Developing simulation technology to solve biomedical
problems: analysis, implementation and applications

Marie E. Rognes
Center for Biomedical Computing

Simula Research Laboratory

Eleonora Piersanti, Andre Massing, FEniCS and Dolfin-adjoint teams

/44

Outline

1. Introduction to CBC and BioComp at Simula
2. Robust numerical methods
» Fictitious domain method for Stokes equations
» Mixed finite elements for multiple-network poroelasticity
3. Automated software for solving partial differential equations

> Introduction to the FEniCS Project
» Automated goal-oriented error control
» Dolfin-adjoint: automated derivation of discrete adjoints

)

44

Introduction to CBC and BioComp

44

Center for Biomedical.Gomputing™ -

M= Gcom
A pute_mass
B - G oomPute Slitinese alrElocly stemen)
D= e ©_div_matrix(velocity ot SMEN
ComPute_stifiness_matrixtprzssurs wiehcsilre-Slemen)
T=1,dt=0 1
while't < T
t=t+at
f = G.compute_source_vector(rhs)
C = G.compute_convection_matrix(velocity_element, v_prev)

A1 = M + dt*A +dt-C

c1 = MLPrec(A1) 5
srener — precondBiCGStab(prect, A1 v. 1 1053
X | -

35 hi g 106 ‘

g = (10140 B L conjoranunprec) P
hi, iter =
5 ='v - dt*B.tphl
p=(Mp+ at*Ap)phi

|~

CENTER FOR CARDIOLOGICAL INNOVATION

Host institution:
Dept of Card.
Oslo University Hospital, Rikshospitalet

Partners:

Scientific:

* Simula Research Laboratory
* UoO

Industrial:

* GE Vingmed Ultrasound AS
* CardioSolv LLC

* Kalkulo AS

* Medtronic

Oslo |
+ universitetssykehus

S ® = Centrefor ‘
1 Research-based -

Innovation
=

Purpose:

»
*next generation of ultrasound systems L .
*advanced patient-specific computer simulation
*multi-modality visualization techniques
swireless ECG in ultrasound ‘;
*optimizing lead placement CRT w
Sudden Cardiac Death

Heart failure

Sirasbund and 08

2N
L‘l:’}ﬁ

5/ 44

Developing the next generation simulation technology to

solve problems affecting human health and disease
The Biomedical Computing department @ Simula

[Massing et al., Numer. Math., 2014]

(b) Center for Biomedical Computing

s Norwegian Centre
of Excellence

6/44

Robust numerical methods

~

44

Cut finite element methods for viscous flow
(with A. Massing, A. Logg, M. G. Larson)

44

Multi-mesh finite element methods offers geometrical
flexibility and robustness

[Johansson and Larson, 2013; Massing et al, 2013, 2014, 2015]

9/44

Classical stabilized finite element formulation of Stokes

Find the velocity u : Q ¢ RY — R? T =09
and the pressure p: 0 — R s.t:
—Au+Vp=f inQQ,
V-u=0 inQ
u=g onl,

Stabilized FEM over conforming mesh

Find up € Vi, and pp, € @y, such that
a(u}wv) + b(uh7q) + b(l},ph) - Ch(pha q) = Lh(U,q)

for all v € V3, and ¢ € @, where a(u,v) = (grad u, grad v)q and
b(u,v) = —(divu, ¢)q and

Bo Y he(lpllal)r if Qu=P°(T)

Feo;, T

B1 Z h3(grad p,grad ¢)r if Q; = PY(T)
TeT

cn(p,q) =

10/ 44

Stabilized Nitsche finite element formulation of Stokes
Find uy, € V}, and py, € Qp, such that

an(un,v) + by (un, q) + by (v,pn) — cn(pn, 9) +J = Gin(v, q)
for all v € V}, and ¢ € @, where

an(u,v) = (grad u, grad v)q — (Opu, v)r — (Opv, w)r + Y{(h ™ u, v)r
bu(u,q) = —(divu, g)o + (n - u,q)r

and J = J(up,pr,v,q) = i(up,v) — j(pn,q) are fictitious domain terms.

=00
X!
Q 0*
VAl
~ > A
T T

11/44

The fictitious domain method can be made robust by
adding penalties acting in the boundary zone

Q*

T*

in(unson) = B2 Y he([Onunl, [Bnon))r,

FeF;

Bo Y he(lpnl, lan])r if Qn = P°(T™),
FEF;:

Bs Y hp([Onpnl, [nanl)r i Qu = PY(T™).

