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Abstract—In the recent years, online social networks have
become an important source of news and the primary place for
political debates for a growing part of the population. At the
same time, the spread of fake news and digital wildfires (fast-
spreading and harmful misinformation) has become a growing
concern worldwide, and online social networks the problem
is most prevalent. Thus, the study of social networks is an
essential component in the understanding of the fake news
phenomenon. Of particular interest is the network connectivity
between participants, since it makes communication patterns
visible. These patterns are hidden in the offline world, but they
have a profound impact on the spread of ideas, opinions and
news. Among the major social networks, Twitter is of special
interest. Because of its public nature, Twitter offers the possibility
to perform research without the risk of breaching the expectation
of privacy. However, obtaining sufficient amounts of data from
Twitter is a fundamental challenge for many researchers. Thus,
in this paper, we present a scalable framework for gathering the
graph structure of follower networks, posts and profiles. We also
show how to use the collected data for high-performance social
network analysis.

Index Terms—Twitter, Data collection, Graph capturing, Com-
putational social science

I. INTRODUCTION

Computational Social Science [1] has become an important
interdisciplinary field in the last decade. By evaluating data
generated by online interactions, social scientists can, for the
first time, observe human behaviour in real life in a way
that was previously possible only in laboratory experiments
of limited scale. Within the field, the study of online social
networks is of particular interest because they reveal opinions,
relationships, and interests of a large number of people in a
quantifiable manner.

In the wake of the 2016 US presidential elections, the spread
of misinformation in social networks, commonly known as
”fake news”, has become an important area of study. In
addition to political effects, fast spreading, dangerous mis-
information commonly known as digital wildfires can have
serious economic [2], personal [3], and security related [4]
consequences in the real world. The decentralized nature of
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social media communication makes it hard for authorities to
detect such problems. At the same time, misinformation aris-
ing from a single source can spread extremely fast. Therefore,
the study of the formation and spreading of misinformation
in online social networks has become an important area of
research. The primary workflow for studies in that field is the
large-scale analysis of communication connections, message
contents, and the patterns in which information spreads.

Among the online social networks, Twitter has become the
foremost platform for research. The reason lies in the fact
that most information on Twitter is public by default and
can be accessed efficiently via the Twitter API. While the
restriction to public platforms excludes a large part of people’s
online interactions, it is very difficult to analyze non-public
data without violating the user’s expectation of privacy. Thus,
for reasons of research ethics and availability of data, public
platforms are often the only viable option.1

For many studies, the complexity of acquiring large amounts
of Twitter data through the Twitter API in a fast and efficient
manner constitutes a fundamental challenge, especially when
using software that was built for more traditional data acqui-
sition and processing methods. By the same token, the use of
graph analytics is not yet widespread in the field, despite the
fact that it has already been recognized as a highly promising
approach [6]. Therefore, we alleviate the problem by proposing
a new framework for capturing and analysing Twitter data.
Several tools serving a similar purpose have been created in
the past [7]–[13]. However, these tools typically have a limited
functionality, which restricts the amount of data that can be
captured from Twitter. In contrast, our framework makes full
use of modern software design principles including parallel
and distributed cloud-based computing. The components of
our framework are connected within a service-oriented and
scalable software architecture. Captured data is stored in an ef-
ficient, graph-representing database, which allows easy access
to a variety of powerful graph analytic tools. The framework’s
access points and API as well as our sample experiments

1This statement is based on the Norwegian Guidelines on Research Ethics
in Social Sciences [5], by which the authors of this paper are bound. Research
ethics requirements for other countries may vary.



are written in Python and executed in the Jupyter Notebook
environment [14], which enhances the reproducibility of the
research. Thus, the key contributions of our paper are the
following:

• Design and development of a novel, flexible, and extensi-
ble framework for capturing Twitter data. The framework
is well-integrated with the existing open source software.

• Analysis of related work and a discussion of the pros and
coins of the existing solutions.

• Initial experimental research and analysis of collected
Twitter data in order to demonstrate the efficiency and
flexibility of our framework.

