
Cryptogr. Commun.
https://doi.org/10.1007/s12095-018-0304-7

Factorization using binary decision diagrams

Håvard Raddum1 ·Srimathi Varadharajan1

Received: 23 November 2017 / Accepted: 10 April 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract We address the factorization problem in this paper: Given an integer N = pq,
find two factors p and q of N such that p and q are of same bit-size. When we say integer
multiplication of N , we mean expressing N as a product of two factors p and q such that
p and q are of same bit-size. We work on this problem in the light of Binary Decision
Diagrams (BDD). A Binary Decision Diagram is an acyclic graph which can be used to
represent Boolean functions. We represent integer multiplication of N as product of factors
p and q using a BDD. Using various operations on the BDD we present an algorithm for
factoring N . All calculations are done over GF(2). We show that the number of nodes in
the constructed BDD is O(n3) where n is the number of bits in p or q. We do factoring
experiments for the case when p and q are primes as in the case of RSA modulus N , and
report on the observed complexity. The multiplication of large RSA numbers (that cannot
be factored fast in practice) can still be easily represented as a BDD.

Keywords Binary decision diagrams · Integer factorization · RSA

Mathematics Subject Classification (2010) 11-XX · 94A60

1 Introduction

The integer factorization problem is one of the most basic, yet fascinating and formidable
problems in mathematics dating back several centuries. In integer factorization, the input

This article is part of the Topical Collection on Special Issue: Mathematical Methods for Cryptography

� Håvard Raddum
haavardr@simula.no

Srimathi Varadharajan
srimathi.varadharajan@uib.no

1 Simula@UiB, Thormøhlensgate 55, 5006 Bergen, Norway

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-018-0304-7&domain=pdf
http://orcid.org/0000-0001-9779-5986
mailto: haavardr@simula.no
mailto: srimathi.varadharajan@uib.no


Cryptogr. Commun.

is a positive integer N and the task is to find its prime factors. Given a large N , there is
no known efficient algorithm that can factorize N in the classical computational model,
although there is a polynomial-time quantum algorithm known as Shor’s algorithm [1]. Due
to the hardness of the problem, integer factorization forms the basis of the RSA public key
cryptosystem. The RSA public key cryptosystem uses two primes p and q, usually of the
same bit size. An extensive amount of research has been done in RSA factorization, we refer
to the survey papers by Boneh [2] for the complete account.

In this paper we take a completely different approach to the integer factorization problem
compared to more well-known methods such as Quadratic sieve [3] and Number Field Sieve
[4]. We focus primarily on integers that have only two prime factors p and q of same bit size,
although our method can be generalized to numbers with arbitrarily many prime factors.
The key point in our approach is to use Binary Decision Diagrams (BDD) [5].

BDDs have been used to represent systems of Boolean equations [6, 7], and we extend
this idea to integer factorization. Other researchers have also used BDD-like structures with
success in various applications. See for instance [8] for applications to permutations. A
BDD is a directed acyclic graph in which there is a root node and every node has at most two
outgoing edges. Each edge is labeled either 0 or 1. The nodes in a BDD are arranged in levels
where each level corresponds to one variable. The values of the variables are represented
by labeled edges (0 or 1) going out from the nodes on some level. We treat the bits in the
unknown factors p = pn−1 . . . p1p0 and q = qn−1 . . . q1q0 as variables, and equations are
obtained by linking the multiplication operation of p and q to the given bits in N .

There are two basic operations we can perform on BDDs: swapping levels and adding
levels. Adding levels results in levels being associated with linear combinations of variables,
and not only single variables. Using these two operations we get linear combinations at each
level, some of which are linearly dependent. Using the so-called linear absorption algorithm
and reduction defined on BDDs [6], we can solve the inherent equation system N = pq,
and thus find the unknown bits of p and q.

We show that the number of nodes in the initially constructed BDD is O(n3) where n

is the number of bits in p and q to be precise, we prove the number of nodes is 2n3 −
2n2 − 2n + 5 � Bn ≤ 2n3 − 4n + 5. Previously, Burch [9] showed that the number of
nodes in the BDD for a general multiplier is bounded by 4n3 − 6n2 − 4n + 12 for n ≥ 2.
The method which they use to make a polynomial size BDD is similar to our process by
repeating the same variable on several different levels to achieve a smaller BDD. Applying
our idea to RSAmoduli, we find that the multiplication of large RSA numbers that cannot be
factored in practice can still be easily represented as a BDD. We have also run experiments
to determine the complexity of the proposed factorization algorithm. The complexity we
see is not as good as the best known methods, but our BDD representation is still interesting
as a radically different approach to the factorization problem. The main contribution of this
work is thus inspiration to look at the problem of integer factorization from a new angle, and
in Section 5.2 we show some new aspects of factorization that can be studied using BDDs.

2 Binary decision diagrams

The data structure we use for our approach to the factoring problem is a Binary Decision Dia-
gram (BDD). Binary Decision Diagrams are used in various applications, and it is possible
to interpret them in different ways. For a comprehensive treatment of BDDs, see [5].

