
1

D. Hayes, M. Welzl, S. Ferlin, D. Ros, and S. Islam, “Online identification
of groups of flows sharing a network bottleneck,” IEEE/ACM Trans. Netw.,
2020, Accepted.

Version accepted for publication in IEEE/ACM Transactions on Network-
ing.

c©2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promo-
tional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in
other works.

2

Online Identification of Groups of Flows Sharing a
Network Bottleneck

David A. Hayes, Senior Member, IEEE, Michael Welzl, Simone Ferlin, David Ros, and Safiqul Islam

Abstract—Most Internet hosts today support multiple access
technologies and network interfaces. Multipath transport pro-
tocols, like MPTCP, are being deployed (e.g., in smartphones),
allowing transparent simultaneous use of multiple links. Besides
providing increased resilience to link failures, multipath trans-
ports may better exploit available (aggregate) capacity across all
interfaces. The safest way to ensure fairness is to assume that any
subflows of a multipath end-to-end connection may share bottle-
neck links, but knowledge of non-shared bottlenecks could allow
multipath senders to exploit more capacity without being unfair
to other flows. The problem of reliably detecting the existence
of (non)-shared bottlenecks is not trivial and is compounded by
the fact that bottlenecks may change due to traffic dynamics.
In this paper we focus on practical methods to reliably group
flows that share, possibly dynamic, bottlenecks online and in a
passive manner (i.e., without injecting measurement traffic). We
introduce a novel dynamic clustering algorithm that we apply
to update our previous shared bottleneck flow grouping (SBFG)
method standardized by the IETF, based on delay statistics. We
also adapt an offline SBFG method based on wavelet filters to
enable it for online operation. These SBFG methods are evaluated
by a simple testbed, rigorous simulation and real-world Internet
experiments in a testbed comprised of multihomed hosts. Our
results suggest that there is no clear winner, and selection of the
“best” SBFG method will have to consider tradeoffs regarding
accuracy, lag, and application requirements.

Index Terms—Shared bottleneck detection, Internet congestion
control, dynamic clustering algorithms, multipath congestion
control.

I. INTRODUCTION

INTERNET congestion control is based on the assumption
that any number of end-to-end flows may share a common

bottleneck; if they really do, and which flows there are, is
generally unknown. This is perhaps most prominently visible
in the design of MultiPath TCP (MPTCP) [2]: MPTCP tries to
efficiently utilize the available capacity of multiple end-to-end
paths, yet its congestion control is carefully tuned to be able
to fairly compete with other end-to-end flows supposing all
flows may traverse a shared bottleneck.

While MPTCP’s congestion control enables safe usage of
multiple paths without knowledge of shared bottlenecks, it
could leverage such knowledge to be slightly more aggressive
when flows do not share a bottleneck. In our prior work, we
have used an earlier version [3] of one of the algorithms
presented in this paper to show that MPTCP can indeed be
tuned to be more aggressive when it infers that there are

The authors were partially funded by the European Community under
its Seventh Framework Programme through the Reducing Internet Transport
Latency (RITE) project (ICT-317700). The views expressed are solely those
of the authors.

The authors would like to thank Thomas Dreibholz for helping with the
NorNet testbed, and Özgü Alay for her advice concerning these experiments.

no shared bottlenecks between its flows [4]. This affects the
global fairness to other flows—but the per-flow fairness goal
itself is also somewhat elusive [5], and a fairness discussion
of MPTCP is not the focus of this paper (as are details of
implementing our algorithms inside MPTCP, for which we
refer to [4]). More importantly, without knowledge about flows
sharing bottlenecks, such options do not even exist.

Having practical means to determine shared network bot-
tlenecks online, i.e. while data transfers are ongoing, would
allow for a great variety of network improvements. As another
example, ensembles of flows could be controlled jointly, with
multiple benefits including reduced overall latency and better
control of the relative fairness between them—for UDP-based
video streams [6, 7] or TCP [8]. These potential benefits
motivated the Internet Engineering Task Force (IETF) to
standardize a Shared Bottleneck Detection (SBD) mechanism
for RTP flows [9] that is based on summary statistics. A
detailed introduction to the algorithm and evaluation results
of an earlier version are available in [10].

In this paper, we make the following contributions:

1) We show the first evaluation results of the IETF-
standardized Shared Bottleneck Flow Grouping (SBFG)1

mechanism in [9].
2) We replace the “divide and conquer” threshold based

method of grouping flows in our SBFG mechanism
from [9] with a novel dynamic clustering algorithm. This
dynamism is important here because bottlenecks in the In-
ternet are dynamic. A practical online SBFG mechanism
therefore also needs to be dynamic, efficiently construct-
ing changing numbers of groups containing changing
numbers of flows. This clustering method may also be
applicable to grouping problems in other fields where the
number of clusters may vary over time.

3) We also compare our results with results from a notable,
and very different, example of prior work—pairwise
cross-correlation of wavelet filtered One Way Delays
(OWDs) [11]—as well as ground truth (where it is
known). To the best of our knowledge, no such com-
parison exists in the literature. Our results suggest that
all evaluated methods perform well, with tradeoffs with
respect to (a) false positives / false negatives, (b) time lag
before detection. Selection of the “best” method will de-
pend on application and implementation considerations.

4) Finally, we modify the wavelet-based mechanism
from [11] to enable it to operate online and in a pas-

1This term better explains the function of the mechanism, but is equivalent
to SBD in [9, 10].

3

TABLE I
SUMMARY OF PRIOR WORK NOTING THE KEY DISCRIMINATING METRIC AND GROUPING MECHANISM.

Mechanism Online Passive
Metric Ref Grouping Notes

Location [12] Most significant 24 bits of IP address
Granularity was not fine enough to be useful. Does not
detect flows sharing an actual bottleneck, only those that have
potential to due to their presumed location

Yes Yes

Throughput
[13] Quantile-quantile plots, best fit ≈ 1 Long term distributions (Grouping used 10s of hours of data) No Yes

[14] Change in throughput when flow leaves
and correlation coefficient > 0.28

Relies on greedy sources, consistent background traffic, and
30-1000 s of samples No Yes

Packet loss
[15] Flows with common packet loss be-

tween received packets

Slightly different method for shared receivers and senders.
Does not perform well, and worse with Random Early Discard
(RED)

Yes Noa

[16] Flows experiencing packet loss within
the same time window

Multipath TCP or SCTP congestion control operation specific
mechanism Yes Yes

Congestion interval
variance [17] Variance of flow congestion interval Multipath TCP specific. Congestion as determined by packet

loss or excessive delay Yes Yes

Delay

RTTb [18] Cross-correlation > auto-correlation Cross-correlation based on [15] Yes Yes

Inter-
packet

[19] Incrementally groups flows to reduce
entropy Rèyis entropy. Presumes flow groups are static. Yes Yes

[20] By hand Skewness and kurtosis. No No

OWDc

[11] Correlation coefficient > 0.512

Wavelet filtered. Optimal filter coefficients calculated from
all the measurements for the entire duration of the test;
minimizing the maximum mean square error assuming non-
white noise.

No Noa

[15] Cross-correlation > auto-correlation Better and quicker than loss in the same paper Yes Noa

[21] Difference between sorted singular val-
ues > threshold

Covariance matrix of average packet delays filtered using
Singular Value Decomposition (SVD) Nod Yes

[9,
10]

Divide-and-conquer threshold based
splitting for each summary statistic Shape delay-based summary statistics as well as packet losse Yes Yes

This
paper

Two new methods explored: dynamic
iterative clustering, and correlation co-
efficient > 0.5

Dynamic clustering using the summary statistics defined in [9].
Changes the offline algorithm in [11] to dynamically choose
wavelet filter coefficients and handle passive monitoring

Yes Yes

a Methods that were active, but authors suggest would work passively.
b Round Trip Time.
c One Way Delay.

d Making it online is discussed in [21].
e Allows for additional statistics, e.g. ECN based.

sive fashion so that we can compare it with the other
mechanisms.

All of the investigated SBFG mechanisms are traffic agnostic.
Taking advantage of particular traffic sending patterns could
prove useful in some cases, but is beyond the scope of this
work, which looks at the more general case. Being online
and passive already makes the mechanisms very broadly
applicable, as they only need to observe existing incoming and
outgoing packets. Additionally, being traffic agnostic means
that they do not need to be adjusted for different usage
scenarios but can work “out of the box”. These factors can
facilitate deployment.

After a look at prior work in section II, we introduce
our divide-and-conquer and dynamic clustering methods based
on summary statistics in section III and our online passive
wavelet-filtered correlation based method in section IV. Then,
after discussing the different tradeoffs involved in selecting a
particular mechanism (section V), we evaluate these methods
in section VI through a simple testbed (section VI-A2),
simulation studies, where the ground truth is known (sec-
tion VI-B3), and Internet-based experiments using operational
cellular networks (section VI-C3). In section VII we draw
together our findings, discussing the relative merits of the
summary statistics based methods with the wavelet-filtered
correlation methods.

II. BACKGROUND

There have been several proposals to identify groups of
flows that share a bottleneck. They can be divided into online
and offline, active and passive, and they can be categorized
by the discriminating metric. As previously explained, our in-
terests are with online methods, particularly passive methods,
and we investigate a number of grouping techniques. Table I
summarizes the prior work in the area noting key aspects
of the proposed SBFG mechanisms. As the table shows, in
related work, the mechanisms in [12, 16–19] and in our own
earlier work [9, 10] are applicable both online and passively,
i.e. without the need to produce probe traffic or requiring
applications to send data following a specific traffic pattern.