FeF;

Jn(Pnsan) =

12 /44

Boundary zone penalties allows for reconstruction of norms
on the entire background mesh 7~

7 T — 00
/
Q0 %
T T*
IVorlla S IVunld+ D he(0nvn], [Onon])r S [Vorllge ¥ on € Vi(T),
FeFy
lanllt- < llanllg+ > he(ln-anls [0 al)r S llanlld- V¥ an € PO(T),
FeFg

lgnllé: S llanllat D bE([0nanl, [Onar])r < lanlla- ¥ an € P(T).

FeF;

13 /44

The proposed fictitious domain method satisfies an optimal
a priori estimate

Theorem

Let (u,p) € [H*(Q)]? x H(Q) be the solution of the Stokes
problem and let (uyp, pp) be the discrete solution of the stabilized

Nitsche fictitious domain formulation. Then

H' error

I1(w = un, p = pu)lll S b (Jul20 + IPlLa) -

o
%/
L

o e AL1l
+ + B:1.20
> > C:121

10°

[Massing, Logg, Larson, R. (2012)]

14 /44

The condition number can be bounded independently of
the location of the boundary

There is a C' independent of the position of I', s.t. the condition
number of the stiffness matrix A associated with the Nitsche
fictitious domain method satisfies

Kk(A) < Ch 72,

e 3-0.000
1011 : o—e (3=0.001 |
oo (3=0.010
o0 (3=1.000

0.00 0.02 0.04 0.06 0.08

15/ 44

Mixed finite element methods for porous media
(with J. Lee, E. Piersanti, K.-A. Mardal)

16 /44

The cerebrospinal fluid (CSF) circulates in the
subarachnoid space around the brain and possibly within

Arachnoid granulation

Subarachnoid space

Meningeal dura mater
Choroid plexus A 9

|
| Right lateral ventricle

Interventricular (\
foramen

Median aperture

Central canal

[Image source: Wikimedia]

17 /44

Paravascular pathways facilitate CSF bulk flow through the

brain parenchyma

lar infusion Intracisternal injection

DAPI
Merge i

[Iliff et al., A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of

Interstitial Solutes, Including Amyloid-/3, Sci Trans Med, 2012]

18 /44

Paravascular pathways facilitate CSF bulk flow through the
brain parenchyma

B The glymphatic pathway

Inflow E Clearance Para-arterial influx Paravenous clearance
H ——

Interstitial fluid and solute clearance

B aore s Para-arterial influx @ interstitial solutes
* Water flux == Paravenous efflux — Soluts clearance

[Iliff et al., A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of

Interstitial Solutes, Including Amyloid-3, Sci Trans Med, 2012]
19/ 44

Multiple-network poroelastic theory (MPET) is a
macroscopic model for poroelastic media with multiple
fluid networks

[Tully and Ventikos, Jour. of Fluid Mech. 2011]

20/ 44

The multiple-network poroelasticity theory extends on
Biot's equations

Find uw = u(x,t) and the pressures p, = ps(z,t) fora=1,..., A
such that
—div(c™) + Z ag gradp, = f, (2)

CaPa + agdiva —div Ky gradpg + Sq = gay, a=1,..., 4 (3)

Fluid is transferred between networks, e.g.:

Sa = Z Sb—as Sb—a = §ab(pb - pa):
b

Elastic tissue deforms linearly but potentially anisotropically, e.g.:
o (u) = Ce(u),

[Bai, Elsworth and Roegiers, Water Resources Research, 1993; Tully and Ventikos, Jour Fluid Mech., 2011]

21 /44

Standard finite element formulation is not robust

Find u € Vj, C [HE(Q)]? and p, € Qp, C [H(Q) fora=1,..., A

such that

(0", gradv) + Z(aapa, divv) = (f,v)

(CaPa + g div i + Sq, qa) + (K4 grad pa, grad ¢a) = (gas qa)

forallv eV, q € Qp.

Relevant parameter regimes

> 500 < A < 10° (Pa)
» K e (10710,1077) (m—4)
’ (Ns)
» S —0, ¢, — 0.
> h,At =0
[Ben-Hatira et al, J. Biomed. Sci. and Engrg. (2012);

Vardakis et al, Med. Engrg. & Phys. (2016)]

Symptoms
» Loss of convergence as
A— 00

» Oscillations for large
variations in K

» Condition number growth
(K, A, At)

22 /44

By introducing a total pressure, we obtain a more
attractive formulation

Find u € Vj, € [H3(Q)]? and p, € Qp, C [H(Q)¥ fora=1,..., A
and p € Qp, such that (a, = 1 for brevity)

- Adivu+ Y pag) =0
(2pae(u), grad v) + {p, div v) = (f,)
) 1.)
<Capa - X (p - Zpa> + Sa, Qa> + <Ka grad p,, grad Qa> = <ga Qa>
a

for all v € Vi, qu € Qn, q € Q.