The remainder of the paper is organized as follows. First, we
review existing literature and previously developed capturing
tools in Section II. Then we present our new framework
along with its architecture in Section III. In Section IV,
we describe examples of experimental analysis of real-world
Twitter data acquired and analyzed by our framework. Finally,
in Section V, we conclude our work and set goals for future
research and development.

II. RELATED WORK

The popularity of Twitter as a research platform has led
to the development of a significant number of tools capable
of capturing and analyzing Twitter data in the last decade.
An overview over earlier tools is presented by Gaffney and
Pushmann [7]. However, most of these systems, such as [8],
[9] use the Twitter Streaming API, which provides tweet
contents in real time while they are being posted. This has the
significant disadvantage of requiring researchers to select their
area of interest beforehand. Thus, it is essentially impossible
to look at events or people which turn out to be significant in
hindsight. Some larger companies use the so-called firehose
bandwidth of the Streaming API, which allows them to retrieve
and store the entire content that is posted on Twitter. However,
doing so requires an immense infrastructure which is neither
feasible to operate nor affordable for most academic users.
Furthermore, some tools [10] are no longer compatible with
Twitter’s terms of service after they changed significantly in
2018 [15]. Finally, in 2018, the U.S. Library of Congress
withdrew from its earlier policy of collecting the complete
Twitter archive [16].

Because the extraction of information on trends and opin-
ions has significant commercial value, there is a sizable
number of commercial tools and services for doing so. Unlike
research tools, these programs typically focus on ease of use
for a well-established set of analytics [11]. Our framework on
the other hand is focused on allowing highly flexible querying.
Other research focused tools such as IndexedHBase [12] and
DMI-TCAT [13] follow similar goals.

The original paper for DMI-TCAT [13] provides a detailed
description of the underlying motivations and assumptions
made in the development of that project. The authors’ key
observations are as follows: (a) only access to social me-
dia data by independent researchers guarantees reproducible,
independent science; (b) the design choices made in such

an analysis tool influence the science that is based on it,
and as a consequence; (c) the tool should stay as close as
possible to the raw data rather than selecting aggregates.
We wholeheartedly agree with these ideas. However, we also
believe that previous work has focused more on contents
than on network structure. Therefore, keeping in line with
Observation b, we aim to enable network structure analysis
in addition to content analysis which current tools already
perform reasonably well.

We are particularly interested in the comparative analysis
of Twitter network structures in the European countries. As
of now, most tools for contents or sentiment analysis are
geared towards the English language, and multilingual analysis
still suffers from significant deficiencies [17], [18]. However,
analyzing the structure of these networks (graphs in the math-
ematical sense) allows language-independent social networks
analysis, which is helpful in Europe due to the large number
of actively spoken languages compared to America. Thus, we
are interested in extracting the underlying networks between
users.

In addition, we aim to modernize the software infrastructure.
Recent advances in software technologies allow the creation
of a highly flexible architecture that can easily incorporate
additional tools. As a consequence, unlike DMI-TCAT, our
framework can easily be extended to distributed computing.
Because of the focus on graph analytics, our framework
outputs Twitter data directly into a graph database. Also,
because of its popularity, we chose Neo4J [19] for our current
implementation although this can be changed in the source
code with moderate effort.

DMI-TCAT provided data enrichment by adding Klout
scores, a proprietary service aimed at measuring influence
across multiple social networks. Klout has come under heavy
criticism in the past [20], [21]. The service was deactivated in
2018 and is thus no longer available [22]. As similar events can
happen again, we designed our framework for easy integration
with new external tools. This allows us to easily swap out
services that have become defunct or obsolete.

As an example for data enrichment using third party sources,
we have added support for obtaining Botometer [23] scores of
Twitter users. These scores assess the likelihood that a given
account is in fact controlled by software (that is, a social bot)
[24]. However, Botometer and research that is based on it [25]
is not without criticism of its own [26], [27]. Our framework
can be used to investigate the results, and it can easily integrate
a different tool for the purpose of comparison.

