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Abstract—In the medical field of gastroenterology, deep learn-
ing is being explored and utilized in computer-aided diagnosis
(CAD) systems. These systems assist physicians in the diagnosis
of diseases and anomalies using visual data from endoscopic
examinations. Deep learning has proven effective in the field [15]-
[21], [23]. However, hyperparameter optimization is usually
performed manually, taking a long time and with a chance of
not finding the best parameters for classification accuracy. Using
transfer learning, we aim for high accuracy in anomaly detection,
and this paper describes a system for automatic hyperparameter
optimization of convolutional neural network (CNN) models in
Keras [4]. The presented system utilizes Bayesian optimization
and is used to present experiments with three optimization
strategies automatically optimizing hyperparameters for CNN
models on two gastrointestinal datasets. Between the strategies,
one was successful in achieving a high validation accuracy,
while the others were considered failures. Compared to the
best approaches in related work, our best models were around
10% better. With these experiments, we demonstrated that
automatic hyperparameter optimization is an effective strategy
for increasing performance in transfer learning.

Index Terms—hyperparameter optimization, bayesian opti-
mization, keras, medical images, gastrointestinal tract, gpyopt

I. INTRODUCTION

In the field of medicine, technological advances may
potentially improve anomaly detection rates, and in recent
years, extensive research has been performed in the field of
computer-aided diagnosis systems (CADs) [3], [12]. These are
systems aim to aid physicians during and after examinations
in diagnosing patients. CADs usually use visual, textual or
sensory data to evaluate and categorize diseases. One field
where the use of CADs are explored is gastroenterology [13],
[18], [26]. For diseases affecting the gastrointestinal (GI) tract,
colonoscopy and gastroscopy are the de facto examinations
of the colon and esophagus, respectively. In both, a tube
with a camera attached is inserted into body cavities, and a
video stream allows the physician to examine and diagnose
the patient. Here, a CAD can apply machine learning on
the video streams for automatic detection and classification

of anomalies, diseases, and medical procedures. However, to
train these deep learning models, large amounts of annotated
data should be available. Large datasets of GI images are
not available as annotation requires both physicians’ time and
consent from the patients. To tackle this challenge, we use
transfer learning.

Transfer learning is a technique for training deep learning
models, where the goal is to transfer relevant knowledge from
one domain to another domain [14], [29]. The target domain
should usually be somehow similar to the domain transferred
from. In the case of image data, convolutional neural networks
(CNNs) are pre-trained on a large dataset with images which
has commonalities with the lesser primary dataset. In our case,
we have CNN models, pre-trained on the 2015 ImageNet
Large Scale Visual Recognition Challenge dataset [7], [22]
containing 1,000 classes and 150,000 images, which is fine-
tuned to datasets containing images from the GI tract. The
images in ImageNet are very different from the images in the
GI tract datasets, but the technique is effective because all
of the images are of real objects. Real objects mean lower-
level image features such as colors, lines, and lighting are
shared among the datasets. The benefits of transfer learning
are effective training with fewer data and faster convergence
during training.

CNN models consist of different convolutional layers which
are applied sequentially to the input image. The convolution
filter of each layer is pixel values which are tweaked while
training. These weights are referred to as the model’s parame-
ters, and hyperparameters are parameters affecting the training
or behavior of the model. There are different approaches
to optimize the hyperparameter configuration automatically.
One such solution is the Bayesian optimization, which, for
example, Google has implemented in their cloud engine [5],
[9]. Bayesian optimization is a sequential design strategy
for global optimization of black-box functions [24]. Other
solutions are grid search, random search, and Hyperband [11].

In this work, we propose a system for creating the best
hyperparameter configuration for a transfer learned model in



Keras [4]. We use default Bayesian optimization implemented
by the Python library GPyOpt [1]. We run two experiments,
one on each of the two datasets. The system optimizes four
hyperparameters, where one is unique to transfer learning. We
use three different strategies with different dimensionalities
of hyperparameters. Our main contributions are that (i) we
present results from the experiments showing the performance
of automatic hyperparameter optimization of transfer learning
and (ii) we proposed and developed a system for running
automatic experiments with Bayesian optimization on hyper-
parameters with a transfer learning approach.

The rest of the paper is organized as follows: Section
II briefly presents related work on CADs and automatic
hyperparameter optimization systems. Section III describes
the proposed system implementation, which we use to run
experiments in section IV. In section IV, we also present and
discuss the results from the experiments. Section V concludes
and summarizes the paper as well as presenting future work.