Just like the mechanisms that we propose here, many (8 of
the 14 in table I) of the methods in the literature use packet
delay as their base discriminating metric since this is regular
and timely information, easy to obtain and hence suitable for
practical use. The delay-based methods differ in how they
deal with the noise in the delay signal and how the flows are
grouped. Among them, only [9, 10, 18, 19] and the methods in
the current paper work online and passively; furthermore, the
authors of [15] suggest that their online method would work
passively as well. The authors of [18] use the Round Trip
Time (RTT), which is inherently more noisy than the OWD
or inter-packet delay taken at the receiver because it is affected
by queues along the backward path.

4

TABLE II
TERMINOLOGY USED IN THE DESCRIPTION OF SUMMARY STATISTIC

CALCULATION (MOSTLY FOLLOWS CONVENTIONS IN [9]).

) Base time interval over which statistics are calculated
Number of) intervals used in some calculations
" Number of) intervals used in some calculations
� Number of) intervals used in the flat portion of the

weighted moving average calculation
skew est A measure of the skewness in the received packets’ OWD

(One Way Delay) distribution
var est A measure of the variability of the received packets’ OWD

distribution—Mean Absolute Deviation (MAD)
freq est A measure of the oscillation over time of the average

OWDs
pkt loss The proportion of lost packets measured over #)
38 Measured OWD of packet 8
3̄ Mean of the measured OWD of packets in)
 Number of packets received in)
?
B
, ?

5
, ?
3
,

and ?mad

Grouping thresholds for skew est, freq est, pkt loss and
var est respectively (used in algorithm 1).

?
E

Threshold used in the freq est calculation (see eq. (4)).

Only our own prior work [9, 10] is designed to work with
dynamic bottlenecks, though it may be possible to modify
some of the other techniques to work in a dynamic way (in
particular [11], which we accordingly extend in this paper).

III. MECHANISMS BASED ON SUMMARY STATISTICS

Hayes et al. [10] describe a method for grouping flows that
share a bottleneck using summary statistics which describe the
shape of the distribution of OWD. Summary statistics provide
resistance to short-term fluctuations, helping to mitigate diffi-
culties the noisy delay signal presents. Key improvements to
the summary statistics used and the overall method in [10]
are outlined in RFC 8382 [9]. They include a more robust
variability estimator and better time averaging of the statistics
summarized in section III-A. This paper presents the first
comparative evaluation of [9] and also extends it, proposing
in section III-C a novel iterative online clustering algorithm
that draws inspiration from the iterative algorithm in [22].
This improves the accuracy and robustness of the [9, 10]
“divide-and-conquer” grouping algorithm briefly described in
section III-B.

A. Summary statistic calculations

In this section we briefly describe the summary statistics
specified in [9]. Table II summarizes the notation used in the
description below. OWD2 is used as the base metric, with
packet loss used as a supplementary measure3. Particularly:

3̄ =

∑
:=1 3:

, d̄ =

∑"
<=1 3̄<

"
(1)

where 3̄1 is the average OWD in the interval) which has
just completed, and 3̄" is the average OWD of the (" − 1)th

2The summary statistic calculations are relative to the mean OWD. This
means that there is no need to synchronise endpoint clocks. See [section IIIC,
10] and [section 1.2.2, 9] for a more detailed explanation.

3Potentially Explicit Congestion Notification (ECN) could also be used,
however as it is not universally and consistently available at every router
through the Internet, it is difficult to use it as a discriminator. For example,
two flows may share a common bottleneck even though one has ECN marking
and the other does not, simply because one flow has a low threshold ECN
marking router in its path and the other does not.

interval of duration) prior to the interval just completed. From
the base metric d̄, we calculate as an estimate of the skewness:

skew est =
∑"
<=1 skew base T<∑<

<=1 <
(2)

where skew base T< =

 ∑
:=1

B: , B: =

{
+1 3: < d̄
−1 3: > d̄

Apart from being used to differentiate flows sharing and not
sharing a bottleneck, skew est provides a protocol independent
indication of path congestion, since the degree and sign of
skewness change in relation to the bottleneck load (see [10]).
We also calculate the Mean Absolute Deviation (MAD) as a
measure of the variation in OWD:

var est =
∑"
<=1 var base T<∑"

<=1 <
(3)

where var base T< =

 ∑
:=1

��3: − 3̄< ��
A measure of the fluctuation of OWD, calculated as significant
mean delay crossing events, is given by:

freq est =
∑#
==1 |G= |
#

(4)

where G= =

−1 3̄= < d̄ − (?E × var est) ∧ Gℎ = 1
1 3̄= > d̄ + (?E × var est) ∧ Gℎ = −1
0 otherwise

ℎ is the highest index 8 ∈ [0, = − 1] such that G8 ≠ 0, and
(?E × var est) determines how much 3̄= needs to cross d̄ by
to be significant. As in [3], ?E = 0.7 in these experiments.

Since packet loss is in general an infrequent event, it is used
as an additional metric to supplement skew est at very high
loads when skew est is not a good indicator of congestion
(see [10]):

pkt loss =
∑#
==1 packet loss T=∑#

==1 =
(5)

here packet loss T= is the number of lost packets in the =th

interval of duration) , prior to the measurement interval.
The algorithm begins to make decisions after " samples

(") s), but will not reach its full accuracy until 2# samples
due to the calculation of freq est. This paper uses # = 50 and
" = 30 as recommended in [9]. The piecewise linear weighted
moving average for var est and skew est described in [9] is
used to help reduce lag. These statistics are used in both the
divide-and-conquer mechanism described next and the online
iterative clustering method presented in section III-C.

B. RMCAT mechanism (rmcatSBD)

RFC 8382 [9] describes a simple divide-and-conquer thresh-
old based algorithm to group flows sharing a common bot-
tleneck (see algorithm 1). It was published as an output
of the Real-Time Media Congestion Avoidance Techniques
(RMCAT) group in the IETF; hence we call it the “RMCAT”
mechanism. The algorithm first uses skew est and pkt loss to
infer whether flows are experiencing congestion or not. This

5

Input: - Set of flows to be grouped
Input: (Set of skew est, where B1 =skew est for flow 1
Input: + Set of var est, where E1 =var est for flow 1
Input: � Set of freq est, where 5 1 =var est for flow 1
Input: ! Set of pkt loss, where ;1 =pkt loss for flow 1

First find flows transiting a bottleneck
foreach flow (G ∈ -) do

Flow congestion thresholds 2
B
, 2
ℎ
, ?
;
: skewness, skewness hysteresis, and

packet loss
if ((B

G
< 2

B
∨ (B

G
< 2

ℎ
∧ G ∈ �) ∨ ;

G
> ?

;
then

G ∈ � flow in set of flows transiting bottlenecks
else
G ∈ * flow in set of flows not transiting bottlenecks

end
end
Successively partition groups according to metric
�1 ← Partition(�, �, ?

5
, “A”)

�2 ← Partition(+ , �1 , ?mad , “P”)
�3 ← Partition((, �2 , ?B , “A”)
�4 ← Partition(!, �3 , ?3 , “P”) Note: Only flows with ;

G
> ?

;
are

partitioned, so often no fourth level partitioning is necessary.

Input: " Measurement statistics
Input: � set of groups to partition
Input:) Threshold for that measure using notation from [9]
Input: � Type of threshold comparison
def Partition(",�,) , �)
← {}
foreach group 6 ∈ � do
q ← Sort(" (6))
if � == “A” then
#̂
8
← partition where diff(q)>)

else
proportional threshold
#̂
8
← partition where diff(q)>) q

end
end
← {#̂ 1 , . . . , #̂ � }
return #

Algorithm 1: Divide and conquer type threshold based grouping algo-
rithm from [9].

is important, since if a flow experiences no congestion along
the path, it is not traversing a bottleneck and the summary
statistics do not contain information relevant for grouping. All
flows experiencing congestion by this measure are placed in
a single group, which is progressively divided into subgroups
according to each summary statistic.

This method is simple and functional, however, it treats each
statistic separately and does not take the collective statistical
proximity of the flows into account. Next, we propose a more
advanced flow grouping that is able to take advantage of the
multidimensional nature of collective statistics.

C. Cluster based grouping mechanism (dcSBD)

Clustering algorithms are used in many fields and are a very
large area of research in their own right. Their application to
shared bottleneck detection has the following requirements:

1) There is an unknown and variable number of groups.
2) Groups are not static, but dynamic, changing as the

network conditions change. No prior work surveyed in
section II considers this.

3) Grouping must be timely4.
In a complex network with multiple bottlenecks it is possible
that a flow could share more than one bottleneck and thus be a
member of more than one group of flows. This is not catered
for in this algorithm, or any of the prior work in section II.

4Algorithms that iterate an indeterminate number of times to achieve stable
groupings are unlikely to be suitable.

These requirements preclude commonly used algorithms
that require a fixed number of groups such as :-means
clustering. Although the system is dynamic, the shared bot-
tleneck state, as measured by summary statistics, is unlikely
to change significantly from one measurement interval to the
next. This means that the best starting point for the next
bottleneck grouping is the current grouping, suggesting an
iterative method may be efficient.