[Lee, Piersanti, Mardal, R., in preparation, 2016]

23 /44

The total pressure formulation restores convergence and

allows for robust block preconditioning

A=10°

10°% — old formulation

—— new formulation
—

— R

K2

8

16

32

64

10°

10°

1073
107°
1078

56
60
60
61

57
61
61
61

56
65
65
64

55
68
65
65

log(n)

Smooth test case with A = 2,
Crank-Nicolson in time,
parameter-dependent block
preconditioner, PETSc fieldsplit
solver.

07 0 T

103

10°

1073
107°
1078

68
70
71
71

72
72
73
72

73
73
72
72

73
73
73
93

10°

[Lee, Piersanti, Mardal, R., in preparation, 2016]

109

1073
107°
1078

78
52
93
54

52
54
54
52

53
50
o4
52

o4
o4
95
55

24 /44

Automated software for solving partial differential equations

The FEniCS Project

26 /44

y

& Fenics
PPOJECT

Contributing ~ Citing ~ Support

The FEnICS Project is a collection of free software with an extensive list of
features for automated, efficient solution of differential equations.

Through this web site, you can learn more about the project and learn how
to obtain and how to use our software. We'd be delighted to offer support in
case you need it, and encourage contributions from our users.

Download ﬂ

FERICS 1.6.0

Debian/Ubuntu/Mac/Windews; J
#

[fenicsproject.org]

Dolfin-adjoint wins 2015"Wilkinson Prize

» FEniCS is an international open source software and research project
» FEniCS is user-friendly: estimated 10% — 10* users world-wide

> FEniCS is efficient: parallel performant up to (at least) 25000 cores.

27 / 44

FEniCS code can be readable, scale with mathematical

complexity, and provide high-performance

Stokes with nonlinear viscosity

Given temperature T, find velocity u and
pressure p such that

—div(2v(u,T)e(u) +pI) =RaTyg
divu =0

in Q with (for instance)

v(u,T) = e (u - u).

Finite element formulation

Given temperature T, find
(u,p) € W =V x @ such that

/QQV(U,T)e(u) ~e(v) +div(v) p
+div(u)g—RaTg-vdx =0

for all (v,q) € W.

from dolfin import *

Define viscosity
def nu(u, T):
return exp(-10.0xT)*dot (u, u)

Define element spaces
mesh = Mesh(...)

V = VectorFunctionSpace(mesh, "CG", 2)
Q = FunctionSpace(mesh, "CG", 1)

W=V x*Q

Define functions

T = Expression("...")

W Function (W)
(u, p) = split(w)
(v, q) = TestFunctions (W)

Define equation

F = (2*nu(u, T)*inner(eps(u), eps(v))
+ div(v)*p + div(u)*q
+ Ra*T*v[1])*dx

bcs =

Solve F = 0 w.r.t w
solve(F == 0, w, bcs)

28 /44

FEniCS provides a wide range of (mixed) finite element
spaces

from dolfin import *

Define viscosity
def nu(u, T):
return exp(-10.0xT)*dot(u, u)

Define element spaces

mesh = Mesh(...)

V = VectorFunctionSpace (mesh, "CG", 2)
Q = FunctionSpace(mesh, "CG", 1)
W=1V=*Q

Define functions

T = Expression("...")

w = Function (W)

(u, p) = split(w)

(v, q) = TestFunctions (W)

Define equation

F = (2*nu(u, T)+*inner(eps(u), eps(v))
+ div(v)*p + div(u)*q
+ Ra*Txv[1])*dx

becs =

Solve F = 0 w.r.t w
solve(F == 0, w, bcs)

Kirby 2004; @lgaard, Logg, and Wells 2008; R., Kirby and Logg 2009
29 / 44

from dolfin import *

Define viscosity
def nu(u, T):
return exp(-10.0%T)*dot(u, u)

Define element spaces
mesh = Mesh(...)

vV = VectorFunctionSpace(mesh, "CcG",
Q = FunctionSpace(mesh, "CG", 1)
W=1V=xQq

Define functions

T = Expression("...")
w = Function (W)

