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In this study, data from 41 wells were used to quantify the evolution of the sedimentary budget in the
Southern Mozambique passive margin basin, with a high temporal resolution for the Cenozoic period.
We found that the drainage areas, which supplied sediments to the Southern Mozambique Basin, were
eroded in two episodes. The first, of Mid-Late Cretaceous in age, is concordant with both thermochrono-
logical datation and sedimentary fluxes estimated by other studies in the Namibian and South African
and Northern Mozambique margins. This erosion episode ended when the African surface, as defined
by Burke and Gunnel (2008), had become flat and low-lying over most of the South African Plateau by
~65 Ma. Carbonate sediment deposition became more important in the shallow waters of the
Mozambique basin after that time. The second erosion episode began at ~23 Ma and is likely due to
an uplift event of the North-eastern part of the South African Plateau. It seems that the Limpopo catch-
ment and the whole area sourcing the studied basin have inherited their present relief from two epeiro-
genic uplift pulses of Late Cretaceous and Miocene ages.
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1. Introduction

The Meso-Cenozoic history of the South African Plateau and its
tectono-morphic evolution has been widely studied over recent
decades. However, there remains no clear consensus on the timing
of the related vertical motions, demonstrated by the existence of
various models. These models fall into two broad categories,
hypothesising either a continuous single phase of exhumation or
multi-pulse exhumation. The timing of the uplift ranges between
times prior to the Gondwana dispersion (Gilchrist et al., 1994;
Van Der Beek et al, 2002; Pysklywec and Mitrovica, 1999;
Doucoure and De Wit, 2003) and the Late Neogene (Partridge
and Maud, 1987; Partridge, 1997). Significant stages of exhumation
in the South African Plateau have been documented in the Late
Cretaceous (King, 1967; De Wit et al., 1988; Brown et al., 1990,
2000; Gallagher and Brown, 1999; Tinker et al., 2008a,b; Kounov
et al.,, 2009) and since the Oligocene (~30 Ma; Burke, 1996;
Burke and Gunnell, 2008).

Erosion and subsequent sediment transport are commonly
identified as results of the uplift of shields and plateaus
(Stephenson, 1984; Bishop and Brown, 1992; Tinker et al.,
2008b). Thus, the quantification of terrigeneous sediment in the
surrounding marginal basins can be used to constrain the timing
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of continental relief evolution. Such an empirical approach has
been used in the study of several basins located on the edges of
the South African Plateau in Southern Africa (McMillan, 2003),
including the Orange Delta basin (Guillocheau et al., 2012), the
Outeniqua basin (Tinker et al., 2008b) and the Zambezi Delta off
central Mozambique (Walford et al., 2005). However, except for
Walford et al. (2005), these studies lack precision in the Cenozoic
because they adopt a single time interval for the sediments accu-
mulated during that epoch. As for the Limpopo delta and the asso-
ciated Southern Mozambique Basin, which are the focus of this
paper, the only published sediment estimates are based on a single
interpreted seismic cross-section (Macgregor, 2010).

Here we aimed to unravel the vertical motion of the catchment
area located at the north-eastern margin of the South African
Plateau that supplies sediment to the Southern Mozambique
Basin. Based on a compilation of 41 exploratory wells, we carried
out a volumetric study of the sediments preserved in the
Southern Mozambique Basin from the Early Cretaceous onwards.
The presented results provide a better estimate of the uplift timing
and the topographic building of the north-eastern margin of the
South African Plateau relief.

