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Abstract—Time-dependent applications using TCP often send
thin-stream traffic, characterised by small packets and high inter-
transmission-times. Retransmissions after packet loss can result
in very high delays for such flows as they often cannot trigger
fast retransmit. Redundant Data Bundling is a mechanism that
preempts the experience of loss for a flow by piggybacking
unacknowledged segments with new data as long as the total
packet size is lower than the flow maximum segment size. Although
successful at reducing retransmission latency, this mechanism had
design issues leaving it open for abuse, effectively making it
unsuitable for general Internet deployment. In this paper, we have
redesigned the RDB mechanism to make it safe for deployment.
We improve the trigger for when to apply it and evaluate its
fairness towards competing traffic. Extensive experimental results
confirm that our proposed modifications allows for inter-flow
fairness while maintaining the significant latency reductions from
the original RDB mechanism.

Index Terms—Data-bundling, thin streams, TCP, latency, fair-
ness.

I. INTRODUCTION

The main focus of TCP’s development has been on maxi-
mizing the throughput, that is, to achieve the smallest possible
time for transferring a large chunk of data correctly from sender
to receiver. The focus has been on this finishing time, and the
TCP streams that transport data in this manner are called greedy
streams.

However, TCP is also used by time-dependent applications
that generate small data segments with high inter-transmission
times (ITTs). Such applications include classical telnet and ssh,
but also computer games, high frequency trading, screen sharing
applications, and firewall-friendly fallback options for audio
and video conferences. Such applications have completely
different characteristics compared to greedy streams, and in
Table 1, we see the typical small payload sizes (far below
the common maximum transmission unit (MTU) of 1500 bytes
for IP packets), low bandwidth requirements and high packet
ITT statistics for a selection of representative applications. Fur-
thermore, all of these applications depend on small maximum

per-packet latency to provide a good service rather than high
throughput. We call the streams that are generated by these
time-dependent applications thin streams [1], and we argue that
they deserve special consideration because they suffer much
more than greedy streams from the effects of packet loss. With
traffic patterns that prevent them from utilizing fast retransmit,
they suffer from all the penalties associated with timeout
retransmission, including head-of-line-blocking (HOLB) in the
receiver-side stack, congestion window (CWND) collapse, and
exponential backoff in case of repeated packet loss.

Delays due to loss recovery have attracted increasing atten-
tion in recent years, and in order to reduce delays, several
mechanisms have been proposed that aim at changing how
TCP reacts to loss by reducing the time before a lost packet is
retransmitted, for example faster retransmission and changing
timers. Another intuitive idea is to apply proactive or predictive
techniques that hide packet loss from the usual TCP mecha-
nisms altogether, for instance forward error correction (FEC).
However, the reactive mechanisms still provide high maximum
latencies, while the proactive are hard to deploy in today’s
networks because they require both sender and receiver side
modifications.

In order to reduce latencies compared to reactive approaches
and avoid receiver-side modifications, we have earlier proposed
redundant data bundling (RDB) [3]. It is a variant of the
proactive idea, but it is a backwards-compatible sender-side
only modification to TCP. Unfortunately, the original RDB can
be abused since congestion loss is hidden from the congestion
control, and the amount of bundling is independent of the delay
and loss characteristics of the specific connection. Before a
public deployment of RDB, such problems must be solved.
In this paper, we address these challenges. The revised RDB
mechanism, implemented in the Linux kernel, enables a more
aggressive (re)transmission mode for thin streams, and the per-
packet latencies can be considerably reduced. RDB maintains
compatibility with existing TCP implementations, which allows
immediate deployment.

We have imposed a limitation on the mechanism, limiting
its activation to when the stream is considered thin. We have
redefined and evaluated the thin-stream classification method
used to trigger RDB, and we have experimentally evaluated
the new RDB implementation with respect to 1) the sweet-



Application Payload size (bytes) Packet inter-arrival time (ms) Percentile Avg bandwidth requirement
avg min max avg med min max 1 99 (pps) (bps)

VNC (from client) 8 1 106 34 8 0 5451 0 517 29.412 17K
Skype (2 users) 236 14 1267 34 40 0 1671 4 80 29.412 69K
SSH text session 48 16 752 323 159 0 76610 32 3616 3.096 2825
Anarchy Online 98 8 1333 632 449 7 17032 83 4195 1.582 2168
World of Warcraft 26 6 1228 314 133 0 14855 0 3785 3.185 2046
Age of Conan 80 5 1460 86 57 0 1375 24 386 11.628 12K

