
Developing simulation technology to solve biomedical
problems: analysis, implementation and applications

Marie E. Rognes
Center for Biomedical Computing

Simula Research Laboratory

Eleonora Piersanti, Andre Massing, FEniCS and Dolfin-adjoint teams

1 / 44

Outline

1. Introduction to CBC and BioComp at Simula

2. Robust numerical methods
I Fictitious domain method for Stokes equations
I Mixed finite elements for multiple-network poroelasticity

3. Automated software for solving partial differential equations
I Introduction to the FEniCS Project
I Automated goal-oriented error control
I Dolfin-adjoint: automated derivation of discrete adjoints

2 / 44

Introduction to CBC and BioComp

3 / 44

4 / 44

5 / 44

Developing the next generation simulation technology to
solve problems affecting human health and disease
The Biomedical Computing department @ Simula

[Massing et al., Numer. Math., 2014] [Farrell et al., SISC, 2013] [Valen-Sendstad et al, 2015]

6 / 44

Robust numerical methods

7 / 44

Cut finite element methods for viscous flow
(with A. Massing, A. Logg, M. G. Larson)

8 / 44

Multi-mesh finite element methods offers geometrical
flexibility and robustness

[Johansson and Larson, 2013; Massing et al, 2013, 2014, 2015]

9 / 44

Classical stabilized finite element formulation of Stokes

Find the velocity u : Ω ⊂ Rd → Rd

and the pressure p : Ω→ R s.t:

−∆u+∇p = f in Ω,

∇ · u = 0 in Ω

u = g on Γ,

Stabilized FEM over conforming mesh

Find uh ∈ Vh and ph ∈ Qh such that

a(uh, v) + b(uh, q) + b(v, ph)− ch(ph, q) = Lh(v, q)

for all v ∈ Vh and q ∈ Qh where a(u, v) = 〈gradu, grad v〉Ω and
b(u, v) = −〈div u, q〉Ω and

ch(p, q) =





β0

∑

F∈∂iT

hF 〈JpK, JqK〉F if Qh = P 0(T)

β1

∑

T∈T
h2
T 〈grad p, grad q〉T if Qh = P 1(T)

10 / 44

Stabilized Nitsche finite element formulation of Stokes
Find uh ∈ Vh and ph ∈ Qh such that

ah(uh, v) + bh(uh, q) + bh(v, ph)− ch(ph, q) + J = Gh(v, q)

for all v ∈ Vh and q ∈ Qh where

ah(u, v) = 〈gradu, grad v〉Ω − 〈∂nu, v〉Γ − 〈∂nv, u〉Γ + γ〈h−1u, v〉Γ
bh(u, q) = −〈div u, q〉Ω + 〈n · u, q〉Γ

and J = J(uh, ph, v, q) = i(uh, v)− j(ph, q) are fictitious domain terms.

11 / 44

The fictitious domain method can be made robust by
adding penalties acting in the boundary zone

ih(uh, vh) = β2

∑

F∈F∗
Γ

hF ([∂nuh], [∂nvh])F ,

jh(ph, qh) =





β0

∑

F∈F∗
Γ

hF (JphK, JqhK)F if Qh = P 0(T ∗),

β3

∑

F∈F∗
Γ

h3
F (J∂nphK, J∂nqhK)F if Qh = P 1(T ∗).

12 / 44

Boundary zone penalties allows for reconstruction of norms
on the entire background mesh T ∗

‖∇vh‖2Ω∗ . ‖∇vh‖2Ω+
∑

F∈F∗
Γ

hF (J∂nvhK, J∂nvhK)F . ‖∇vh‖2Ω∗ ∀ vh ∈ Vh(T ∗),

‖qh‖2Ω∗ . ‖qh‖2Ω+
∑

F∈F∗
Γ

hF (Jn · qhK, Jn · qhK)F . ‖qh‖2Ω∗ ∀ qh ∈ P 0(T ∗),

‖qh‖2Ω∗ . ‖qh‖2Ω+
∑

F∈F∗
Γ

h3
F (J∂nqhK, J∂nqhK)F . ‖qh‖2Ω∗ ∀ qh ∈ P 1(T ∗).

13 / 44

The proposed fictitious domain method satisfies an optimal
a priori estimate

Theorem

Let (u, p) ∈ [H2(Ω)]d ×H1(Ω) be the solution of the Stokes
problem and let (uh, ph) be the discrete solution of the stabilized
Nitsche fictitious domain formulation. Then

|||(u− uh, p− ph)||| . h (|u|2,Ω + |p|1,Ω) .