III. ARCHITECTURE

FACT is a framework for capturing and analysing massive
amounts of graph structured Twitter data in multi-experiment
environments. It is designed to support long-term operations
as well as execution of simultaneous experiments. Here, an
experiment is a piece of user-case specific code prescribing the
data to be captured and the analysis to be run on the captured
data. Because our system’s architecture follows a service-
oriented principle, each experiment constitutes a component



provided to other components through a network. This means
not only that experiments can be attached and detached from
the framework at run-time, but also that the resulting system
can be extended by many other components such as graph or
time-series databases at low development cost. This ensures
maintainability and access to state-of-the-art technology.

Since providing capture functionality for Twitter is the
cornerstone of the system, Twitter’s API restrictions are the
limiting factor for performance and throughput. Thus, have
chosen the concept of a request management service in form
of a Twitter API proxy as a fundamental building principle for
our framework. Besides the Twitter proxy and the experiments
which are explained in more detail in Sections III-C and III-E
respectively, there are two additional categories of FACT com-
ponents. A storage component offers persistent data storage,
while an analysis component represents an interface that inter-
act with experiments and storage, which is described in Section
III-D. All the components are connected in one framework to
form an experiment setup at runtime. An experimental setup
usually consists of one or more experiments connected to a
storage component. This is controlled by an analysis interface.
Figure 1 shows the experimental setup which was used to
analyse the Norwegian newspaper Twitter graph. The results
of this analysis are described in detail in Section IV-C.

Neo4j
<storage>

Twitter 
<proxy>

Node Scraper
<experiment>

Profile Scraper
<experiment>

EJC

EJC

Tweet Analyser
<experiment>Botometer

Jupiter
<analysis>

Fig. 1: The structure of the experimental setup used to analyze
the Norwegian newspaper Twitter graph. There are three
active experiments. One scrapes the follower graphs of the
Norwegian newspapers and stores an id for each visited node
in the graph database. Another requests the corresponding
profile data for each node from the database. The third looks
at the last 200 tweets for each profile, analyzes the language,
and determines the Botometer score.

A. Twitter API

FACT’s main data capturing component provides Twitter
proxy functionality that forwards requests to Twitter’s applica-
tion programming interface (T-API). T-API is only accessible
to registered users who have been granted a Twitter developer
account. Although the eligibility criteria have tightened in the
recent years [15], Twitter still issues developer accounts for
scientific projects, as long as they submit a comprehensive
description of how the T-API will be used. Developer accounts
are entitled to create Twitter developer apps. Only these pro-
vide the credentials in form of the API-key and secret, which
have to be attached to the requests in order to authorize them.
Moreover, Twitter users can authorize Twitter developer apps

with a specific sets of permissions. By doing so, developers,
in exchange, receive OAuth-tokens, which, along with the API
key, authorize them to perform requests on behalf of the users.

A variety of T-API endpoints grouped to Tweets and Users,
Filtered Stream and Recent Search groups are offered by
Twitter. Within the scope of this work, we focus on the Tweets
and Users endpoints, since they are the most relevant for graph
structured data capture and analysis. In order to prevent large
numbers of incoming requests from overwhelming the Twitter
infrastructure, access to T-API is limited by assigning a request
quota for each separate endpoint to each user within a time
window of 15 minutes.

Despite the high efficiency of the provided native T-API
requests, in many cases it is necessary to combine several re-
quests and corresponding API endpoints to perform advanced
search and complex data aggregation. An example of such a
combined query could be a language detection task on tweet
contents in order to identify the native (or most commonly
used) language of the user. This is an important task for many
text-based analyses, since the language setting in many profiles
is set to English, no matter what language the users speak.
Now, if we want to capture data from a specific language area,
analyzing the dominant language of user tweets can help us
identifying its boundaries. We will show an example of using
this method in Section IV-C. For this analysis, a complex query
has to be constructed and executed that performs language
detection on the tweets for each enumerated relevant user
profile. This requires a combination of multiple different
endpoints for one particular investigation in one search job.