Table 1: Examples of thin stream packet statistics based on analysis of TCP packet traces [2].

spot between the best possible latency gain and the level of
aggressiveness due to increased packet sizes; 2) the reduction
of per-packet latency that is achieved while remaining fair
to competing traffic; and 3) the removal of opportunities to
abuse RDB for gaining an unfair advantage over competing
traffic. Our experimental results show that by proactively re-
transmitting unacknowledged data segments, RDB is able to
significantly reduce the application-layer latency caused by
HOLB and retransmission delays even with the new safeguards
in place.

The rest of the paper is organized as follows: Section II
describes related work in the context of thin streams. Section III
gives an overview of how to alleviate the latency issues for thin
streams by using the RDB scheme and also presents our im-
proved solution. Our experiments are presented in Section IV,
and the results are discussed Section V. Finally, Section VI
concludes the findings and suggests future work.

II. RELATED WORK

Applications like online games, remote control systems,
high-frequency trading and sensor networks provide a hugely
increased utility when their per-packet latencies are at their
lowest. They have in common that they produce mostly traffic
with thin-stream characteristics, consisting of small packet
payloads and high ITTs. An analysis of latencies in the on-
line game Anarchy Online [1] showed that TCP introduces
disproportionately large delays caused by packet loss for these
types of streams. The reason identified is that most of the
retransmissions are caused by retransmission timeouts (RTOs),
which occurs because game traffic has very few packets in
flight (PIF) and is unable to trigger a traditional fast retransmit.
The same observation has been made for other streams with
thin-stream characteristics. For example, measurements have
shown that around 10% of the connections to Google services
experience at least one packet loss, and 77% of these losses
were repaired by RTOs [4]. The flows that experience loss take
five times longer to complete than the flows without loss.

Such delays as a result of loss recovery have attracted
increasing attention in recent years. Whereas early retransmit
(ER) [5] and tail loss probe (TLP) [6], [7] are meant to improve
stream finishing times that are hindered by losses of the last
packets in a stream, others such as linear retransmission timeout
(LT) [8], modified fast retransmit (mFR) [8] and RTO Restart
(RTOR) [9] focus on the reduction of retransmission delays
during the stream’s lifetime. They reduce the time before data
becomes available to the receiving application, not only for the
retransmitted packet, but also for those that experience HOLB

due to TCP’s ordered delivery. These approaches change TCP’s
reaction to packet loss with the goal of retransmitting faster. In
low latency application scenarios like in Table 1, these reactive
mechanisms improve the situation, but it still takes at least an
RTT to detect the loss, and further improvements are required.

A different approach is to be proactive and protect data to
avoid retransmissions by transmitting data redundantly even
before any loss signals are received. The data segments could
simply be transmitted multiple times, which would alleviate
sporadic losses as long as one of the packets containing the
data segment gets through. An example of this is to transmit
every data segment twice [4]. Moreover, FEC can be used to
encode redundant data for loss recovery on the client side using
TCP FEC [10], [11]. These proactive approaches reduce latency
further, but they increase the number of packets sent and require
sender- as well as receiver-side modifications.

In summary, the existing reactive techniques still require long
time to detect a packet loss, and the proactive solutions suffer
from overhead and receiver-side modifications. A proactive,
sender-side only mechanism that avoids the extra cost of
additional packets is therefore desired.

III. REDUNDANT DATA BUNDLING

RDB is a mechanism that aims to reduce application-layer
latency by proactively retransmitting unacknowledged data. In-
teractive and time-dependent applications commonly send small
chunks of data at regular intervals [2]. As seen in Table 1, this
rarely leads to segments as large as the Maximum Segment Size
(MSS). By using the “free” space available in packets smaller
than an MSS, we can retransmit unacknowledged data with
every packet that contains new data, thereby hiding possible
loss in a proactive manner. Not only does this approach reduce
the time until a lost packet is recovered, it eliminates HOLB
as well, because the potentially blocked packet itself carries
the remedy. So although RDB packets are larger than those
of unmodified senders, RDB does not generate any additional
packets.

