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Network recovery based on system 
crash early warning in a cascading 
failure model
Dong Zhou & Ahmed Elmokashfi

This paper investigates the possibility of saving a network that is predicted to have a cascading failure 
that will eventually lead to a total collapse. We model cascading failures using the recently proposed 
KQ model. Then predict an impending total collapse by monitoring critical slowing down indicators 
and subsequently attempt to prevent the total collapse of the network by adding new nodes. To this 
end, we systematically evaluate five node addition rules, the effect of intervention delay and network 
degree heterogeneity. Surprisingly, unlike for random homogeneous networks, we find that a delayed 
intervention is preferred for saving scale free networks. We also find that for homogeneous networks, 
the best strategy is to wire newly added nodes to existing nodes in a uniformly random manner. 
For heterogeneous networks, however, a random selection of nodes based on their degree mostly 
outperforms a uniform random selection. These results provide new insights into restoring networks by 
adding nodes after observing early warnings of an impending complete breakdown.

Cascading failures and the recovery from them is one of the most popular research directions in network sci-
ence. Recently, the percolation theory has been widely used for modeling cascading failures in interdependent 
networks, where failures propagate among networks due to predefined dependency links1–9. Overload-triggered 
cascades in single or coupled networks have also been the subject of much work in the past decade10–21. Besides 
the above mentioned models, other models like k-core cascades, sandpile models have also been employed for 
understanding failure propagation and systems collapse22–27. Based on the above modeling frameworks of cascad-
ing failures, different approaches for system repair have also been studied. Most of these works consider including 
rules for restoring nodes that fail during the cascading failure process28–33. For example, A. Majdandzic, et al. in 
2014 presented a model, where a node recovers from an internal or external failure after a fixed period of time. 
This model leads to an interesting phase-flipping phenomena, as well as a strong hysteresis behavior28. This model 
was later extended by using a randomized recovery method31. More recently, M.A. Di Muro, et al. studied a node 
repairing strategy for interdependent random networks, where a failed node can be repaired with a certain prob-
ability if it is a part of the current giant connected components32. A. Majdandzic, et al. further studied the cascade 
and node recovery model for multi-layer interacting networks and also investigated the optimal repairing strategy 
for a collapsed coupled system33.

Many cascading failure models exhibit the interesting phenomena of “critical slowing down”: systems near 
criticality can experience a much longer cascading process (the so called “plateau stage”), which is sensitive to 
noise, before a final total collapse1,34–36. For example, D. Zhou, et al. studied the branching process behind the 
critical cascading failures in interdependent networks, and showed the critical/non-critical scaling rules of the 
total cascade length34. In addition, G.J. Baxter, et al. studied the critical and non-critical dynamic processes in the 
k-core pruning model35. Recently, D. Lee, et al. presented a universal model for hybrid percolation transitions and 
investigated the resulting critical cascading process36. Most of these studies mainly focused on interpreting the 
time length of the critical slowing down phase. Further, early warning indicators for system transitions based on 
the critical slowing down have already been evaluated for many real systems37–42. This technique has also been 
used for predicting system collapse in cascading failure models. For example, B. Podobnik, et al. studied indica-
tors to predict total collapses in a cascading failure model on random networks43.

Although the critical slowing down phenomena have been leveraged to provide indicators of impending 
cascades, there is still an important open question: how to restore the system after an early warning has been 
recorded? In this work, we attempt to investigate and answer this question. To this end, we have systematically 
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explored several system recovery strategies after observing an early warning of a total system crash. We base 
our work on the recently proposed model of cascading failures by Y. Yu, et al.44. This cascading failure model is 
an extension of the k-core cascade, where a node will be removed from the network with a probability f if it has 
fewer than ks connections, or it has lost more than a fraction 1 − q of its original neighbors. Further, as in43, we 
employ the moving standard deviation (MVSD) of the remaining system size time series as an early indicator of 
an impending cascade. We then compare five different node-addition based recovery strategies and study the 
effect of response time delay on system recovery. We find that, for homogeneous Erdös-Rényi (ER) networks, an 
earlier node addition leads to a larger survival ratio. However, for scale-free (SF) networks, a delayed recovery 
can be better in some cases. We also find, for ER networks, that it is always better to connect the newly added 
nodes to existing nodes in a uniformly random manner. However, for SF networks, a roulette selection based on 
each node’s original degree (or its reciprocal) can perform better for earlier node additions. These results provide 
insights on how to save a system that has been predicted to collapse.