II. RELATED WORK

The area of automated anomaly detection in images and
videos from the GI tract, especially polyps, has grown signifi-
cantly in the last years. Starting with image analysis and object
detection [20], [28] (multiple approaches listed in [18]), the
approaches have become more sophisticated where a number
of proposals use CNNs. For example, Deep-EIR [18] is
based on pre-trained CNN architectures and transfer learning.
Tajbakhsh et al. [25], [26] have used transfer learning and
CNN models for polyp detection and Mohammed et al. [13]
have created a CNN model for polyp detection specifically.

The reported detection results are often very good with
results about 90% detection accuracy [2], [13], [18], [26],
[28]. However, the experiments are often performed on limited
datasets using transfer learning, and often, hyperparameters are
manually tuned which opens for the potential for even better
results with better hyperparameter settings. An automatic
hyperparameter approach is desirable as it has the potential
of reaching better results without human intervention.

CNNs are to a growing degree being used for anomaly de-
tection, but configuring the networks is a challenge. Concern-
ing automatic optimization, there also exist some work. Auto-
Weka [27], Auto-Keras [8], and Google Vizier [6] are all tools
promising automatic hyperparameter optimization. However,
they do not consider the transfer learning hyperparameter we
use in this work, and neither the pre-trained model. There
exist several techniques for optimization, but the mentioned
tools all report Bayesian optimization to be the best approach
which was also the reason why we chose it for our approach.

In summary, CAD systems targeting GI tract analysis are
exploring transfer learning with CNN models for anomaly
detection, but they are not using automatic hyperparameter
optimization. Existing tools for automatic hyperparameter op-
timization are not built for the implementation of transfer
learning we use or all the hyperparameters we use. However,
we draw inspiration from these tools by using Bayesian opti-
mization, which has become the standard for hyperparameter
optimization.
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Fig. 1: Bayesian optimization in our system.
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III. SYSTEM IMPLEMENTATION

As discussed previously, optimizing CNNs is error-prone
and time-consuming. Moreover, if not performed in a good
way, it may not give the best detection accuracy. Automatic
optimizers exist, but there are still issues in our medical
context. Thus, we here present our approach for automatic
hyperparameter optimization.

A. Bayesian Optimization

For our system, we use Bayesian optimization implemented
in the Python library GPyOpt [1]. GPyOpt allows different
parameters affecting the performance of the optimization. We
use the default parameters provided by the library since we are
mainly interested in researching the possible performance gain
combining it with transfer learning. GPyOpt allows us to pass
a function for optimization, specify how many iterations we
want to optimize for, and print the acquisition graph at the end
of the optimization. We also provide a list of hyperparameters
and their boundaries. Increasing the number of hyperparam-
eters also increases the dimensionality of the search space,
which makes it more difficult to find good hyperparameters
without also increasing the number of iterations.

The Bayesian optimization uses a surrogate model which is
fitted to observations of the real model. An observation in our
case is a full training of a CNN model using hyperparameters
selected for that observation. For each iteration, a set of
hyperparameters is chosen, and an observation made. We use
validation accuracy for evaluation of the observation. The
hyperparameter set is chosen based on an acquisition function
balancing the choice between exploring the whole search space
and exploiting well-performing areas of the search space.
Figure 1 shows the flow of the optimization.

B. Transfer learning

We use transfer learning for efficient training of a relatively
small dataset, and for the speed-up the technique presents over
training from scratch. Our implementation of transfer learning
relies on pre-trained models available from Keras [4], which
have been pre-trained on the ImageNet dataset [7]. ImageNet is
a dataset containing 1,000 classes of ordinary objects such as a
car, house, balloon, and strawberry. These images are different
from images from the gastrointestinal domain, but share the
commonality of being natural images with colors, contrasts,
and light. These shared image features are the ones we want
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Fig. 2: System flow.

to keep while fine tuning to our gastrointestinal dataset. We
have implemented this by selecting a layer in the model as a
separator. All layers before this layer, those containing lower-
level image features, are not changed during training, that
is, frozen. We train all layers after this layer as usual which
introduces a new hyperparameter that we call the delimiting
layer.

To use transfer learning in Keras, we must replace the
classification block of the CNN model. The old block was
for the 1,000 classes of ImageNet, so we replaced it with
a block containing our number of classes. The first step of
transfer learning is then to train the new classification block
alone until it is on par with the rest of the model. The last
step is to fine tune the model based on the chosen delimiting
layer.

