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Abstract—Mobile cloud computing is a new paradigm to
improve the quality of mobile services, which has drawn con-
siderable attentions in both industrial and academic fields. In
this paper, we consider the resource management and sharing
problems for radio and computing resources to support mobile
applications in mobile cloud computing. In such an environment,
service providers can cooperate to form coalition to share their
idle resources with each other. We propose a coalition game
model based on two-sided matching theory. The coalition game
model efficiently reflects the scalable cooperation among the
service providers for sharing their idle resources. As a result,
the resources can be better utilized and the quality of service
for users can be improved. The simulation results indicate that
our scheme can optimize the resource utilization and significantly
improve the quality of service of the users.

I. INTRODUCTION

With the rapid development of wireless technology, mobile

devices can receive various information and services, which

shows high potential for a large number of applications.

However, massive mobile applications are typically supported

by computing modules on mobile devices. These terminals

have limited computing capability. Mobile Cloud Computing

(MCC) possesses a huge potential to address such issues. MCC

combines wireless access services and cloud computing into

mobile environment to improve the performance of mobile

applications [1]. With the help of cloud computing, mobile

applications can offload some computing modules to be exe-

cuted on a powerful server in a cloud. As a result, MCC could

not only reduce the delay of mobile applications but also lower

the energy consumption of mobile devices [2], [3].

However, running a mobile application in an MCC environ-

ment requires various resources, mainly including radio and

computing resources. These resources should be previously

reserved before usage to ensure Quality of Services (QoS).

Generally, service providers (SPs) reserve a certain amount

of remote radio resource from network providers (NPs) [4].

The SPs also reserve some remote computing resources (e.g.,

CPU, memory, and storage) from data centers, which are

owned by cloud providers (CPs) [5]. Both the resources are

used to support different mobile applications. The number of

users running mobile applications is limited by the available

radio and computing resources of the SPs thus impairing the

service quality and user experience [6], [7]. Moreover, multiple

applications have different resource requirements. In some

cases, after running some applications, an SP may fall short of

one kind of resources while it has plenty of other resources, or

an SP may lack many resources. As a result, it is an important

issue for SPs to design efficient resource management schemes

satisfying real-time requirements of MCC applications [8].

There are some previous studies to address above issues

[8]–[11]. In [8], some SPs cooperate to create a resource pool

to share their radio and computing resources. All the SPs

can use the resources from the resource pool when required,

thereby increasing resource utilization. The revenue of an SP is

based on the contribution to user’s demand. However, if some

resources of the SPs are idle, they may not obtain maximum

revenues. In [10], the authors propose a service decision using

semi-Markov decision process to balance the computation

loads among multiple cloud domains. The authors in [11]

focus on dynamic analysis and develop a provably-efficient

dynamic scheduling and pricing algorithm to achieve a higher

average profit but with big delay. The aforementioned schemes

demonstrate that it is beneficial for SPs to cooperate in the

MCC. In fact, every SP desires to autonomously cooperate

with its optimal partner to maximize revenue. However, the

above schemes do not fully optimize the idle resources of the

SPs.

In this paper, we introduce a coalition game model for re-

source sharing between different SPs in the MCC framework.

In our model, resource sharing is conducted in two steps. In

the first step, each SP evaluates its revenues and decides to

either work alone or join a coalition in the cloud market. In

the second step, the SP will either rent resources from others

or lease resources to others. The two groups of SPs effectively

match their demands by using two-sided matching scheme.

The major contributions of this paper can be summarized

as follows: (1) We combine prices with resource-demands in

mobile cloud computing environment and adopt a coalition-

game model close to realistic business model in the cloud

market. (2) We apply two-sided matching theory for forming

coalitions. Our scheme can not only improve fairness of

transaction but also optimize resource utilization of the SPs.

A win-win situation for the SPs is achieved in every coalition.

(3) The revenue of an SP not only includes its profit from the

users that use its applications, but also charges from the SPs

which rent its resources and pays its rent on time. Therefore,

our scheme also enhances the revenues from idle resources.
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Moreover, the resource cooperation is scalable as more SPs

and resources can be resiliently added into the cooperation.

The rest of this paper is organized as follows. System model

and assumptions are described in Section II. In Section III, we

present our problem formulation and analysis. In Section IV,

we elaborate our proposed scheme. Extensive simulations are

conducted and discussed in Section V. Section VI concludes

the paper.