Furthermore, in practical experimental setups for multi-
purpose research investigations, it is common for a team of
researchers to run several experiments performing different
complex queries at the same time. Hence, the challenge
is to divide the contingents and corresponding application
subscriptions of all the participants among each other in
such a way that the experiments are completed as quickly
as possible while providing a fair round-robin API request
sharing policy among all the users. This means that a user
who, e.g., evaluates the language of tweets, lends his quota
for the analysis of user profiles to his colleagues and vice
versa. Implementation of this fair-share functionality requires
development of a specialized intermediate layer to wrap and
dispatch T-API calls.

Twitter has set a number of general API access limitations
which make building an efficient, large-scale Twitter data
analysis framework difficult. The most important factor is that
Twitter not only limits the number of queries per endpoint
within a fixed time window, but also applies this limit per-
user depending on the previous requests history. This is a
strict boundary that limits the number of requests per one API-
associated user account.

Additionally, Twitter performs logging and complex IP-
and geo-location-based user account activity analysis, denying
massive API requests from a single physical server, even if
they are executed from different legal user accounts. Therefore,
building an efficient, parallelizable, and robust framework for



Twitter graph capture and analysis requires not only a T-API-
proxy which allows management of all available API requests
globally, but also a comprehensive, crowd-based solution
that allows cross-user automatic T-API collaboration, requests
dispatching, and balancing. This is especially important if an
experiment can take days or weeks to perform.

B. Crowd Based Collaboration

The way Twitter restricts access to its API leaves enough
room for a centralised crowd-based quota management. As
mentioned in Section III-A, authorising a Twitter app empow-
ers developers to perform user requests on their behalf. On the
one hand, we use this characteristic in order to give interested
people an opportunity to support our research and, on the other
hand, to manage internal request quotas in a less centralised
and, therefore, more distributed manner.

To archive this, it is necessary to obtain a Twitter developer
account. We launched a project website on which Twitter users
can support our work on Fake News Detection by donating
their quotas. As shown in Figure 2, a user authorizes the
experiment application. After this, we receive their OAuth-
token and store an encrypted version of it in our back-end
database. The incoming OAuth-tokens were pulled and made
accessible to the token storage of our proxy on a daily basis.
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Fig. 2: The diagram of interaction within the system’s en-
vironment including Twitter, the project website, and the
participants. Steps from one to five describe the process of
donating a token. After pressing the donate button on our
project website (1), an OAuth authorization is initiated. The
donor is first forwarded to Twitter (2) where they authorize
our ”Fake News App” with read-only authorization (3). Then
our web server obtains an OAuth-token (4) which is finally
collected by the proxy (5).

C. Proxy

The proxy component is the most important actor in our
system. It implements the token sharing logic in a transparent
and application-friendly way. It was designed to provide the
Twitter-compatible external API in a way that ensures the
framework in which users will execute proxy calls using
the same syntax and arguments as if they were connecting

to Twitter directly. This has the additional advantage that
proxied requests for already developed Twitter clients such as
Twitter4j, Tweepy, etc. are possible. Our proxy hides all the
complex token share logic and makes individual applications
less complex, since the query logic is separated from the
application, which would otherwise have to manage resources
or handle API call over-utilization errors in some way. An
additional advantage of the proxy is request caching. In case
of repeatable user requests within a short time frame that
are expected to give the same results, the proxy uses cached
responses, thereby significantly reducing request quota usage
and increasing performance.

Besides its task to forward the requests to the T-API, the
proxy contains a mechanism for quota leasing. The quota
leasing manages contingents of the participating scientists for
the respective endpoints of the T-API in the form of OAuth-
tokens. This encapsulation ensures that free resources are
balanced across all request-consuming components. Since the
resource ”Requests” are managed in a central component, all
other components that require access to the T-API can be de-
signed under the assumption that there is no limit on requests.
The proxy consists of sub-modules, namely the connection
context, endpoint information, and context manager, which are
described in more detail below.

