org/10.1145/3428218
[11] Yipeng Huang and Margaret Martonosi. Statistical assertions for validating patterns and finding bugs in quantum programs. In Proceedings of the 46th International Symposium on Computer
Architecture, pages 541–553. ACM, 2019.
[12] Ji Liu, Gregory T Byrd, and Huiyang Zhou. Quantum circuits for dynamic runtime assertions in quantum computation. In Proceedings of the Twenty-Fifth International Conference on Architectural
Supportfor Programming Languages and Operating Systems, pages 1017–1030, 2020
[13] Wang, X., Arcaini, P., Yue, T., Ali, S. (2021). Generating Failing Test Suites for Quantum Programs With Search. In: O'Reilly, UM., Devroey, X. (eds) Search-Based Software Engineering. SSBSE 2021.
Lecture Notes in Computer Science(), vol 12914. Springer, Cham. https://doi.org/10.1007/978-3-030-88106-1_2
[14] Xinyi Wang, Paolo Arcaini, Tao Yue, and Shaukat Ali. 2022. QuSBT: search-based testing of quantum programs. In Proceedings of the ACM/IEEE 44th International Conference on Software Engineering:
Companion Proceedings (ICSE '22). Association for Computing Machinery, New York, NY, USA, 173–177. https://doi.org/10.1145/3510454.3516839
[15] Xinyi Wang, Tongxuan Yu, Paolo Arcaini, Tao Yue, and Shaukat Ali. 2022. Mutation-based test generation for quantum programs with multi-objective search. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO '22). Association for Computing Machinery, New York, NY, USA, 1345–1353. https://doi.org/10.1145/3512290.3528869
[16] Matteo Paltenghi and Michael Pradel. 2022. Bugs in Quantum computing platforms: an empirical study. Proc. ACM Program. Lang. 6, OOPSLA1, Article 86 (April 2022), 27 pages.
https://doi.org/10.1145/3527330
[17] P. Zhao, J. Zhao, Z. Miao and S. Lan, "Bugs4Q: A Benchmark of Real Bugs for Quantum Programs," in 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE),
Melbourne, Australia, 2021 pp. 1373-1376.doi: 10.1109/ASE51524.2021.9678908
[18] J. Campos and A. Souto, "QBugs: A Collection of Reproducible Bugs in Quantum Algorithms and a Supporting Infrastructure to Enable Controlled Quantum Software Testing and Debugging
Experiments," in 2021 IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE), Madrid, Spain, 2021 pp. 28-32. doi: 10.1109/Q-SE52541.2021.00013
[19] R. Abreu, J. P. Fernandes, L. Llana and G. Tavares, "Metamorphic Testing of Oracle Quantum Programs," 2022 IEEE/ACM 3rd International Workshop on Quantum Software Engineering (Q-SE),
Pittsburgh, PA, USA, 2022, pp. 16-23, doi: 10.1145/3528230.3529189.
[20] G. Pontolillo and M. R. Mousavi, "A Multi-Lingual Benchmark for Property-Based Testing of Quantum Programs," 2022 IEEE/ACM 3rd International Workshop on Quantum Software Engineering (Q-
SE), Pittsburgh, PA, USA, 2022, pp. 1-7, doi: 10.1145/3528230.3528395.
[21] X. Wang, P. Arcaini, T. Yue and S. Ali, "Application of Combinatorial Testing to Quantum Programs," 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS),
Hainan, China, 2021, pp. 179-188, doi: 10.1109/QRS54544.2021.00029.

References

Quantum Software Testing
A Brief Introduction

Shaukat Ali1, 2 and Tao Yue1

1Simula Research Laboratory, Oslo, Norway
2Oslo Metropolitan University, Oslo, Norway

ICSE 2023 Technical BriefingMay 17, 2023