Results
Cascading failure model and recovery strategies.  In this work, we follow the KQ modeling framework 
of system crash introduced by Y. Yu, et al.44. A node will be removed from the system with a probability f, if it’s 
current degree is smaller than a threshold ks or it has lost more than a fraction q of its original neighbors. The 
fraction of remaining nodes is used as a measure of the system robustness. The KQ model exhibits an interesting 
behavior for certain parameter values, where systems would experience a slow cascading failure process in a pla-
teau stage (pseudo-steady states) before an abrupt total collapse. In the following, we focus on cases with sudden 
total collapse after a pseudo-steady state. Our goal is to investigate early warning indicators and compare system 
recovery strategies. We focus on two cases: ER networks with 〈k〉 = 20, ks = 11, q = 0.09 and f = 0.1, and SF net-
works with γ = 1.8, ks = 5, q = 0.39 and f = 0.2. These parameter values are inspired by the values used by Y. Yu,  
et al., who in turn based their choice of parameter values on measurements from real-world systems. We show 30 
realizations of the cascading failure process for both ER and SF networks in Fig. 1. S(t), t = 1, 2, … denotes the 
proportion of remaining nodes at time step t. For both cases, the system is near criticality and has a plateau stage 
(pseudo-steady state) before reaching the final state (a total collapse or surviving near the plateau). Comparing 
Fig. 1(a) and Fig. 1(b), we find that the ER case has a plateau stage at around ∼S t( ) 1, while the SF case has a 
plateau at around ∼ .S t( ) 0 2. The latter has a much lower plateau stage, since the heterogeneous degree distribu-
tion leads to more failures at the beginning compared to ER networks. For ER networks, as long as the mean 
degree is significantly larger than the threshold ks, the system will have very few failures at the early time steps. In 
other words, the system size does not significantly change, which results in the observed plateau stage around 1.

In order to provide early warning indicators of a total collapse during the plateau stage, we need to capture 
both the beginning and the end of the plateau stage. To do this, we first define the moving standard deviation 
(MVSD) of S(t), MVSD(t), as the standard deviation (SD) of S(t) in time windows with length 5: S(t − 4), S(t − 3), 
…, S(t). For t ≤ 4, the first t values of S(t) will be used to calculate the MVSD instead. Note that the time series 
after the current time step t is not used, since we aim to provide early warning prediction based on historical 
records. We use a window length of 5 for calculating the MVSD, because some realizations for the SF network, as 
shown in Fig. 1(b), can reach a total collapse within 20 time steps.

We define the beginning of the plateau stage as Tstart = 1 for the ER network case. For the SF network case, Tstart 
is defined as the time step where MVSD(t) becomes smaller than 0.01 for the first time. This threshold is moti-
vated by the observation that the MVSD will become smaller than 0.01 during the plateau stage in most cases. 
The end of the plateau stage, Tpred, is defined as the first time step where MVSD(Tpred) > mean(MVSD(t = Tstart, …, 
Tpred − 1)) + 3 · SD(MVSD(t = Tstart, …, Tpred − 1)). This definition is inspired by the fact that systems tend to have 
a continuously increasing SD when leaving the pseudo-steady state.

Following the prediction of the start and end of the plateau stage, we try to restore the system by adding Na 
new nodes at time step t = Tpred + Tdelay, where Tdelay ≥ 1 defines the time delay of the node addition process. Each 

Figure 1.  Examples of the cascading failure process near criticality. (a) 30 examples of the cascading failure 
process for ER networks with N = 1000, 〈k〉 = 20, ks = 11, q = 0.09, and f = 0.1. (b) Similar to (a) but for SF 
networks with γ = 1.8, ks = 5, q = 0.39, and f = 0.2.
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of the additional nodes has ka connections to ka remaining nodes–If there are fewer than ka remaining nodes, all 
of them will be connected to each additional node. Next we discuss different strategies for wiring the newly added 
nodes.

“Uniformly random selection”: at time step Tpred + Tdelay, each additional node is connected to ka uniformly 
randomly sampled remaining nodes.