1) Connection Context: The connection context imple-
ments a wrapper for the T-API and manages a connection
to it for each available OAuth-token. The wrapper builds
on top of the Twitter4J client, which contains an important
data structure that manages statistics on remaining requests
per endpoint and time window. We use this information in
other proxy sub-modules to maintain the quota. In addition,
the wrapper performs the establishment and closing of T-API
connections, and it manages the endpoint info data structure
for each endpoint.

2) Endpoint Information: The endpoint information struc-
ture stores the following data for each corresponding endpoint
of the T-API:

• Length of time window until restock.
• Number of results per response.
• Number of results per time window.
• Number of possible requests per time window.
• Timestamp of the last request. It is used to calculate when

the quota will be restocked.
• Number of used requests.

The complexity of this structure reflects the complexity of
the API access limitations applied by Twitter. The information
stored in this structure allows us to monitor the endpoint usage
in a detailed manner and prevent possible endpoint blocking
due to over-utilization beyond free subscription limits. This
endpoint information is used in the context manager.

3) Context Manager: The primary task of the context
manager is to receive requests and forward them to a suitable
connection context. We use a straightforward greedy strategy
for request forwarding and context manager selection. If a
manager accepts a request, he iterates through the list of
known connection managers until an alive and free connection



manager is found. When searching for a suitable manager,
we use the request timestamps associated with each and
every endpoint. The timestamps are updated while performing
a request using the endpoint. Together with the associated
request counters, it allows for simple and efficient quota
control implementation. If the quota is reached, endpoint
usage is paused and the required waiting period is computed.
When the waiting period has elapsed, the corresponding quotas
are renewed, and the endpoint becomes available again. To
prevent races within our connection manager system, we use
a simple one client at a time strategy. If a particular connection
manager is selected, it becomes blocked from reselection for
the duration of the request that is being executed. This ensures
that no connection manager can be called by more than one
client simultaneously.

D. Storage

Storage is a container intended to provide data persis-
tence across the framework which allows the integration of
various types of databases and file storages. The current
version our framework offers storage built on the basis of
the Neo4J [19] graph database. We selected Neo4J due to its
extensive functionality for graph processing using a declarative
graph query language called Cypher [28]. All the storage
components are passive. They are always connected to one
or more experiments that make requests or store intermediate
and output data.

E. Experiment wrapper

Experiment wrappers are active components that are con-
nected to storage as well as to the proxy. One or more
experiment wrappers form an experimental setup for both data
collection and analytical tasks (see an example in Section IV).
According to our framework usage template, the user-defined
payload of the experiment consist of one or more pieces of
user code which could perform the aggregation of interme-
diate results, collection of Twitter data, and communication
with additional third party services, e.g., the Botometer bot
detection API or Google’s natural language processing API.

1) Library Extension: In order to execute the integration of
user-defined analytical tasks with our framework, we imple-
mented the special extension for the existing Twitter4J Java-
language client. We added the high-level functional layer that
makes the Twitter API restrictions transparent for the high-
level logic developers. This is necessary because the proxy is
able to hide request limitations to a certain degree, but it is no
appropriate abstraction for reflecting that on a programmers
level. This leads to boilerplate code and increases complex-
ity and, therefore, development time. Thus, the developed
Twitter4J extension is capable of hiding primary resource
limits, making not only the execution of complex queries
possible, e.g., find all tweets of user X in language Y, but also
performing graph queries, e.g., capture the follower network
of user X within distance two.

IV. EXAMPLE EXPERIMENTS

In this section we perform a series of example investiga-
tions. They are selected to be small enough to be visualized
in this paper. The goal is to demonstrate how social networks
can be gathered for analysis with limited technical effort.
However, the framework is by no means limited to small
experiments. Larger experiments do not require additional
technical knowledge, but they do require more time.