(u, p) = split(w)

(v, q) = TestFunctions (§f)

Define equation

F = (2*nu(u, T)*inner (eps(u), eps(v))
+ div(v)*p + div(u)*q
+ RaxT*v[1])=*dx

BT

Solve F = 0 w.r.t w
solve(F == 0, w, bcs)

Kirby and Logg 2006; Alnaes 2012, Alnzs et al. 2014

FEniCS provides an expressive form language close to
mathematical syntax

Language for variational forms

Generality Efficiency

Code Generation

30/ 44

FEniCS provides automated form assembly over finite
element meshes and numerical linear algebra

from dolfin import *

Define viscosity
def nu(u, T):
return exp(-10.0%T)*dot (u, u)

—
Define element spaces / ii
mesh = Mesh(...)

vV = VectorFunctionSpace(mesh, "CcG", 2)
Q = FunctionSpace(mesh, "CG", 1)
W=V=*Q

d assembly

Define functions

T = Expression("...")

w = Function (W)

(u, p) = split(w)

(v, q) = TestFunctions (W

Define equation High performance-linear algebra
F = (2*nu(u, T)*inner (¢gps(u),
+ div(v)*p + div(f)*q
+ RaxT*v[1])=*dx
bcs =

P mm mm mE

Solve F = 0 w.r.t w
solve(F == 0, w, bcs)

Logg and Wells, 2010; Hake, Logg and Wells 2012
31 /44

Automated goal-oriented error control

32 /44

What is goal-oriented error control?

The mathematician’s viewpoint

Input
> PDE: find u € V such that
a(u,v) = L(v) or F(u;v)=0 VYoveV

> Quantity of interest/Goal: M :V = R

» Tolerance: ¢ >0

Challenge

Find V;, C V such that |M(u) — M(up)| < € where up, € Vj, is
determined by

a(up,v) = L(v) or F(up;v)=0 YoeV,

33/44

FEniCS provides automated goal-oriented error control for

stationary variational problems

Find U, C U, V}, C V such that |M(u) — M(up)| < € where
uy, € Uy, solves
F(up;v) =0 YveV,

— M(up) = M(u) te

/

import dolfin
solve(F == 0, u, bc, tol=..., M=...)

34 /44

Our approach mimics, generalizes and automates the

classical, manual approach
[M(u)=M(up)| = =F(up; z) = r(2)

1. Compute adjoint

F™(up; 2p,v) = M (up;v) Vo eV,
Zn > 2

2. Automatically derive and
compute residual form

r(v) =Y (Rr,v) + (Ror,v)or
T

3. Evaluate error estimators
nn = 7(Zn)
nr = (R, w)r + ([Ror], w)or
w = Eh — Hhih

e \
@ + W
N <€
{nr}rer,

Note

Automated form manipulations and
finite element operations are crucial
to each step

35/ 44

Goal-oriented adaptivity gives significantly higher accuracy

at significantly lower cost

Flosa) = (S(@arad o) 5= G W = o (3012 = 1112 + 57 (@t Py 7

M

- /r S(a)2dX

T
)
P
»
5
i o7 it it i
#dofs

1)) + (det F) (apIn o+ b(1 — ¢) In(1 — &) + co(1 —) + cru)

Mesh and function space
mesh = UnitSquare(12, 12)
V = VectorFunctionSpace (mesh, "CG",

Deformation
deformation = Expression(("x[0]", "x
position = interpolate(deformation,

Deformation gradient and its Jacob.
= grad(position)

F = variable(F)

detF = det(F)

RS

Volume fraction definitions

1)

1)
V)

ian

phi_I = 0.8 # Reference volume fraction

phi = phi_I+inv(detF) # Volume fract

Elastic potential

ion

W_E = 1.0/2*((inner(F, F) - 2) + (detF#x(-2) - 1))

Flory-Huggins parameters and poten

a = 4.28001624e-05; b = 0.0428001624;
W_FH = a*phi*ln(phi) + bx(1 - phi)*1n(i-phi) + cxphix(1-phi)

Total potential
c_FH = 0.01338703463; scale = 1.e3
W = scalex(phi_I*W_E + detF+(W_FH +

Define stress-tensor
S = diff (W, F)

Define variational form
v = TestFunction (V)

B = inner(S, grad(v))+dx

Define goal (square shear stress)
M = s[0][1]+S[0][1]+*ds(0)

solve(B == 0, position, bc, tol=0.1,

tial
G =

c_FH))

M=M)

0.010354878

36 /44

Goal-oriented adaptivity gives significantly higher accuracy

at significantly lower cost

40 , . :

: +—e Uniform
o—e Adaptive

102 10° 10 1 106
#dofs

36 /44

The Dolfin-adjoint Project

37 /44

Adjoint solutions are key ingredients for pde-constrained
optimization, sensitivity analysis, error control, ...