Here we will give a description of BDDs, with emphasize on our interpretation, visual-
ization, and differences from other definitions. The description is essentially the same as



Cryptogr. Commun.

given in [7]. In Fig. 1 we give an example of a BDD, and it may be useful to refer to this
figure when reading the description below. In the context of this paper, the variables in the
BDD are the bits of the secret primes p and q that multiplies to a known RSA modulus N .

2.1 Description of BDD

A BDD is a particular kind of directed acyclic graph. The nodes in a BDD are arranged in
horizontal levels, and we visualize a BDD by drawing the levels in a top down fashion. There
is only one node on the highest level, called the top node, and there is only one node on the
lowest level, called the bottom node. All edges in the BDD are directed downwards, with
an edge always going between nodes on different levels. Each node, except for the bottom
node, has one or two outgoing edges, called the 0-edge and/or the 1-edge. The bottom node
only has incoming edges and no outgoing edges. 0-edges are drawn as dotted lines, while
1-edges are drawn as solid lines.

In other descriptions of BDDs in literature, a level is usually associated with single vari-
able over GF(2) that only occurs on that particular level. Our description differs in two
ways. First, we generalize the single variable per level to allow a linear combination of vari-
ables over GF(2) associated with each level. Second, we allow the same linear combination
to appear on different levels or, more generally, we allow dependencies among the linear
combinations of the levels. How to handle these linear dependencies is the major part of the
algorithm for factoring N .

A path in a BDD is a sequence of consecutive edges, where the end node of one edge
is the start node for the next edge. A complete path starts in the top node and ends in the
bottom node. We regard each edge in a path to assign a value to the linear combination
associated with the level where the edge starts. If an e-edge starts from a node on a level
associated with linear combination l, it yields the linear equation l = e (for e ∈ {0, 1}). Thus
a complete path gives a system of linear equations, which may or may not have a solution
given the unconstrained assignment of linear combinations to the levels. If a path gives a
linear system that has a solution we call it a consistent path, if not it is an inconsistent path.

Note that an edge need not go from one node to a node on the level directly below. A
complete path that jumps over some levels does not assign values to the linear combinations
on the jumped levels.

2.2 Problem solving using BDDs

The power and usefulness of BDDs comes from the fact that a BDD may consist of a small
and manageable number of nodes, while having exponentially (in the number of nodes)
many paths. On a high level, the actual structure of a given BDD encodes all relations
between the variables in the problem we are trying to solve. When these relations follow
some structure or pattern, the number of nodes tends to be small even if the problem size is
large in some other sense. Any problem represented as a BDD will always be to find values
for the variables that satisfy the relations given by the problem. To be more precise, finding
the solution to a problem represented as one of our BDDs is always to find a consistent path
in the BDD, and solve the associated linear system of equations.

The number of complete paths in a BDD may be very large while having only one or
very few consistent paths. We therefore need to have something better than just brute force
guessing to find a consistent path. In the next section we explain some operations that can
be done on BDDs, and how they can be used to eliminate inconsistent paths without any
guessing.



Cryptogr. Commun.

Fig. 1 A binary decision
diagram with 6 levels and linear
combinations from a set of 6
variables

0. x1 + x5

1. x1 + x4+ x5+ x6

2. x1 + x3+ x5

3. x3 

4. x2 + x3+ x4+ x6

1

2 3

4

6

5

9

7 8

T

10

3 Operations on BDDs

It is possible to delete single nodes or edges in a BDD, but it is not possible to delete
single paths. One edge or node is part of a large number of different paths, and we do
not know a priori which edges that are part of a, possibly unique, consistent path. The
operations described here have all been presented in [6, 10], but we repeat them briefly for
completeness and to ease the explanations that follow.

3.1 Swapping levels

When a BDD has been constructed to represent some problem instance, the nodes, edges and
levels are fixed, and the linear combination associated with each level is fixed. In [10] Rudell
explains how to swap the variables on two adjacent levels in a BDD and change the nodes
and edges such that the resulting BDD encodes exactly the same problem instance. The fact
that we are using linear combinations at the levels and not single variables is irrelevant here.
So we have a method to change the order of the linear combinations associated to the levels,
without changing the problem instance or its solution space.

The good thing about the swap operation is that it is a local operation, in the sense that
only nodes and edges on the two affected levels need to be changed. The swap operation
has linear time complexity in the number of nodes on the two levels, so it is very cheap to
do when this number is small. The drawback is that the number of nodes on the lower of
the two levels may, in the worst case, double during the operation, so repeatedly doing swap
operations through the BDD may lead to exponential growth in the number of nodes. The
number of nodes may also decrease during this process, but finding the order of the linear
combinations giving the smallest BDD is an NP-hard problem [11].

3.2 Adding levels

In most earlier works the levels have had single variables attached to them. When only
single variables on the levels are allowed it does not make sense to add variables together,



Cryptogr. Commun.

and ask how the BDD must be altered to keep the problem instance intact. When we have
linear combinations associated with the levels, it is natural to want to be able to add them
together.