A TCP segment contains one contiguous byte range. The
feature that allows the mechanism to work is the fact that
every correctly implemented receiver will consume a packet
containing new data, even though some of the data had already
been received. This is the reason why RDB can be a sender-
side only mechanism as any mechanism that allowed redundant
sending of arbitrary data segments would require changes to
both senders and receivers. Figure 1 shows a short packet
sequence timeline, where an RDB-enabled thin stream avoids
retransmissions due to redundant data bundling.



A. The original RDB version

The RDB implementation presented in [3], which we refer to
as old RDB, showed great potential on improving the latency for
thin streams, but it left certain issues unresolved. When using
RDB and a segment is lost, the next packet will contain the lost
segment. This leads to data being received in order, meaning
that there is no gap in the sequence numbers of the arriving
data. The sender will not receive the dupACK that would
have normally been produced from this gap, effectively hiding
the loss event from the sender. This prevents the congestion
control (CC) from adjusting the allowed send rate for the flow
accordingly.

The inability to detect loss events properly made the old
RDB implementation unfair to competing traffic. In addition,
old RDB imposed no limit on the level of redundancy, which
allowed misuse by carefully shaped streams although it was
only meant to be used for thin streams. In the next section, we
describe how we have extended on old RDB to address these
issues.

B. The improved RDB version

The hiding of loss events prevents the CC from adjusting the
stream’s send rate in response to loss. We have investigated how
to ensure that RDB-enabled streams behave in a TCP-friendly
manner towards competing traffic, while still being effective in
reducing the application-layer latency for thin streams. It is of
utmost importance that RDB-enabled streams react properly to
loss caused by congestion.

In this section we present how we have addressed these issues
in the new RDB implementation. Firstly, we explain how to
detect the hidden loss in the RDB streams. After that, we go
into details about the technique we have implemented to limit
the use of RDB to only the streams that are thin.

1) Loss detection: When a TCP stream experiences packet
loss, there are gaps in the received window of segments,
resulting in dupACKs when new data is received. A regular
TCP sender uses this dupACK information to infer packet loss.
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Fig. 1: Packet timeline of a TCP thin stream using RDB

With RDB, however, the lost data is included with the next
packet, which does not result in a dupACK when a single packet
is lost. The number of previous segments bundled with each
packet determines the number of consecutive packets that have
to be lost for a gap to occur. For example, if each RDB packet
includes bundled data of four previously sent packets, the loss
of five consecutive packets is required for a gap in the data
to appear on the receiver side, resulting in a dupACK to be
produced.

A standard TCP sender must consider that a receiver uses
delayed ACKs, which allows the receiver to delay sending
ACKs on incoming data. However, delayed ACKs must be
switched off when the sequence number of the incoming TCP
packet differs from the sequence number that is expected to
come next. When receiving an RDB packet containing both old
and new data, the sequence number of the first byte does not
match the expected sequence number, which means that delayed
ACKs are disabled as soon as an RDB packet is received.

Consequently, an RDB sender can expect to receive one
ACK per RDB packet sent, and every incoming ACK that
acknowledges multiple packets is a loss indicator. Thus, we
have implemented this method for detecting packet loss in the
new RDB implementation.

This loss detection method produces some false positives,
such as when reordering has occurred. When loss has been
detected by the detection method, TCP enters CWND reduction
state. These false positives cause the CC to be more restrictive
towards RDB-enabled streams, which can only affect competing
traffic positively.

Duplicate selective acknowledgement (DSACK) enables the
receiver to inform the sender of duplicate received data seg-
ments. When DSACK is enabled on an RDB-enabled stream,
the redundant data bundled with newer packets causes the
receiver to populate a TCP option field with the range of already
received data. It is possible to use this information to accurately
identify packet loss, because a packet loss is represented by the
lack of a DSACK range in the incoming ACK.

2) PIF-based thin-stream classification: Applications that
generate thin streams are very diverse, and so is their traffic, as
exemplified by Table 1. Identifying streams that are thin is not a
simple task. In a study [12], several indicators were established
to identify and classify thin streams: PIFs, ITT, payload size,
and the stream duration.

Traditionally, streams that do not send enough data to trigger
fast retransmit have been considered thin. Mechanisms like ER
[5] and RTOR [7] are only enabled when the number of PIFs
is less than four, as such streams will not produce the three
dupACKs required to trigger fast retransmit. We call this hard-
coded limit Static PIF limit (SPIFL).