“Largest degree selection”: at time step Tpred + Tdelay, each additional node is connected to ka remaining nodes 
that had the largest degree values in the original network.

“Smallest degree selection”: at time step Tpred + Tdelay, each additional node is connected to ka remaining 
nodes that had the smallest degree values in the original network.

“Roulette selection”: at time step Tpred + Tdelay, each additional node is connected to ka randomly selected 
remaining nodes, and the probability that a remaining node is selected is proportional to its degree in the original 
network.

“Anti-roulette selection”: at time step Tpred + Tdelay, each additional node is connected to ka randomly selected 
remaining nodes, and the probability that a remaining node is selected is proportional to the reciprocal of its 
original degree.

We use a threshold d for the fraction of remaining nodes, S(t), to determine if one realization of cascading 
failures in simulation has a total collapse. d is set to 0.5 and 0.1 for the ER and SF networks, respectively. These 
thresholds correspond to half the system sizes at the pseudo-steady states. For each realization with a total col-
lapse, we repeat the node addition independently Ma times, and calculate a survival ratio over these Ma tests, η, 
which is the number of trials without total collapses divided by Ma. We also find the time step, t = Td, where S(t) 
decreases to below the threshold d, after each trial of node addition with a total collapse. We repeat the above 
process for M realizations. To illustrate the above mentioned processes of total collapse prediction and mitigation 
via adding new nodes, we show in Fig. 2 examples for an ER network and a SF network. For both examples, we use 
Na = 100 and Ma = 10. We, however, use different ka, Tdelay values depending on the network: ka = 30, Tdelay = 6 for 
the ER network; and ka = 8, Tdelay = 5 for the SF network. These parameter values were carefully chosen to ensure 
that we do not end up with the extreme survival ratio η of 0 or 1. For node addition, we follow the uniformly 
random selection rule. The ER network survived in 8 out of the 10 trials, while 9 of them survived in the SF case 
(see the middle and lower panels of Fig. 2(a,b)). Therefore, the survival ratios for these two examples are 0.8 and 
0.9, respectively.

Comparisons of node addition rules.  In the following, we investigate how different node addition rules 
impact the ability to recover a system with an impending total collapse for both ER and SF networks. We also 
study the role of the time delay Tdelay.

First, we focus on the ER network case with Na = 100 and different values of ka. Fig. 3(a–e) show how the mean 
survival ratio 〈η〉 varies for different values of ka as we vary Tdelay, for the five different approaches of node addi-
tion. For example, according to Fig. 3(a,d,e), for the three randomized selection rules, the survival ratio decreases 
from 1 to around 0 as Tdelay increases or as ka decreases. However, Fig. 3(b,c) show that, for the largest degree and 
smallest degree selection rules, the system has much lower survival ratios. This is because all the Na ⋅ ka additional 
links are added between Na new nodes and the ka remaining nodes with the largest or smallest original degrees. 
This will lead to a final state, with around Na + ka nodes, smaller than the threshold d = 0.5. We also notice that 

Figure 2.  Examples of the system recovery after the early warning indicator. (a) One example of system 
recovery for ER networks with N = 1000 and 〈k〉 = 20. The uniformly random selection rule is used. Ma = 10, 
ks = 11, q = 0.09, f = 0.1, Na = 100, and ka = 30. The threshold for determining a total collapse is d = 0.5. The 
upper panel shows the variation of S(t) (red line with circles) as well as the corresponding moving SD series 
(blue line with crosses). The black vertical line indicates the location of Tpred. The middle panel shows all the 10 
new time series (blue dashed lines) of S(t) after the node addition with Tdelay = 6. The lower panel shows the 8 
trials of node addition (red lines) without total collapses among the Ma = 10 trials in total. The threshold for 
determining a total collapse is d = 0.5. (b) Similar to (a) but for SF networks with γ = 1.8, ks = 5, q = 0.39, f = 0.2, 
Na = 100, ka = 8 and Tdelay = 5. For this example, there are 9 trials of node addition without total collapses within 
the 10 trials. The threshold for determining a total collapse is d = 0.1.
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for the roulette/anti-roulette selection, when ka becomes too large, the survival ratio tends to decrease. This can 
be related to the fact that for each additional node, one remaining node can be selected multiple times, which 
reduces the positive effect of node addition.