10-2 10-1 100

hmax

10-3

10-2

10-1

100

H
1

 e
rr

or

1

1

A: 1.02
B: 1.11
C: 1.40

10-2 10-1 100

hmax

10-3

10-2

10-1

100

L
2

 e
rr

or

1

1

A: 1.11
B: 1.20
C: 1.21

[Massing, Logg, Larson, R. (2012)]

14 / 44

The condition number can be bounded independently of
the location of the boundary

There is a C independent of the position of Γ, s.t. the condition
number of the stiffness matrix A associated with the Nitsche
fictitious domain method satisfies

κ(A) 6 Ch−2,

0.00 0.02 0.04 0.06 0.08
d

102

103

104

105

106

107

108

109

h
2
κ
(A

)

β=0.000

β=0.001

β=0.010

β=1.000

15 / 44

Mixed finite element methods for porous media
(with J. Lee, E. Piersanti, K.-A. Mardal)

16 / 44

The cerebrospinal fluid (CSF) circulates in the
subarachnoid space around the brain and possibly within

[Image source: Wikimedia]

17 / 44

Paravascular pathways facilitate CSF bulk flow through the
brain parenchyma

[Iliff et al., A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of

Interstitial Solutes, Including Amyloid-β, Sci Trans Med, 2012]

18 / 44

Paravascular pathways facilitate CSF bulk flow through the
brain parenchyma

[Iliff et al., A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of

Interstitial Solutes, Including Amyloid-β, Sci Trans Med, 2012]
19 / 44

Multiple-network poroelastic theory (MPET) is a
macroscopic model for poroelastic media with multiple
fluid networks

[Tully and Ventikos, Jour. of Fluid Mech. 2011]

20 / 44

The multiple-network poroelasticity theory extends on
Biot’s equations

Find u = u(x, t) and the pressures pa = pa(x, t) for a = 1, . . . , A
such that

− div(σ∗) +
∑

a

αa grad pa = f, (2)

caṗa + αa div u̇− divKa grad pa + Sa = ga, a = 1, . . . , A (3)

Fluid is transferred between networks, e.g.:

Sa =
∑

b

sb→a, sb→a = ξab(pb − pa),

Elastic tissue deforms linearly but potentially anisotropically, e.g.:

σ∗(u) = Cε(u),

[Bai, Elsworth and Roegiers, Water Resources Research, 1993; Tully and Ventikos, Jour Fluid Mech., 2011]

21 / 44

Standard finite element formulation is not robust

Find u ∈ Vh ⊆ [H1
0 (Ω)]d and pa ∈ Qh ⊆ [H1

0 (Ω)d for a = 1, . . . , A
such that

〈σ∗, grad v〉+
∑

a

〈αapa,div v〉 = 〈f, v〉

〈caṗa + αa div u̇+ Sa, qa〉+ 〈Ka grad pa, grad qa〉 = 〈ga, qa〉
for all v ∈ Vh, q ∈ Qh.

Relevant parameter regimes

I 500 ≤ λ ≤ 106 (Pa)

I K ∈ (10−10, 10−7) (
m4

(Ns)
)

I S → 0, ca → 0.

I h,∆t→ 0

[Ben-Hatira et al, J. Biomed. Sci. and Engrg. (2012);

Vardakis et al, Med. Engrg. & Phys. (2016)]

Symptoms

I Loss of convergence as
λ→∞

I Oscillations for large
variations in K

I Condition number growth
(K, λ, ∆t)

22 / 44

By introducing a total pressure, we obtain a more
attractive formulation

Find u ∈ Vh ⊆ [H1
0 (Ω)]d and pa ∈ Qh ⊆ [H1

0 (Ω)d for a = 1, . . . , A
and p ∈ Qh such that (αa = 1 for brevity)

〈p− λ div u+
∑

a

pa, q〉 = 0

〈2µε(u), grad v〉+ 〈p,div v〉 = 〈f, v〉

〈caṗa−
1

λ

(
ṗ−

∑

a

ṗa

)
+Sa, qa〉+ 〈Ka grad pa, grad qa〉 = 〈g, qa〉

for all v ∈ Vh, qa ∈ Qh, q ∈ Qh.