Such an SPIFL can hardly ever be exceeded in the low-
latency environment of a data center, while even large limits
are easily exceeded on high-latency satellite links.

By establishing the minimum ITT as a boundary for dis-
tinguishing streams that are thin from those that are not, it is
easier to distinguish the applications that deserve to benefit from
thin-stream mechanisms from those that do not. Therefore, we
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Fig. 2: Example of DPIFL for different minimum ITT values

propose a method that utilises a Dynamic PIF limit (DPIFL),
which is dynamically calculated based on a the application’s
sending rate and the network RTT.

An RDB implementation must first select a fixed lower
ITT limit ITTmin. Then, the DPIFL is calculated dynami-
cally as a function of the flow’s RTT, which ensures that
streams are treated similarly in differing network environments.
The DPIFL-based thin-stream detection method calculates the
DPIFL as RTTmin

ITTmin
, where RTTmin is the minimum RTT value

observed over the lifetime of the connection, and ITTmin is a
static limit defining the minimum allowed ITT that still permits
a stream to use RDB. In other words, ITTmin is the limit for
when a stream is identified as thin.

Figure 2 illustrates the DPIFL calculated using a few selected
ITTmin values. How to choose the minimum ITT value is still
an open question that would benefit from extensive evaluations
over a large number of Internet hosts with a wide range of
different RTTs. In our experiments, we have chosen to evaluate
DPIFL10 and DPIFL20. The choice of 10 ms as our lowest
evaluated ITTmin value was derived from the justifications in
RFC 4828 [13], where such a limit is imposed to distinguish
semi-greedy flows from small-packet flows. An important con-
sideration is to allow the RDB mechanism to be active for
higher RTT connections where having to retransmit would hurt
the most. Setting a hard limit of less than four packets in
flight would effectively prevent that. We also want to make
sure that we don’t use a too high ITTmin as that would turn
the mechanism off for many target interactive applications as
we can see from table 1 in section I.

IV. EXPERIMENTAL EVALUATION

A. Evaluation metrics

We define the following metrics to measure the effect of
RDB: ACK latency and TCP friendliness. The ACK latency
quantifies the reduction in latency from the viewpoint of the
sender. The TCP friendliness quantifies the penalty incurred on
competing traffic by the RDB mechanism.

1) ACK latency: As the main goal of RDB is to improve
the latency for thin streams, the main metric we use for our
evaluations is latency. The end goal is to reduce the application-
layer latency: the time interval between the pushing of a
segment of data to the network stack by the application on the
sender-side, until the application in the receiving end is able to

read the data. However, as we currently do not have a good way
of measuring the application-layer latency directly, we measure
the ACK latency. The ACK latency is the time interval between
the sending of a TCP segment onto the network by the sender,
until an ACK covering the segment is received by the sender.
This way of measuring latency, however, hides the sojourn time
caused by the sender buffering segments before it is able to send
it out on the network, as we explain in detail in section V-B.

2) TCP friendliness: The TCP friendliness metric expresses
how well the RDB modifications play with regular (non-RDB)
TCP flows. Because RDB bundles previously sent segments that
are unacknowledged, it sends more data per segment. Therefore
we consider the effect this has on competing traffic.

The traditional definition of a TCP friendly network stream is
one that does not exceed its fair share of the bandwidth when
competing with other flows for the resources of a common
bottleneck. This paradigm, however, does not consider the case
where bandwidth is not the limiting factor for a stream, as is
the case for thin streams [14]. We have included the impact
that RDB has on the latency of competing thin streams in
our evaluations, in addition to the impact on the throughput
of competing traffic, both thin streams and cross traffic.

B. Testbed setup

All the experiments were performed in a lab testbed using
Linux Debian 7 machines. The testbed was set up with three
senders and one receiver, as well as a dedicated router and a
network emulator as depicted in Figure 3. The outgoing link of
the router has reduced capacity by using a software rate control,
in order to make it a shared bottleneck between the senders.