II. SYSTEM MODEL

In mobile cloud computing environment, a mobile ap-

plication is typically divided into local computing module

running on a mobile device and remote computing module

running on a server. As a result, both radio and computing

resources are required to run mobile applications. The network

provider which provides radio resource (i.e., bandwidth) and

the cloud provider which offers computing resource (such as

CPU, storage and memory) collaborate to support the mobile

applications [9].

The remote resource is the fixed asset of an SP, which

is cheaper than resource obtained on an on-demand basis.

However, the total number of available resource decides the

maximum number of supporting applications. The available

resources of SPs are different since the SPs support multiple

applications with different resource requirements for some

time. The model in this paper is proposed to take advantages of

both remote resource reserving and local resource demands.

As shown in Fig. 1, different SPs can cooperate with each

other to share their available resources if necessary, in order

to enhance their revenues and improve the resource utilization.

In other words, through cooperation, an SP ( e.g., 𝑆𝑃 3) can

expand its capacity to support applications by renting extra

local resources from CPs or NPs. While an another SP (e.g.,

𝑆𝑃 2) can lease a local access to its remote reserved resource

to 𝑆𝑃 3. The deal is only based on the condition of mutual

benefit. In this way, 𝑆𝑃 3 can increase its applications that can

be accessed or run to obtain higher QoS. Besides, 𝑆𝑃 2 can

improve its revenue by utilizing its idle resources. In Section

V, we will show that the QoS, resource utilization and revenues

increase significantly.

III. PROBLEM FORMULATION

A. Wireless Network and Data Center

We consider an MCC environment with 𝑁 mobile service

providers. A service provider can negotiate with other ser-

vice providers and share their reserved radio and computing

resources. A service provider 𝑖 at time 𝑡 is indexed by SP𝑡
𝑖,

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 . Resource management for MCC includes the

radio resource and computing resources, which are denoted as

B𝑡
SPi

and C𝑡
SPi

, respectively. There are 𝑘 users denoted as U =
{𝑢1, 𝑢2, 𝑢3, ...𝑢𝑘} in the MCC environment. Let us denote the

set of mobile applications as A = {𝑎1, 𝑎2, 𝑎3, ...𝑎𝑘}. Besides,

a set of radio resource and a set of computing resource are rep-

resented as B = {𝑏1, 𝑏2, 𝑏3, ...𝑏𝑘} and C = {𝑐1, 𝑐2, 𝑐3, ...𝑐𝑘},

respectively.

The system model is based on the following assumptions.

Fig. 1: The mobile cloud computing environment

1) The arrival and departure time of each user are assumed

to follow Poisson distribution. The size of base stations

and data centers follows the same distribution.

2) The mobile application 𝑎𝑖 will consume the radio re-

source 𝑏𝑖, which is a random value in the range of

[𝑏min,𝑖, 𝑏𝑚𝑎𝑥,𝑖], and has probability density function

(PDF) 𝜌𝑏(𝑏𝑖). At the same time, the mobile application

𝑎𝑖 will use the computing resource 𝑐𝑖 whose value

follows arbitrary distribution with PDF 𝜌𝑐(𝑐𝑖) in the

range [𝑐min,𝑖, 𝑐𝑚𝑎𝑥,𝑖] [12].

Based on aforementioned assumptions, the quality of band-

width service of application 𝑎𝑖 , denoted as 𝑞𝑏𝑖 , can be defined

as

𝑞𝑏𝑖 =

⎧⎨
⎩

0, if 𝑏𝑖 < 𝑏min,𝑖,∫ 𝑏𝑖

𝑏min,𝑖
𝜌𝑏(𝑏𝑖)𝑑𝑏𝑖, if 𝑏min,𝑖 < 𝑏𝑖 ≤ 𝑏max,𝑖,

1, if 𝑏𝑖 > 𝑏max,𝑖.

(1)

Where, 𝑏𝑖 is the radio resource which will be provided by SP𝑡
𝑖.

In a similar way, since SP𝑡
𝑖 can provide computing resource

𝑐𝑖, the quality of computing service, 𝑞𝑐𝑖 , can be defined as

𝑞𝑐𝑖 =

⎧⎨
⎩

0, 𝑐𝑖 ≤ 𝑐min,𝑖,∫ 𝑐𝑖

𝑐min,𝑖
𝜌𝑐(𝑐𝑖)𝑑𝑐𝑖, 𝑐min,𝑖 < 𝑐𝑖 ≤ 𝑐max,𝑖,

1, 𝑐𝑖 > 𝑐max,𝑖.