2. Geological settings

The present-day Southern Mozambique Basin was formed dur-
ing a complex geodynamic evolution of the south-east African
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margin (Fig. 1). Its formation started during the Karoo rift and the
Karoo Magmatic events in the Triassic and Early to Middle Jurassic
times, respectively. These events led to the Gondwanaland
break-up in Late Jurassic-Early Cretaceous times and the subse-
quent drift of major- and micro-continents from the Early
Cretaceous onwards (Martin and Hartnady, 1986; Salman and
Abdula, 1995).
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Also called the Mozambique Thinned Zone (Cox, 1992), the
Southern Mozambique Basin is a thin Meso-proterozoic (or older)
crustal fragment embedded within an oceanic crust of the Early
Cretaceous age (Ben Avraham et al., 1995). Before the M10 magnetic
anomaly marker of ~135 Ma, the prominent Dronning Maud Land of
East Antarctica was adjacent to the Lebombo and the Mwenetzi
monoclines (Fig. 1b). It subsequently slid southward for more than
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Fig. 1. Digital elevation model of Southern Africa. (a) Present day and (b) reconstructed at 150 Ma using the UTIG model (Lawver et al., 1998).
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500 km along a transform fault east of the Lebombo monocline. The
rifting occurred in the interval between the M21 and M10 magnetic
anomalies (~150 to ~135 Ma; Martin and Hartnady, 1986).

From Gondwana break-up to the present, several hundred thou-
sand cubic kilometres of rock has been eroded from the South
African continental relief and accumulated in the Southern
Mozambique Basin and other passive marginal basins surrounding
the South African Plateau (McMillan, 2003; Tinker et al., 2008a,b).
The origins of these continental sediments have been related to the
tectono-morphic and erosion processes experienced by the South
African Plateau, the most dominant structure in Southern Africa
(e.g., Guillocheau et al., 2012). This interior plateau, which today
presents a flat relief at a high elevation (between 1000 and
1500 m), is separated from the coastal plain by the
steeply-dipping Great Escarpment (Fig. 1). The plateau is a part
of the African surface, which had probably been cut as a near
sea-level peneplain and then uplifted and significantly eroded
(Burke and Gunnell, 2008; Macgregor, 2010).

In the past 200 Ma, a total thickness of 2-7 km of rock, of which
basalt was a major component, was eroded from the subcontinent’s
surface during two punctuated episodes of exhumation that
occurred in the early-Cretaceous and mid-Cretaceous documented
by Apatite Fission Track (AFT) and Apatite (U-Th-Sm)/He (or AHe)
low-temperature thermochronology methods (Van Der Beek et al.,
2002; Dauteuil et al., 2013; De Wit, 2007; Brown et al., 1990,
2000; Gallagher and Brown, 1999; Tinker et al., 2008a,b; Kounov
et al., 2009; Flowers and Schoene, 2010). AFT and AHe data also
describe a concordant radial pattern of rejuvenation from inland
towards the Great Escarpment (Brown et al, 1990, 2000;
Gallagher and Brown, 1999). In addition, another spatial distribu-
tion of low-thermal ages is observable, with a progressive decrease
in ages of both the external and internal edges of the Great
Escarpment from the Indian Ocean to the South Atlantic margins
of South Africa (Gallagher and Brown, 1999). This distribution is cor-
related as a first approximation to the time delay (~30 Myr) in the
Gondwanaland dislocation and associated rifting processes on both
sides of the South African Plateau. A recent study by Braun et al.
(2014) proposes a different hypothesis of plate tilting driven by
the migration of the continent over a fixed source of mantle
upwelling.

During the Cenozoic, exhumations and denudations along the
South African Plateau are more problematic to detect by AFT and
AHe data, as the vertical motions are not resolved by these meth-
ods. Nevertheless, the absence of completely reset AHe and
annealed AFT ages constrains the maximum amount of Cenozoic
denudation to less than 2 km (De Wit, 2007).

In addition, low rates for the present-day denudation in
Southern Africa are estimated from cosmogenic nuclides analysis
(Fleming et al., 1999; Cockburn et al., 2000; Brown et al., 2002;
Kounov et al., 2007). These studies show denudation rates of 10—
15 m/Myr and even as low as 1 m/Myr. Some researchers extrapo-
late low denudation rates across the entire Cenozoic on the basis of
the prevailing aridity of the climate and the lack of substantial
uplift throughout that period (Cockburn et al., 2000). However,
other authors consider the Cenozoic as a principal period of uplift,
topographic development and escarpment formation in southern
Africa (Partridge and Maud, 1987; Partridge, 1997; Burke, 1996;
Burke and Gunnell, 2008). Here we present evidence of an impor-
tant Cenozoic sedimentary event and quantify the sediment vol-
umes using a detailed time-scale for this period.