RTT Emulator

RDB sender

TCP sender

Cross traffic sender

Receiver

Rate limited link

Fig. 3: Testbed network topology

One of the sender hosts is used to generate greedy cross
traffic to create congestion over the bottleneck. The two thin-
stream senders are running Linux kernel version 3.16, where
one is using our RDB implementation, and the other is using
Linux TCP NewReno with recommended low-latency options1

for comparison. TCP NewReno is used instead of the default
TCP CUBIC, as NewReno has been shown to be the best choice
of CC for thin streams [1]. The two thin-stream senders are
also modified to use functionality from before version 3.16
of the Linux kernel to determine when the CWND should be
increased. Recent changes to the Linux kernel [15] have made
matters worse for thin streams by making application-limited

1Nagle’s algorithm is disabled, TLP and ER are enabled on the senders.



streams unable to increase their CWND after loss recovery, and
consequently remain in a constant congestion-limited state.

Rate control is implemented using tc-htb on the router,
and the RTT emulation is accomplished by configuring netem
on a dedicated host. We also use this netem instance to cause
random loss events in our first experiment. We have followed
a proposed set of guidelines for designing a testbed [16],
including disabling any offloading mechanisms on the network
interfaces.

C. Experiments

We have performed three experiments with different config-
urations, where we measure the reduction in latency by calcu-
lating the ACK latency, and evaluating the TCP-friendliness
by comparing the achieved goodput of other streams when
competing with RDB.

1) Latency tests with uniform loss: We designed a set of
tests in order to evaluate the effect RDB has on the latency of
each data segment, and especially how it alleviates the HOLB
issue.

2) Redundancy level tests: The second experiment is de-
signed to test the effects of RDB in a more realistic scenario.
We use two thin-stream senders in order to compare RDB-
enabled thin streams to thin streams without RDB. We use
the third sender to generate greedy cross traffic through the
same network path, in order to cause congestion on the shared
bottlenecked link.

This experiment evaluates how the number of outstanding
segments RDB is allowed to bundle affects the performance
of both RDB-enabled streams and competing streams. It is a
form of fairness test to show that a limitation on the level of
redundancy is needed to avoid excessive bundling of redundant
data.

3) TCP fairness tests: The final experiment is designed to
test how TCP friendly RDB is. This test is a form of fairness
test where we attempt to misuse the RDB mechanism in order
to get an unfair share of the bandwidth. This is done by using
a transmission pattern that tries to increase the throughput by
bundling redundant data on streams that are not thin.

V. EVALUATION RESULTS

An extensive collection of tests were performed in our lab
testbed. Table 2 shows the range of parameters we have used
for these tests. Because of space limitations, we only present a
selection of the entire set of results. In this paper, we present
the tests with an ITT of 30 ms, as this ITT corresponds with
Skype, as shown in Table 1, as well as many other VoIP
applications [2].

The payload size is 120 bytes for all our tests. We argue that
the choice of packet size is insignificant as entire packets are
lost and as long as the payload size is small enough to bundle
previous segments.

The link speed of the bottlenecked link was configured to
5 Mb/s and the network emulator was configured to create an
RTT of 150 ms. A FIFO queuing mechanism was used on the
router with a size limit corresponding to one bandwidth–delay
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Fig. 4: Excerpt from the latency tests with uniform loss. RDB-enabled
thin streams with different SPIFLs compared to thin streams using
unmodified TCP.

product, 5× 106 bits× 150× 10−3 seconds = 93, 750 bytes ≈
63 MTU-sized packets. The duration of all the tests was set to
5 minutes.

The measurements were taken by running a packet sniffer on
all the sender and receiver hosts. We also calculated the exact
packet loss by comparing the number of TCP segments captured
in the sender-side filter with the number of segments captured in
the receiver-side filter. Throughput was calculated by counting
the number of bytes seen on the receiver-side packet trace
for each one-second interval. Goodput was calculated in the
same way, except headers were stripped and only new data
was counted.

A. Latency tests with uniform loss

In the first experiment, a single user was configured to
generate 20 thin streams with different ITTs and segment sizes.
In order to avoid the unpredictability of loss caused by network
congestion, we configured the network emulator netem to
induce different uniformly distributed loss rates. The RDB
mechanism was tested with different PIF limits, both SPIFL
and DPIFL. The performance of RDB was further compared
with the regular TCP thin streams.