Our method is inspired by [22] (which has similarities to
the iterative entropy based clustering used in [19]). Chinese
Whispers is a fast iterative method (linear with the number
of nodes to be clustered) that is used in the natural language
processing field. For SBFG, each node in the graph represents
one flow, with the weights of the edges connecting the nodes
representing the statistical closeness of one node to another
node as a function of the grouping measures (skew est,
var est, etc). We extend the Chinese Whispers nearest neigh-
bor iterative grouping ideas to work in a dynamically changing
environment which usually only has a relatively small number
of nodes. The key extensions are:

1) The clustering result of the previous measurement interval
is used as the starting point for the algorithm in the new
measurement interval.

2) To allow the clustering to handle a dynamically changing
environment5, from each group we remove the node that
is furthest from its closest neighbor before we begin to
iterate on the updated graph.

3) We only iterate for a small number of iterations after each
edge update6 (typically just 2, i.e. one step back, two
steps forward). This takes advantage of the assumption
that the groupings do not change greatly between edge
weight calculation intervals7, and uses the measurement
intervals as part of the iterative process.

4) In this application we model edge weights (node close-
ness) using:
a) Euclidean distance between nodes (if the nodes were

points in N-dimensional space, where N is the number
of statistical measures), and

b) Inverse sum of the squares of the difference between
the connected nodes’ statistics.

Our tests have found that the inverse sum of the squares
method facilitates the best grouping in this application.

The details of the clustering algorithm are outlined in algo-
rithm 2. While we apply it specifically to grouping flows that
share a bottleneck, the algorithm may be applicable to dynamic
grouping problems in other fields.

IV. A MECHANISM BASED ON WAVELET-FILTERED
DELAY SIGNAL CORRELATION COEFFICIENTS

Having introduced the summary statistics that feed into the
RMCAT mechanism, the RMCAT algorithm itself and our new
clustering mechanism, we now turn to the extension of the

5In this case the measured network path statistics change as the network
dynamics change.

6In this application, the measurement interval for the statistics.
7In this application, it is the assumption that the bottleneck grouping does

not change greatly between the short measurement intervals.

6

Input: C previous clusters
Input: gClass previous classifications
� ← Set of flows that transit a bottleneck
* ← - \ � set of flows that do not transit a BN
graph ← MakeGraph((, !, + , �)
gClass ← PrimeClass(gClass, �, �,* ,graph)
for � iterations do

Recently separated flows are tested last
foreach flow transiting a BN (1 ∈ �) do

Flow 1 adopts the class of the closest other flow
gClass(1) ← gClass(ClosestFlow (graph,1))

end
end
Flows with the same class are clustered together
C ← sets of flows with same class
return gClass,C

Companion Functions:

def MakeGraph(gClass, �,*, (, !, + , �)
This reduces the 4 dimensional relationship between flows to a single value
using GraphMeasure()
foreach flow 18 |8 = 1 . . . =, � = {11 , 12 , . . . , 1= } do

foreach flow 1 9 | 9 = 8 . . . =, � = {11 , 12 , . . . , 1= } do
graph(8, 9) ←
GraphMeasure([B8 , B 9], [E8 , E9], [58 , 59], [;8 , ; 9])

graph(9 , 8) ← graph(8, 9)
end

end
def PrimeClass(gClass, �, �,*,graph)

In terms of the graph, flows are nodes
Each flow that transits a BN starts with a unique class
foreach flow not transiting a BN (D ∈ *) do

gClass(D) ← 0 No BN classification
end
foreach flow transiting a BN (1 ∈ �) do

if gClass(1) = 0 then
gClass(1) ← unique class

end
end
foreach 2 ∈ �, i.e.cluster of flows do

Separate furthest flow in cluster
5 ← furthest flow by graph(21 , 2!1)
if furthest flow (5) by measure, significantly far then

gClass(5) ← new unique class
end

end
return gClass

def GraphMeasure([B1 , B2], [E1 , E2], [51 , 52], [;1 , ;2])
Options include:

a measure based on the Euclidean distance
a measure based on the inverse sum of the squares
return measure

def ClosestFlow(graph,b)
The closest flow, by graph measure, to 1, excluding itself
5 ← index of closest graph(1, !1))
Sanity check closeness to avoid the lone flow problem
if graph(1, 5) isn’t too distant then

return 5

else
return 1 no change

end

Algorithm 2: Interactive dynamic clustering algorithm. Note that packet
loss is always used—although inaccurate when very small, it also only
makes an insignificant contribution to the clustering measure when very
small.

mechanism from [11] to make it also applicable for passive
online usage.

Correlating a time varying metric is a powerful tool for
grouping flows that share a common bottleneck. This method
relies on time synchronized samples of the metric being used
in order to examine shared correlations. Packet delay is a good
frequent signal for doing this, but signal noise makes it difficult
to use “as is”. The use of summary statistics in section III
was one way of dealing with the noise that does not require
synchronized samples. Kim et al. [11] propose an alternative
method that uses a wavelet based filter to denoise the OWD
signal, utilizing Matlab’s wavelet toolbox8 to analyze the

8Matlab wavelet toolbox: https://se.mathworks.com/products/wavelet

Input: 3 5 OWD measurement of packet from flow 5

foreach packet received do
incrementally calculate skew est as in eq. (2)
3̂ 5 ← SampleHold (3 5 ,stepsize) Allow passive measurements

end
(← 3̂ 5 (is the delay signal to be filtered
if new sample interval then

foreach flow 5 ∈ � do
D 5 ← StepWaveletDecomp(3̂ 5)

Online calculation of wavelet filtering thresholds
if new) then

if resetthresholds ∧ skew est 5 < 2B then
Fth ← CalcWaveletThresh(� 5)

else
if skew est 5 > 2ℎ then

resetthresholds = 1
end

end
end

�̂ 5 ← FilterWaveletDetails(� 5 , Fth)
(̂ 5 ← StepRecomposeSignal(�̂ 5)

end
end
similar to the standard DCW algorithm
if end of correlation test interval then

foreach flow 5 ∈ � do
foreach flow 6 ∈ �, 6 ≠ 5 do
d← CorrCoef((̂ 5 , (̂ 5)
if d > corr thresh then

flow 5 and flow 6 are in the same group
else

flow 5 and flow 6 are in different groups
end

end
end

end

def CalcWaveletThresh(�)
return Fth=median(|� |)

def FilterWaveletDetails(�,Fth)
Soft thresholding (see https:// se.mathworks.com/help/wavelet/ ref/wthresh.html)

return �̂ = sign(�) · [(|� | − Fth)]+
where [G]+ limits G to positive values, [0,∞)

def StepWaveletDecomp(3̂ 5)
Matlab Simulink stepping through wavelet decomposition (Daubechies 6)
return wavelet decomposition

def StepRecomposeSignal(�̂ 5)
Matlab Simulink stepping through wavelet recomposition (Daubechies 6)
return recomposed signal

Algorithm 3: Online Passive Delay Correlation with Wavelet denoising
(opDCW) based shared bottleneck detection. Experiments use a corre-
lation window of 100 samples (10 samples per) over a 10) interval)
based on the findings in [11].

entire OWD probe signal time series and select the optimal
filter thresholds offline. After filtering the OWDs, it calculates
pairwise correlation coefficients to determine if flows should
be grouped. Kim et al. [11] call their method Delay Correlation
with Wavelet denoising (DCW). For direct comparison, we
adapt DCW for passive use with a simple sample-hold prefilter
to provide a valid delay value for each synchronized sample;
calling it passive DCW (pDCW) in our experiments.

An online method does not have the entire time series to
work with, and thus does not have prior knowledge of future
delay dynamics to use to determine good filter coefficients.
However, wavelet transforms are very efficient and can be
calculated in an online manner. We adapt the method in [11]
to dynamically choose reasonable filter thresholds when we
estimate that the flow is experiencing congestion along its path
using the skewness estimate test described in [9]. We call this
method online passive DCW (opDCW). Algorithm 3 details
our online wavelet based filtering and correlation based flow
grouping mechanism.

https://se.mathworks.com/products/wavelet
https://se.mathworks.com/help/wavelet/ref/wthresh.html

7

V. SELECTING AN SBFG METHOD: TRADEOFFS AND
PRACTICAL CONSIDERATIONS

As our experimental results will show (section VI), there
is no clear-cut answer to the question, “which algorithm is
better?”. There are several factors that need to be considered
when picking a particular algorithm, and these factors can
be application- and scenario-dependent. In what follows we
discuss the main tradeoffs and considerations that may guide
the choice of an algorithm.

Which mechanism is more suitable depends on the appli-
cation it is to be used in and the availability of per packet
delay samples. The summary statistic methods only require
the summary statistics to be fed back to the sender, so this
could be an advantage where one wishes to limit the amount
of feedback. OpDCW (note pDCW is an offline method) has a
much lower lag in detecting bottlenecks. Where this is of high
importance to the application opDCW, or some other filtered
correlation method, will be the better choice.

