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Abstract—Automation in quantum software testing is essential
to support systematic and cost-effective testing. Towards this
direction, we present a quantum software testing tool called
Quito that can automatically generate test suites covering three
coverage criteria defined on inputs and outputs of a quantum
program coded in Qiskit, i.e., input coverage, output coverage,
and input-output coverage. Quito also implements two types
of test oracles based on program specifications, i.e., checking
whether a quantum program produced a wrong output or
checking a probabilistic test oracle with statistical test. We
describe the architecture and methodology of the tool. We also
validated the tool with one quantum program and one faulty
version of it. Results indicate that Quito can generate test suites
and perform test assessments that detect faults, and produce test
results with a good time performance.
Quito’s code: https://github.com/Simula-COMPLEX/quito
Quito’s video: https://youtu.be/kuI9QaCo8A8
Artifact Available: https://doi.org/10.5281/zenodo.5288665

Index Terms—quantum programs, software testing, coverage
criteria, test generation, test assessment

I. INTRODUCTION

Quantum programs are necessary to implement innovative

applications promised by Quantum Computing (QC). Thus,

it is important that developed quantum programs are correct.

However, testing quantum programs is challenging because of

their probabilistic nature and unique features (e.g., superposi-

tion and entanglement). There exist some preliminary works

in quantum software testing such as property-based testing [1],

fuzz testing [2], search-based testing [3], mutation testing [4],

and runtime assertions [5]. In contrast to these works, in [6],

we defined coverage criteria tailored for quantum programs:

input, output, and input-output coverage criteria. Moreover,

we have also proposed three test generation algorithms for

generating test suites achieving these criteria. Thus, the key

of novelties of our work [6] as compared to [1], [2], [5]
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are the definition of coverage criteria, their corresponding test

generation algorithms, and empirical evaluation.

In order for a testing technique to be accepted and adopted,

automation is mandatory. However, the approach we proposed

in [6] was experimented using an online quantum framework,

but no implementation usable by users was provided. There-

fore, we here present a tool, called Quito (QUantum InpuT

Output testing) that implements and automatizes the approach

we proposed in [6]. Quito targets quantum programs devel-

oped in Qiskit [7], a framework developed by IBM for writing

quantum programs. In short, given a quantum program and

optionally its specification, Quito can generate and execute

test cases satisfying the three coverage criteria.

If the program specification is provided, Quito can also

check the correctness of the quantum program over the

generated tests, with two test assessment techniques (i.e.,

test oracles). First, it can check whether a quantum program

produced a wrong output. Second, it can check a probabilistic
test oracle which assesses, with appropriate statistical tests,

whether the occurrence probabilities of the observed outputs

of a quantum program deviate significantly from the ones

specified in the program specification.

The tool is intended for both researchers and quantum

software engineers. Researchers can extend the tool with new

functionalities or compare their new testing techniques with

Quito. Quantum software engineers can use the tool to test

their quantum programs to gain confidence on the correctness

of their programs.

The rest of the paper is organized as follows: We start with

background in Sect. II followed by a presentation of Quito
and its methodology in Sect. III. Validation of the approach is

presented in Sect. IV, while Sect. V concludes the paper and

discusses possible future work.

II. PRELIMINARIES

We here recall some basic definitions on quantum program-

ming and on the test generation approaches we proposed in [6],

that are necessary for describing the tool.
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(a) Circuit diagram

1 # Initialization of the QP
2 input1 = QuantumRegister(1, name=’input1’)

3 input2 = QuantumRegister(1, name=’input2’)

4 output = QuantumRegister(1, name=’output’)

5 outputc1 = ClassicalRegister(1, name=’outputc1’)

6 qc = QuantumCircuit(input1, input2, output, outputc1)

7

8 # Implementation of Swap Test
9 qc.h(output)

10 qc.cswap(output, input1, input2)

11 qc.h(output)

12 qc.x(output)

13 qc.measure(output, outputc1)

(b) Python code

Fig. 1: Swap test in Qiskit

Definition 1 (Quantum program). A quantum program QP

takes a set Q = {q1, . . . , qn} of qubits as input. I ⊆ Q are

the input qubits, and O ⊆ Q the output qubits. So, DI = B|I|

and DO = B|O| are the input and output values. The quantum

program QP can be seen as a function QP : DI → 2DO .