[Lee, Piersanti, Mardal, R., in preparation, 2016]

23 / 44

The total pressure formulation restores convergence and
allows for robust block preconditioning

Smooth test case with A = 2,

Crank-Nicolson in time,

parameter-dependent block

preconditioner, PETSc fieldsplit

solver.

N
λ K1,2 8 16 32 64

100

100 56 57 56 55
10−3 60 61 65 68
10−5 60 61 65 65
10−8 61 61 64 65

103

100 68 72 73 73
10−3 70 72 73 73
10−5 71 73 72 73
10−8 71 72 72 53

105

100 78 52 53 54
10−3 52 54 50 54
10−5 53 54 54 55
10−8 54 52 52 55

[Lee, Piersanti, Mardal, R., in preparation, 2016]

24 / 44

Automated software for solving partial differential equations

25 / 44

The FEniCS Project

26 / 44

[fenicsproject.org]

I FEniCS is an international open source software and research project

I FEniCS is user-friendly: estimated 103 − 104 users world-wide

I FEniCS is efficient: parallel performant up to (at least) 25 000 cores.

27 / 44

FEniCS code can be readable, scale with mathematical
complexity, and provide high-performance

Stokes with nonlinear viscosity

Given temperature T , find velocity u and
pressure p such that

−div(2ν(u, T)ε(u) + pI) = RaT g

div u = 0

in Ω with (for instance)

ν(u, T) = e−αT (u · u).

Finite element formulation

Given temperature T , find
(u, p) ∈W = V ×Q such that

∫

Ω
2ν(u, T)ε(u) · ε(v) + div(v) p

+ div(u) q − RaTg · v dx = 0

for all (v, q) ∈W .

from dolfin import *

Define viscosity

def nu(u, T):

return exp(-10.0*T)*dot(u, u)

Define element spaces

mesh = Mesh (...)

V = VectorFunctionSpace(mesh , "CG", 2)

Q = FunctionSpace(mesh , "CG", 1)

W = V * Q

Define functions

T = Expression("...")

w = Function(W)

(u, p) = split(w)

(v, q) = TestFunctions(W)

Define equation

F = (2*nu(u, T)*inner(eps(u), eps(v))

+ div(v)*p + div(u)*q

+ Ra*T*v[1])*dx

bcs = ...

Solve F = 0 w.r.t w

solve(F == 0, w, bcs)

28 / 44

FEniCS provides a wide range of (mixed) finite element
spaces

from dolfin import *

Define viscosity

def nu(u, T):

return exp(-10.0*T)*dot(u, u)

Define element spaces

mesh = Mesh (...)

V = VectorFunctionSpace(mesh , "CG", 2)

Q = FunctionSpace(mesh , "CG", 1)

W = V * Q

Define functions

T = Expression("...")

w = Function(W)

(u, p) = split(w)

(v, q) = TestFunctions(W)

Define equation

F = (2*nu(u, T)*inner(eps(u), eps(v))

+ div(v)*p + div(u)*q

+ Ra*T*v[1])*dx

bcs = ...

Solve F = 0 w.r.t w

solve(F == 0, w, bcs)

Kirby 2004; Ølgaard, Logg, and Wells 2008; R., Kirby and Logg 2009

29 / 44

FEniCS provides an expressive form language close to
mathematical syntax

from dolfin import *

Define viscosity

def nu(u, T):

return exp(-10.0*T)*dot(u, u)

Define element spaces

mesh = Mesh (...)

V = VectorFunctionSpace(mesh , "CG", 2)

Q = FunctionSpace(mesh , "CG", 1)

W = V * Q

Define functions

T = Expression("...")

w = Function(W)

(u, p) = split(w)

(v, q) = TestFunctions(W)

Define equation

F = (2*nu(u, T)*inner(eps(u), eps(v))

+ div(v)*p + div(u)*q

+ Ra*T*v[1])*dx

bcs = ...

Solve F = 0 w.r.t w

solve(F == 0, w, bcs)

Language for variational forms

Generality Efficiency

Code Generation

Kirby and Logg 2006; Alnæs 2012, Alnæs et al. 2014

30 / 44

FEniCS provides automated form assembly over finite
element meshes and numerical linear algebra

from dolfin import *

Define viscosity

def nu(u, T):

return exp(-10.0*T)*dot(u, u)

Define element spaces

mesh = Mesh (...)