C. Methodology

Figure 2 shows the flow of the system. We split the datasets
into 70% training data and 30% validation data. Moreover,
a set of hyperparameters and their boundaries is defined,
including the delimiting layer. Further, we run the optimization
test-suite. Here, we have three approaches to how we use the
hyperparameters in the optimization.

1) The first approach, shared hyperparameters optimiza-
tion, is to have one set of hyperparameters which we
use for both the classification block step and the fine-
tuning step of the training.

2) The second approach, separate hyperparameters opti-
mization, is to use two sets of hyperparameters, one for
each training step. The drawback to this approach is that
we double the search space dimensionality.

3) The third approach, separate optimization steps opti-
mization, is to use two sets of hyperparameters, but
instead of choosing them in the same observation, we
run two separate Bayesian optimization runs. First, we
optimize the classification block, and then the best model
is used for separate optimization of the fine-tuning.

After every optimization approach, we perform a separate
optimization including only the delimiting layer. The reason
for this is that we need to define the boundaries of the
hyperparameter. The boundaries of the delimiting layer are
from O to the maximum number of layers of the model
used. We use the model as a hyperparameter, which means
the model changes during optimization. The separate layer
optimization step allows us to find the best model first, then
learning the hyperparameter bounds of the delimiting layer.
However, the dependency between the delimiting layer and
the pre-trained model can be problematic. Before conducting
layer optimization, we need to use a temporary value for the
delimiting layer. Some models might work better with this
default setting than others. We use their performance with the
default layer to evaluate their efficiency, so we risk models
to be chosen based on their performance with the default
delimiting layer before layer optimization. In the future, we
plan not to separate the Bayesian optimization steps to avoid
dependencies like this.

IV. EXPERIMENTS

To evaluate our system, we ran two experiments on two
datasets testing each of the three previously mentioned opti-
mization strategies. Each Bayesian optimization step ran with
ten iterations as the maximum. Additionally, to save time,
some training runs were canceled earlier because they failed to
converge beyond 50% validation accuracy after the completion
of five epochs. Our hardware specifications include two Intel
Xeon E5-2630 v3 2.40GHz CPUs, one Nvidia Tesla K40c and
two Nvidia GeForce GTX TITAN X GPUs, and 64 GB system
memory.

For the experiments presented here, we chose to focus on
four hyperparameters: The pre-trained model, the gradient de-
scent optimizing function, the learning rate and the delimiting
layer. The pre-trained model is a hyperparameter because
Keras keeps a number of models, which can be swapped
seamlessly. For a user of machine learning, choosing the best
model will often be based on benchmark numbers, but these
are not necessarily representative for the given dataset. We
use the following pre-trained models available in Keras: Xcep-
tion, VGG16, VGG19, ResNet50, InceptionV3, InceptionRes-
NetV2, DenseNet121, DenseNet169, and DenseNet201. For
the gradient descent optimizer, we use the following avail-
able in Keras: SGD, RMSprop, Adagrad, Adadelta, Adam,
Adamax, and Nadam. We set the learning rate bounds as con-
tinuous between 1 and 107%. Lastly, as previously mentioned,
the delimiting layer is set between 0 and the number of layers
in the chosen model. Before performing the layer optimization,
we use a default delimiting layer of 2/3 of the number of
layers in the model.

A. Datasets

The Kvasir dataset [17] consists of eight classes as shown in
Figure 3. The dataset is balanced with each class having 1,000
images. Some images in certain classes contain artifacts such
as a box or text. These artifacts could affect the generalization
capability of the trained models. For our purposes, the effect
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Fig. 4: Example images from each class in Nerthus [16].

is irrelevant as we are only interested in increased detection
compared to the baseline approaches presented in the paper
describing the dataset.

The Nerthus dataset [16] is different from Kvasir in both
that we have videos instead of separate images and the four
classes, shown in Figure 4, contain images with different
values of the Boston Bowel Preparation Scale (BBPS) [10].
Nerthus contains the same artifacts as Kvasir. Nerthus consists
of 21 videos with a total number of 5,525 frames and is an
imbalanced dataset with frames per class varying from 500 to
2,700.