As an example, consider the optimal control problem:
max J(u,m) while F(u,m)=0
m

Gradient-based optimization algorithms require the gradient of J

with respect to m.
dJ ou
— =Ju=—+JIn
dm om +

Define the adjoint solution z solving
EFriz=J,
Then, the derivative computation only involves one forward solve
for u and one backward solve for z independent of #m:
dJ

75— —I'm Jm
am z +

38 /44

Adjoints are highly relevant but adjoint models (code) are
considered difficult to develop

[T]he automatic generation of optimal (in terms of
robustness and efficiency) adjoint versions of large-scale
simulation code is one of the great open challenges in the
field of High-Performance Scientific Computing.

[Naumann: The Art of Differentiating Computer Programs, 2011]

Considering the importance of design to .. all of
engineering, it is perhaps surprising that the development
of adjoint codes has not been more rapid .. [l]t seems
likely that part of the reason is its complexity.

[Giles and Pierce: An Introduction to the Adjoint Approach to Design, 2000]

39 /44

A new approach to adjoint model development

Traditional approach

. . implement model by hand
discrete forward equations > |forward code

algorithmic differentiationl

adjoint code

The dolfin-adjoint approach

FEniCS system
_—

‘discrete forward equations‘ forward code

libadjointl
. . . . FEniCS system .
‘dlscrete adjoint equatlons‘ R N adjoint code

[Farrell, Ham, Funke, R., Automated derivation of the adjoint of high-level transient FE programs, SISC, 2013]

40/ 44

A novel approach to developing adjoint models for forward
models implemented in FEniCS

. . FEniCS system
|dlscrete forward equat10ns| _

libadjoint J,

. . . . FEniCS system .
|dlscrete adjoint equat10ns| R e adjoint code

Cons/Pros

The problem must be representable in the high-level language
It does not apply to legacy code.

The adjoint derivation is totally automatic (3 — 10 lines)

The adjoint is efficient

The adjoint works naturally in parallel (MPI and OpenMP)
and can use checkpointing

vV VvVvVvYyVvVvyy

[Farrell, Ham, Funke, R.: Automated derivation of the adjoint of high-level transient finite element programs,

SISC, 2013] 41 /44

A (nontrivial) example: the Cahn-Hilliard equation

Given an initial concentration ¢y, find the concentration field ¢
such that

Oc

-V -MV (df 2v2c) =0 inQ,
ot

df
dce

MV (— e2v2c) =0, Me*Ve-n=0 on 99,

f=100c*(1—¢)? c(t=0)=c¢y onQ.

42 /44

This approach to deriving and running adjoint models is
automated, efficient and verifiable

Cahn-Hilliard equation with the Willmore functional

Tttt = 1 [__T /| <1w)>2 e dt,

The adjoint computation is efficient

Runtime (s) Ratio

Forward model 103.93
Forward model + annotation 104.24 1.002
Forward model 4 annotation + adjoint model 127.07 1.22

.. also routines available for easy Taylor testing to verify correctness of
gradient.

43 /44

P. E. Farrell, S. W. Funke, D. A. Ham, M. E. Rognes
Snon0simula

The dolfin-adjoint project automatically derives and solves adjoint and tangent linear equations

from high-level mathematical specifications of finite element discretizations of partial differential equations.

ABOUT DOLFIN-ADJOINT

Adjoint and tangent finear models form the basis of many numerical techniques- su:h assensiviy analysis, pimzton. ar\d
stability analysis. However, the derivation an of

roonoisy challenging: the manual o soprosch s tme-conuming and erarone o and tradtionsl automatic d\l?even\nanon
i

0l lack robustness and
domrradjoml oves the prole by automaticallyanazingth High vl mathemticalssucture herent i e lament
level

methods.
o that of whole systems of dffrential equations. T approach ehers & e of acantags over he rcious state
of-the-art; robust hands-off automation of adoint model derivation; computational efficiency approaching the theoretical
optimum; and native paralll support inherited from the forward model.

Symbolc forward oquatons.