V = VectorFunctionSpace(mesh , "CG", 2)

Q = FunctionSpace(mesh , "CG", 1)

W = V * Q

Define functions

T = Expression("...")

w = Function(W)

(u, p) = split(w)

(v, q) = TestFunctions(W)

Define equation

F = (2*nu(u, T)*inner(eps(u), eps(v))

+ div(v)*p + div(u)*q

+ Ra*T*v[1])*dx

bcs = ...

Solve F = 0 w.r.t w

solve(F == 0, w, bcs)

i0

i1

i2

j0 j1 j2

1

2

3

1 2 3

A21

Automated assembly

High performance linear algebra

Logg and Wells, 2010; Hake, Logg and Wells 2012

31 / 44

Automated goal-oriented error control

32 / 44

What is goal-oriented error control?
The mathematician’s viewpoint

Input

I PDE: find u ∈ V such that

a(u, v) = L(v) or F (u; v) = 0 ∀ v ∈ V̂

I Quantity of interest/Goal: M : V → R
I Tolerance: ε > 0

Challenge

Find Vh ⊂ V such that |M(u)−M(uh)| < ε where uh ∈ Vh is
determined by

a(uh, v) = L(v) or F (uh; v) = 0 ∀ v ∈ V̂h

33 / 44

FEniCS provides automated goal-oriented error control for
stationary variational problems

Find Uh ⊂ U, Vh ⊂ V such that |M(u)−M(uh)| < ε where
uh ∈ Uh solves

F (uh; v) = 0 ∀ v ∈ Vh

M

F

ε

M(uh) ≈M(u)± ε

import dolfin

solve(F == 0, u, bc , tol=..., M=...)

[R. and Logg, Automated goal-oriented error control I: stationary variational problems, SISC, 2013]

34 / 44

Our approach mimics, generalizes and automates the
classical, manual approach

|M(u)−M(uh)| ≈ −F (uh; z) = r(z)

1. Compute adjoint

F ′∗(uh; zh, v) = M ′(uh; v) ∀ v ∈ Vh
zh 7→ z̃h

2. Automatically derive and
compute residual form

r(v) =
∑

T

〈RT , v〉+ 〈R∂T , v〉∂T

3. Evaluate error estimators

ηh = r(z̃h)

ηT = |〈RT , w〉T + 〈[R∂T], w〉∂T |
w = z̃h −Πhz̃h

Solve

Dual Estimate

uh

Indicate

Refine

{ηT }T∈Th

ηh < ε

Note

Automated form manipulations and
finite element operations are crucial
to each step

35 / 44

Goal-oriented adaptivity gives significantly higher accuracy
at significantly lower cost

F (v;x) = 〈S(x), grad(v)〉, S =
∂W

∂F
, W = φIµE

(
1

2
(‖F‖2 − ‖I‖2) + β−1((detF)−β − 1)

)
+ (detF) (aφ lnφ+ b(1− φ) ln(1− φ) + cφ(1− φ) + cFH)

M(x) =

∫

Γ
S(x)2

ntdX # Mesh and function space

mesh = UnitSquare(12, 12)

V = VectorFunctionSpace(mesh , "CG", 1)

Deformation

deformation = Expression (("x[0]", "x[1]"))

position = interpolate(deformation , V)

Deformation gradient and its Jacobian

F = grad(position)

F = variable(F)

detF = det(F)

Volume fraction definitions

phi_I = 0.8 # Reference volume fraction

phi = phi_I*inv(detF) # Volume fraction

Elastic potential

W_E = 1.0/2*((inner(F, F) - 2) + (detF**(-2) - 1))

Flory -Huggins parameters and potential

a = 4.28001624e-05; b = 0.0428001624; c = 0.010354878

W_FH = a*phi*ln(phi) + b*(1 - phi)*ln(1-phi) + c*phi*(1-phi)

Total potential

c_FH = 0.01338703463; scale = 1.e3

W = scale*(phi_I*W_E + detF*(W_FH + c_FH))

Define stress -tensor

S = diff(W, F)

Define variational form

v = TestFunction(V)

B = inner(S, grad(v))*dx

Define goal (square shear stress)

M = S[0][1]*S[0][1]*ds(0)

solve(B == 0, position , bc , tol=0.1, M=M)

36 / 44

Goal-oriented adaptivity gives significantly higher accuracy
at significantly lower cost

F (v;x) = 〈S(x), grad(v)〉, S =
∂W

∂F
, W = φIµE

(
1

2
(‖F‖2 − ‖I‖2) + β−1((detF)−β − 1)