Where to best locate the SBD determination algorithm, and
where to collect the necessary input data, depends not only
on the algorithm but also on the use case. For example, SBD
mechanisms can operate on the sender and/or the receiver side
of all hosts in a multi-party communication (e.g., a video
conference). Pure receiver-side operation has the advantage
that a receiver can passively obtain OWD samples from time
stamps in incoming packets from various senders. Then, a
grouping decision can be made, and the result can be relayed
to the sender, thereby reducing the amount of feedback to
a function of the frequency at which the sender wants to
react to this information. However, a receiver may not see
all the relevant bottlenecks due to traffic between a sender
and a different receiver; this is explained in more detail
in Section 3 of [9]. Sender-side operation of a mechanism
such as opDCW requires the receiver to feed back per-packet
delay samples. Such samples can be combined into a single
feedback packet using the RTCP Transport Layer Feedback
Message as described in [23]. As explained in [24], RTCP
feedback messages can be generated often enough in practical
multimedia communication conditions.

All of the four methods tested in section VI work on
the assumption that the perturbation caused by the queueing
delays at a bottleneck have measurable similarities for all flows
sharing that bottleneck. There are however possible scenarios
where this is not the case, e.g:

(i) The bottleneck delay signal is too small with respect to
other delay perturbations packets experience along their
path, such as other queues and delays due to lower layer
loss correction on wireless links.

(ii) The flow sending pattern dominates the delay character-
istics (self inflicted delays). This may be similar for flows
from the same source, even though they do not traverse
any shared bottlenecks.

With item i, this may mean measurement based SBFG is
not possible in that particular scenario without some addi-
tional correlatable signal, e.g. some sort of packet marking.
RFC 8382 suggests adding such a statistic when it is globally
available. With item ii, a more sophisticated sending pattern

aware algorithm is required in order to remove the sending
pattern noise from delay samples. Item ii is a topic for further
research requiring the delay contribution from the flow’s
sending pattern to be removed as unwanted noise.

Regarding complexity, rmcatSBD requires sorting for each
statistical measure, so its time complexity is $ ("# log #),
where " is the number of measures and # is the number
of flows. DcSBD calculates a fully meshed graph, $ ("#2),
and sorts the distances within each group, $ (� log),
for � groups of size for one iteration; its complexity is
therefore $ ("#2 + �� log) where � is the number of
iterations. OpDCW and pDCW require pairwise correlation
which depends on the correlation sample window size , and
the number of combinations, so their complexity is $ (,#2).
DcSBD is generally more complex than rmcatSBD. Compar-
ing rmcatSBD and opDCW, the least complex algorithm is
scenario dependent, however for the simulation scenario in
section VI-B it is rmcatSBD.

VI. EXPERIMENTAL EVALUATIONS

The objective of the experimental evaluation is to under-
stand the issues and compare the operation of the following
four test mechanisms under conditions where their operation
can be understood, but where SBFG is difficult. To this end, we
use a simple testbed, more complex repeatable NS2 [25] sim-
ulations, and cross-Internet tests on the NorNet testbed [26].
We evaluate the following algorithms:

1) The summary statistic based method described in [9]
(rmcatSBD).

2) The method using the summary statistics in [9] with the
dynamic clustering algorithm described in algorithm 2
(dcSBD).

3) The offline wavelet filtered cross-correlation method
in [11], but with sample-hold OWD sampling (pDCW).

4) An online passive version of the method from [11]
described in algorithm 3 (opDCW).

Our choice of mechanisms for experimental comparison was
further guided by the following rationale. First, we want
to compare our algorithms with an alternative [11] based
on the same metric (i.e., OWD) but using a fairly different
method. Also, we do not want to focus on protocol-dependent
proposals. Finally, we are interested in methods designed to
keep track of shifting (i.e., dynamic) bottlenecks and thus
dynamic flow groups.

For the testbed experiments in section VI-A we can estimate
the ground truth reasonably well and use it as a reference in
the results. For the simulation experiments in section VI-B, the
“ground truth” is known, so we compare the four mechanisms
with this ground truth to determine their accuracy.

A. Simple Testbed Experiments

1) Setup: We run small-scale experiments in our extended
Teacup testbed9 to investigate SBFG for the four methods
(see Fig. 1). The experiments use 10 Mbps access links (A
and B) and a 25 Mbps link to the sink (C). The setup is

9http://caia.swin.edu.au/tools/teacup/

8

50 100 150 200 250 300 350 400

34

24

14

13

12

123

124

134

234

1234

G
ro

u
p
in

g

pDCW

opDCW

Ground truth

dcSBD

rmcatSBD

(a) SBFG with OWD

50 100 150 200 250 300 350 400

34

24

14

13

12

123

124

134

234

1234

G
ro

u
p

in
g

pDCW

opDCW

Ground truth

dcSBD

rmcatSBD

(b) SBFG with RTT

0

100 1

0

100

o
w

d
 (

m
s
)

2

0

100 3

0

100 4

0

100 1
2

 A

0

100

B
N

 q
u
e
u
e
 s

iz
e
 (

1
0

3
 B

)

3
4

 B

65 70 75 80 85

Time (s)

0

100

1
2
3
4

 C

65 70 75 80 85

34

24

14

13

12

123

124

134

234

1234

G
ro

u
p

in
g

(c) Zoom showing queue pushed to the
limit

0

100 1

0

100

o
w

d
 (

m
s
)

2

0

100 3

0

100 4

0

100 1
2

 A

0

100

B
N

 q
u
e
u
e
 s

iz
e
 (

1
0

3
 B

)

3
4

 B

305 310 315

Time (s)

0

100

1
2
3
4

 C

305 310 315

34

24

14

13

12

123

124

134

234

1234

G
ro

u
p

in
g

(d) Zoom showing TCP
sawtooth

Fig. 2. The testbed scenario illustrating the 4 SBFG mechanisms with respect to an estimate of “ground truth”. Figure 2a and Figure 2b show the grouping
decisions of the different algorithms with the estimate of ground truth in the center. On the zoomed in graphs, the additional lower graphs show, from the
bottom, the sampled queueing delays at each bottleneck (refer to Fig. 1) and OWD measurements on which the grouping decisions are based.

1

2

C
A

B

Test sources Bottlenecks

Test sink

Fig. 1. Teacup testbed experimental setup

symmetric with a 50 ms base OWD (base RTT 100 ms),
source to sink. UDP background traffic using D-ITG [27] is
generated to give a long term average bottleneck filling level of
about 80%. The background traffic consists of 4 exponentially
distributed UDP packet flows and one Pareto distributed heavy
tail on, exponentially distributed off UDP source traversing
each access link to the sink. The Pareto distributed flows
ensure the short term traffic dynamics on each link can be
different in an otherwise completely identical setup. The test
traffic in these tests are 2 greedy TCP New Reno flows from
each of the sources generated using iperf10. We use BDP
length queues at A, B, and C, with flows sending 1000 B
packets. We also vary the queue length to half a BDP and
two BDPs. We add additional background traffic to the TCP
ACK return path to create an additional fluctuating return path
bottleneck at C (loaded to 90% on average).

2) Testbed results: The results of the experiment are shown
in Fig. 2a and 2b using both OWD and RTT as base metrics
respectively. The graph depicts the grouping decisions (one
every 350 ms) with the ground truth estimate represented by

10https://iperf.fr

the purple dots in the middle of the decisions of the four
tested mechanisms. The summary statistic methods are below
the ground truth: dcSBD below it in red, rmcatSBD below
dcSBD in blue. The wavelet filtered correlation methods are
above the ground truth: opDCW above ground truth in orange,
and pDCW above opDCW in green.

There are two distinct bottlenecks on links A and B which
carry flows {1,2} and {3,4}, however they are not static, but
fluctuating to some extent. There are no other bottlenecks
on the paths from source to sink. Referring to Fig. 2a,
generally all four algorithms mostly group correctly, though
no algorithm always manages to follow the fluctuations. The
summary statistic based methods do not group well unless the
bottleneck remains quite stable, which makes sense since they
are averaging statistics over a number of seconds.

Figures 2c and 2d zoom in these results to have a closer look
at some salient aspects. The zoomed figures are composites
with the probed queue sizes for each bottleneck in blue at the
bottom (plot sub-sampled) from which an estimate of ground
truth is determined (see section VI-B2 for a detailed expla-
nation of accuracy and ground truth determination). The right
hand side shows the bottleneck labels (A,B,C) from Fig. 1,
with the left hand side showing the groups of flows that
traverse that particular bottleneck. The middle graph in the
composite shows the OWD measurements received by the
different sources. Referring to Fig. 2c, during C = [60, 70]
bottleneck B is completely saturated. No algorithm is able
to correctly group flows {3,4} during this period. There is
no variation in OWD, and there are also intervals where no

9

packets arrive due to TCP time-outs due to high packet loss.
Figure 2d shows a distinct TCP saw-tooth at bottleneck A,
reflected in the OWD plot. This causes difficulties for all of
the algorithms since they work on the assumption that OWD
measurements are dominated by the characteristics of the
bottleneck, and in this case they are not—they are dominated
by the flows’ sending characteristics. How to remove this
sending pattern noise is a direction future SFBG research
address.

RTT can be used as an alternative to OWD measurements,
however it does include noise on the reverse path. Figure 2b
shows how all algorithms would perform for the same exper-
iment if RTT was used instead of OWD. In this experiment
there is some background traffic on the return path causing
reverse path queueing at C that sometimes dominates the RTT
measurements. When this happens flows are often grouped
together as {1,2,3,4} due to the reverse path delay. How
significant this is will depend on the scenario.

We next evaluate the algorithms further in a completely
controlled simulation environment without a TCP saw-tooth
and where the ground truth can be exactly determined.