The definition shows that a quantum program has a stochas-

tic behavior, i.e., given an input value, different output values

can be returned.

The state of a quantum program is given by the values of the

qubits (as in classical programs) and by an amplitude (α). The

amplitude is a complex number which can be characterized

by its magnitude and phase. |αs|2 is the probability of the

program being in state s, in case the output qubits are read.

During execution (i.e., before reading) a program can be

in superposition of different states s1, . . . , sn with different

probabilities, such that
∑n

i=1 |αi|2 = 1.

Frameworks are available for developing quantum pro-

grams, such as the Qiskit framework [7]. In Qiskit, a quantum

program can be specified in the circuit notation, or in Python.

Example 1. Fig. 1a shows the circuit diagram of the swap
test program, and Fig. 1b shows the corresponding Python

code. The program allows to test whether two qubits input1
and input2 are in the same state, without the need of applying

a read operation to them (that would destroy superposition).

input1 and input2 are declared at Lines 2 and 3. Qubit output
is the condition qubit that controls the swap gate and it is

declared at Line 4. In this example, no value is written in the

qubits, and so they are initialized by default to 0. The state of

the program is given by these three qubits and, at the beginning

(at Line 5), it is 000; since no qubit is in superposition, the

amplitude is 1 (i.e., probability of 100%). A classical register

outputc1 is initialized at Line 5, and it will be used to store

the result of the comparison. The whole quantum circuit is

created at Line 6. The program logic starts at Line 9. First,

the output qubit is put in superposition (i.e., it can be both 0

and 1 with equal probability) with the Hadamard gate H [8].

As a result, the state of the program is in states 000 and 100

with 50% probability each. The two input qubits input1 and

input2 are swapped at Line 10 using the CSWAP gate. The

swap only happens if the control qubit output has value 1.

Another Hadamard gate H is applied on the output qubit at

Line 11. In the current example, this results in bringing the

program to the original state 000. At Line 12, the NOT gate

(method x in Python) is applied to the output qubit, that, in this

way, becomes 1. Finally, at Line 13, the output qubit is read

and stored in the classical register outputc1, which represents

the output of the program (1 in this case, because the two

input qubits had the same value).

If the expected behavior of the quantum program is known,

a user can define a program specification as follows.

Definition 2 (Program specification). Given a quantum pro-

gram QP : DI → 2DO , the program specification PS specifies

the expected behavior. PS identifies the valid input values
VDI ⊆ DI for which the program can be run1. For each valid

input assignment i ∈ VDI , PS states the expected probability

of occurrence of all the output values o ∈ DO:

PS(i) = {(o1, p1), . . . , (o|DO|, p|DO|)}
where (oh, ph) means that value oh can be returned with prob-

ability ph by input value i (ph ∈ [0, 1]); it holds
∑|DO|

h=1 ph = 1.

Definition 3 (Test input, test outcome, and test suite). A test
input t is a valid assignment to the qubits (i.e., t ∈ VDI ). A

test outcome is the pair 〈t, res〉, being res = QP(t). A test
suite TS is a set of test outcomes.

In [6], we proposed three black-box coverage criteria for

quantum programs of increasing strength:

• Input Coverage (IC): each valid input value i ∈ VDI

must be covered, i.e., there must exist a test t = i;
• Output Coverage (OC): each valid output value o ∈
VDO must be covered, i.e., there must exist a test t whose

result is QP(t) = o;

• Input-Output Coverage (IOC): each possible input-

output pair is covered, i.e., for each 〈i, o〉 such that

PS(〈i, o〉) �= 0, there must exist a test t = i whose result

is QP(t) = o.