)
+ (detF) (aφ lnφ+ b(1− φ) ln(1− φ) + cφ(1− φ) + cFH)

M(x) =

∫

Γ
S(x)2

ntdX # Mesh and function space

mesh = UnitSquare(12, 12)

V = VectorFunctionSpace(mesh , "CG", 1)

Deformation

deformation = Expression (("x[0]", "x[1]"))

position = interpolate(deformation , V)

Deformation gradient and its Jacobian

F = grad(position)

F = variable(F)

detF = det(F)

Volume fraction definitions

phi_I = 0.8 # Reference volume fraction

phi = phi_I*inv(detF) # Volume fraction

Elastic potential

W_E = 1.0/2*((inner(F, F) - 2) + (detF**(-2) - 1))

Flory -Huggins parameters and potential

a = 4.28001624e-05; b = 0.0428001624; c = 0.010354878

W_FH = a*phi*ln(phi) + b*(1 - phi)*ln(1-phi) + c*phi*(1-phi)

Total potential

c_FH = 0.01338703463; scale = 1.e3

W = scale*(phi_I*W_E + detF*(W_FH + c_FH))

Define stress -tensor

S = diff(W, F)

Define variational form

v = TestFunction(V)

B = inner(S, grad(v))*dx

Define goal (square shear stress)

M = S[0][1]*S[0][1]*ds(0)

solve(B == 0, position , bc , tol=0.1, M=M)

36 / 44

The Dolfin-adjoint Project

37 / 44

Adjoint solutions are key ingredients for pde-constrained
optimization, sensitivity analysis, error control, ...

As an example, consider the optimal control problem:

max
m

J(u,m) while F (u,m) = 0

Gradient-based optimization algorithms require the gradient of J
with respect to m.

dJ

dm
= Ju

∂u

∂m
+ Jm

Define the adjoint solution z solving

F ∗uz = Ju

Then, the derivative computation only involves one forward solve
for u and one backward solve for z independent of #m:

dJ

dm
= −Fmz + Jm

38 / 44

Adjoints are highly relevant but adjoint models (code) are
considered difficult to develop

[T]he automatic generation of optimal (in terms of
robustness and efficiency) adjoint versions of large-scale
simulation code is one of the great open challenges in the
field of High-Performance Scientific Computing.

[Naumann: The Art of Differentiating Computer Programs, 2011]

Considering the importance of design to .. all of
engineering, it is perhaps surprising that the development
of adjoint codes has not been more rapid .. [I]t seems
likely that part of the reason is its complexity.

[Giles and Pierce: An Introduction to the Adjoint Approach to Design, 2000]

39 / 44

A new approach to adjoint model development

Traditional approach

discrete forward equations
implement model by hand−−−−−−−−−−−−−−−−→ forward code

algorithmic differentiation

y
adjoint code

The dolfin-adjoint approach

discrete forward equations
FEniCS system−−−−−−−−−→ forward code

libadjoint

y

discrete adjoint equations
FEniCS system−−−−−−−−−→ adjoint code

[Farrell, Ham, Funke, R., Automated derivation of the adjoint of high-level transient FE programs, SISC, 2013]

40 / 44

A novel approach to developing adjoint models for forward
models implemented in FEniCS

discrete forward equations
FEniCS system−−−−−−−−−→ forward code

libadjoint

y

discrete adjoint equations
FEniCS system−−−−−−−−−→ adjoint code

Cons/Pros

I The problem must be representable in the high-level language
I It does not apply to legacy code.
I The adjoint derivation is totally automatic (3− 10 lines)
I The adjoint is efficient
I The adjoint works naturally in parallel (MPI and OpenMP)

and can use checkpointing

[Farrell, Ham, Funke, R.: Automated derivation of the adjoint of high-level transient finite element programs,

SISC, 2013] 41 / 44

A (nontrivial) example: the Cahn-Hilliard equation

Given an initial concentration c0, find the concentration field c
such that

∂c

∂t
−∇ ·M∇

(
df

dc
− ε2∇2c

)
= 0 in Ω,

M∇
(
df

dc
− ε2∇2c

)
= 0, Mε2∇c · n̂ = 0 on ∂Ω,

f = 100c2(1− c)2, c(t = 0) = c0 on Ω.