In [6] it is explained how one can add one linear combination for a level onto the lin-
ear combination for the level directly below, and change the BDD accordingly to keep the
solution space of the problem unchanged. This operation is not as well known as swapping
levels, so we explain the general case in more detail here, see Fig. 2. Assume l1 and l2 are
the linear combinations for two adjacent levels, with l1 on the highest. If we stand in a node
on the l1-level, then choosing values for l1 and l2 will send us to one of the four nodes
labeled A,B, C and D in Fig. 2. When we add l1 to l2, so the lower level gets associated
with l1 + l2, the same choice of values for l1 and l2 must send us to the same node. For
instance, l1 = 1 and l2 = 0 leads to node C in the left BDD of Fig. 2. That choice of values
gives l1 + l2 = 1, so l1 = 1 and l1 + l2 = 1 must also end up in C in the right BDD. In gen-
eral, to preserve the solution space when replacing l2 by l1 + l2 we must flip the outgoing
edges for any node pointed to by a 1-edge from the l1-level.

The procedure for the add operation is similar to the swap operation, and its important
properties are the same: Only nodes and edges connected to the two affected levels need
to be manipulated, running time is linear in the number of nodes on these levels, but the
number of nodes on the lower level may double in the worst case.

With the swap and add operations, we have the tools needed to do Gaussian elimination
on the linear combinations of the levels. In particular, any linear combination in the span of
the initial ones may be produced to represent one level, while the nodes and edges of the
BDD are changed accordingly to keep the underlying problem instance unchanged.

3.3 Linear absorption - removing inconsistent paths

In our definition of a BDD we may have dependencies among the linear combinations on
the levels. These dependencies are the source of the inconsistent paths, and removing them
gives the solutions of the problem we are trying to solve. Linear absorption [6] identifies
and removes inconsistent paths and here we explain briefly how it works. Figure 3 shows a
small example of the steps carried out in linear absorption on the BDD in Fig. 1.

Assume l0, . . . , lr are linear combinations associated with some levels in a BDD, and
that they are linearly dependent (l0 + . . . + lr = 0). Assume furthermore that they appear in
order, with l0 at the highest level among them, and lr at the lowest level. Some of the paths
in the BDD are inconsistent with respect to the constraint l0 + . . . + lr = 0 and we would
like to remove all such paths.

Fig. 2 To preserve the solution space when adding l1 onto l2, the outgoing edges of nodes pointed to by a
1-edge from the l1-level must be swapped



Cryptogr. Commun.

1

Fig. 3 Absorbing the linear dependency l0 + l2 + l3 = 0 where l0 = x1 +x5, l2 = x1 +x3 +x5 and l3 = x3.
Every BDD in the figure has the same solution space and encodes the same Boolean function

We start with the level with l0 and repeatedly use the swap operation to move it down-
wards in the BDD until l0 is at the level just above l1. Apply the add operation, changing
the level for l1 into a level associated with l0 + l1. Use the swap operation again and move
l0 + l1 down to the level just above l2, then use the add operation to change the level for l2
into a level for l0 + l1 + l2. Continue moving the sum of li’s downwards, picking up new
terms on the way using the add operation.



Cryptogr. Commun.

The final add operation creates the sum l0 + . . . + lr for the level that was associated
with lr . Since the li’s are linearly dependent we have therefore created a level with 0 as its
linear combination. The dependency l0 + . . .+ lr = 0 has now been condensed into a single
level, and whether a path is consistent or not with this dependency now only depends on
the edges going out from this level. A path having a 1-edge out from the level associated
with 0 gives a linear system containing the inconsistent “equation” 0 = 1 directly. Hence
all 1-edges going out from the 0-level should be removed.

After removing all 1-edges from the 0-level, all remaining paths in the BDD will be
consistent with the particular dependency we started with, regardless of how we transform
the BDD using swap and add operations. When removing the inconsistent 1-edges we say
that the linear dependency l0 + . . . + lr = 0 has been absorbed into the BDD.

A 0-level with only outgoing 0-edges does not give any constraint or information in the
quest to find a solution to the problem instance. Any path will now give a system including
the equation 0 = 0, which carries no information. We may therefore remove the whole 0-
level. This is done by redirecting all edges pointing to nodes on the 0-level to their children
along the 0-edge, and then deleting all 0-level nodes. This decreases the number of nodes
as well as reducing the number of levels in the BDD by 1.

3.4 Reducing a BDD

When performing any of the operations described above the BDD may be left in a state
where nodes may be merged or deleted. After doing linear absorption it may happen that
some internal nodes have no outgoing edges. Such nodes become dead ends for any path
reaching it, and will never be part of a complete consistent path. These nodes should nat-
urally be removed. Note that deleting one dead-end node may create other dead end nodes
on the level above, and all should be deleted in a recursive fashion.

Linear absorption may also create internal nodes that have no incoming edges pointing
to it. These nodes are never part of a complete path and can also safely be removed. Again,
deleting one node without incoming edges may create new nodes without incoming edges
and a cascade of deletions occurs.

These two cases only happen when linear absorption has been used, deleting 1-edges
from a level. However, only doing the swap and add operations may also leave the BDD in
a state where nodes can be deleted. This can happen in two ways.