B. Simulation Experiments

1) Setup: We use the simulation setup from [10], see Fig. 3.
The potential bottlenecks are labeled A to G. Each of the first
six (from the left) bottlenecks carry traffic from a different set
of two test sources, with the last bottleneck carrying traffic
from all four test sources11. Each flow shares links in various
combinations with other flows, causing correlated noise on the
measurements and making SBFG more difficult than would be
the case in a typical real network.

Bottlenecks are instantiated by reducing the capacity of the
nominated link, depending on the traffic sources traversing
that link. This gives better control over when bottlenecks start
and finish. The majority of traffic (> 90% of bytes) traversing
the bottlenecks is background traffic. It consists of thousands
of TCP sessions of varying lengths and various levels of
concurrency generated by Tmix [28] with TCP New Reno
using the TCP evaluation suite traces which were generated
from real traffic traces12. The traffic traces have had session
start times scaled to achieve an offered load of around 25 Mbps
on average per Tmix source (see [29]). Session start times are
also shuffled to remove long term non-stationarity. Each new
experiment run uses a different subset of the shuffled traces,
to generate the delay, loss and queue traces. In this way each
SBFG mechanism is tested on identical data and can therefore
be directly compared.

Key simulation parameters are given in table III. Link
delays are fixed for the duration of each run, with each
new run using delays generated randomly according to a
normal distribution of mean ` and standard deviation f to
provide some perturbation to topology. In a similar manner,
bottlenecks have uniformly random buffer sizes from 133–266

11Test sources send “generic” UDP packets. Evaluation of the effect of
various types of traffic (e.g. voice, video, TCP, etc) on the performance of the
passive algorithms is beyond the scope of this work.

12Traces: http://heim.ifi.uio.no/michawe/research/tools/combined traces.tbz

1

2

3

4

A B C

2 & 4 1 & 4
D E F

G

Test sources

Test sink

1,2,3,4

Tmix background traffic
Bottlenecks	

3 & 4

1 & 3 2 & 3 1 & 2

Fig. 3. Simulation setup (from [10]). Bottlenecked flows at each link are
shown below each link’s name.

TABLE III
SIMULATION PARAMETERS (BN–BOTTLENECK, BG–LINKS CONNECTING
TMIX TRAFFIC GENERATORS, AND OTHER–ALL OTHER LINKS, SEE FIG. 3).

Link rates (Mbps) Test src rates link delay
A,B,C,D,E,F

BG* Other 1 & 2 3 & 4 (ms)
not BN BN 400 pps 200 pps ` f

110† 30–50‡ 100 110 (1.6 Mbps) (0.8 Mbps) 6 2
† 220 Mbps for G ‡ 75 Mbps for G * Access link for background traffic

packets (200 packets for the last link). This can be less than
a Bandwidth-Delay Product (BDP) when it is a bottleneck,
though smaller queues make delay based shared bottleneck
detection more difficult since the dynamic range of the delay
signal is smaller for the same noise. We use NS2 [25] for the
simulations.

2) Accuracy tests: Determining the accuracy of a mecha-
nism in a dynamic network environment is difficult, and it is
only feasible if the ground truth can be quantified in some way.
This is done for our simulations where we have a complete
knowledge of the network dynamics, but unfortunately cannot
be done for the NorNet experiments (section VI-C) as there
are too many unknown factors. Questions to be considered are:

1) If a shared bottleneck is formed, but there is a delay in
detecting it (summary statistics on their own introduce
a delay), should this be counted as a false negative until
such time as the grouping is detected, or should this delay
not count as a false negative, but instead be quantified as
a measured delay to the correct grouping?

2) Conversely, if a shared bottleneck abates, and there is a
delay for a mechanism to recognize this, should this be
counted as a false positive, or should this instead be just
quantified as a delay to the correct grouping?

3) How stable should a bottleneck be before it counts as a
bottleneck?

4) If flows pass through serial combinations of differently
shared bottlenecks (a scenario which is beyond the scope
of the investigated algorithms), should these be treated as
false negatives or ignored?

5) How should partially correct groupings be handled?
In considering these questions we believe the following

approach fairly illustrates the accuracy of the four investigated
mechanisms for the experiments we conduct.

We measure the decision delay rather than counting decision
errors due to the delay. This gives a clearer picture of a
mechanism’s utility in a dynamic environment and makes the
measure independent of the average length of time bottlenecks
exist in the experiments. It also allows the combination of
accuracy and delay to be used to compare the relative efficacy

http://heim.ifi.uio.no/michawe/research/tools/combined_traces.tbz

10

of the mechanisms in a variety of scenarios where the relative
importance of delay and accuracy are different. We use “queue
empty” occurrences at each router as the base measure for
independently determining whether a bottleneck exists or not.
Specifically, a link is considered to be a bottleneck if the
queue into that link does not empty over the period) , where
) = 350 ms—the base measurement period for the rmcatSBD
and dcSBD mechanisms.

Using a delay adjusted moving average of 15) intervals
(5.25 s), we consider a bottleneck to be stable when the asso-
ciated queue does not empty in at least 50% of those intervals.
Flows that pass through multiple bottlenecks, competing with
different flows on the different bottlenecks are possible in this
simulation setup. Such scenarios are ignored in the accuracy
determination13.

Partially correct groupings are considered to be wrong. This
is harsh for groups of large numbers of flows, however, it is
good enough for these experiments since most experiments
have valid groups of only two or four flows.

3) Simulation Results: We use simulation experiments to
compare the four SBFG mechanisms with “ground truth”
in order to determine their accuracy. The summary statistic
based methods, rmcatSBD and dcSBD, use the parameters
recommended in [9]. The wavelet filtered methods sample the
OWD every 35 ms and use a correlation coefficient threshold
of 0.5 to determine whether the OWDs are correlated or not.

Figure 4 illustrates the operation of the different mecha-
nisms for one particular simulation run. The composite figure
has the measured queue sizes for each bottleneck in blue at
the bottom (plot sub-sampled) from which the ground truth is
determined. The right hand side shows the bottleneck labels
from Fig. 3, with the left hand side showing the groups
of flows that traverse that particular bottleneck. The middle
graph in the composite shows the OWD measurements of
the different flows received by the sink (plot sub-sampled).
The top graph depicts the grouping decisions (one every
350 ms) with the ground truth represented by the purple dots
in the middle of the decisions of the four tested mechanisms.
The summary statistic methods are below the ground truth:
dcSBD below it in red, rmcatSBD below dcSBD in blue.
The wavelet filtered correlation methods are above the ground
truth: opDCW above ground truth in orange, and pDCW above
opDCW in green.

All four techniques seem to perform quite well in this
scenario. The wavelet filtered correlation methods (pDCW and
opDCW), often have a shorter delay14 before flows sharing a
dynamic bottleneck are grouped properly, but do not follow
the transience of a bottleneck, as indicated by the ground
truth, quite as well as the summary statistic based methods

13Flows that pass through multiple bottlenecks have a combined summary
statistic delay “signature” from each bottleneck. This delay “signature” will
be different from that of a flow passing through a single bottleneck, and also
different from flows passing through different combinations of bottlenecks.
For cross-correlation methods in these circumstances, a flow will show
low correlation coefficients with a number of other flows, making accurate
grouping almost impossible.

14Remember that pDCW is an offline method, so the delay is very long in
practice. It is here for comparison, since it shows what one could obtain if
one was able to choose the ideal filter coefficients at the start.

(rmcatSBD and dcSBD). For example, refer to the bottleneck
at C ≈ [550, 630] s in Fig. 4 for flows 1 and 4. Visually, pDCW
and opDCW also tend to have significantly more spurious
groupings (false positives) than rmcatSBD and dcSBD. pDCW
and opDCW seem to perform similarly, though opDCW seems
to sometimes have a longer delay before a correct grouping.

To evaluate the accuracy quantitatively we repeat this ex-
periment 50 times with different, but comparable background
and source traffic. The grouping results are compared with
the ground truth determined from the bottleneck queues
(see Fig. 5). Figure 5a summarizes the accuracy of the four
algorithms with respect to ground truth, depicting:

1) The proportion of decisions that correctly group flows
sharing a common bottleneck:

100 × positives
positives + false negatives

.

2) The proportion of decisions that correctly do not group
flows that should not be grouped:

100 × negatives
negatives + false positives

.

3) The F1 score, i.e., the harmonic mean of precision and
recall:

100 × 2 × positives
2 × positives + false positives + false negatives

.

As with all box-and-whisker plots, boxes span the middle 50%
of results collected from 50 simulation runs, and whiskers
extend up to 1.5 times the box span. Both wavelet-based
methods perform well correctly grouping flows that share a
bottleneck but have more difficulty in refraining from grouping
flows that do not share a bottleneck. The summary statistic
based methods are less accurate in correctly grouping flows
than the DCW based methods, with the dynamic clustering
version giving similar performace to the RMCAT version;
however they very accurately refrain from grouping flows that
do not share a bottleneck with less false positives—performing
equally well due to their common skew est based method
of determining whether a flow is transiting a bottleneck or
not. The F1 score has the summary statistic methods perform
significantly better than the wavelet based methods, however
the F1 score does not include negatives in the calculation
which may be a more important factor in some applications.
We will use the F1 score for comparisons of the algorithms
with respect to delay offsets of flow from the different sources,
numbers of flows sharing a common bottleneck and number
of parallel bottlenecks.