‘Symbolcdorwvaton (dolfiv-adioint)

< Figure: By adding a few lines of code to an
existing FENCS model, dullmradjmn(mmvu!es
angart linear and adjoint solutions, gradients

Hessian actions of avmlrary o specd
nctons, andvies these s com-
bination with sophisticated optimization algo-
vithms or to conduct stabilty analyses

Code generatn (FENCS)

Godo generation (FENCS)

The implementation of doffin-adjoint is based on the finite-clement framework FENICS. When the user runs a FENICS
model, dolfin-adjoint records the dependencies and structure of the forward equations. The resulting execution graph
stores a mathematical representation of the forward equations. By reasoning about this graph, dolfin-adjoint can linearize
the equations to derive a symbolic representation of the discrete tangent linear equations, and reverse the propagation of
information to derive the corresponding adjoint equations. By invoking the FENICS automatic code generator on these
equations, doffin-adjoint obtains solutions of the tangent finear and adjoint models, and can use these to compute consistent
first and second order functional derivatives. dolfin-adjoint also has preliminary support for the Firedrake project.

dolfin-adjoint runs naturally in parallel, and inherts the scalabilty and code optimizations of FENICS. To verify this, we
benchmarked the sensitiity analysis and generalized stabilty application examples.

Generalized stabilty example

Optmal PUs 1
e (s) 403 196 132 Forward runtime () 524 55
ot o () 591 195 125 ot rotime () 414 25
‘Adioint/Forward ratio 097 099 095 100 Adjoint/Forward ratio 0.45 047_ 0

Sensitvity analysis example

2 O

Tables: The sensitivity analysis example is inear, whil the generalized stabiity analysis example is nonlinear and converges
on average in 2 Newton-iteration per timestep. Hence the adjoint model s expected to be twice as fast as the forward
model.

‘The adioint equations depend on the forward solutions. However, stor-
ing the entie forward trajectory i infeasble for large, time-dependent
simulations. In this case, dolfin-adjoint can employ a binormial check-
pointing strategy via the revolve library. When actwated, dolfin-adjoint
ammamuy saves state checkpoints and uses them to recompute

rward states to trade off memory requirements and compu-
Ttons effcn. This allows for so\vmq) i squatonsevn o g

For instar

Figure: Visualisation of the optimal checkpoint-

107 time-steps at a cost of a 3>< slwdwm

el e g

APPLICATION EXAMPLES

Consider the time dependent heat equation
in 2x0.7),
u=g frQx (0}

U oy
i vVu=0

final time, u is the unknown temperature,

inital temperature.

) ue=Ty

with respect to the inital temperature, that is 1/ g

Iniial temperature Final temperature.

Here Qs the Gray's Klein bottl, a closed 2D manifold embedded in 30, T is the
v is the thermal diffusiity, and g is the

‘The goal is to compute the sensitivty of the norm of temperature at the final time.

206

Sensitivty

Trom dolfin import +
from dolfin_adjoint import +

Solve the forvard system
F = urvede - u_oldsvedx +
dtnusinner (grad(v) , grad(u)) sax

Apply dolfin-adjoint
m = Control(g)

1)
am compute_gradient (J, m)
- hessian(J, m)

A
Code: Implementation excerpt (the code incud-
ing th complete forward model has 37 fines)

“This topology optimization example minimizes the complance
fT+a / Va-Va,
o o

subject to the Poisson equation with mixed Dirichlet-Neumann con-
ditions

»dw(k(a)VT) = f inQ,
on o0,
k(a)VT o on a0y,
and aditional control constraints
a<Vad0<a) <1 ¥xeQ

Here Q is the unit square, T is the temperature, i the control
(alx) = 1 means material, a(x) ns no material), f is a
e, ()50 sma Yiemee R Rz
parameterization, s the volume
e Phys\cal\y e Wob\em is to find the material
distribution a that minimizes the integral of the temperature for
limited amount of conducting o

Fron dolfin import +
fron dolfin_adjoint import +

¥
a

ze=
mininize(rf, mef

£+Teax + alpharinner (grad(a) ,grad(a)) +ax
Control(a)

ducedFunctional (J, m)

thod="SLSQP", bounds=...)

s
Code: Implementation excerpt
(the ful code uses the IPOPT.
optimization package and has 56
lnes)

< Figure: Optiml material dis-
tribution a for a unit square do-
main and £ — 102

T find
inital condition that grow the most over some fiite time. The governing equations

salinity:

Navier-Stokes equations, coupled to two advection equations for temperature and