Figure 4(a–d) also compare the five node selection rules, but this time we check for different values of ka as 
we vary Tdelay. For example, Fig. 4(a) shows the results for Tdelay = 1, which is an immediate system recovery, and 
as we vary ka between 0 and 200. The uniformly random selection is evidently the best. The roulette/anti-roulette 
selection has similar but slightly smaller survival ratio values. According to Fig. 4(b–d), for larger Tdelay values, 
the uniformly random selection is always better than the roulette and anti-roulette selection rules. These results 
suggest that for restoring an ER network, there is no need to pick nodes to connect to based on degree.

In Figs 5 and 6, we present the same as in Figs 3 and 4, but for the SF case. We consider adding Na = 100 nodes, 
with different ka and Tdelay values. In Fig. 5(a), we surprisingly find that for the uniformly random selection, the 
survival ratio η does not monotonically decrease with Tdelay, but has a peak at around Tdelay = 11 for different ka 
values. This means that to prevent the total collapse of a SF network, sometimes a delayed recovery can be better. 
As shown in Fig. 5(d,e), the roulette and anti-roulette rules behave similarly. Moreover, we find that, for an imme-
diate node addition, the roulette rule performs better than the other two randomized rules (this will be explained 
later when we discuss the results in Fig. 6). Finally, as shown in Fig. 5(b,c), the largest degree and smallest degree 
selection rules perform much better compared to their performance in the ER network case. This is because 
almost all of the Na additional nodes and the ks selected remaining nodes tend to survive when ka is large enough 
(compared to ks). Note that Na + ks is larger than the threshold d = 0.1, which leads to an η value of ≈1.

The increasing and decreasing trends of the mean survival ratio in Fig. 5(a) are caused by the fact that increas-
ing Tdelay leads to two competing effects. On the one hand, a larger Tdelay leads to a smaller remaining network 
before node addition, which tends to cause a smaller final system state after node addition. On the other hand, 
for larger Tdelay, each remaining node on average is connected to more new nodes, which results in larger degree 
increments for the remaining nodes. To demonstrate this, we show in Supplementary Figs 1 and 2 the distribu-
tions of S(t) and node degrees before adding new nodes, as well as at the final state after node additions, for the 
ER and SF cases, respectively. Supplementary Fig. 1(a) shows the PDF of S(t) before node addition for different 
Tdelay values. Supplementary Fig. 1(b,c) shows the PDF and the CDF of the degree values of the remaining network 
before adding nodes. Supplementary Fig. 1(d) shows the PDF of the final state after node addition under the 
uniformly random selection with Na = 100, ka = 100 and Ma = 10. Supplementary Fig. 2(a–d) shows the same as 
Supplementary Fig. 1(a–d) but for the SF network case.

We find that for the ER case, the second trend (larger degree increments) due to increasing Tdelay is weaker. 
Consequently, for most systems at Tdelay = 21 and Tdelay = 31, the remaining system size, before node addition, 
plus another 100 nodes remains below the threshold d = 0.5. Thus, having larger degree increments does not help 
increasing the survival ratio in these cases. However, for the SF case, the remaining nodes with small degrees 
before adding nodes are non-negligible, even for Tdelay = 1. Therefore, having larger degree increments will be 
more helpful than in the ER case. For Tdelay = 1 and Tdelay = 5, the additional degree to each remaining node is 

Figure 3.  Mean survival ratio 〈η〉 as a function of Tdelay for Na = 100 and different ka values. (a) ER networks 
with the uniformly random selection. N = 1000, M = 1000, Ma = 10, 〈k〉 = 20, ks = 11, q = 0.09, and f = 0.1. 
The threshold for determining a total collapse is d = 0.5. (b–e) Similar to (a) but for the largest degree, smallest 
degree, roulette, and anti-roulette selection rules.
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still not large enough for saving them. For Tdelay = 9, thanks the increased degree increments, most final states 
are not at 0, but around 0.11. This is greater than the threshold d = 0.1, which leads to a larger survival ratio η. 
For Tdelay = 13 and Tdelay = 17, the first trend (reduced remaining system size) dominates as in the ER case, conse-
quently most final system states are below the threshold d = 0.1.