Figure 5b summarises the detection delays in terms of:
(a) Start—time delay from when a bottleneck occurs until
when flows are correctly grouped, and (b) Stop—time delay
from when a bottleneck abates until when flows are correctly
no longer grouped. The wavelet based correlation methods
are significantly faster at grouping flows when a bottleneck
starts than the summary statistic based methods–calculating
summary statistics introduces a lag. pDCW is faster, having
the benefit of calculating ideal filters based on the entire trace.
The wavelet based correlation methods have more difficult
in stopping to group flows when the bottleneck abates. The

11

0

50

100

 1

0

50

100

o
w

d
 (

m
s
)

2

0

50

100

 3

50

100

150

 4

0

200

1
2

 A

0

200

1
3

 B

0

200

2
3

 C

0

200

B
N

 q
u
e
u
e
 s

iz
e
 (

1
0

3
B

)

3
4

 D

0

200

2
4

 E

0

200

1
4

 F

0 200 400 600 800 1000

Simulation time (s)

0

200

1
2
3
4

 G

0 200 400 600 800 1000

34

24

23

14

13

12

123

124

134

234

1234

G
ro

u
p
in

g

pDCW

opDCW

Ground truth

dcSBD

rmcatSBD

Fig. 4. Single scenario illustrating the 4 SBFG mechanisms with “ground truth”. The lower graph shows the (subsampled) measured queueing delays at each
bottleneck. The middle graph shows the OWD measurements on which the grouping decisions are based. The upper graphs shows the grouping decisions and
accuracy, with dots appearing in the same vertical order as in the legend. Note that the 3-flow groups of 123, 124, etc. are groupings that should not occur
given the simulation setup.

summary statistic methods have similar delays for both the
start and stop of bottlenecks.

Differences in propagation delays between the sources
that occur after a bottleneck can make it more difficult to
group flows sharing a common bottleneck. Figure 6 shows
the results from experiments when we add delays, !� =

{0, 10, 20, 50, 100, 200, 500, 1000}ms, after the bottlenecks so
that {0, !�3 ,

2!�
3 , !�}ms, is added to flows from sources 1 to

4 respectively. All of the tested algorithms cope well with lags
{0, 10, 20, 50, 100}ms. At higher lags {200, 500, 1000}ms the
wavelet filtered correlation methods begin to struggle, since
correlation becomes more difficult. The effect is minor for the
summary statistic methods, because the summary interval is
significantly longer than the lags.

Next we evaluate the accuracy of the different algorithms
when grouping higher numbers of flows that share a common

bottleneck. Using the same simulation set up depicted in
Fig. 3, we increase the number of test flows traversing the
network while balancing the background traffic to keep the
offered load similar. Figure 7 shows that the accuracy is
consistent for pDCW, opDCW and rmcatSBD. The accuracy
of dcSBD begins to drop as the number of flows sharing a
common bottleneck increases. With higher numbers of flows,
the dcSBD algorithm sometimes finds subgroups within the
bigger group of flows, leading to a reduction in the accuracy
metric used here. There is also an increase in detection delay
for dcSBD due to its 1 step back, 2 steps forward iteration
(see section III-C). This can be fixed by simply increasing the
number of forward steps in each iteration.

Finally we look at how increasing numbers of parallel bot-
tlenecks that the algorithms need to group flows for influence
accuracy. To do this we use multiple parallel instances of the

12

60

65

70

75

80

85

90

95

100
A

c
c
u

ra
c
y
 (

%
)

+'ve -'ve F1

pDCW

opDCW

dcSBD

rmcatSBD

(a) Accuracy of mechanisms with respect to cor-
rectly grouping (+’ve), correctly not grouping
(-’ve) and the F1 score.

0

2

4

6

8

10

12

D
e
la

y
 i
n
 d

e
te

c
ti
o
n
 (

s
)

start stop

(b) Start—delay from ground truth in-
dication of a bottleneck starting to
correctly grouping flows. Stop—delay
from ground truth indication of a bot-
tleneck ceasing to correctly detecting
that flows cease to share a bottleneck.

Fig. 5. Accuracy and delay to detection of the different shared bottleneck
detection mechanisms. Groups of four show pDCW, opDCW, dcSBD and
rmcatSBD from left to right. Each box represents results from 50 runs.

Source lag difference (ms)

0

20

40

60

80

100

F
1

 (
%

)

0 10 20 50 100 200 500 1000

pDCW

opDCW

dcSBD

rmcatSBD

Fig. 6. Accuracy with respect to differences in source propagation delays
(!3) occuring after the bottleneck. Groups of four show pDCW, opDCW,
dcSBD and rmcatSBD from left to right. Each box represents results from 50
runs.

Number of flows

40

50

60

70

80

90

100

F
1

 (
%

)

 4 8 12 16 20 24

pDCW

opDCW

dcSBD

rmcatSBD

Fig. 7. Accuracy with respect to the number of flows to be grouped. Groups
of four show pDCW, opDCW, dcSBD and rmcatSBD from left to right. Each
box represents results from 50 runs.

Parallel bottlenecks

40

50

60

70

80

90

100

F
1
 (

%
)

 2 4 6 8 10

pDCW

opDCW

dcSBD

rmcatSBD

Fig. 8. Accuracy with respect to the number of parallel bottlenecks. Groups
of four show pDCW, opDCW, dcSBD and rmcatSBD from left to right. Each
box represents results from 50 runs.

same simulation setup (see Fig. 3), each with different traffic
at a comparable offered load. Figure 8 shows that the wavelet
based correlation methods perform consistently. Both dcSBD
and rmcatSBD show a drop in accuracy as the number of
parallel bottlenecks increase, with rmcatSBD’s drop especially
significant. This is due to the simple threshold discrimination
used by rmcatSBD that struggles to separate large numbers of
parallel bottlenecks.

Each of the algorithms has its limitations and strengths
depending on the scenario. The wavelet correlation meth-
ods struggle with differing relative source lags. DcSBD’s
clustering method can sometimes find sub-groups in larger
bottleneck groupings. RmcatSBD can struggle to discriminate
between groups when there are large numbers of bottlenecks.
Overall the online opDCW modification of DCW has a similar
accuracy, though longer delay to detection, when compared to
the offline pDCW, indicating the dynamic choice of thresholds
for wavelet filtering is good enough for this purpose.

C. NorNet Experiments

1) Setup: To evaluate the effectiveness and robustness of
SBFG in real operational networks, we show results from
the measurement traces from the NorNet testbed experiments
used in [10]. In summary, the NorNet testbed consists of
wired NorNet Core (NNC) [26] nodes and a wireless (cellular)
NorNet Edge (NNE) [30] node interconnected via the Internet.

Figure 9 illustrates the experimental setup. On the right-
hand side, we show the NNC sites and their respective geo-
graphic locations. The green solid lines indicate the NNC sites
that generate the traffic we use to represent application traffic,
which we want to measure, while the red solid lines indicate
the NNC sites that generate the synthetic background traffic
used to congest the links and create fluctuating bottlenecks.
Note that all traffic generated at each NNC site (except for
(F) and (G)) will first go through the Tbox (Tunnel Box)
in Oslo, before going out again on the Internet towards the
NNE node (NNE-1), which is connected to the Internet via
two different cellular network providers.

This topology creates a difficult shared bottleneck scenario:
Operators (I) and (II) have very different wireless links each

13

(A) Sweden

Operator
(I)

Operator
(II)

(B) Spitsbergen

(C) Kristiansand

(D) Germany

(E) Gjøvik (F) (G)

Internet

Tbox

Oslo

NNE - I

(I)

(II) 1, 5

4, 8
3, 72, 6

U.K.

Flows:
1,2,3,4

Flows:
5,6,7,8

Fig. 9. NorNet setup. Our sink is the multi-homed NNE-1 node located
in Oslo, Norway. The main bottlenecks are on the wireless links, with a
secondary bottleneck possible at the Oslo Tunnel Box (TBox), see [10].

with a different data rate. The queue on (I) appears to use some
sort of Active Queue Management (AQM), while the queue on
(II) rarely drops packets. We use Operator (I) as a destination
for flows {1,2,3,4} and Operator (II) as a destination for flows
{5,6,7,8}. In our experiments we attempt to create dynamic
bottlenecks on the wireless links of both Operators (I) and
(II), links that have a varying channel capacity. In addition
to these, there are a number of other potential bottlenecks,
such as the Tbox itself. We believe that this setup creates
a realistic test environment, however it is not possible to
determine the ground truth in a real network as was done in the
simulation experiments in section VI-B, since it is not possible
to have queueing measurements at every potential bottleneck
in each flow’s path across the Internet.

2) NorNet Configuration: Although the “ground truth”
can not be reliably determined for our experiments, we
use traceroute and STAB [31] to identify the tight com-
mon links along the paths from the NNC nodes to NNE-1.
We find these to be the wireless links, and on occasion the
link through the Oslo Tbox. We dimension the background
traffic load in such a way that the wireless links will usually
have the tightest bottlenecks during the experiment. Even then,
the uncontrolled Internet traffic may generate other unknown
bottleneck during the course of the experiments.