First, it may happen that both the 0- and 1-edges from a node A point to the same node
B. It can then be shown that A and B are essentially the same node, and that they can be
merged. This is done by redirecting all of A’s incoming edges to B, and then deleting A.

Second, if the 0-edges of both A and B point to N0 and the 1-edges of both A and B

both point to N1 it can be shown that A and B encode the same information, since they have
exactly the same sub-graph below them. These nodes can be merged, realized by redirecting
B’s incoming edges to A and then deleting B.

Reducing the BDD removes nodes and simplifies the BDD as much as possible. We
always assume it is being done after executing any of the operations described above. After
doing any operation the BDD only needs to be checked for reduction on the affected levels,
and recursively up or down the BDD until no more reduction can be done. When no more
nodes can be deleted or merged we say that the BDD is reduced.

In practice, reduction is a semi-local operation that only affects the nodes close to some
particular level and has a linear run time in the number of affected nodes. It has been shown
[12] that for a fixed set of linear combinations attached to the levels a reduced BDD is
always unique (regardless of the order of deleting nodes).



Cryptogr. Commun.

4 Integer multiplication represented as a BDD

In this section we will show how multiplication of two n-bit numbers can be represented
via a BDD. We focus on the case of RSA moduli: N = pq where both p = (pn−1, . . . , p0)

and q = (qn−1, . . . , q0) have n bits each and N is a fixed and known 2n-bit value. The
straight-forward base 2 multiplication of p and q can be written as follows:

(qn− 1 . . . q2 q1 q0) (p n− 1 . . . p 2 p 1 p 0)
p 0qn− 1 . . . p 0q2 p 0q1 p 0q0

+ p 1qn− 1 p 1qn− 2 . . . p 1q1 p 1q0
+ p 2qn− 1 p 2qn− 2 p 2qn− 3 . . . p 2q0
... . .

. ...
...

... . .
.

+ p n− 1qn− 1 . . . p n− 1q2 p n− 1q1 p n− 1q0

= N2n− 1 N2n− 2 . . . N n+ 1 Nn Nn− 1 . . . N 2 N1 N0

(1)

The +-signs are ordinary integer additions. The piqj terms appear in columns, and we
refer to the terms of piqj where i + j = c as column c. The equations that the pi and qj

satisfy are given as follows from the rightmost columns:

p0q0 = N0
p0q1 + p1q0 = N1 + v2, for some v (bit-wise carry)

p0q2 + p1q1 + p2q0 = N2 + v22, for some v (bitwise carry pattern)
...

Let vk be the number given by the k least significant bits of N . Adding up the first k

columns of the multiplication above will result in the number vk + t2k , where t is the carry
pattern from the additions that will affect the next columns. Note that the k lsb’s of N will
be determined by the additions in the first k columns, and will not change when computing
the rest of the multiplication.

4.1 Basic BDD building block

The terms that are added when computing the multiplication are of the form piqj , which
can have values 0 or 1. The term piqj appears in column i + j , and hence will contribute
either 0 or 2i+j toN . We can attach the value ofN computed so far in the nodes in the BDD.
If the value computed before processing piqj is v, the value after processing piqj will be
v or v + 2i+j . This can be captured in the graph structure in Fig. 4. This small subgraph
is the basic building block for constructing the BDD representing the whole multiplication
N = pq.

4.2 Building the multiplication BDD

We build the BDD by going through the multiplication column by column, starting with
column 0.

Column 0 Initially the value N computed so far, v0, is 0. We start the BDD by building the
structure for column 0, which only contains the term p0q0. The top of the BDD will only
contain the basic building block, as shown in Fig. 5a. Since processing p0q0 completes the
contribution from column 0, the possible values for v1 are listed in the nodes on the lowest



Cryptogr. Commun.

Fig. 4 The term piqj adds 2i+j

to v when pi = qj = 1, and 0
otherwise pi

qj

v

v v+2i+j

level (so far only 0 and 1). We can now check which values that do not match the actual v1
given by the known N and delete the corresponding nodes. With p and q odd primes, v1
must be 1 and we delete the node that suggests v1 = 0. The result is shown in Fig. 5b.

Column 1 We continue building the BDD from the bottom node in Fig. 5b. The first term
in column 1 is p0q1, so the two new levels we get when adding the basic building block
starting from this node will have p0 and q1 attached to them. The basic building block has
two nodes on the bottom, and the value in these nodes will be 1 in the case that p0q1 = 0
and 3 when p0 = q1 = 1. This is shown in Fig. 5a.

To add the second term p1q0 in column 1, we extend the BDD by adding two basic
building blocks from each of the bottom nodes we have until now. The levels for the nodes
will be associated with p1 and q0. Extending from the node containing the value 1 will
produce two new bottom nodes with values 1 and 3, respectively. Extending from the node
with value 3 will make two new bottom nodes with values 3 and 5. Nodes with equal values
can be merged, so we end up with the construction in Fig. 6b.