(2)

Therefore, the QoS requirement of user 𝑖 is the minimum value

between 𝑞𝑏𝑖 and 𝑞𝑐𝑖 , i.e.,

QOS𝑖 = 𝑚𝑖𝑛(𝑞𝑏𝑖 , 𝑞
𝑐
𝑖 ). (3)

Next, we need to evaluate the ability of running application

for the demand of each SP.

B. Quantification of Resource

Each SP has a certain amount of remote reserved resource.

Radio resource and computing resource can be shared with

each other by renting for a short time. Let DBSP𝑖
and DCSP𝑖

represent the absolute value of the difference between the

required amount of the resource and the actual amount of the

resource, respectively.

DBSP𝑖
= ∣BSPi

− 𝑏max,𝑖∣ , (4)

DCSP𝑖
= ∣CSPi

− 𝑐max,𝑖∣ . (5)
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If the available radio resource BSPi
is more than the upper

bound of radio resource 𝑏max,𝑖, the DBSP𝑖
indicates the

amount of resource that SP𝑡
𝑖 can offer to rent out. On the

contrary, SP𝑡
𝑖 wants to rent the amount of radio resource

DBSP𝑖
for local usage. In eqn. (5), DCSP𝑖

is obtained by

the difference between the available computing resource CSPi

and the upper bound of computing resource 𝑐max,𝑖.

C. Utility Function

The utility function of service provider SP𝑡
𝑖 consists of two

parts: the satisfaction and the cost. The satisfaction function

𝑆𝑡
𝑖 is different for the case of renting extra local resources

(𝐶𝑎𝑠𝑒1) and renting out its own resources (𝐶𝑎𝑠𝑒2). But, in

both cases, the satisfaction function is convex and starts from

zero point. For simplicity, we take radio resource cooperation

for example. We define the satisfaction function in 𝐶𝑎𝑠𝑒1 as

𝑆𝑡
𝑖 = 𝑤𝑡

𝑏,𝑖𝑙𝑜𝑔(1 + 𝑥𝑡
𝑏,𝑖), (6)

where 0 ≤ 𝑥𝑡
𝑏,𝑖 ≤ 1, and

𝑤𝑡
𝑏,𝑖 =

𝛼

1 + 𝑒−𝛽(Bn,SPi
−BSPi

)
. (7)

Here, 𝑥𝑏,𝑖 represents the amount of leased bandwidth resource

of service provider 𝑖 [13]. The willingness of SP𝑡
𝑖 is denoted

by 𝑤𝑡
𝑏,𝑖 which is an 𝑆 function curve [14]. The predefined

constants 𝛼 and 𝛽 are determined by the user preference.

Apparently, the larger the available resource BSPi
, the lower

is the willingness of renting resource from other SPs. It means

that more and more idle resources will be rented out.

In 𝐶𝑎𝑠𝑒2, 𝑥𝑏,𝑖 represents the resource which can be rented

out. Thus, it is a negative value. Alternatively, we adopt the

satisfaction function in this case as follows:

𝑆𝑡
𝑖 = 𝑤𝑡

𝑏,𝑖(𝑙𝑜𝑔(2 + 𝑥𝑡
𝑏,𝑖)− 1), 𝑤ℎ𝑒𝑟𝑒 − 1 ≤ 𝑥𝑡

𝑏,𝑖 ≤ 0. (8)

Let P𝑡
𝑏,𝐶1 > 0 and P𝑡

𝑏,𝐶2 < 0 denote the unit price in

𝐶𝑎𝑠𝑒1 and 𝐶𝑎𝑠𝑒2, respectively. The sign is an indication of

the cost or the earning. The unified utility functions in two

cases for service provider 𝑖 in time slot 𝑡 are then given by

𝑢𝑡
𝑏,𝑖(SP

𝑡
𝑖)=

⎧⎨
⎩

𝑤𝑡
𝑏,𝑖𝑙𝑜𝑔(1+𝑥𝑡

𝑏,𝑖)−P𝑡
𝑏,𝐶1𝑥

𝑡
𝑏,𝑖, 0 ≤ 𝑥𝑡

𝑏,𝑖 ≤ 1,

𝑤𝑡
𝑏,𝑖(𝑙𝑜𝑔(2+𝑥𝑡

𝑏,𝑖)−1)+

P𝑡
𝑏,𝐶2𝑥

𝑡
𝑏,𝑖,−1 ≤ 𝑥𝑡

𝑏,𝑖 < 0.

