
Automatic Hyperparameter Optimization in Keras for the
MediaEval 2018 Medico Multimedia Task

Rune Johan Borgli, Pål Halvorsen, Michael Riegler, Håkon Kvale Stensland
Simula Research Laboratory, Norway

rune@simula.no,paal@simula.no,michael@simula.no,haakonks@simula.no

ABSTRACT
This paper details the approach to the MediaEval 2018 Medico Mul-
timedia Task made by the Rune team. The decided upon approach
uses awork-in-progress hyperparameter optimization system called
Saga. Saga is a system for creating the best hyperparameter finding
in Keras [5], a popular machine learning framework, using Bayesian
optimization and transfer learning [3]. In addition to optimizing
the Keras classifier configuration, we try manipulating the dataset
by adding extra images in a class lacking in images and splitting a
commonly misclassified class into two classes.

1 INTRODUCTION
We made the following approach as a submission to the Mediaeval
2018 Medico Multimedia Task. The task contains several sub-tasks,
but we have focused solely on the detection sub-task. Information
about the given dataset, task, and evaluation are described in the
Medical Multimedia Task overview paper [13]. In short, the task is
to create a classifier for a 16-class dataset containing a total of 5277
images from the medical domain of the digestive system.

2 APPROACH
Our approach is a two-split approach. First, our main contribution is
to use automatic hyperparameter optimization building on Borgli’s
thesis [3] to find a hyperparameter configuration in Keras for our
classifier submission. Second, we tried a few alterations of the
dataset to see if we could improve the classifier performance further.

2.1 Hyperparameter optimization
Automatic hyperparameter optimization was done using an early,
unpublished, work-in-progress system called Saga. Saga is a tool
with a web-interface providing developers of image-based machine
learning applications an easy, customizable work-flow for creating
well-performing classifiers for image data. The user only needs
to supply the training and validation dataset. Everything else is
provided by either a Keras [5] or a Pytorch [10] back-end. We split
the system into three: (1) preprocessing of the dataset and a metric
for the predicted effectiveness of the dataset, (2) running any valid
configuration of hyperparameters or hyperparameter optimizations
available in Keras or Pytorch for training of the classifier on a
given dataset, and (3) visualization and analysis of the training
and its outcome. For this submission, Keras was used together with
TensorFlow [1] with no preprocessing of the dataset and no analysis
of the results as we have not implemented the implementation of
Pytorch, preprocessing, and analysis as of writing this paper.

Copyright held by the owner/author(s).
MediaEval’18, 29-31 October 2018, Sophia Antipolis, France

Due to the nature of a working paper, we will only briefly de-
scribe the system. More details about how we implemented the
hyperparameter optimization can be found in [3].

Our target domain is image datasets. Convolutional Neural Net-
works (CNNs) are types of machine learning models that excel at
classifying images. However, these types of models require enough
training data to avoid generalization issues when training. The
provided dataset for the Medico Multimedia Task [11, 12] contains
about 5000 images which are a low number compared to common
benchmark datasets such as ImageNet [8]. To accommodate for this,
we use transfer learning. Transfer learning is a technique where,
instead of training a model from scratch, we pre-train the model
using a different dataset in a similar domain, then fine-tune the
model to our dataset. The idea behind transfer learning is to transfer
relevant knowledge learned from the pre-training instead of learn-
ing it from scratch. Transfer learning works for different datasets
because they often share basic image features, and has the added
benefit that training is significantly faster. Achieving this is easy
in Keras as we can use models pre-trained on ImageNet available
from the framework.

We use Bayesian optimization for the automatic hyperparameter
optimization. Bayesian optimization uses a surrogate function to
map the function we try to optimize. Based on sequential observa-
tions, where one observation is a training runwith hyperparameters
chosen by the optimization, Bayesian optimization fits the surro-
gate function to the function to optimize. An acquisition function
decides where in the search space to try the next observation based
on a balance between exploration and exploitation. Exploration
tries to explore the whole search space, and exploitation tries to
slightly adjust the observations in those parts of the search space
where results are good. Bayesian optimization can optimize any
number and type of hyperparameters, but observations are costly,
so we limit the dimensionality and size of the search space. We use
a framework called GPyOpt for our implementation of Bayesian
optimization [2] and use default parameters for the optimization
function. The optimization is done after a given number of ob-
servations, and the best hyperparameters are the ones from the
observation achieving the highest validation accuracy.

2.2 Dataset manipulation
Besides the hyperparameters, the performance of the classifier is
dependent on the training set. Therefore, to try to improve our clas-
sifier’s performance, we made two separate tweaks to the dataset.
First, based on an observation that the esophagitis dataset contains
images of both the upper and middle esophagus and the diseased
z-line, we wanted to see if extracting the esophagitis z-line im-
ages in a separate class could increase the detection rate between



MediaEval’18, 29-31 October 2018, Sophia Antipolis, France R. J. Borgli et al.