42 / 44

This approach to deriving and running adjoint models is
automated, efficient and verifiable

Cahn-Hilliard equation with the Willmore functional

J(c(t), µ(t)) =
1

4ε

∫ t=T

t=0

∫

Ω

(
−1

ε
µ(t)

)2

dx dt,

The adjoint computation is efficient

Runtime (s) Ratio

Forward model 103.93
Forward model + annotation 104.24 1.002

Forward model + annotation + adjoint model 127.07 1.22

... also routines available for easy Taylor testing to verify correctness of
gradient.

43 / 44

dolfin–adjoint
automatic adjoint models for FEniCS

P. E. Farrell, S. W. Funke, D. A. Ham, M. E. Rognes
Simon@simula.no

The dolfin-adjoint project automatically derives and solves adjoint and tangent linear equations
from high-level mathematical specifications of finite element discretizations of partial differential equations.

About dolfin-adjoint

Adjoint and tangent linear models form the basis of many numerical techniques such as sensitivity analysis, optimization, and

stability analysis. However, the derivation and implementation of adjoint models for nonlinear or time-dependent models are

notoriously challenging: the manual approach is time-consuming and error-prone and traditional automatic differentiation

tools lack robustness and performance.

dolfin-adjoint solves this problem by automatically analyzing the high-level mathematical structure inherent in finite element

methods. It raises the traditional abstraction of algorithmic differentiation from the level of individual floating point operations

to that of whole systems of differential equations. This approach delivers a number of advantages over the previous state-

of-the-art: robust hands-off automation of adjoint model derivation; computational efficiency approaching the theoretical

optimum; and native parallel support inherited from the forward model.

Symbolic forward equations

Symbolic adjoint equations

Symbolic derivation (dolfin-adjoint)

Adjoint code

Forward code
Code generation (FEniCS)

Code generation (FEniCS)

/ Figure: By adding a few lines of code to an

existing FEniCS model, dolfin-adjoint computes

tangent linear and adjoint solutions, gradients

and Hessian actions of arbitrary user-specified

functionals, and uses these derivatives in com-

bination with sophisticated optimization algo-

rithms or to conduct stability analyses

The implementation of dolfin-adjoint is based on the finite-element framework FEniCS. When the user runs a FEniCS

model, dolfin-adjoint records the dependencies and structure of the forward equations. The resulting execution graph

stores a mathematical representation of the forward equations. By reasoning about this graph, dolfin-adjoint can linearize

the equations to derive a symbolic representation of the discrete tangent linear equations, and reverse the propagation of

information to derive the corresponding adjoint equations. By invoking the FEniCS automatic code generator on these

equations, dolfin-adjoint obtains solutions of the tangent linear and adjoint models, and can use these to compute consistent

first and second order functional derivatives. dolfin-adjoint also has preliminary support for the Firedrake project.

How it works
Application examples

Consider the time dependent heat equation

∂u

∂t
− ν∇2u = 0 in Ω× (0, T),

u = g for Ω× {0}.
Here Ω is the Gray’s Klein bottle, a closed 2D manifold embedded in 3D, T is the

final time, u is the unknown temperature, ν is the thermal diffusivity, and g is the

initial temperature.

The goal is to compute the sensitivity of the norm of temperature at the final time

J(u) =

∫

Ω

u(t = T)2

with respect to the initial temperature, that is dJ/dg.

Initial temperature Final temperature Sensitivity

from dolfin import *

from dolfin˙adjoint import *

Solve the forward system

F = u*v*dx - u˙old*v*dx +

dt*nu*inner(grad(v),grad(u))*dx

while t ¡= T:

t += dt

solve(F == 0, u)

Apply dolfin-adjoint

m = Control(g)

J = u**2*dx*dt[T]

dJdm = compute˙gradient(J, m)

H = hessian(J, m)

M
Code: Implementation excerpt (the code includ-

ing the complete forward model has 37 lines)

Sensitivity analysis

This topology optimization example minimizes the compliance∫

Ω

f T + α

∫

Ω

∇a · ∇a,

subject to the Poisson equation with mixed Dirichlet–Neumann con-

ditions

−div(k(a)∇T) = f in Ω,

T = 0 on ∂ΩD,

k(a)∇T = 0 on ∂ΩN,

and additional control constraints∫

Ω

a ≤ V and 0 ≤ a(x) ≤ 1 ∀x ∈ Ω.