Our synthetic background and application traffic flows are
generated from all NNC sites towards NNE-1 via Operators
(I) and (II), with UDP, using the D-ITG tool [27]. The
objective is to emulate a realistic traffic pattern that causes
a dynamically fluctuating bottleneck. Node (A) generates one
flow with exponentially distributed inter-packet intervals with
mean rate of 92 packets per second (pps) via (I), and another
460 pps flow via (II). (B) and (C) generate more complex and
bursty long range dependent traffic (Hurst = 0.8). (B) and (C)
each generate 8 flows with Pareto distributed on times, and
exponentially distributed off times with the following means:
4 with 2s/2s and 4 with 5s/5s on/off intervals at 72 pps via (I),
and 8 flows with 1s/1s, 2s/2s,. . . , to 8s/8s on/off intervals at
90 pps via (II). Background flows have variable packet sizes
with an average 1000 Byte per packet.

We generate test traffic of different rates. Machines (D),
(E), (F) and (G) generate the traffic we measure to test our

TABLE IV
GROUPING STATISTICS FROM THE NORNET EXPERIMENT. PERCENTAGES

Grouping
rmcatSBD dcSBD pDCW opDCW

Dcna RLb Dcna RLb Dcna RLb Dcna RLb

(%) ` f (%) ` f (%) ` f (%) ` f

1234 22 4.3 5.4 18 6.1 5.0 147 5.1 5.6 146 11.6 10.4

14 18 2.9 3.3 30 7.8 8.1 14 1.6 1.1 16 2.6 1.9

23 13 3.1 3.4 27 11.3 14.7 25 2.0 1.6 27 3.4 3.1

Total c 53 - - 75 - - 187 - - 188 - -

Others d 21 - - 29 - - 5 - - 4 - -

5678 31 7.6 10.0 28 10.0 9.7 56 6.2 6.7 54 6.8 7.9

58 30 5.7 7.9 40 10.7 11.0 36 2.2 2.2 38 4.7 4.7

67 41 8.0 10.7 47 14.5 15.7 43 2.6 2.5 47 5.3 5.0

Total c 102 - - 115 - - 135 - - 138 - -

Others d 9 - - 10 - - 2 - - 2 - -

12345678 1.3 5.4 5.4 0.2 - - 7.8 3.5 2.5 7.2 2.8 2.4

123458 2.7 5.0 5.4 0.2 - - 5.6 2.7 2.8 6.1 2.6 2.1

145678 1.0 7.5 8.4 0.0 - - 1.7 1.6 1.0 1.6 1.7 1.2

1458 1.9 4.6 7.6 1.0 3.7 2.4 2.0 1.5 1.3 2.7 3.0 3.5
a Decisions (Dcn). The percentages are the number of decision instances
relative to the number of times congestion is indicated for at least 2 of flows
“1234” (1475 instances) or flows “5678” (2644 instances) at the decision time.
The third part of the table gives percentage based on 4119 total instances.
Percentage values higher than 100% indicate that the algorithm was finding
shared bottleneck groupings it should not.
b Run Length (RL) – Length of consecutive grouping decisions, mean (`) and
standard deviation(f). Decisions are made every 350 ms in this experiment.
c Total: Total of main combinations within this group of four.
d Other: Other combinations within this group of four.

detection mechanism (flows labeled 1, 2,. . . , 8 in Fig. 9).
The test traffic is a minor contributor to the bottlenecks in
these experiments. Sites (D), (E), and (F) generate flows with
exponentially distributed inter-packet times with an average of
100 pps with 50 Byte packets. (G) generates a constant rate of
100 pps with 50 Byte packets.

3) NorNet Results: Unfortunately it is not possible for us
to get the “ground truth” from all the different queues that
may form due to bottlenecks, including the two designed
bottlenecks on the radio side of the cellular interface. To
exacerbate the problem, the capacity of (I) and (II) changes
with the radio conditions (see Fig. 9). What we hope to see
is sporadic flow groupings of {1,2,3,4} and {5,6,7,8}, but not
of {1,2,3,4,5,6,7,8} since that is very unlikely in this set up.
However, since the T-Box (see Fig. 9) can also sometimes be
a bottleneck, we also expect {1,4} and {5,8} to sometimes
separate from their respective group of four.

Table IV summarises the results form the NorNet ex-
periment. The table is split into three parts: (i) variations
around the {1,2,3,4} flow groupings, (ii) variations around
the {5,6,7,8} flow groupings, (iii) and other combinations
that have some statistical significance in the experiment. The
grouping decisions are expressed as a percentage with respect
to estimates of there being a bottleneck (i.e. congestion)15

when the decision is made. Allowing for the influence of

15We use the method for inferring bottlenecks in RFC 8382 [9], section
3.3.1 item 1; counting it as a bottleneck if at least 2 flows of the group of
four are inferred to transit bottlenecks.

14

the T-Box, the ideal result would be percentages near 100%
for each algorithm in the total rows of the table. Percentages
significantly less than 100% indicate that a particular algorithm
missed potential SBFGs, i.e. there is a prevalence of false
negatives. This is especially so for rmcatSBD (53%), and to a
lesser extent dcSBD (75%), in the {1,2,3,4} flow groupings.
Conversely values significantly over 100% indicate that an
algorithm has determined SBFGs that should not exist due
to there being no bottleneck, i.e., there is a prevalence of false
positives. This is especially so for pDCW (187%) and opDCW
(188%) in the {1,2,3,4} flow groupings. All algorithms seem
to perform better, in this respect, for the {5,6,7,8} flow
groupings with percentages closer to 100%. This seems to be
due to the higher queueing delays (around double), so stronger
bottleneck signal, experienced by these flows.

The rmcatSBD and dcSBD are more likely to split the
flows {1,2,3,4} into two groups than pDCW and opDCW.
The perturbation of the T-Box seems to cause a bigger
difference in summary statistics than in correlation coeffi-
cient for these flows. Conversely, pDCW (7.8%) and opDCW
(7.2%) are more likely to group all the flows together in
the {1,2,3,4,5,6,7,8} group, a very unlikely grouping in this
topology, than rmcatSBD (1.3%) and dcSBD (0.2%).

RL in table IV refers to the number of consecutive SBFG
decisions for a particular group of flows. We present the mean
and standard deviation. The standard deviations, relative to the
means, are generally large, which is to be expected given the
heavy tailed distributions used for the background traffic, and
Internet traffic in general. High counts of RLs close to 1, e.g.
groups {1,4} and {2,3} with pDCW, indicate either very short
bottlenecks or possible noise in the decisions. DcSBD seems
less prone to this, and to generally have comparatively longer
RLs.

In section VI-B3 it was noted that dcSBD’s 1 step back
and 2 steps forward clustering iterations can cause delays in
grouping higher numbers of flows, which may account for
its performance of not grouping {1,2,3,4,5,6,7,8} group and
being less prone to short RLs. We test this with 1 step back
and # = {3, 4, 8} steps forward clustering iterations, finding no
statistical significant improvement: 0.1% increase in {5,6,7,8}
groupings, 0.4% increase in {1,2,3,4} groupings, no change
in {1,2,3,4,5,6,7,8} groupings, and no change in RLs.

VII. CONCLUSIONS AND FUTURE WORK

Four different algorithms for grouping flows that share bot-
tlenecks have been evaluated via a simple testbed, simulations
and real networks. Simulations have the important advantage
of being able to determine the “ground truth” exactly, however,
they will never truly model the nuances of a real network.

Both rmcatSBD and dcSBD use summary statistics to
characterise the effect of the bottleneck, and similarity in these
statistics to group flows sharing a common bottleneck. This
paper has evaluated the method in RFC 8382 [9] (rmcatSBD)
and updated its divide and conquer grouping technique with a
novel dynamic clustering method. In addition, the wavelet fil-
tered DCW method [11] was adapted for passive use (pDCW)
and a novel method of online calculation of wavelet filter
coefficients enables an online version (opDCW).

Generally, all four methods achieved a high degree of accu-
racy with respect to ground truth in the simulation tests, though
their performance varied depending on the scenario, each with
different strengths and limitations. When there were no differ-
ences in delays from sources, the wavelet based correlation
methods (pDCW and opDCW) more often correctly grouped
flows, however the summary statistics methods seemed to be
significantly less susceptible to wrongly grouping flows that do
not share a common bottleneck than the wavelet filter based
methods (see Fig. 5a). An inherent problem with summary
statistics is that they introduce delay; it takes enough samples
over a certain time interval to calculate them. This is clearly
indicated in the accuracy tests that showed on average about
a 2-3 s delay from the ground-truth indication to the correct
detection of the bottleneck (see Fig. 5b). How important delay
is depends on the intended application of the techniques.

Differences in propagation delay after the bottleneck cause
difficulties for the wavelet based correlation methods (pDCW
and opDCW) with them both performing poorly from source
delay differences spanning 200 ms (see Fig. 6). RmcatSBD
struggles to discriminate between groups when there are high
numbers of parallel bottlenecks (≥ 6, see Fig. 8), while
dcSBD sometimes finds subgroups within the larger flow
grouping when there are higher numbers of flows that share a
common bottleneck—slightly reducing its performance (≥ 16,
see Fig. 7). Over the whole range of tests conducted, dcSBD
has the most consistent F1 score, though not the best in any.

The online opDCW performed very closely to pDCW,
which used Matlab to optimally compute the filter coefficients
from the entire traffic traces. This makes it a viable online
version of DCW, though relative significance of the filter co-
efficients to the mechanism’s overall efficacy warrants further
investigation. Increasing the correlation coefficient threshold
for these methods may help reduce the problem of grouping
flows that should not be grouped, but may also reduce their
ability to correctly group flows sharing a bottleneck. This is
also a topic for further research.