3. Data and methods

Located in the south-east corner of Southern Africa, the
Southern Mozambique Basin is an area flanked on the west and

the north-west by pre-Palaeozoic structures: the Kaapvaal and
the Zimbabwe Cratons, respectively (Fig. 1a). The external limits
of this basin are defined by the succession of the north-south
Lebombo monocline and the north-east to south-west Mwenetzi
monocline (Fig. 1b).

For the volumetric approach used in this study, boundaries of
the Limpopo basin have been refined based both on geophysical
(gravimetry) and geological (isopachs and structural features) data.
The studied basin, presenting an area of approximately 25 million
square kilometres, is limited to: the north by the thick sedimentary
wedge of the Zambezi basin; the east by a set of north-south and
north-east to south-west normal faults, which separate it from the
distal part of the Zambezi delta; and to the west by the relatively
high gravity structure corresponding to the Lebombo volcanic edi-
fice (Fig. 2a). Presently, this basin is supplied by the Limpopo
catchment and two other relatively small drainage basins (Save
and Incomati) (Fig. 2b).

Data from 41 wells drilled in the Southern Mozambique passive
margin basin were used to estimate the volume of sediment accu-
mulated from Early Cretaceous to the present. To do so, we
adopted a methodological approach that defines 9 time-intervals
(Fig. 3) corresponding to different lithotectonic units or formations.
These formations are often separated by unconformities, as
reported in the stratigraphic log (Fig. 3).

The Cheringoma formation, deposited during the Middle to Late
Eocene, is characterised by stacked nummulitic limestones with
bands of clay and calcareous sandstone (Salman and Abdula,
1995). The maximal production was in the north and the south
of the basin. In the central part, the carbonate production is prob-
ably inhibited by the terrigeneous input of fine-grain siliciclastics
found in this part of the basin (Schlager, 2005), corresponding to
the probable location of the main delta at this time period.
Eastwards, the facies of the shallow-water shelf are replaced by
deeper-water facies, which formed in conditions of a continental
slope and continental rise (Salman and Abdula, 1995). In the
Early and Middle Miocene, the environment was lagoonal with
the deposition of the red dolomite of the Temane formation and
the evaporites of the Inharrime formation. The overlying Late
Miocene Jofane formation is characterised by marine carbonates:
limestone, calcarenite and arenaceous limestone (Salman and
Abdula, 1995).

To determine the evolution of the sedimentary flux and calcu-
late changes in the sedimentation rate, the volume of sediment
preserved in each formation was quantified using interpolation
between the well data. The quantification of terrigenous sediment
volumes requires two main corrections: a correction for carbonates
produced in situ; and a correction for the sediment compaction
exerted by the overlying sediment layers. A third potential correc-
tion is that for long-shore transport. Because the major break-up
and seafloor formation period is complete by about 110 Ma
(Lawver et al., 1998), we assume that, although we cannot pre-
sently quantify the effect of the long-shore transport, the rate of
both sediment influx and removal would be approximately con-
stant during our study and not affect the temporal pattern of
sedimentation.

3.1. Compaction correction

The sediment decompaction was calculated based on the poros-
ity-depth law in Allen and Allen (2013). This law assumes that
density changes of a sedimentary unit are caused only by changes
in the pore space (ignoring, for example, diagenesis) and that the
porosity, ¢ (the ratio between pore space and sediment), is
decreasing exponentially with the depth, z:

b(2) = poexp(—c-2),
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Fig. 2. (a) Map of sediment thicknesses, tectonic faults and gravity data of Southern Africa region. (b) Map of Southern African drainage system and major related drainage
basins. Purple dots are location of the boreholes used in this study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

where ¢o is the porosity at the surface and ¢ is a
lithology-dependent coefficient that determines the slope of the
porosity—depth curve. In the well-logs used in this study, the fol-
lowing lithologies are present: sandstone, shale, limestone and
shaly sandstone. For each lithology, we used the ¢, and c values
as described by Sclater and Christie (1980).