(9)

In time slot 𝑡, each SP will choose a proper 𝑥𝑡
𝑖 to maximize

the utility 𝑢𝑡
𝑏,𝑖(SP𝑖) according to the given price.

D. Service Providers Classification

The SPs can be classified into two categories: 𝐶𝑎𝑠𝑒1 or

𝐶𝑎𝑠𝑒2, according to their potential behavior. In this paper,

the prices in both sides are set by the NP. The NP only has

one price for renting. However, different coalitions can have

different cooperative prices. We first analyze the characteristic

of utility in 𝐶𝑎𝑠𝑒1. Differentiating u𝑡𝑏,𝑖(SP
𝑡
𝑖) with respect to

𝑥𝑡
𝑏,𝑖, we get

∂u𝑡𝑏,𝑖(SP
𝑡
𝑖)

∂𝑥𝑡
𝑏,𝑖

=
𝑤𝑡

𝑏,𝑖

(1 + 𝑥𝑡
𝑏,𝑖)𝑙𝑛2

− P𝑡
𝑏,𝐶1, (10)

∂2u𝑡𝑏,𝑖(SP
𝑡
𝑖)

∂𝑥𝑡
𝑏,𝑖

2 = −
𝑤𝑡

𝑏,𝑖

(1 + 𝑥𝑡
𝑏,𝑖)

2
𝑙𝑛2

< 0. (11)

Clearly, the utility function for 𝐶𝑎𝑠𝑒1 is concave, which

indicates that the maximum value of this function exists.

Therefore, using first order optimality condition
∂u𝑡

𝑏,𝑖(SP
𝑡
𝑖)

∂𝑥𝑡
𝑏,𝑖

=

0, we get

𝑥𝑡
𝑏,𝑖

∗

=
𝑤𝑡

𝑏,𝑖

P𝑡
𝑏,𝐶1ln2

− 1, (12)

where 𝑥𝑡
𝑏,𝑖

∗
is called the best response, which maximizes the

utility on the condition of price P𝑡
𝑏,𝐶1. Then, we substitute

𝑥𝑡
𝑏,𝑖

∗
into eqn. (9) and have

u𝑡𝑏,𝑖
∗

(SP𝑡
𝑖) = 𝑤𝑡

𝑏,𝑖 log(
𝑤𝑡

𝑏,𝑖

P𝑡
𝑏,𝐶1ln2

)−
𝑤𝑡

𝑏,𝑖

ln 2
+ P𝑡

𝑏,𝐶1. (13)

Therefore, the utility function of service provider SP𝑡
𝑖 can

be converted into the optimal utility function in terms of

P𝑡
𝑏,𝐶1. Then, if we take the first and the second derivative

of u𝑡𝑏,𝑖
∗
(SP𝑡

𝑖) with respect of 𝑥𝑡
𝑏,𝑖, we obtain

∂u𝑡
𝑏,𝑖

∗

(SP𝑡
𝑖)

∂𝑥𝑡
𝑏,𝑖

= −
𝑤𝑡

𝑏,𝑖

P𝑡
𝑏,𝐶1

𝑙𝑛2
+ 1,

∂2u𝑡
𝑏,𝑖

∗

(SP𝑡
𝑖)

∂𝑥𝑡
𝑏,𝑖

2 =
𝑤𝑡

𝑏,𝑖

P𝑡
𝑏,𝐶1

2𝑙𝑛2
> 0.

(14)

Clearly, the optimal utility function is convex. Using
∂u𝑡

𝑏,𝑖(SP
𝑡
𝑖)

∂P𝑡
𝑏,𝐶1

= 0, we can get the price P𝑡
𝑏,𝐶1,𝑖

∗
(CP) as

P𝑡
𝑏,𝐶1,𝑖

∗

=
𝑤𝑡

𝑏,𝑖

ln2
. (15)

The ceiling price P𝑡
𝑏,𝐶1,𝑖

∗
is interpreted as a threshold for SP𝑡

𝑖.

Under different given price sets by the NP, the SP𝑡
𝑖 may have

different best utility cases as follows.

∙ If P𝑡
𝑏,𝐶1 < P𝑡

𝑏,𝐶1,𝑖
∗
, the best utility is obtained with the

best response 𝑥𝑡
𝑏,𝑖

∗
> 0 and accordingly u𝑡𝑏,𝑖

∗
(SP𝑡

𝑖) > 0.