Similar to Fig. 4, Fig. 6(a–d) compares the the five selection rules for the SF case using different time delay 
values. For Tdelay = 1, the roulette selection is better than the anti-roulette or the uniformly random one. However, 
at Tdelay = 5, the anti-roulette is better than the other two randomized rules. When Tdelay becomes larger, the 
uniformly random selection becomes the best. These results present a different phenomenon compared to the 
ER case. To interpret these findings, we consider the degree distribution of the surviving network before the 
node addition is performed for the SF network case. At Tdelay = 1 (see Supplementary Fig. 2(c)), the remaining 
nodes that fulfil the requirements of being removed are only a small fraction of all remaining nodes. Therefore, 
it is more important to add links to the original hub nodes to support the connectivity of the remaining net-
work. At Tdelay = 5, the remaining networks before adding nodes include a much larger fraction of nodes with 
small degrees. Consequently, the anti-roulette rule is better, since it restores more susceptible nodes. Finally, for 
Tdelay = 9 or Tdelay = 13, the roulette and anti-roulette selection rule are worse than the uniformly random one. This 
is because both original hub nodes and original nodes with small degrees tend to fulfil the requirements of node 
removal, These intricate effects of time delay, Tdelay, are not observed for the ER network case, since the ER case 
has homogeneous degree distributions before the node addition.

The above results can be further viewed in light of the total “costs” of the recovery process. Considering that in 
real world social networks, the cost of introducing one more individual (node) is mainly determined by his/her 
importance. It costs much more to introduce famous people into the system. Therefore, we can assume that the 
cost of adding a node is proportional to its degree: number of connections to surviving nodes. This is equivalent 
to defining the cost of each additional node as ka, and the total costs of the system recovery as Na ⋅ ka. According 
to the results presented in Figs 4 and 6, for recovering a homogeneous network, the uniformly random selection 
rule performs better, since it can reach higher survival ratios at a lower total cost (controlled by the parameter 
ka). Further, for an early, an intermediate, or a late recovery of a SF network, the roulette, anti-roulette, or the 
uniformly random selection rules results in larger survival ratios at a lower cost, respectively.

Tradeoffs between the number of additional nodes and their degree.  In this subsection, we inves-
tigate the tradeoffs between Na and ka for a given fixed total cost value. We can imagine that a larger Na tends to 
cause a larger final system state, which is good for system recovery. On the other hand, a larger ka leads to more 
robust additional nodes. Therefore, it is important to know which parameter is more critical to the survival ratio 

Figure 4.  Mean survival ratio 〈η〉 as a function of ka for Na = 100. (a) Different selection rules for the ER 
network case with Tdelay = 1. N = 1000, M = 1000, Ma = 10, 〈k〉 = 20, ks = 11, q = 0.09, and f = 0.1. The threshold 
for determining a total collapse is d = 0.5. (b–d) Similar to (a) but for Tdelay = 11, Tdelay = 21, and Tdelay = 31.
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Figure 5.  Mean survival ratio 〈η〉 as a function of Tdelay for Na = 100 and different ka values. (a) SF networks 
with the uniformly random selection. N = 1000, M = 3000, Ma = 10, γ = 1.8, ks = 5, q = 0.39, and f = 0.2. The 
threshold for determining a total collapse is d = 0.1. (b–e) Similar to (a) but for the largest degree, smallest 
degree, roulette, and anti-roulette selection rules.

Figure 6.  Mean survival ratio 〈η〉 as a function of ka for Na = 100. (a) Different selection rules for the SF 
network case with Tdelay = 1. N = 1000, M = 3000, Ma = 10, γ = 1.8, ks = 5, q = 0.39, and f = 0.2. The threshold for 
determining a total collapse is d = 0.1. (b–d) Similar to (a) but for Tdelay = 5, Tdelay = 9, and Tdelay = 13.
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η. Note that in this subsection we only show the results for the three randomized node selection rules in order to 
focus on non-trivial results.

Figure 7(a–c) shows, for the ER case, how the mean survival ratio changes with Na for a fixed total cost 
Na ⋅ ka = 5000 and a set of Tdelay values. The survival ratio, in the uniformly random selection case, is not strongly 
affected by Na for different Tdelay, except for a very large Na (see Fig. 7(a)). This is because, under a fixed total cost, 
as Na becomes larger ka becomes smaller and eventually less than ks = 11. For the roulette and anti-roulette selec-
tion rules, the effect of Na is similar to the uniformly random selection except for small Na values.