The ACK latency results presented in Figure 4 show the
cumulative distribution function (CDF) of ACK-latencies of
two selected tests from this experiment. The test scenario is
as follows: 20 thin streams producing a segment of 120 bytes
every 30 ms. In order to avoid ITT synchronization [17], a
randomly chosen variable from a normal distribution was added
to the ITT for each individual stream. In the two tests, we used
RDB with SPIFL3 and SPIFL7, respectively. We also included a
regular TCP thin stream as a baseline reference. In this selected
scenario, the loss rate was configured to 10% with uniform
distribution. This high loss rate was chosen to emphasise the
latency benefits of RDB, which become more apparent with
higher loss rates. Periods of such high loss may frequently
appear, for example in wireless networks experiencing noise
or media contention.

Figure 4 illustrates how TCP thin streams suffer from HOLB,
where lost segments impact the following segments causing the
"staircase" pattern seen in the CDF. Each step aligns with an
ITT interval because the n-th segment following a lost segment



Latency tests Redundancy level tests TCP fairness tests
Loss rate (%) 0.5, 2, 5, 10 - -
Cross traffic streams (#) - 5 3, 5, 7, 10, 13
TCP Reference streams (#) 20 5, 10, 16 3, 5, 7, 10, 13
RDB streams (#) 20 5, 10, 16 3, 5, 7, 10, 13
ITT (ms) 30, 50, 75, 100 10, 30, 50, 75 5, 15, 30
Payload (B) 120 120 400
PIF limit SPIFL3, SPIFL7 DPIFL10, DPIFL20 DPIFL10

RDBlim ∞ 1, ∞ ∞

Table 2: Parameters for the testbed experiments. For the latency tests a uniformly random loss rate where configured, whereas for the redundancy
level tests and fairness tests loss were caused by competing greedy cross traffic streams.
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Fig. 5: Excerpt from the redundancy level tests. RDB-enabled thin streams with different levels of redundancy. Note the baseline TCP reference.
The network RTT is configured to 150 ms.

will have an ACK latency that is at least RTT + n× ITT. As
many thin streams suffer from the inability to retransmit before
an RTO occurs, the duration of the RTO-timer also becomes
significant and adds to the delay [2]. If a retransmitted segment
is lost, the increase in delay is even more significant due to
exponential back-off [2].

In the scenario depicted in Figure 4, the thin streams, having
an ITT of 30 ms (1/5th of the RTT), can have as many as five
PIFs at any given time. We see that at around 300 ms, twice
the RTT, there is a significant "step" in the ACK latency CDF
for the baseline TCP thin streams, caused by a fast retransmit
being triggered and the ITT aligning with the RTT. While the
same "step" occurs for RDB SPIFL3, it is less prominent.
This is because RDB SPIFL3 has reduced the number of
required retransmissions by having already bundled some of
the segments that are lost, and thus less segments are affected
by HOLB.

When the PIF limit is higher than the actual number of PIFs,
RDB is more efficient because it is able to bundle more often.
RDB with SPIFL3, is only allowed to bundle when it has less
than three packets in the pipe, which in this scenario only occurs
after loss recovery. With SPIFL7, RDB is allowed to bundle
whenever it experiences loss. When it is able to bundle, RDB
reduces the effect of HOLB drastically. Where the aggregated
97th percentile for the TCP reference streams is 775 ms, it is
551 ms for RDB streams with SPIFL3 and only 183 ms for the
RDB streams with SPIFL7.

B. Redundancy level tests

In this experiment, the performance of RDB-enabled thin
streams was compared to the performance of baseline TCP thin
streams. Each thin-stream sender generated a certain number of
streams with a fixed ITT and segment size. One sender used
RDB and the other unmodified TCP. For all our tests, we also
conducted a reference test using only unmodified TCP thin
streams, labeled TCP Reference. To ensure a certain amount
of packet loss and contention, we ran five greedy TCP cross-
traffic streams over the bottleneck link to cause congestion.

Figure 5 depicts two of the tests from this experiment,
showing 10 RDB-enabled thin streams competing with 10
regular TCP thin streams. The reference test is also included in
the figure, in order to illustrate how the competing baseline TCP
thin streams are affected when RDB bundles more aggressively.
Both types of thin streams produce segments of 120 bytes
every 30 ms. The RDB streams used DPIFL10. The difference
between the two depicted tests is that 5a limited the number of
previous segments to be bundled to one (RDBlim=1), while 5b
had no such bundling limitation (RDBlim=∞).