We have now completed construction for column 1, and can check to see which nodes
that have values consistent with the known v2, the two lsb’s of N . If v2 = (01)2 we delete

p0

q0

0

0 1

Col. 0

Col. 1

p0

q0

0

1

Col. 0

Col. 1

Fig. 5 BDD after processing column 0



Cryptogr. Commun.

p0

q0

0

1

Col. 0

Col. 1

1 3

p0

q1

p0

q0

0

1

Col. 0

Col. 1
1 3

p0

q1

1 3 5

p1

q0

Col. 2

Fig. 6 BDD after processing column 1

the node on the lowest level with value 3, and if v2 = (11)2 we delete the nodes containing
1 and 5.

Column k We can continue building the BDD in a recursive fashion. Assume that we have
completed the construction for column k − 1 and have a current bottom level with t nodes
on it. Let these nodes be A0, . . . , At−1, where the value in each Ai is vk + i2k . We extend
a basic building block from each of the Ai’s, to add the first term in column k.

The values in the two bottom nodes extending fromAi will be vk +i2k and vk +(i+1)2k .
The latter of these values will be the same as the value in the first bottom node extending
from Ai+1. These nodes can be merged, so all basic building blocks will be linked together
as shown in Fig. 7. Due to this linking, the number of nodes on the new bottom level will
be t + 1 instead of 2t .

We continue in this fashion for each of the terms in column k. Let the number of terms
in column k be ak . Each term adds one to the number of nodes of the new bottom level, so
after adding the basic building blocks for the last term the number of nodes on the bottom
level will be t +ak . Their values will be vk + i2k for i = 0, . . . , t +ak −1. At this point the

Fig. 7 Adding the first term piqj in column k. Basic building blocks are linked together



Cryptogr. Commun.

addition of column k is complete, and we must check which nodes have values consistent
with vk+1. If Nk = 0, the nodes with values vk + i2k for even i will match the given N ,
and if Nk = 1 the nodes with i odd will be consistent with N . Hence every other node
will be inconsistent with vk+1 and get deleted, so we end up starting the next column with
�(t + ak)/2� or �(t + ak)/2� nodes, depending on the given value of N .

Completing the BDD Once the construction for the final column is done, the full mul-
tiplication pq = N is captured in the BDD. At this point only the node on the bottom
level having the value N should be kept, and all others deleted. The node with the value N

becomes the bottom node of the BDD. Finally, the BDD should be reduced to remove any
dead ends remaining.

4.3 Size of constructed BDD

We end the section by proving that the number of nodes in a BDD representing N = pq

will contain O(n3) nodes. Hence the multiplication of large RSA numbers that can not be
factored in practice can still be easily represented as a BDD.

First we give a formula for the number of terms in a particular column. We state this as a
lemma for easy reference later. The correctness of the formula is easily seen by inspecting
the multiplication table (1) at the start of this section, so we omit a formal proof.

Lemma 4.1 Let ak be the number of terms in column k of the multiplication pq = N where
p and q are two n-bit numbers. Then

ak =
{

k + 1, 0 ≤ k ≤ n − 1
2n − k − 1, n ≤ k ≤ 2n − 2

We continue by counting the number of nodes on the bottom level when starting the
construction of the nodes for column k. Our aim is to get an upper bound on the number
of nodes in the BDD. In the following, when we have t nodes on the bottom level before
deleting nodes according to the known vk we will always assume that the number of nodes
remaining after deletion is �t/2�.

Lemma 4.2 Let tk be the number of nodes on the level where nodes representing the
addition of the terms in column k starts. Then

tk =
⎧⎨
⎩

1, k = 0
k, 1 ≤ k ≤ n

2n − k + 1, n + 1 ≤ k ≤ 2n − 1

Proof The case for k = 0 is special. The BDD starts with a single top node, so t0 = 1 is
true by definition. We prove the case 1 ≤ k ≤ n − 1 by induction. The statement is true for
k = 1 since we always start with a single node after column 0 is complete when making
nodes for column 1. Assume that tl = l. The addition of the first term in column l will
add two new levels to the BDD, the first will contain l nodes and the second will contain
l + 1 nodes. Each addition of a new term adds two new levels, and the number of nodes on
the second of these will have one more node than the previous. Since there are al = l + 1
terms in column l, the number of nodes on the bottom level after adding the last term will
be l + (l +1) = 2l +1. After deleting half of the nodes inconsistent with the given vl+1, we



Cryptogr. Commun.

get the number for nodes starting column l + 1 as tl+1 = �(2l + 1)/2� = l + 1. This shows
the correctness for the case 1 ≤ k ≤ n.

We show the formula for n + 1 ≤ k ≤ 2n − 1 also by induction, but the base case is less
trivial this time. We know that tn = n and need to show that tn+1 = 2n− (n+1)+1 = n to
start the induction. The construction of nodes for column n starts with tn nodes. In a similar
fashion as explained above, two new levels gets added for each term in column n and the
second of these increases by one node from the previous. The bottom level after adding all
an terms is the starting level for column n + 1, and will contain tn + an nodes. We then
delete half of these nodes according to the value of vn+1. With tn = n and an = n − 1 from
Lemma 4.1 we get tn+1 = �(2n − 1)/2� = n, verifying the base case.