Figure 8(a–c) shows the same as Fig. 7 but for the SF case with a total cost Na ⋅ ka = 1200. We find that Na has 
a stronger impact on the mean survival ratio 〈η〉 than in the ER case. For the uniformly random selection, a very 
small Na is preferred at Tdelay = 1. However, the needed number of nodes rises to between 100 and 150 for Tdelay = 5 
or Tdelay = 9 and it continues to rise further for Tdelay = 13 and Tdelay = 17 (see Fig. 8(a)). This means that for a 
more delayed system recovery, a larger Na and a smaller ka are needed. In other words, more additional nodes 
are needed for recovering a system with a smaller remaining size before starting the addition. The roulette and 
anti-roulette selection rules demonstrate a similar behavior (see Fig. 8(b,c)). These results provide suggestions for 
restoring near-collapse systems under a fixed total cost.

Discussion
In this paper, we investigate the possibility of recovering networks that exhibit early warnings of total collapse by 
adding additional nodes. To this end, we model system collapse using the recently introduced KQ cascade-model 
and employ the moving standard deviation of the remaining network size time series as an early indicator of an 
impending cascade. We use five rules for regulating the wiring of the newly added nodes to existing nodes. These 
include three random rules: uniformly random, roulette and anti-roulette. The latter two connect a new node to 
a set of randomly selected existing nodes with a probability proportional and inversely proportional, respectively, 
to their degree in the original network. The five rules include also two deterministic rules that connect new 
nodes to existing nodes with largest and smallest degrees in the original network, respectively. We find that an 
early addition of nodes (i.e. immediately after observing early warning signals) is always better for preventing ER 
networks from a total collapse. This is because ER networks are characterized by a homogeneous degree distribu-
tion. SF networks, however, benefit more from a delayed intervention, that is to start adding nodes after a certain 
time delay Tdelay. Investigating the interplay between the five connection rules and Tdelay shows that the uniformly 
random selection is always the best strategy for saving ER networks. For SF network, the best wiring rules change 
from roulette to anti-roulette, and finally to the uniformly random rule as Tdelay increases. This complex interplay 

Figure 7.  Balance between Na and ka for a fixed Na ⋅ ka. (a) Mean survival ratio 〈η〉 VS Na for the uniformly 
random selection with different Tdelay. ER networks. N = 1000, M = 1000, 〈k〉 = 20, ks = 11, q = 0.09, and f = 0.1. 
Na ⋅ ka = 5000. The threshold for determining a total collapse is d = 0.1. (b) Similar to (a) but for the roulette 
selection. (c) Similar to (a) but the anti-roulette selection.

Figure 8.  Balance between Na and ka for a fixed Na⋅ka. (a) Mean survival ratio 〈η〉 VS Na for the uniformly 
random selection with different Tdelay. SF networks. N = 1000, M = 1000, γ = 1.8, ks = 5, q = 0.39, and f = 0.2. 
Na ⋅ ka = 1200. The threshold for determining a total collapse is d = 0.5. (b) Similar to (a) but for the roulette 
selection. (c) Similar to (a) but the anti-roulette selection.
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is a product of node degree heterogeneity in SF networks. Finally, we explore the balance between the number 
of needed nodes Na and their degree ka that are needed for restoring a collapsing system at a fixed cost of Na ⋅ ka. 
We find that SF networks need to add more nodes as Tdelay increases. However, Na has minimal impact on ER 
networks survival.

Our findings provide insights into saving networks that are predicted to approaching a total collapse. For 
example, the counterintuitive results of SF networks restoration, i.e. the positive impact of time delay, can be 
applied to social structures (companies) and networks with impending cascade to prevent a total collapse. Note 
that many real-world social networks are known to have heterogeneous structures.

Going forward, we plan to apply the proposed network recovery framework to other sorts of cascading 
failure models. These include overload based cascades10,20, which are known to exhibit a slow down near crit-
icality. Furthermore, while the KQ-cascade and node addition based-recovery are more related to social net-
works like Facebook, it will be interesting to investigate failure models and recovery scenarios that are relevant 
to other systems. For example, cascades based on dependencies or overloads, with recovery by reconnecting 
failed nodes29,30,32,33, are more applicable to systems with physical connections, such as the power-grid and traffic 
systems.
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