We see in Figure 5 and in Table 3, that the effects of
RDBlim=1 on competing traffic is small: The TCP thin streams’
ACK latencies and loss rates are almost identical to the ACK
latency values and loss rates of the TCP Reference streams,
even though the RDB-enabled streams send twice the amount
of data as the baseline TCP thin streams. This is because
a bundling limitation of a single outstanding segment allows
RDB to recover from random loss events, e.g. loss caused by a



Stream type Segs sent Loss ratio Total data Rdn data Rdn ratio

TCP Reference 96.1 k 1.25 % 12 MB 147 kB 1.21 %
TCP vs. RDBlim=1 96.2 k 1.28 % 12 MB 153 kB 1.24 %
TCP vs. RDBlim=∞ 87.2 k 2.48 % 12 MB 317 kB 2.54 %
RDBlim=1 91.8 k 1.34 % 24 MB 12 MB 50.0 %
RDBlim=∞ 80.3 k 2.58 % 75 MB 63 MB 83.9 %

Table 3: Results depicted in Figure 5: Thin TCP streams compet-
ing against RDB with a bundling limit of one previous segment
(RDBlim=1) and RDB with no bundling limit (RDBlim=∞)

competing greedy stream actively probing for more bandwidth,
while keeping the level of redundancy to a minimum.

When RDB bundles more aggressively, more redundant data
is sent, contributing to congestion and considerably increased
average delay. This effect is reflected in the increase in the
queuing delay, which is illustrated by the less steep curve for
both RDBlim=∞and TCP, compared to the TCP Reference in
Figure 5b.

Further, higher packet loss rates for the TCP thin streams are
visible in Table 3. The increase in packet loss affects the ACK
latencies, as depicted in Figure 5b. The 90th percentile of the
aggregated ACK latencies for the TCP Reference thin streams is
230 ms, and 246 ms for the TCP thin streams competing against
streams using RDBlim=1 and 421 ms for the thin streams com-
peting against streams using RDBlim=∞. In addition, CWND
will decrease for the streams when experiencing higher loss,
leading to additional sojourn times because more segments are
held back at the sender before being sent. It is important to note
that this extra delay increases the application-layer latency, but
is not reflected in the ACK latency values shown in Figure 5b.

Since RDBlim=∞ uses DPIFL10, it is allowed to bundle as
long as there are less than 15 PIFs. However, more redundant
data can cause more congestion, and this leads to even more
packet loss. As long as there is enough available space in the IP
packets, RDB with the loose bundling restrictions can do more
harm than good. Table 3 illustrates this, where we see that the
redundant data amounts to almost 84% of the total transmitted
data by the streams using RDBlim=∞. RDBlim=∞ is being
so redundant that it generates almost six times the amount
of network traffic of that of the TCP thin streams without
actually getting any more useful data through. Nonetheless,
it is interesting to note that despite this increased congestion,
RDBlim=∞ is able to achieve considerably lower latency values
than the regular TCP thin streams, as we see in Figure 5b. The
values below the 90th percentile are much lower for RDB than
for the TCP thin streams.

It is even more interesting that RDB in both tests completely
alleviates the extreme latency values experienced by unmodified
thin streams, as shown in the Figure 5 as the values above the
90th percentile. These are the delays that severely impacts the
latency experienced by the user [1] [2] [8].

C. TCP fairness tests

In the final set of experiments, we tested whether or not
we are able to use RDB in such a way that we get an
unfair advantage over competing traffic. Instead of generating
thin streams, the senders produced application-limited streams

having a considerably higher data rate than what we would
consider a conventional thin stream to have. We call these not-
so-thin streams isochronous streams (ISOCH), meaning that
they are still application limited rather than CWND limited
due to their transmission pattern. These ISOCH streams try to
achieve higher throughput by sending as much data as possible
while still leaving space in each packet for bundling redundant
data.

To be able to directly compare the TCP fairness, we include
the greedy TCP streams in our comparisons as well. All three
senders start an equal number of competing streams, and we
compare the achieved throughput and goodput for each type of
stream.

Figure 6 shows the results of one of these tests. Five greedy
TCP streams competed against five ISOCH TCP streams and
five RDB-enabled ISOCH streams. Each ISOCH stream of both
types produced segments of 400 bytes every 30 ms. As ISOCH
streams are application-limited and therefore send less than
their "fair" share, both types of ISOCH streams achieve their
optimal goodput. With no bundling limitation and an attempted
transmission of 400 bytes, the RDB-enabled ISOCH streams
are able to bundle up to two redundant segments with each
packet. We see this reflected in the increased throughput.