Assume now n + 1 ≤ l ≤ 2n − 2 and tl = 2n − l + 1. As explained above the number of
nodes on the level starting column l+1 will be tl+al before deleting nodes, and �(tl+al)/2�
after. We then get tl+1 = �(2n− l +1+2n− l −1)/2� = �(4n−2l)/2� = 2n− (l +1)+1,
as desired.

With ak and tk defined for 0 ≤ k ≤ 2n − 2 we can count the (maximum) number of
nodes in the part of the BDD representing additions in column k.

Lemma 4.3 Let Tk be the number of nodes in the BDD representing additions in column k.
Then

Tk =

⎧⎪⎪⎨
⎪⎪⎩

2, k = 0
3k2 + 3k, 1 ≤ k ≤ n − 1
3n2 − 5n + 2, k = n

3(2n − k − 1)(2n − k), n + 1 ≤ k ≤ 2n − 2

Proof By construction from previous columns, the level starting additions in column k con-
tains tk nodes. Each term in column k adds first a new level with the same number of nodes
as the level above, and then a level with one node more. This continues for each of the ak

terms in column k, so the last two levels added have tk + ak − 1 nodes and tk + ak nodes,
respectively. The last level belongs to column k + 1 and should not be counted, so we get
tk + tk + (tk + 1) + (tk + 1) + . . . + (tk + ak − 1) + (tk + ak − 1) nodes for column k in
total. This can be written as

Tk =
ak−1∑
i=0

2(tk + i) = 2aktk + 2
ak−1∑
i=0

i = 2aktk + ak(ak − 1) = ak(2tk + ak − 1).

It is now straight forward to verify the four cases stated in the lemma by inserting the
expressions for ak and tk from Lemmas 4.1 and 4.2 and do the calculations.

We are now ready for the main result.

Theorem 4.4 LetN = pq, whereN is known and p and q are two unknown n-bit numbers.
Let Bn be the number of nodes in the BDD representing N = pq. Then

Bn ≤ 2n3 − 4n + 5.

Proof The proof follows by just summing up the values for Tk from Lemma 4.3 for all the
columns, and adding 1 for the bottom node. In the calculations we make use of the standard
formulas

n∑
k=1

k2 = n(n + 1)(2n + 1)

6
and

n∑
k=1

k = n(n + 1)

2
.



Cryptogr. Commun.

We complete the proof by showing some of the calculations:

Bn ≤ 1 +
2n−2∑
k=0

Tk = 1 + T0 +
n−1∑
k=1

Tk + Tn +
2n−2∑

k=n+1

Tk

= 1 + 2 +
n−1∑
k=1

(3k2 + 3k) + (3n2 − 5n + 2) +
2n−2∑

k=n+1

3(2n − k − 1)(2n − k)

= 3n2 − 5n + 5 + 3
n−1∑
k=1

k2 + 3
n−1∑
k=1

k + 3
n−2∑
k=1

(2n − (n + k) − 1)(2n − (n + k))

= n3 + 3n2 − 13

2
n + 5 + 3

n−1∑
k=2

(k − 1)k

= 2n3 − 4n + 5

We can estimate a lower bound on the number of nodes in the BDD by always rounding
downwards when half of the nodes on the level starting a column are deleted. We then get
the following values for tk:

tk =
⎧⎨
⎩

1, 0 ≤ k ≤ 1
k − 1, 2 ≤ k ≤ n

2n − k, n + 1 ≤ k ≤ 2n − 1

The values for ak remain the same. Re-doing the calculations for Tk and Bn with these
values gives us rather tight bounds on the number of nodes in the BDD representing pq =
N . However, the actual number of nodes in the final BDD might actually be somewhat
smaller than the estimated lower bound, due to the final reduction step after completing
construction for all columns. For this reason the lower bound is not exact, but the main point
that the number of nodes in the BDD is approximately 2n3 remains.

Corollary 4.5 LetN = pq, whereN is known and p and q are two unknown n-bit numbers.
Let Bn be the number of nodes in the BDD representing N = pq. Then

2n3 − 2n2 − 2n + 5 � Bn ≤ 2n3 − 4n + 5.

5 Factoring experiments and other observations

We have constructed many BDDs for various values of N , following the description given
in the previous section. For two n-bit numbers p = (pn−1 . . . p0) and q = (qn−1 . . . q0)

there will be n2 different terms piqj going into computing the multiplication pq. Each term
will give two levels in the constructed BDD, so the total number of levels in the BDD will
be 2n2. There are exactly 2n unknown variables pi and qj , and each variable initially occurs
on exactly n different levels. See Fig. 8 for an example of what the structure of a complete
multiplication BDD looks like. Note the pattern that emerges from the borders between
different columns, where half the nodes have been deleted.

Each path in the BDD suggests values for the unknown pi’s and qj ’s. Almost all of the
paths are inconsistent, because a path may very well choose pi = 0 on one level where pi



Cryptogr. Commun.

Fig. 8 BDD for N = 471953



Cryptogr. Commun.

occurs and pi = 1 on another. If we can remove all inconsistent paths, any remaining path
in the BDD will give the values of the pi’s and qj ’s such that pq = N .