B. Evaluation Metrics

We use the metrics suggested in the dataset papers [16],
[17]: F1 score (F}), accuracy (ACC), Matthew correlation
coefficient (MCC), precision (PREC), recall/sensitivity (REC),
and specificity (SPEC). A detailed description and reasoning
for the use of these metrics for evaluation can be found in [17].
Additionally, we report false negatives and positives, and true
negatives and positives. Lastly, we use validation accuracy to
determine the performance of the model during training.

C. Results and Discussion

1) Kvasir: Figure 5 shows the experiment ran for Kvasir. In
the graph, each line represents a training step’s validation accu-
racy over time. The experiment took almost four days. We can
see in Figure 5 that the shared hyperparameters optimization
strategy outperformed the other two optimization strategies re-
garding validation accuracy. Shared hyperparameters achieved
a validation accuracy of 0.89, which was much higher than
the best of the separate hyperparameters at 0.63 and the best
of the separate optimizations at 0.54 validation accuracy. The
classification block optimization reached a validation accuracy
of 0.86 and the layer optimization increased the validation
accuracy to 0.89, which suggests that optimizing the delimiting
layer makes a difference.

Additionally, we see that the shared hyperparameters opti-
mization is the only strategy to converge to a higher validation
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Fig. 5: The experiment on the Kvasir dataset.

Class FN FP TN TP F; ACC MCC PREC REC SPEC
Dyed lifted polyps 15 24 2076 285 0.94 098 093 0.92 095 0.99
Dyed resection mar- 23 8 2092 277 095 099 094 097 092 1.00
gins
Esophagitis 181 4 2096 119 0.56 0.92 0.59 097 040 1.00
Normal cecum 8 18 2082 292 0.96 0.99 095 094 097 0.99
Normal pylorus 2 18 2082 298 0.97 099 096 094 099 0.99
Normal z-line 7 183 1917 293 0.76 092 0.74 0.62 098 091
Polyps 19 7 2093 281 0.96 099 095 098 094 1.00
Ulcerative colitis 20 13 2087 280 0.94 0.99 094 096 093 0.99
Average 34 34 2066 266 0.88 097 0.87 091 0.89 098
Best from [17] - - - - 0.75 0.94 0.71 0.75 0.75 0.96

TABLE I: Metrics for each class after hyperparameter opti-
mization for the best model on the Kvasir dataset, including
average values for comparing with the best approach metrics
presented in the Kvasir paper [17].

accuracy. The other strategies are more sporadic. It seems
luck has been the big factor in their best results. We can
also observe that many of the runs failed to reach above 0.5,
with most runs being around 0.125, which means random
classification. All of these runs were stopped early, and we
can see the impact of this saving us time.

In Table I, we compare the best-trained model from the
Kvasir dataset experiment with the best approach from the
Kvasir dataset paper [17]. The best-trained model was trained
from the shared hyperparameters optimization strategy in the
layer optimization step and reached a validation accuracy of
0.89. The best-trained model reached an F; score of 0.88
which was significantly better than the best from Kvasir with
a score of 0.75, which was a method using handcrafted global
image features. Compared to a transfer learning method using
InceptionV3 achieving an F} score of 0.69, which did not
include hyperparameter optimization, our results show that
hyperparameter optimization makes a significant impact on
the accuracy of the classifier.

Our best-trained model did significantly better than the
comparable approaches in the Kvasir dataset paper. By looking
at the confusion matrix in Figure 6, we see that the model
classifies most images correctly. However, we can see between
two pairs of classes that the model makes misclassifications.
Between dyed lifted polyps and dyed resection margins, there
are a few misclassifications, but we attribute this to both
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Fig. 6: Confusion matrix: best-trained model on Kvasir.

(a) Esophagitis misclassified as
normal-z-line.

(b) Normal-z-line misclassified as
esophagitis.

Fig. 7: Misclassification: esophagitis and normal-z-line.

classes having blue dye covering the area of interest. Also,
a few of the images contain both dyed lifted polyps and
dyed resection margins which confuse the classifier. Between
esophagitis and normal-z-line, the esophagitis class is wrongly
classified in 176 instances. This misclassification is the only
reason why the average F score is not above 0.95. However,
by looking at Figure 7, we can see examples of these mis-
classifications. We see from the figure that there are visual
similarities which might even make it difficult for humans
to distinguish. It is our opinion that the similarities are so
striking, that the algorithm, similar to a human, is unable to
spot the differences. We have one question: If some images are
so similar that they are interchangeable, why are there almost
no misclassifications where the normal z-line class is classified
as the esophagitis class? By looking at the confusion matrix
in Figure 6, we see the misclassifications where the normal z-
line class is classified as the esophagitis class involving only
three images. We can only speculate that it must be of some
CNN implementation-specific reason.