The impact of RDB-enabled streams on competing traffic
is limited, even when there is no bundling limit, because RDB
only allows bundling with packets that are already scheduled for
transmission. In other words, RDB does not send any additional
packets, only bigger packets. When an RDB-enabled stream is
limited by the CWND, i.e. the stream exceeds its fair share, the
segments are held back before transmission leading to fewer
and maximum segment sized packets. This buffering before
transmission effectively leads to a temporary disabling of the
RDB mechanism, because there is no space left for bundling.
Bundling will only resume when the stream is no longer limited
by network congestion.

With our testbed setup, tests having ITT intervals lower than
30 ms show that RDB is unable to bundle. Attempting to send
larger segments also limits how much RDB is able to bundle,
because less space is available.

RDB is only effective as long as the stream is application
limited. An inherent property of application-limited streams is
that they do not use their fair share of the available bandwidth.
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Fig. 6: Excerpt from the TCP fairness tests. Aggregated throughput
and goodput for competing streams using different TCP variations.



From this, we argue that RDB can not be misused to gain
an unfair advantage over competing traffic. Using RDB will
cause more data being sent, which may contribute to higher
congestion on low capacity networks or already saturated links.
However, this is true for any transport protocol.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the RDB mechanism to
improve the service that TCP provides for interactive ap-
plications that generate only intermittent small data packets.
By proactively retransmitting unacknowledged data segments,
RDB is able to significantly reduce latencies caused by HOLB
and retransmission delays, even in the presence of aggressive
cross traffic. We have extended the original RDB idea [3] by
implementing loss detection in order for RDB-enabled streams,
with existing CC algorithms, to react properly to network
congestion in the same way as unmodified TCP.

In addition to implementing loss detection, we discussed the
possibility of including a definition of how limited, or how thin,
a stream must be in order for RDB to be allowed to bundle.
Defining what a thin stream is, however, is still an open issue
[12]. In our experiments, we used different ITT-to-RTT ratios
(DPIFLs) for defining when a stream was thin enough for RDB
to be allowed to bundle. Other stream characteristics could be
used, such as segment sizes or data rate, which would alter how
a stream is classified as thin. We argue, however, that as long
as the stream is application-limited, it does not contribute to
congestion the same way greedy streams do because it does not
exceed its fair share of the bandwidth. If the stream experiences
loss and consequently becomes limited by the CWND, RDB is
effectively disabled due to sender-side transmission buffering.
Only after the CWND grows, and segments are no longer held
back, will RDB be able to bundle again. Compared to other
proactive latency-reducing mechanisms, such proactive double
transmission [4] or TCP with FEC [10], [11], RDB transmits
redundant data without generating additional packets.

Extensive evaluations was performed in order to determine
the appropriate trade-off between the level of redundancy and
the reduced latency experienced by the thin streams using
RDB. We show that in congested scenarios, where the com-
bined throughput of the RDB-enabled thin streams constitutes
a significant proportion of the total throughput, imposing a
limitation on the level of redundancy can be beneficial to avoid
further congesting the network. Our findings show that even
with a bundling limitation of one unacknowledged segment
(RDBlim=1), RDB still alleviates HOLB significantly. When
bundling only one segment, RDB is able to recover from
random loss events caused by competing traffic while keeping
the redundancy to a minimum. This yields a reasonable trade-
off between latency reduction and the redundancy.

A candidate for further research is to include the size of
the segments produced by the application and the ITT of the
application when considering the redundancy level. Adjusting
the redundancy level according to the stream’s experienced
congestion is another such candidate. We argue that higher
redundancy levels can be justified in scenarios with very thin

streams or with extreme packet loss, not caused by congestion,
as this may still be considered TCP fair.

Server administrators that expect a large amount of thin
stream traffic, such as online game providers or web server
administrators, must consider the impact the redundant level
has on their outgoing gateways. Based on our findings, we
recommend using a bundling limitation of one segment as a
conservative default setting. For a home user with a small num-
ber of RDB-enabled thin streams, RDB will have a negligible
effect on congestion.

We argue that our improved RDB mechanism can be consid-
ered TCP-friendly and safe to deploy. Being a sender-side-only
modification to TCP, RDB can be incrementally deployed. This
makes it a suitable candidate for widespread deployment.
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