A. Single Node Follower Analysis

An example of a typical use case is the analysis of the
followers of a single prominent Twitter account. Of particular
interest are the accounts of politicians. A commonly held
belief is the idea that the number of followers represents a
heuristic measurement for a politician’s influence. As a conse-
quence, there is significant discussion about ”fake followers”,
a term that is usually intended to describe following accounts
that do not correspond to real-world persons or institutions,
and which are typically created with the explicit goal of
inflating the perceived importance of a given account. There
are specialized services for detecting such fake followers,
e.g. Twitteraudit [29], which analyzes accounts by sampling a
number of followers and assigning them a quality score based
on the details and posts of each follower. For each analyzed
account, it returns the number and ratio of followers it believes
to be fake.

less than Followers Followers % Tweets Tweets %
1 236185 25.72 384601 41.89
2 366241 39.89 492779 53.67
5 561160 61.12 596053 64.92
10 668775 72.84 651634 70.97
100 827490 90.13 773068 84.2
1000 900186 98.04 857001 93.34
10000 915805 99.74 905070 98.57

Table I: The total and percentage numbers of followers of
@regsprecher having fewer than the listed number of followers
(Column 2 and 3) and tweets (Column 4 and 5)

As an example, we study the followers of the account
of Steffen Seibert (@regsprecher), the German government’s
spokesperson. We chose this account because it has one of
the highest numbers of followers among political actors in
Germany (more than 900,000), and Twitteraudit reports an
unusually high ratio of fake followers of 60%. Here we study
the number of followers that show very little activity on
Twitter. The rationale for this lies in our belief that it is
very difficult to automatically discriminate fake accounts from
inactive accounts because such accounts lack the data to tell
those two groups apart in a meaningful way.

We use our framework to capture the follower data of
@regsprecher and count how many other accounts the follow-
ers are followed by. We also obtain the number of times each
follower has tweeted. Table I shows the results. We observe
that only about 39% of the followers are followed by five or
more accounts, and that less than half of the followers have
posted more than once.



We also take a look at the combined counts in Table II. We
observe that about 18% have no followers and no tweets, and
that 60% have either at most one tweet or follower. Clearly,
such accounts can be considered as inactive. Systems such as
Twitteraudit tend to assign low trust scores to such accounts,
and ultimately label them as fake. However, due to the lack of
data it is essentially impossible to prove whether such accounts
are ”fake” or ”real”. Thus, the results of automated fake
follower detection depends massively on whether a system
assumes followers to be ”fake” until proven ”real”, or the
opposite.

We hypothesize that older accounts with a large number of
followers tend to attract inactive followers over time, giving
them a high ratio of inactive followers. For gauging influence,
it might be preferable to disregard such followers. However,
We cannot infer from this whether such accounts are being
used to read tweets frequently. In that case, even an inactive
follower would contribute to the influence of a Twitter account.

less than OR OR % AND AND %
1 455784 49.64 165002 17.97
2 567354 61.79 291666 31.77
5 670771 73.06 486442 52.98
10 725237 78.99 595172 64.82
100 839353 91.42 761205 82.91
1000 902575 98.3 854612 93.08
10000 916809 99.85 904066 98.47

Table II: The total and percentage numbers of followers of
@regsprecher having fewer than the listed number of followers
or tweets (Column 2 and 3) and those having fewer than the
listed number of followers and tweets (Column 4 and 5)

B. Single Node Network Analysis

As the next example, we study the network surrounding a
single account and visualize it. The goal of such an analysis is
to understand the position of the source account (i.e. the initial
account) within its surrounding network. If the connections
between other vertices (i.e. Twitter accounts) in the network
are sparse, then the source account ties the network together,
indicating high centrality. On the other hand, if they are
dense, the source account has no special position within the
network. For a given graph, there are established methods
such as betweenness centrality [30] for computing similar
information. However, it is not clear which network should be
the basis of the computation, and even if it were, collecting all
that information from Twitter and computing its betweenness
centrality might be prohibitively expensive. Thus, investigating
the network of a single account is much faster, and likely more
meaningful w.r.t. that account.