The total pore volume of a sedimentary layer is given by inte-
gration over the depth interval:

Ztop
AZpore = / $oexp(—c-z)dz= %o [eXP(—C€ Ziop) — €XP(—C Zbottom) ]

Zbottom ¢

The decompacted thickness of a layer is its net thickness
plus this depth-dependent pore volume. The decompacted
thickness is determined by an iterative approach: decompacting
a layer, removing it and then decompacting the layers
beneath it.
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Fig. 3. Composite stratigraphic column of the Mozambique marginal Basin (modified after Salman and Abdula (1995)), with indication of the Palaeo-water depth (PWD) and

the Palaeo-environment.

3.2. Carbonates correction

To calculate the terrigeneous sediment volume, the
non-terrigeneous contribution is removed from the total sediment
in the basin. In our case, carbonate deposits are the main
non-terrigeneous sediments present and we assume all carbonates
are produced in situ, given the shallow water depths associated
with the carbonates in the well-logs. The thickness of carbonate
layers for each time interval at each borehole were estimated
based on information from the available well-logs. The well data
was interpolated to a grid covering the region from 32°E to 37°E
and from 19°S to 28°S at 0.01° resolution, excluding values outside
the defined limits of the SMB. The interpolation is a two-stage pro-
cess: first combining the well-data for each 0.2° block as a

barycentric approach on a course grid with 0.2° grid spacing, using
a weighted combination of the data from the nearest three avail-
able wells or boundary points. In the case of the sediment thick-
ness, the thickness was assumed to be zero on the boundary and
the barycentric interpolation included at most two boundary val-
ues. In the second stage, the course grid was refined to 0.01° reso-
lution using a Delaunay triangulation.

4. Results
Grids of the carbonate content percentage and the

non-terrigenous sediment thickness for each time interval are pre-
sented in Figs. 4 and 5.
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Fig. 4. Carbonate fraction maps for the Southern Mozambique Basin. (A) Earliest Cretaceous; (B) Mid-Cretaceous; (C) Latest Cretaceous; (D) Palaeocene-Early Eocene; (E)
Middle Eocene-Oligocene; (F) Early Miocene; (G) Middle Miocene; (H) Late Miocene; and (I) Plio-Quaternary. White circle: not available data because the well is not reaching
the series of that age; Black circle: available data from well. The transparency is indicating the uncertainty.

4.1. Carbonate deposits

For the Cretaceous (Fig. 4A-C), carbonate deposits are almost
negligible, representing approximately 1% of the total sediment
volume (Table 1). The Palaeocene and Early Eocene (Fig. 4D)

represent a growth period for carbonates, which continued until
the carbonate percentage peaked in the Middle Eocene to
Oligocene (Fig. 4E), when 83% of the basin area was covered by car-
bonates and the maximum carbonate percentage increased to 38%
of sediment volume (Table 1). In the wells available, the carbonates
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Fig. 5. Solid sediment thickness maps for the Southern Mozambique Basin. (A) Earliest Cretaceous; (B) Mid-Cretaceous; (C) Latest Cretaceous; (D) Palaeocene-Early Eocene;
(E) Middle Eocene-Oligocene; (F) Early Miocene; (G) Middle Miocene; (H) Late Miocene; and (I) Plio-Quaternary. White circle: not available data because the well is not
reaching the series of that age; Black circle: available data from well. The transparency is indicating the uncertainty.

are mostly concentrated landward of the present-day shoreline to main carbonate concentrations moving marginally seaward. In
the south and north of the Basin. In the Early and Middle Miocene the Late Miocene (Fig. 4H), carbonates recover to cover much of
(Fig. 4F and G) there is a small decrease in carbonates, with the the central part the basin and account for an average 38% of
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Table 1
Detailing the carbonate distribution in the basin for the different time periods A-I.

Time period Mean percentage of % of basin area covered by
label carbonates (%) carbonates
A 1 44

B 0 0

C 1 22

D 6 57

E 38 83

F 16 75

G 15 93

H 38 97

I 11 51

sediment volume (Table 1). Finally, in the Plio-Pleistocene (Fig. 4I),
the carbonates retreat (except in the south of the basin), with a
mean value of only 11% of total sediment volume (Table 1).