Model Optimizer Layer Val Acc

DenseNet121 [7] SGD 0 0.942
DenseNet169 [7] SGD 0 0.954
DenseNet201 [7] Adamax [9] 356 0.651
InceptionResNetV2 [15] Adamax [9] 395 0.89
InceptionV3 [16] Adadelta [18] 68 0.793
ResNet50 [6] Adadelta [18] 2 0.911
VGG16 [14] SGD 10 0.921
VGG19 [14] SGD 0 0.93
Xception [4] RMSprop [17] 0 0.916

Table 1: Results of running initial hyperparameter opti-
mization on models available in Keras. Hyperparameters
tweaked for eachmodel were the gradient descent optimizer
and the delimiting layer.

esophagitis and normal z-line. The idea behind this is that the clas-
sifier could become "confused" by seeing very different images of
the same class. Secondly, we added images to the out-of-patient
class to increase the performance. These images were of medical
equipment in medical rooms.

3 RESULTS AND DISCUSSION
The hyperparameters we optimized were the model, the gradient
descent optimizer, the learning rate and the delimiting layer. First,
we ran automatic hyperparameter optimization for the gradient
descent optimizer and delimiting layer for each model to have an
initial map of the performance of each model. The results are listed
in table 1. Furthermore, we picked the best performing hyperpa-
rameter configuration and ran a new optimization only optimizing
the learning rate for the first and second step of the transfer learn-
ing. The configuration was model DenseNet169, gradient descent
optimizer SGD, and delimiting layer of 0, meaning we fine tune
all of the layers. The best classifier’s learning rate for the block
optimization ended on 0.0001, and the fine tuning ended on 0.00067,
with a validation accuracy of 0.954. The second best classifier’s
learning rate for the block optimization ended on 0.000046, and the
fine tuning ended on 0.004, with a validation accuracy of 0.952.

After hyperparameter optimization, we trained classifiers on a
dataset where esophagitis images of the z-line were extracted into
a separate class. We trained the classifiers using DenseNet169, SGD,
a delimiting layer of 0, and a learning rate default to SGD, which is
0.01. The results for the best classifier were a validation accuracy
of 0.928 and for the second best classifier a validation accuracy of
0.925. For the classifier where we added more images to the out of
patient class, we ran the same classifier setup and got a validation
accuracy of 0.925.

All submissions can be found with their resulting Matthews
correlation coefficient (MCC) score in figure 2. For both the hyper-
parameter optimization and the split class, we see that the second
best submission performed better. This observation indicates that
the best runs overfitted on the validation set. For future exper-
iments, measures such as splitting into a third test set or using
k-fold cross-validation should be applied to the results to avoid this
issue.

Lastly, table 3 shows the confusion matrix for the best result on
the test set. We can see that many of the classes have very high

Table 2: Matthews Correlation Coefficient for each submit-
ted approach for the validation set after training and the test
set used for the competition results.

Approach Result MCC

Best hyperparameter optimization 0.927
Second best hyperparameter optimization 0.931
Best split esophagitis class 0.916
Second best split esophagitis class 0.920
Added data to out of patient class 0.925

Table 3: Result confusion matrix for the best performing
classifier. The X-axis is predicted labels, Y-axis is true labels.
The labels are as follows: (A) Ulcerative colitis, (B) Esophagi-
tis, (C) Normal z-line, (D) Dyed lifted polyps, (E) Dyed re-
section margins, (F) Out of patient, (G) Normal pylorus,
(H) Stool inclusions, (I) Stool plenty, (J) Blurry nothing, (K)
Polyps, (L) Normal cecum, (M) Colon clear, (N) Retroflex rec-
tum, (O) Retroflex stomach, and (P) Instruments.

A B C D E F G H I J K L M N O P

A 521 0 0 0 2 0 2 3 70 0 4 8 1 3 0 18
B 1 434 66 0 0 0 0 0 0 0 0 0 0 0 0 0
C 1 119 496 0 0 0 1 0 0 0 0 0 0 0 1 0
D 0 0 0 506 32 0 0 0 0 0 1 0 0 0 0 36
E 0 0 0 41 528 0 0 0 0 0 1 0 0 0 0 16
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 1 546 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 493 12 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 1873 0 0 0 0 0 0 0
J 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0
K 14 3 1 8 1 0 11 0 7 0 364 14 0 2 0 73
L 4 0 0 1 0 0 0 0 0 0 4 562 0 0 0 1
M 0 0 0 0 0 0 0 8 1 0 0 0 1064 0 0 0
N 1 0 0 0 0 1 0 0 0 0 0 0 0 182 1 0
O 0 0 0 0 0 0 0 0 0 0 0 0 0 5 395 0
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124

(a) Esophagitis misclassified
as normal-z-line.