We analyze the follower network of Andrej Babiš, the
current prime minister of the Czech Republic (since December
2017), and one of the country’s most followed Twitter account
with more than 375,000 followers with an increase of about
30 followers per day according to Socialbakers [31]. We
capture all vertices (i.e. accounts) in its neighborhood, and
all edges (i.e. follower relationships) between these vertices.
Doing so means that we have to obtain and check the entire

Fig. 3: Top left: the entire follower graph. Czech prime
minister Andrej Babiš is in the center of the large circle near
the top. Top right: sparsified graph after removing all accounts
with two or fewer tweets. Bottom left: sparsified graph by
removing all accounts with less than 100 followers. Bottom
right: only accounts with at least 1000 tweets remain.

neighborhood of each follower, which can be quite time con-
suming. The resulting follower network is visualized in Figure
3. Similar to Section IV-A, the large number of followers
suggests that a significant fraction of them will be inactive.
Such accounts say very little about the network structure.
Thus, we first remove all accounts with eight or fewer tweets.
This removes several dense clusters in the center of the graph,
indicating that they consisted mostly of accounts with little
activity. For a visual analysis, we need to reduce the the
number of vertices further. Thus, we remove all accounts
having 100 or less followers. We notice in Figure 3 that
the ring around Babiš in the upper part of the pictures is
now mostly gone. This ring contains mostly accounts that
follow only the source account and no other accounts in the
network. Thus, removing accounts with few followers is likely
to remove most of them. Finally, we restrict ourselves to highly
active users with more than 1000 tweets. Interestingly, this
causes little change in the visualization. At the bottom of the
image, we clearly recognize two stable clusters which would
remain tightly connected even if the source vertex is removed.
Thus, the centrality of the source vertex is somewhat lower
than expected. A natural next step would be to find out which
accounts form these clusters. However, such an analysis would



be beyond the scope of this paper2 as our primary aim is to
demonstrate the capabilities of our framework.

C. Multi Source Network Analysis

Our third example demonstrates the capture and visualiza-
tion of a country’s newspaper Twitter sphere. The country
in this example is Norway. To capture the graph, we select
the Twitter accounts of the major Norwegian newspapers
as source vertices and investigate their neighborhoods. The
crucial question is to limit the capture to the Norwegian
Twitter sphere.

Fig. 4: Visualization of the Norwegian newspaper Twitter
sphere around news websites. News outlets are color coded:
red: VG, pink: Aftenposten, purple: Dagebladet, yellow: Af-
tenbladet, grey: Bergens Tidende, blue: Dagens Næringslivet,
and orange: Adresseavisen. Brown is a right-wing fringe
website (sian.no) introduced as control.

There is no way of detecting the true location of a user from
Twitter data, since many users do not set their location. And
even if we could detect the location, doing so would not be
desirable since we have to consider some users (e.g. expats,
travellers) that are physically located outside of Norway as part
of the Norwegian newspaper Twitter sphere. A better criterion
would be to draw boundaries by language. However, a large
number of users do not change their language settings or set
it to English on purpose. Thus, we instead add a module
for language detection. Norwegian is not commonly spoken
outside of Norway, but English is often used in Norway. Thus,
we consider an account to be part of the Norwegian newspaper
Twitter sphere if it has posted at least 50% of its previous 200
Tweets in Norwegian3. This has the side effect of filtering
out inactive users, but since they do not actively take part
in the conversations on Twitter, doing so is desirable. Note

2Note that finding the names of the accounts poses no technical problem.
3We do not differentiate between the variants of the Norwegian language

here.

that this method will not be sufficient for countries that do
not have a unique national language. The graph collected in
this manner has almost 100,000 vertices. Since we need to
check for overlapping neighborhoods, collecting this graph
relatively costly. We also record the Botometer [23] scores for
each account in the graph. About 33% of the accounts have a
score of 4 out of 5, i.e. Botometer considers them likely to be
bots. However, their distribution in the graph does not seem
to follow a specific pattern. We therefore do not include the
scores in the visualization.