4.2. Solid sediment thickness

Few wells reach the earliest Cretaceous and therefore the dis-
tance between data is large, except in the south of the Southern
Mozambique Basin (Fig. 5A). In the Mid-Cretaceous (Fig. 5B), the
data coverage is only slightly better, but across the Basin, these
wells report large amounts of sediment and the average sediment
thickness is 728 m (Table 2). In the Late Cretaceous (Fig. 5C), there
is a slight reduction of sediment supply to the Basin, with signifi-
cant sediment found only along the centre of the northern segment
of the Basin and the average sediment thickness dropping to 418 m
(Table 2). In the Palaeocene and Early Eocene (period D), an almost
equivalent age interval as compared with period C, the average
sediment thickness drops to only 87 m. This low amount continues
through the Middle Eocene and Oligocene (Fig. 5E), with 43 m
deposited on average across 25.6 Myr, while the Middle Miocene
has a similar sediment thickness deposited in only 7 Myr. Two sed-
iment depocentres in the north of the basin are separated by a rel-
atively low amount of sediment; in the south, up to 200 m of
sediments were deposited in the zone off the present coast. The
sediment volumes increase in the Late Miocene (Fig. 5H) with an
average of 112 m deposited in 6.3 Myr (Table 2). However, in the
Plio-Pleistocene very little sediment is deposited in the basin
(Fig. 5I).

4.3. Sedimentary flux

Sediment volumes have been calculated by integrating the sed-
iment thicknesses to the basin area. The ratio between volume of
sediment and the time period required for its deposition yields
to sedimentary flux. Sedimentary mass fluxes have been deter-
mined assuming an averaged sediment density of 2600 kg/m>
and are presented in Fig. 6. The results show two periods of

Table 2
Detailing the solid sediment thickness distribution and the sedimentation rate for the
different time periods A-I.

Time period Mean thickness of Average sedimentation rate
label sediments (m) (m/Myr)
A 221 6.6

B 728 273

C 418 23.4

D 87 5.1

E 43 1.7

F 72 103

G 63 14.3

H 112 17.8

I 20 3.8

significant increase in sediment inputs into the Southern
Mozambique Basin: the first period corresponds to the Mid-Late
Cretaceous (Fig. 6B and C), during which the sedimentary flux
was higher than 4.9 x 10®km?/Myr with a maximum of
5.4 x 10 km3/Myr obtained during the Mid-Cretaceous (Fig. 6B);
the second peak was recorded in the Miocene. During the three
Miocene time intervals (Fig. 6F-H), the sediment input was higher
than 2.2 x 10% km®/Myr, reaching a peak of ~3.8 x 10> km3/Myr in
the Late Miocene. Compared to the Mid-Late Cretaceous, which
lasted 46.5 Myr, the Miocene increase is only 17.7 Myr in duration
(time periods F-H). However, the existence of the Oligocene
unconformity means it is possible that the Neogene increase began
earlier and was even more significant.

These two periods of high sedimentation rates are followed by
two periods of low sediment input, firstly from the Palaeocene to
the Oligocene (Fig. 6D and E) and secondly during the
Plio-Pleistocene (Fig. 61). During these periods of sediment starva-
tion, the flux of terrigeneous inputs never exceeded
~1.1 x 10* km*/Myr and reached its minimum value in the
Middle Eocene-Oligocene.

5. Discussion

A major shift in drainage affected south-eastern Africa (includ-
ing the study area) during the Late Cretaceous-earliest Palaeocene
(Moore and Larkin, 2001; Haddon and McCarthy, 2005; Goudie,
2005). This was associated with intracratonic subsidence and for-
mation of the internally drained Kalahari Basin, as well as flexural
uplift along the Indian Ocean margin, leading to beheading of the
upper tributaries of the Limpopo River. As a result, the size of the
drainage basin supplying sediment into the Mozambique area,
including the Southern Mozambique Basin, decreased significantly
(Fig. 6).

There have been a number of arguments posited towards a Late
Cenozoic phase of uplift of the South African Plateau, an idea also
supported by our results. Alternative explanations from either
eustatic sea-level or regional climate change are unlikely because
the early Miocene was a time of slight sea-level rise (Haq et al.,
1987) and lithological indicators are that the regional climate
was relatively stable during the Oligocene-Miocene transition
(Scotese and Moore, 2011).