REFERENCES

[2] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP Exten-
sions for Multipath Operation with Multiple Addresses, RFC 6824
(Experimental), Internet Engineering Task Force, Jan. 2013.

[3] D. Hayes, S. Ferlin, and M. Welzl, Shared bottleneck detection for
coupled congestion control for RTP media, Internet Draft draft-ietf-
rmcat-sbd-01, work in progress, Internet Draft, Jul. 2015.

[4] S. Ferlin, O. Alay, T. Dreibholz, D. A. Hayes, and M. Welzl,
“Revisiting congestion control for multipath TCP with shared bottle-
neck detection,” in IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, Apr. 2016,
pp. 1–9.

[5] B. Briscoe, “Flow rate fairness: Dismantling a religion,” SIGCOMM
Comput. Commun. Rev., vol. 37, no. 2, pp. 63–74, Mar. 2007.

[6] S. Islam, M. Welzl, S. Gjessing, and N. Khademi, “Coupled conges-
tion control for RTP media,” SIGCOMM Comput. Commun. Rev., vol.
44, no. 4, Aug. 2014.

[7] S. Islam, M. Welzl, and S. Gjessing, Coupled Congestion Control for
RTP Media, RFC 8699, Jan. 2020.

[8] S. Islam, M. Welzl, K. A. Hiorth, D. Hayes, G. Armitage, and S.
Gjessing, “ctrlTCP: reducing latency through coupled, heterogeneous
Multi-Flow TCP congestion control,” in 2018 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS): GI
2018: 21st IEEE Global Internet Symposium (INFOCOM18 WKSHPS
GI’18), Apr. 2018.

15

[9] D. Hayes, S. Ferlin, M. Welzl, and K. Hiorth, “Shared bottleneck
detection for coupled congestion control for RTP media,” RFC Editor,
RFC 8382, Jun. 2018.

[10] D. Hayes, S. Ferlin, and M. Welzl, “Practical passive shared bot-
tleneck detection using shape summary statistics,” in Proceedings of
IEEE LCN, Sep. 2014, pp. 150–158.

[11] M. S. Kim, T. Kim, Y.-J. Shin, S. S. Lam, and E. J. Powers,
“A wavelet-based approach to detect shared congestion,” IEEE/ACM
Trans. Netw., vol. 16, no. 4, pp. 763–776, Aug. 2008.

[12] S. Savage, N. Cardwell, and T. Anderson, “The case for informed
transport protocols,” in Hot Topics in Operating Systems, 1999.
Proceedings of the Seventh Workshop on, 1999, pp. 58–63.

[13] H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz, “Analyzing
stability in wide-area network performance,” in Proceedings of ACM
SIGMETRICS, 1997, pp. 2–12.

[14] L. Wang, J. N. Griffioen, K. L. Calvert, and S. Shi, “Passive inference
of path correlation,” in Proceedings of ACM NOSSDAV, 2004, pp. 36–
41.

[15] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting shared conges-
tion of flows via end-to-end measurement,” IEEE/ACM Trans. Netw.,
vol. 10, no. 3, pp. 381–395, Jun. 2002.

[16] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic window coupling for
multipath congestion control,” in Proceedings of IEEE ICNP, 2011,
pp. 341–352.

[17] W. Wei, Y. Wang, K. Xue, D. S. L. Wei, J. Han, and P. Hong, “Shared
bottleneck detection based on congestion interval variance measure-
ment,” IEEE Communications Letters, vol. 22, no. 12, pp. 2467–2470,
Dec. 2018.

[18] O. Younis and S. Fahmy, “FlowMate: Scalable on-line flow cluster-
ing,” IEEE/ACM Trans. Netw., vol. 13, no. 2, pp. 288–301, Apr. 2005.

[19] D. Katabi and C. Blake, “Inferring congestion sharing and path
characteristics for packet interarrival times,” Massachusetts Institute
of Technology, Tech. Rep. TR-828, Dec. 2001.

[20] P. Varga, “Analyzing packet interarrival times distribution to detect
network bottlenecks,” in Proceedings of IFIP EUNICE, C. D. Kloos,
A. Marı̀n, and D. Larrabeiti, Eds., vol. 196, 2006, pp. 17–29.

[21] M. M. Yousaf, “Accurate shared bottleneck detection and file transfer
delay prediction for grid scheduling,” PhD thesis, University of
Innsbruck, Austria, Dec. 2008.

[22] C. Biemann, “Chinese whispers: An efficient graph clustering algo-
rithm and its application to natural language processing problems,”
in Proceedings of the First Workshop on Graph Based Methods for
Natural Language Processing, ser. TextGraphs-1, 2006, pp. 73–80.

[23] Z. Sarker, C. Perkins, V. Singh, and M. A. Ramalho, “RTP Con-
trol Protocol (RTCP) Feedback for Congestion Control,” Internet
Engineering Task Force, Internet-Draft draft-ietf-avtcore-cc-feedback-
message-06, Mar. 2020, Work in Progress, 15 pp.

[24] C. Perkins, “RTP Control Protocol (RTCP) Feedback for Congestion
Control in Interactive Multimedia Conferences,” Internet Engineering
Task Force, Internet-Draft draft-ietf-rmcat-rtp-cc-feedback-05, Nov.
2019, Work in Progress, 12 pp.

[25] Network simulator (ns-2.35), 2011.
[26] E. G. Gran, T. Dreibholz, and A. Kvalbein, “NorNet Core - A Multi-

Homed Research Testbed,” Computer Networks, Jan. 2014.
[27] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre,

“D-ITG distributed internet traffic generator,” in Proceedings of the
International Conference on the Quantitative Evaluation of Systems
(QEST), Sep. 2004, pp. 316–317.

[28] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay, and
F. D. Smith, “Tmix: A tool for generating realistic TCP application
workloads in ns-2,” ACM SIGCOMM Computer Communications
Review, vol. 36, no. 3, pp. 65–76, Jul. 2006.

[29] D. Hayes, D. Ros, L. Andrew, and S. Floyd, “Common TCP evalua-
tion suite,” IRTF, Internet Draft draft-irtf-iccrg-tcpeval-01, Jul. 2014.

[30] A. Kvalbein, D. Baltrūnas, K. Evensen, J. Xiang, A. Elmokashfi, and
S. Ferlin-Oliveira, “The NorNet Edge Platform for Mobile Broadband
Measurements,” Computer Networks, Jan. 2014.

[31] V. J. Ribeiro, R. H. Riedi, and R. G. Baraniuk, “Locating available
bandwidth bottlenecks.,” IEEE Internet Comput., vol. 8, no. 5, pp. 34–
41, Oct. 26, 2004.

David A. Hayes received his Ph.D. in Telecom-
munications Engineering from the University of
Melbourne, Australia. Currently he works at Simula
Metropolitan Center for Digital Engineering in the
Mobile Systems and Analytics department where his
work focuses on performance analysis of protocols
and network devices in 5G networks and beyond.

Michael Welzl is a full professor at the University
of Oslo, Norway, since 2009. He received his Ph.D.
and his habilitation from the University of Darmstadt
/ Germany in 2002 and 2007, respectively. Michael’s
main research focus is the transport layer; he is
active in the IETF and IRTF.

Simone Ferlin is a software researcher at Erics-
son AB in radio networks. She received her Dipl.-
Ing. degree in Information Technology with major
in Telecommunications from Friedrich-Alexander
Erlangen-Nuernberg University, Germany in 2010
and her PhD degree in computer science from the
University of Oslo, Norway in 2017. Her interests
lie in the intersection of cellular networks and the
Internet, with her research focusing on computer
networking, QoS and cross-layer design, transport
protocols, congestion control, network performance,

security, and measurements. Her dissertation focused on improving robustness
in multipath transport for heterogeneous networks with MPTCP. She actively
serves on technical boards of major conferences and journals in these areas.

David Ros received his Ph.D. in Computer Science
from the Institut National de Sciences Appliquées,
Rennes, France. He is a Chief Research Scientist at
Simula Research Laboratory, Oslo, Norway. He has
contributed to IETF and IRTF documents in the field
of congestion control, and co-chaired the IRTF’s
Internet Congestion Control Research Group. His
active research interests include future evolution of
the Internet’s transport layer and architectural issues
in IP networks.

Safiqul Islam received his Ph.D. in Computer Sci-
ence from the University of Oslo, Norway. Currently,
he is a Postdoctoral Fellow at the Department of In-
formatics, University of Oslo. His research interests
include performance analysis, evaluation, and opti-
mization of transport layer protocols. He is active
in the IETF and IRTF where he has contributed to
several IETF/IRTF Working Groups.

	Introduction
	Background
	Mechanisms Based on Summary Statistics
	Summary statistic calculations
	RMCAT mechanism (rmcatSBD)
	Cluster based grouping mechanism (dcSBD)

	A Mechanism Based on Wavelet-Filtered Delay Signal Correlation Coefficients
	Selecting an SBFG method: tradeoffs and practical considerations
	Experimental Evaluations
	Simple Testbed Experiments
	Setup
	Testbed results

	Simulation Experiments
	Setup
	Accuracy tests
	Simulation Results

	NorNet Experiments
	Setup
	NorNet Configuration
	NorNet Results

	Conclusions and Future Work
	Biographies
	David A. Hayes
	Michael Welzl
	Simone Ferlin
	David Ros
	Safiqul Islam