Interested readers may consult our previous work [6] for

further details on the coverage criteria. In [6], we have also

proposed three test generation algorithms for generating test

suites achieving the three criteria. In order to account for

the stochastic behavior of the quantum program, the test

generation produces M different test suites, as follows2:

T̃Ss =
{
T̃S 1, . . . , T̃SM

}

If the program specification is available, the generated test

suites are assessed using two test oracles:

• Wrong Output Oracle (WOO): during generation, the algo-

rithm checks whether each output value res = QP(i)
returned for test input i is valid, i.e., the probability

of occurrence according to the program specification

PS(〈i, res〉) is not 0. In case it is 0, it reports that a failure
occurred, and the test generation terminates. In this case,

1Invalid input values should not be used as they are meaningless.
2The approach actually generates K (with K mod M = 0) that are

merged in M test suites. Refer to [6] for more details.
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(a) Overview

(b) Test Generation and Assessment

Fig. 2: Quito (QUantum InpuT Output testing)

the program is for sure faulty, as the test input i should

never give the observed output res .

• Output Probability Oracle (OPO): it checks whether the

generated test inputs produce outputs according to the

probability distribution specified by the program specifi-

cation. To do this, for each input-output pair, it performs

the one-sample Wilcoxon signed rank test across the test

suites T̃Ss; if the null hypothesis is rejected, the approach

reports a likely failure; otherwise, the test assessment is

inconclusive.

III. QUITO – TOOL DESCRIPTION AND METHODOLOGY

In this section, we describe how we have engineered the

approach proposed in [6] (i.e., coverage criteria, test generation

algorithms, and test assessment) in the tool Quito. The

overview of Quito is reported in Fig. 2a.

A. Input and Configuration

A user provides as input a quantum program (SUT), the list

of input and output qubits of the program, and also the total

number of qubits of the program. In case it is available, the

user can also (optionally) provide a program specification (PS).

The specification is complete if the user knows the list of valid

inputs, and for all these they can specify their expected output

probabilities; on the other hand, the specification is partial if

output probabilities of only a subset set of input-output pairs

are given.

The user must also select one or more coverage criteria of

Quito (i.e., IC, OC, or IOC), as described in Sect. II, for each

of which they want to generate a test suite. For each coverage

criterion, the user must specify values K and M , such that

K mod M = 0; K identifies how many test suites achieving

each criterion are generated, while M identifies the number of

bigger test suites obtained by merging the K test suites (see

Sect. II).

The generation for coverage criteria OC and IOC may take

too long time (especially when Quito must cover outputs

not occurring frequently), or not even terminate for faulty

programs. Therefore, for OC and IOC, the user must also

specify generation budgets BudgetOC and BudgetIOC (in terms

of time or the maximum number of generated test cases),

which specify when the generation of a test suite for a given

criterion must terminate, even if the criterion is not fully

achieved.

The user can also specify a statistical test to use for assess-

ing test oracle OPO. Currently, to the best of our knowledge,

we recommend the one-sample Wilcoxon Signed Rank test.

The user can select a different significance level through the

configuration file.

In summary, as shown in Fig. 2a, the user needs to

(i) provide a list of input information, (ii) select one or more

test coverage criteria, (iii) select the significance level of

the statistical test for assessing OPO, and (iv) define budgets

for test generation. Except for the input information, which

is mandatory to provide, Quito defines a set of default

configuration settings: selecting all the test coverage criteria,

using the one-sample Wilcoxon Signed Rank test with the

significance level of 0.01, and a budget computed on the basis

of the number of input values. Specifically, if the user provides

a complete program specification (i.e., all the valid inputs

are known), the budgets BudgetOC and BudgetIOC are set to

10× |VDI |, otherwise (in case of partial or no specification)

they are set to 10× |DI |.
B. Process of Test Generation, Execution, and Assessment

After finishing the above-mentioned configurations, Quito,

for each selected coverage criterion, follows the steps below

(and shown in Fig. 2b) to automatically generate test suites,

and produce test assessment results:

• it runs Quito’s test generation algorithm.

• if the user provided the (complete or partial) PS as input,

during generation it checks test oracle WOO. If a failure for

WOO occurs during the generation, it stops the generation

and returns violation failWOO. Note that, as explained in

Sect. II, this kind of failure indicates that the program is

surely faulty, as an unexpected output has been returned.

If no WOO violation occurs, the test generation is executed

till the criterion is achieved or the budget expires.

• if the user provided the (complete or partial) PS as input,

it assesses oracle OPO with the statistical test based on

the obtained test execution results3, and produces test as-

3Quito invokes R to perform statistical tests.
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TABLE I: Benchmark programs

QP id # qubits # input qubits # output qubits # gates

QRAM 7 4 2 9
QRAMmut 7 4 2 10

sessment results (either failOPO or inconOPO). Otherwise,

if no PS is provided, Quito will not perform the test

assessment.