5.1 Observed complexity of factoring

We have done experiments using linear absorption to remove inconsistent paths. There are
2n variables in total and 2n2 levels, so there will be 2n2 − 2n different dependencies we
need to absorb before all dependencies are gone and every remaining path is consistent.
Once we have reached that point there will only be two paths remaining in the BDD. Both
of them give values for p and q such that pq = N (there are two paths because it is
undecided which factor is p and which is q, i.e. for N = 77 we can have p = 7, q = 11 or
p = 11, q = 7).

An RSA modulus represented as a BDD can be factored using linear absorption, but we
need a measure of its complexity. As proved in Theorem 4.4, the initial BDD will con-
tain only polynomially many nodes. When doing the swap and add operations during linear
absorption the number of nodes will start to grow. However, the final BDD after all depen-
dencies have been absorbed is very small, since it only contains two paths. At some point
the BDD will therefore reach a maximum number of nodes, and operating on this BDD will
give the heaviest work, both in time and space. Hence we take the maximum number of
nodes during factoring as our measure of complexity.

It is very hard to predict in advance how many nodes the BDD will contain after absorb-
ing a number of dependencies. Hence we do not have a closed formula f (n) for the
complexity of factoring an n-bit number using our method. There are various heuristics and
strategies one can employ when it comes to which order we should absorb the linear depen-
dencies. Some are slightly better than others, but in all our experiments the big picture is
that the complexity of factoring 2n-bit numbers with the BDD approach and linear absorp-
tion is of the order 2n. Table 1 shows the details and actual runtimes for some particular
values of N . The experiments were done on a MacBook Air with a 1.3 GHz Intel Core i5
processor and 8GB RAM.

5.2 Some observations on the multiplication BDD

As far as we know, factoring RSA moduli via the method described in this paper can not
compete with the best factoring algorithms known (i.e. Number Field Sieve) in terms of
asymptotic complexity. The purpose of this paper is rather to give a different approach to the
factoring problem, and maybe inspire some new ideas. Below we present two observations
that might be useful for future work.

Table 1 Some factoring experiments

N p q �log2(N)� Peak number of nodes Runtime (seconds)

479069 571 839 19 212.996 0.316

1887239 1249 1511 21 214.070 0.760

8795869 2741 3209 24 214.925 1.246

288676361 16603 17387 29 218.347 18.86

9657443137 93407 103391 34 220.136 80.3

163580897747 405917 402991 38 222.303 537



Cryptogr. Commun.

5.2.1 Absorbing 2n − 2 dependencies for free

Finding an order to absorb the dependencies such that the overall complexity is minimized
is an unsolved problem. However, from the starting BDD it is possible to absorb 2n − 2
dependencies without any increase in the number of nodes. This can be explained as follows:

The terms in column k(< n) are p0qk, p1qk−1, . . . , pkq0, but the order of adding the
terms is insignificant when computing N . In the BDD the variables pi and qk−i must appear
on adjacent levels, but the (pi, qk−i )-pairs can be put in any order on the levels representing
column k without changing the BDD. Also, which one of pi and qk−i that appears first in
the (pi, qk−i )-pair is arbitrary. Permuting the variables like this within one column does not
change the BDD at all.

Say now that pi appears in both column k and column k − 1. It is then possible to put
the (pi, qk−i−1)-pair at the lowest possible levels within column k − 1, and set pi as the
lowest of these two. In column k we can set the (pi, qk−i )-pair at the highest possible levels
within column k, and pi at the very highest. The two levels with pi will now be adjacent
and can be merged into one, absorbing one dependency. The number of nodes in the BDD

Fig. 9 Absorbing all instances of one variable and moving it to the top splits the BDD in two



Cryptogr. Commun.

will actually decrease since the BDD was unchanged up until the two pi-levels were added
together, and then the lower of the two levels was deleted.

We can let two variables meet like this on each of the 2n − 2 column boundaries, and
absorb 2n − 2 variables without any increase in the number of nodes. Unfortunately, this
process can not be readily repeated since the column boundaries now consist of three levels
that are dependent on each other and can not freely move without increasing the number of
nodes. To merge other variables that are equal means that one of them has to cross a column
boundary, with no guarantees on the resulting number of nodes.

5.2.2 Moving one variable to the top

Each pi- and qj -variable initially occurs on n different levels. Let us start with the lowest
level where, say, pi is found, and use the swap operation to move it upwards through the
BDD. Each time this instance of pi is just below another level with pi , we merge the levels
with linear absorption before continuing. In the end, the variable pi is only found at the
highest level, where the top node sits.

The resulting BDD has now been split into two parts between the level where we started;
one part for pi = 0 and one for pi = 1 (see left BDD in Fig. 9). If it is possible to somehow
detect which part that contains the consistent path we would learn whether pi = 0 or pi = 1,
delete the wrong part of the BDD by cutting off the 1- or 0-edge from the top node, and
iterate the process with another variable.

In the right BDD in Fig. 9 we show an example where we have moved q7, initially found
at the lowest level, to the top. The BDD splits completely in two, and in this example we
can see that guessing q7 = 0 immediately determines the values of several other variables.
All paths in the part of the BDD where q7 = 0 ends in the same string of 1-edges, indicating
that p5 = p6 = p7 = q3 = q4 = q5 = q6 = 1 must be true for there to be any possibility
for p and q to multiply to N .