(b) Normal-z-line misclassified
as esophagitis.

Figure 1: Examples of misclassification between esophagitis
and normal-z-line.

accuracy, and a few pairs of classes have many misclassifications
between them. We speculate that this is due to the nature of the
dataset where several classes are very different while others are
very similar. An example of misclassification and the similarities
between classes can be observed in figure 1.



Medico Multimedia Task MediaEval’18, 29-31 October 2018, Sophia Antipolis, France

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems. (2015). https://www.tensorflow.org/
Software available from tensorflow.org.

[2] The GPyOpt authors. 2016. GPyOpt: A Bayesian Optimization frame-
work in python. http://github.com/SheffieldML/GPyOpt. (2016).

[3] Rune Johan Borgli. 2018. Hyperparameter optimization using Bayesian
optimization on transfer learning for medical image classification.
(2018). Master thesis at University of Oslo. https://www.duo.uio.no/
handle/10852/64146.

[4] François Chollet. 2016. Xception: Deep Learning with Depthwise
Separable Convolutions. CoRR abs/1610.02357 (2016). arXiv:1610.02357
http://arxiv.org/abs/1610.02357

[5] François Chollet and others. 2015. Keras. https://keras.io. (2015).
[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep

Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015).
arXiv:1512.03385 http://arxiv.org/abs/1512.03385

[7] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Wein-
berger. 2017. Densely connected convolutional networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
2009. ImageNet: A large-scale hierarchical image database. In 2009
IEEE Conference on Computer Vision and Pattern Recognition. 248–255.
https://doi.org/10.1109/CVPRW.2009.5206848

[9] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Sto-
chastic Optimization. CoRR abs/1412.6980 (2014). arXiv:1412.6980
http://arxiv.org/abs/1412.6980

[10] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Ed-
ward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca
Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch.
In Conference on Neural Information Processing Systems.

[11] Konstantin Pogorelov, Kristin Ranheim Randel, Thomas de Lange,
Sigrun Losada Eskeland, Carsten Griwodz, Dag Johansen, Concetto
Spampinato, Mario Taschwer, Mathias Lux, Peter Thelin Schmidt,
Michael Riegler, and Pål Halvorsen. 2017. Nerthus: A Bowel Prepara-
tion Quality Video Dataset. In Proceedings of the 8th ACM on Multime-
dia Systems Conference. ACM, 170–174.

[12] Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz,
Sigrun Losada Eskeland, Thomas de Lange, Dag Johansen, Con-
cetto Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux, Peter Thelin
Schmidt, Michael Riegler, and Pål Halvorsen. 2017. Kvasir: A Multi-
Class Image Dataset for Computer Aided Gastrointestinal Disease
Detection. In Proceedings of the 8th ACM on Multimedia Systems Con-
ference. ACM, 164–169.

[13] Konstantin Pogorelov, Michael Riegler, Pål Halvorsen, Thomas de
Lange, Kristin Ranheim Randel, Duc-Tien Dang-Nguyen, Mathias Lux,
and Olga Ostroukhova. 2018. Medico Multimedia Task at MediaEval
2018. In CEUR Proceeding of the MediaEval Benchmark.

[14] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. CoRR
abs/1409.1556 (2014). arXiv:1409.1556 http://arxiv.org/abs/1409.1556

[15] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. 2016.
Inception-v4, Inception-ResNet and the Impact of Residual Connec-
tions on Learning. CoRR abs/1602.07261 (2016). arXiv:1602.07261
http://arxiv.org/abs/1602.07261

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna. 2015. Rethinking the Inception Architecture
for Computer Vision. CoRR abs/1512.00567 (2015). arXiv:1512.00567
http://arxiv.org/abs/1512.00567

[17] T. Tieleman and G. Hinton. 2012. Lecture 6.5—RmsProp: Divide the
gradient by a running average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning. (2012).

[18] Matthew D. Zeiler. 2012. ADADELTA: An Adaptive Learning Rate
Method. CoRR abs/1212.5701 (2012). arXiv:1212.5701 http://arxiv.org/
abs/1212.5701

https://www.tensorflow.org/
http://github.com/SheffieldML/GPyOpt
https://www.duo.uio.no/handle/10852/64146
https://www.duo.uio.no/handle/10852/64146
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
https://keras.io
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/CVPRW.2009.5206848
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701

	Abstract
	1 Introduction
	2 Approach
	2.1 Hyperparameter optimization
	2.2 Dataset manipulation

	3 Results and Discussion
	References