2) Nerthus: From Figure 8, we observe many of the same
patterns as in Figure 5 from the Kvasir experiments. The
shared hyperparameters optimization approach is the winner
regarding validation accuracy. However, we see that the sepa-
rate optimization strategy performed close to the winner. What
stands out in the Nerthus runs is that the validation accuracy
of the best-trained model reached very close to 100%. Layer
optimization nudged the results from 0.99 to 1. The high
result might be due to overfitting on the validation dataset,
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Fig. 8: The experiment on the Nerthus dataset.

Class FN FP TN TP F; ACC MCC PREC REC SPEC
BBPS 0 0 0 1507 150 1.00 1.00 1.00 1.00 1.00 1.00
BBPS 1 1 2 845 809 1.00 1.00 1.00 1.00 1.00 1.00
BBPS 2 0 1 1364 292 1.00 1.00 1.00 1.00 1.00 1.00
BBPS 3 2 0 1252 403 1.00 1.00 1.00 1.00 1.00 1.00
Average 0.75 0.75 1242 414 100 1.00 1.00 1.00 1.00 1.00
Best from [16] - - - - 090 095 0.86 090 0.90 096

TABLE II: Metrics for each class after hyperparameter opti-
mization for the best model on the Nerthus dataset, including
average values for comparing with the best approach metrics
presented in the Nerthus paper [16].

but avoiding overfitting is not a goal of the experiments.
Another reason for high results might be a high correlation
between frames of the same video. We treat each frame as
independent to make our results comparable to the approaches
in the Nerthus dataset paper [16].

In Figure 8, we see that the separate hyperparameters
optimization took longer than the others, but did worse. We see
this is in contrast to what we saw in Figure 5 for the Kvasir
experiments. The reason for this is that most training runs
were centered around 0.5 validation accuracy, which meant
they were not stopped early. For this experiment, we should
have increased the threshold for being stopped early. Still, the
whole run took almost two days, which makes sense as the
dataset is smaller than Kvasir. We also see that the separate
hyperparameters and optimizations strategies failed again at
optimizing as none converged to as high validation accuracy
as the shared hyperparameters. The failure is likely due to
the higher dimensionality of the two strategies compared to
sharing the hyperparameters.

We had several models reaching near 100% validation
accuracy. Therefore, we had to choose one of them. In Table II,
we compare the evaluation metrics to those for the best
approach in the Nerthus dataset paper [16]. An almost perfect
classification is tough to beat, and, indeed, we see in Table II,
that the metrics from our best model are much better than
the metrics produced in the Nerthus paper [16]. The overall
metrics are higher than those in the Kvasir paper [17], shown
in Table I, meaning classification is overall easier for Nerthus
than for Kvasir.

Reaching better metrics for the best Nerthus model is,
therefore, expected. The best F} score in the Nerthus paper
was reached by the six global features logistic model tree
approach, the same method that reached the best result in the



Kvasir paper, reaching 0.9. In comparison to our model, that is
10% less. The more similar transfer learning with InceptionV3
approach in the Nerthus paper reached an Fj score of 0.75,
which is significantly worse. We can see from our results
that our shared hyperparameters optimization approach can
produce better significantly better classifiers than approaches
using handcrafted global features or transfer learning without
automatic hyperparameter optimization.

V. CONCLUSION

For the scenario of anomaly detection in the GI tract, we
have presented a system for automatic hyperparameter opti-
mization using transfer learning in Keras. We ran experiments
using two datasets containing images and videos from the GI
tract, and we evaluated three different hyperparameter opti-
mization strategies. The results indicates that only the shared
hyperparameters approach was successful. For the shared
hyperparameters approach, the results for both experiments
showed an increase of about 10% over the best approaches
in the dataset papers which we used for comparison. For
similar transfer learning approaches in the dataset papers,
the difference was even greater. We therefore conclude that
automatic hyperparameter optimization is an effective strategy
for increasing performance in transfer learning use cases. For
future work, we suggest to remove the pre-trained model
as a hyperparameter as we believe that we could achieve
better performance by having the pre-trained model and the
delimiting layer in the same optimization. Another important
future work is to experiment the effect of overfitting in
the approaches presented and try different configurations of
Bayesian optimization.
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