Here Ω is the unit square, T is the temperature, a is the control

(a(x) = 1 means material, a(x) = 0 means no material), f is a

source term, k(a) is the Solid Isotropic Material with Penalisation

parameterization, α is a regularization term, and V is the volume

bound on the control. Physically, the problem is to find the material

distribution a that minimizes the integral of the temperature for a

limited amount of conducting material.

from dolfin import *

from dolfin˙adjoint import *

...

J = f*T*dx + alpha*inner(grad(a),grad(a))*dx

m = Control(a)

rf = ReducedFunctional(J, m)

minimize(rf, method=”SLSQP”, bounds=...)

M
Code: Implementation excerpt

(the full code uses the IPOPT

optimization package and has 56

lines)

/ Figure: Optimal material dis-

tribution a for a unit square do-

main and f = 10−2

PDE-constrained optimization

This example performs a generalized stability analysis to find the perturbations to an

initial condition that grow the most over some finite time. The governing equations

are the two-dimensional vorticity-streamfunction formulation of the time-dependent

Navier–Stokes equations, coupled to two advection equations for temperature and

salinity:

∂ζ

∂t
+∇⊥ψ · ∇ζ =

Ra

Pr

(
∂T

∂x
− 1

R0
ρ

∂S

∂x

)
+∇2ζ,

∂T

∂t
+∇⊥ψ · ∇T =

1

Pr
∇2T,

∂S

∂t
+∇⊥ψ · ∇S =

1

Sc
∇2S,

∇2ψ = ζ.

ζ is the vorticity, ψ is the streamfunction, T is the temperature, S is the salinity, and

Ra, Sc, Pr and R0
ρ are parameters. The configuration consists of two well-mixed

layers (i.e., of homogeneous temperature and salinity) separated by an interface.

The instability is activated by a sinusoidal perturbation to the initial salinity field.

from dolfin import *

from dolfin˙adjoint import *

...

gst = compute˙gst(”InitialSalinity”, ”FinalSalinity”, nsv=2)

Initial salinity
Leading initial salinity

perturbation

/ Code: Implementa-

tion excerpt (the full

code uses SLEPc and

has 144 lines)

Leading final salinity

perturbation

Generalized stability analysis

dolfin-adjoint runs naturally in parallel, and inherits the scalability and code optimizations of FEniCS. To verify this, we

benchmarked the sensitivity analysis and generalized stability application examples.

Sensitivity analysis example

CPUs 1 2 4 Optimal

Forward runtime (s) 40.3 19.6 13.2

Adjoint runtime (s) 39.1 19.3 12.5

Adjoint/Forward ratio 0.97 0.99 0.95 1.00

Generalized stability example

CPUs 1 2 Optimal

Forward runtime (s) 92.4 55.0

Adjoint runtime (s) 41.4 25.9

Adjoint/Forward ratio 0.45 0.47 0.5

Tables: The sensitivity analysis example is linear, while the generalized stability analysis example is nonlinear and converges

on average in 2 Newton-iteration per timestep. Hence the adjoint model is expected to be twice as fast as the forward

model.

Performance

The adjoint equations depend on the forward solutions. However, stor-

ing the entire forward trajectory is infeasible for large, time-dependent

simulations. In this case, dolfin-adjoint can employ a binomial check-

pointing strategy via the revolve library. When activated, dolfin-adjoint

automatically saves state checkpoints and uses them to recompute

missing forward states to trade off memory requirements and compu-

tational effort. This allows for solving adjoint equations even for large-

scale simulations. For instance, 390 checkpoints allow simulations with

107 time-steps at a cost of a 3× slow-down.

1 2 3 4 5 6 7 8 9 10

Figure: Visualisation of the optimal checkpoint-

ing strategy with 10 time levels and 3 checkpoints

To benchmark the checkpoint implementation, we used the sensitivity example to compare the additional computational

cost of checkpointing with a store-all strategy in dolfin-adjoint:

Slow-down factor with 11 timesteps and varying memory checkpoints

Theoretical adjoint to forward runtime ratio 5.00 2.18 1.63 1.45 1.00

Observed adjoint to forward runtime ratio 5.07 2.26 1.73 1.53 0.90

Checkpointing

How to get started

http://dolfin-adjoint.org
Contains an introduction to adjoints, documentation, tutorials and instal-

lation instructions for Linux (with Ubuntu packages) and MacOS X.

Downloads
This poster

PDF format

References

dolfin-adjoint.org/citing

Source code

bitbucket.org/dolfin-adjoint

44 / 44