The result is shown in Figure 4. Each newspaper has a
substantial group of accounts following only itself (within this
network). The key information is contained in the clusters of
accounts that follow two newspapers. Three newspapers from
Oslo (Aftenposten,VG, and Dagens Næringslivet) have large
overlap. Consequently the visualization algorithm places them
close to each other. Regional newspaper such as Aftenbladet
from Stavanger and Adresseavisen from Trondheim are much
further away and have small overlap with the capital newspa-
per. Bergens Tidende, the largest of the regional newspapers,
also has the largest cluster of exclusive followers and relatively
small overlapping clusters. Thus, it is possible to infer a
significant amount of plausible information about newspaper
readers from this visualization.

We also observe that the website sian.no, while having a
sizeable group of exclusive followers, has very weak connec-
tion to the major newspapers, underlining its fringe status.
Disconnected communities often form so called echo cham-
bers. It is widely believed that these are a breeding ground
for fake news. As a result, the detection of such disconnected
communities is crucial for the study of misinformation.

Fig. 5: Alternative visualizations of the Norwegian newspaper
Twitter sphere around news websites. Left: a version of Figure
4 with the exclusive followers filtered. Right: the same graph
rendered again, without the exclusive followers. (color coding
as in Figure 4)

Alternative versions of this visualization are shown in
Figure 5. They are created by filtering out exclusive followers
(left), and by rendering a new visualization of the graph with-
out the exclusive followers (right). In this new visualization,
we observe that among the Oslo newspapers, Dagebladet has
the strongest connection to the regional newspapers, while
Dagens Næringslivet, a business newspaper, has the weakest.



V. CONCLUSIONS AND FUTURE WORK

Research on tools to combat misinformation has lead to
the development of detection software for social bots. This
however has led to the a misinformation problem of its
own. While researchers understand the limitations of such
detection systems and the fact that there are many ways to
define social bots, the general public does not. In Section
IV-A, the statement made by Twitteraudit would most likely
be understood as: ”60% of the government spokesperson’s
followers are fake” which, in a political context makes it seem
like so few people are interested in what the government has to
say that they feel the need to inflate their perceived influence.
Likewise, in a political discussion, a statement such as ”50%
of the comments supporting Position A are made by social
bots” makes it seem like Position A has little backing among
the population and may be the result of foreign influence. A
similar case happened in Germany in late 2018 [32].

The investigation of these problems is further complicated
by diverging interests which can consciously or unconsciously
influence decisions. Twitter has an interest in being a valid
political discussion platform. Researchers would like their
tools to be relevant (especially if the tool is commercial), and
politicians have strong incentives to use all results that support
their positions. As a consequence, we believe that a broad
discussion, especially among political and social scientists, is
necessary. Coming predominantly from computer science, our
contribution is to provide a software framework that allows
researchers to gather the raw data, test the assessments of
automatic tools, and verify results in a reproducible way.

Therefore, we have created a framework that allows formu-
lation of complex queries to the Twitter API using a crowd-
based approach in order to increase the volume of data that
can be queried. Furthermore, our design consists of strongly
tiered building blocks which allows to solve problems on the
appropriate level of abstraction.

Our natural next step is to expand the capabilities of our
framework according to the needs of social scientists. There
are three primary directions for doing so. First, we will
implement the required code to gather data on a specific
topic or hashtag and investigate the structure of retweets.
The Twitter API does not provide any information about
the way that shared messages, i.e. retweets, take through the
network. We aim to develop components executing stochastic
methods based on follower networks analysis which allow us
to compute the most likely retweet path that a tweet might
have taken. We deem this functionality to be particularly
beneficial in the context of identifying fake news. A second
direction is to enable long-term experiments. By periodically
querying for changes in a follower network, we can observe
how shifts in political stances can affect social networks.
Furthermore, we believe that this information can be very
helpful for identifying fake followers by detecting unusual
changes in the social network. The third direction is more
of a technical nature. We will implement the proxy, which
allows using any Twitter client to write experiments within

our framework, thereby expanding its capabilities dramatically.
This component is currently under development. We expect it
to be freely available at the time of publication of this paper.
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