• it returns all the generated test suites, test execution

results, and assessment results (if any) to the user.

For each selected coverage criterion, the above-mentioned

process generates M test suites (where a test suite is a set

of test outcomes as defined in Def. 3), each fully achieving

the criterion (if the budget did not expire and no WOO failure

occurred). The test execution results contain information about

input and output pairs and the test execution time of all

repetitions, while produced test assessment results are WOO

and/or OPO results for each input and output pair.

C. Usage of Quito

From a technical point of view, a user is required to provide

the input information and configuration settings (Sect. III-A) as

a configuration file (in a .ini file). Quito provides a template

for preparing this. The template lists all the required items

and indicates which ones are optional and which ones are

mandatory.

When a configuration file is provided via command line,

Quito first checks the file to ensure that all the manda-

tory items (e.g., the SUT) are provided and configuration

settings are valid. Then, Quito proceeds with automated

test generation and assessment. When this is done, Quito
returns generated test suites, test execution results, and test

assessment, as text files.

Regarding installation, a user can checkout the code from

GitHub and execute Quito via command line. In the future,

we will implement other ways to ease the installation.

IV. VALIDATION

To validate Quito, we use the program QRAM as the SUT,

which implements an algorithm to access and manipulate

quantum random access memory. In order to validate Quito
also over faulty programs, we produce a faulty version of

QRAM (called QRAMmut), which has a controlled phase shift
gate seeded, i.e., the phase of one of the input qubits is rotated

of π/2 degrees. The characteristics of QRAM and its faulty

version QRAMmut are provided in Table I.

Results of the experiments for the two benchmarks are

presented in Table II. For each benchmark program, its cor-

responding sub-table reports, for each coverage criterion, the

number of generated tests, the percentage of tests failing with

the two oracles WOO and OPO, and the execution time (in

seconds). For the execution time, the tables report the total

time (test generation plus test simulation), and the time spent

in simulation only.

TABLE II: Experimental results

(a) QRAM

Criterion # tests fail (%) time (s)
WOO OPO simulation total

IC 48000 0 0 239 242
OC 15324 0 0 78 81
IOC 203366 0 0 1009 1013

(b) QRAMmut

Criterion # tests fail (%) time (s)
WOO OPO simulation total

IC 48000 0 50 275 279
OC 14515 0 25 84 85
IOC 316238 0 50 1779 1795

Regarding the correct program QRAM, we observe that no

failure has been found. Note that, while it is guaranteed

that, for correct programs, no WOO failure occurs, this is

not guaranteed for OPO for which false positive results (i.e.,

claiming a failure when there is none) can occur if not enough

repetitions of the test have been executed to get trustworthy

results.

Regarding the faulty program QRAMmut, we observe that

all the three coverage criteria are able to generate test suites

showing a failure. We notice that only OPO failures occur.

This is due to the fact that this type of mutants (by varying

the phase) just perturb the occurrence probabilities of some

outputs, but do not introduce any unexpected output.

We observe that, for both programs, the time spent in

simulating the generated inputs with the Qiskit simulator, takes

almost all of the execution time. Note that the cost of simula-

tion will also increase for more complex quantum programs.

However, this simulation cost is not specific to Quito, but it

is related to the simulation of quantum programs, in general.

V. CONCLUSION

We presented Quito – a quantum software test generation,

execution, and assessment tool based on coverage criteria

defined on inputs and outputs of a quantum program. Given a

quantum program and its specification, Quito can automati-

cally generate and execute test suites satisfying three coverage

criteria, and also automatically check the correctness of the

quantum program over generated tests, with two types of test

oracles. We presented the technical implementation details of

Quito and also provided its validation with two quantum

programs.

Quito currently supports testing quantum programs coded

in Qiskit only. We plan to develop adapters for supporting

other quantum programming languages in the future. Quito
also only supports test assessment with OPO with the One-

sample Wilcoxon Signed Rank Test. There might be other

statistical tests suitable for OPO. We will extend Quito
accordingly for integrating such statistical tests in the future,

if needed.
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