6 Conclusion

In this paper, we have shown how to use Binary decision diagrams to factor a number N

which has two factors p and q. Unfortunately, for the factoring experiments of RSA moduli
of 2n bits, the running time and space complexity seems to be of order 2n which is not
better than prevalent methods. The main take away of our approach is that we can store the
information about the factors of N in the form of a BDD of size polynomial in n, O(n3) to
be precise.

This paper gives a different light on how to factor a number N , in the sense that we keep
and store all the intermediate multiplications of individual bits in the form of a BDD. This
is a very different approach compared to the existing more number theoretic methods for
factorization. It allows us to study the details of what really goes on inside the multiplication
process itself, by representing N via the multiplications of bits from the unknown factors.

References

1. Leighton, F.T., Shor, P.W. (eds.): Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, El Paso, Texas, USA, May 4–6, 1997. ACM, New York (1997)

2. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Not. AMS 46, 203–213 (1999)



Cryptogr. Commun.

3. Pomerance, C.: The quadratic sieve factoring algorithm. In: Advances in Cryptology: Proceedings of
EUROCRYPT 84, A, Workshop on the Theory and Application of of Cryptographic Techniques, Paris,
France, April 9–11, 1984, Proceedings, pp. 169–182 (1984). https://doi.org/10.1007/3-540-39757-4 17

4. Lenstra, A.K., et al.: The number field sieve. In: Proceedings of the 22nd Annual ACM Sympo-
sium on Theory of Computing, May 13–17, 1990, Baltimore, Maryland, USA, pp. 564–572 (1990).
https://doi.org/10.1145/100216.100295. http://doi.acm.org/10.1145/100216.100295.,

5. Knuth, D.E.: The Art of Computer Programming, vol. 4. Addison-Wesley Professional (2009)
6. Schilling, T.E., Raddum, H.: Solving compressed right hand side equation systems with linear absorp-

tion. In: Sequences and Their Applications - SETA 2012 - 7th International Conference, Waterloo,
ON, Canada, June 4–8, 2012. Proceedings, pp. 291–302 (2012). https://doi.org/10.1007/978-3-642-
30615-0 27

7. Raddum, H., Kazymyrov, O.: Algebraic attacks using binary decision diagrams. In: Cryptography and
Information Security in the Balkans - First International Conference, BalkanCryptSec 2014, Istanbul,
Turkey, October 16–17, 2014, Revised Selected Papers, pp. 40–54 (2014). https://doi.org/10.1007/978-
3-319-21356-9 4

8. Minato, S.: πDD: a new decision diagram for efficient problem solving in permutation space. In: Theory
and Applications of Satisfiability Testing - SAT, 2011 - 14th International Conference, SAT 2011, Ann
Arbor, MI, USA, June 19–22, 2011. Proceedings, pp. 90–104 (2011). https://doi.org/10.1007/978-3-642-
21581-0 9

9. Burch, J.R.: Using BDDs to verify multipliers. In: Proceedings of the 28th Design Automation Confer-
ence, San Francisco, California, USA, June 17–21, 1991, pp. 408–412 (1991). https://doi.org/10.1145/
127601.127703. http://doi.acm.org/10.1145/100216.100295.

10. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: Proceedings of the 1993
IEEE/ACM International Conference on Computer-Aided Design, 1993, Santa Clara, California, USA,
November 7–11, 1993, pp. 42–47 (1993). https://doi.org/10.1109/ICCAD.1993.580029

11. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Trans.
Computers 45(9), 993–1002 (1996). https://doi.org/10.1109/12.537122

12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers 35(8),
677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

https://doi.org/10.1007/3-540-39757-4_17
https://doi.org/10.1145/100216.100295
http://doi.acm.org/10.1145/100216.100295.,
https://doi.org/10.1007/978-3-642-30615-0_27
https://doi.org/10.1007/978-3-642-30615-0_27
https://doi.org/10.1007/978-3-319-21356-9_4
https://doi.org/10.1007/978-3-319-21356-9_4
https://doi.org/10.1007/978-3-642-21581-0_9
https://doi.org/10.1007/978-3-642-21581-0_9
https://doi.org/10.1145/127601.127703
https://doi.org/10.1145/127601.127703
http://doi.acm.org/10.1145/100216.100295.
https://doi.org/10.1109/ICCAD.1993.580029
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/TC.1986.1676819

	Factorization using binary decision diagrams
	Abstract
	Introduction
	Binary decision diagrams
	Description of BDD
	Problem solving using BDDs

	Operations on BDDs
	Swapping levels
	Adding levels
	Linear absorption - removing inconsistent paths
	Reducing a BDD

	Integer multiplication represented as a BDD
	Basic BDD building block
	Building the multiplication BDD
	Column 0
	Column 1
	Column k
	Completing the BDD


	Size of constructed BDD

	Factoring experiments and other observations
	Observed complexity of factoring
	Some observations on the multiplication BDD
	Absorbing 2n-2 dependencies for free
	Moving one variable to the top


	Conclusion
	References