In addition, two incised valley generations (King, 1967) of the
South African Plateau indicate two periods of uplift since its forma-
tion in the Late Cretaceous. The inland presence of Eocene marine
deposits at an altitude of 400 m at Need's Camp, South Africa
(Partridge and Maud, 1987), further supports the hypothesis of
post-Eocene uplift of Southern Africa. In addition, numerical mod-
elling of the thermal histories of the oil wells in the Southern
Mozambique Basin also requires significant uplift and erosion at
ca. 25 Ma in order to achieve an acceptable calibration of the model
to the available maturity data (Matthews et al., 2001). These
results agree well with our results of increased Miocene sedimen-
tation (Fig. 6).

The sedimentary fluxes from Fig. 6 are placed, for comparison,
alongside results from other studies in the basins surrounding
the South African Plateau (Fig. 7). Studies in the Orange delta and
the Outeniqua basin do not show any variation in the sedimentary
flux during the Cenozoic because of their low temporal resolution
for that period. Our study and the study by Walford et al. (2005) in
the Zambezi delta show sediment pulses higher than
3 x 103 km3/Myr in the Late Cenozoic. In the Zambezi delta, high
sedimentation rates have been recorded since the Oligocene.
However, given the Oligocene’s major unconformity, there exists
the potential that a significant volume of sediments in the Late
Oligocene may have been removed and redistributed outside the
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Fig. 6. Variation of the solid sediment flux deposited through the time in the Southern Mozambique Basin. Flux is expressed in terms of volume (km?/Myr; left-hand axis) and
in terms of mass (t/Myr, assuming an averaged sediment grain density of 2600 kg/m?>; right-hand axis).
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Fig. 7. Comparison between sedimentary fluxes in the surrounding margins of the South African Plateau: the Orange delta (Guillocheau et al., 2012), the Outeniqua basin
(Tinker et al., 2008b), the Limpopo delta (this study), and the Zambezi delta (Walford et al., 2005). Note that the sedimentation rate in the Outeniqua basin is expressed in m/

Myr and not in km*/Myr like in the other cases.

boundaries of the Southern Mozambique Basin. Indeed, the
Oligocene interval is thin or missing in many marginal basins
around Africa (Jackson et al., 2005).

The reasons for the uplift episodes of the South African Plateau
are less clear, but may be related to epeirogenic uplift associated
with an increase in mantle buoyancy (Flowers and Schoene,
2010). The first Mid-Late Cretaceous event overlaps in age with
the Kimberlite intrusions across the southern African hinterland
(>450 kimberlites, dated between 90 and 100 Ma, Jelsma et al.,
2004, 2009) and with the formation of the Agulhas Falkland LIP
(90-100 Ma) along the south coast of Southern Africa (Tinker
et al., 2008a). However, because tectonic uplift and volcanic

activity are not always linked, the lack of any significant igneous
activity across the South African Plateau during the Miocene does
not refute the occurrence of an uplift event during that time period.

6. Conclusions

Here we used abundant well data to quantify the evolution of
the sedimentary budgets in the Southern Mozambique Basin in
order to unravel the uplift timing of the South African Plateau.
We achieved a higher temporal resolution for the Cenozoic period
than previous studies analysing the marginal basins surrounding
the South African Plateau. Our data identify two major periods of
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high sedimentation rates. The first, of Mid-Late Cretaceous age, is
concordant with thermochronological datation and with sedimen-
tary budgets estimated by other studies in the Orange, Outeniqua
and Zambezi basins, where similar high accumulation rates have
been documented. The second event is Miocene in age and yields
important sedimentation rates close to those recorded in the
Mid-Late Cretaceous. In the absence of climatic change and
eustatic sea-level fall during the Oligocene-Miocene transition,
the Miocene peak of sedimentation in the Southern Mozambique
Basin can only be the consequence of a significant uplift that
occurred in the area sourcing this basin. Based on our findings, it
seems more likely that at least the North-eastern part of the
South African Plateau has inherited its present relief from two
epeirogenic uplift pulses of Late Cretaceous and Miocene ages.
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