In this case, the SP would like to rent resources.

∙ If P𝑡
𝑏,𝐶1 = P𝑡

𝑏,𝐶1,𝑖
∗
, the best utility is obtained with the

best response 𝑥𝑡
𝑏,𝑖

∗
= 0 and accordingly u𝑡𝑏,𝑖

∗
(SP𝑡

𝑖) = 0.

In this case, the SP does not expect to rent resources.

∙ If P𝑡
𝑏,𝐶1 > P𝑡

𝑏,𝐶1,𝑖
∗
, the best response is 𝑥𝑡

𝑏,𝑖

∗
< 0. This

violates the limit of 𝑥𝑡
𝑏,𝑖

∗
≥ 0. In this case, the SP refuses

to rent resources.

Following a similar analysis to the utility function of 𝐶𝑎𝑠𝑒2,

i.e., eqn. (9), we have

∂u𝑡𝑏,𝑖(SP
𝑡
𝑖)

∂𝑥𝑡
𝑏,𝑖

=
𝑤𝑡

𝑏,𝑖

(2 + 𝑥𝑡
𝑏,𝑖)𝑙𝑛2

− P𝑡
𝑏,𝑠, (16)

∂2u𝑡𝑏,𝑖(SP
𝑡
𝑖)

∂𝑥𝑡
𝑏,𝑖

2 = −
𝑤𝑡

𝑏,𝑖

(2 + 𝑥𝑡
𝑏,𝑖)

2
𝑙𝑛2

< 0. (17)

788788788788788788788788



The utility function in 𝐶𝑎𝑠𝑒2 is also concave. Thus, we can

obtain the best response of
∂u𝑡

𝑏,𝑖(SP
𝑡
𝑖)

∂𝑥𝑡
𝑏,𝑖

= 0 as

𝑥𝑡
𝑏,𝑖

∗

= −(2 +
𝑤𝑡

𝑏,𝑖

P𝑡
𝑏,𝐶2ln2

). (18)

Now substituting eqn. (18) into eqn. (9), we get the optimal

utility function in 𝐶𝑎𝑠𝑒2 in terms of P𝑡
𝑏,𝑠 as

𝑢𝑡
𝑏,𝑖 ∗ (𝑆𝑃

𝑡
𝑖 ) = 𝑤𝑡

𝑏,𝑖 log(−
𝑤𝑡

𝑏,𝑖

𝑃 𝑡
𝑏,𝐶2

ln 2
)− 𝑤𝑡

𝑏,𝑖 −
𝑤𝑡

𝑏,𝑖

ln 2

− 2𝑃 𝑡
𝑏,𝐶2.

(19)

The first order and second order derivatives of u𝑡𝑏,𝑖
∗
(SP𝑡

𝑖) with

respect to the price P𝑡
𝑏,𝐶2 are written as

∂u𝑡𝑏,𝑖
∗
(SP𝑡

𝑖)

∂P𝑡
𝑏,𝐶2

= −
𝑤𝑡

𝑏,𝑖

P𝑡
𝑏,𝐶2𝑙𝑛2

− 2, (20)

∂2u𝑡𝑏,𝑖
∗
(SP𝑡

𝑖)

∂P𝑡
𝑏,𝐶2

2 =
𝑤𝑡

𝑏,𝑖

P𝑡
𝑏,𝐶2

2
𝑙𝑛2

> 0. (21)

From the first order optimality condition
∂u𝑡

𝑏,𝑖
∗

(SP𝑡
𝑖)

∂P𝑡
𝑏,𝐶2

= 0, we

obtain the minimum price (MP) P𝑡
𝑏,𝐶2,𝑖

∗
that the SP is willing

to rent out its resource for

P𝑡
𝑏,𝐶2,𝑖

∗

= −
𝑤𝑡

𝑏,𝑖

2ln2
. (22)

We also have three situations to estimate the preference of the

SP by using the MP, 𝑀𝑃 = ∣P𝑡
𝑏,𝐶2,𝑖

∗
∣.

∙ When P𝑡
𝑏,𝐶2 < P𝑡

𝑏,𝐶2,𝑖
∗
, the best utility is obtained

with the best response 𝑥𝑡
𝑏,𝑖

∗
> 0, and accordingly

u𝑡𝑏,𝑖
∗
(SP𝑡

𝑖) > 0. In this case, the SP prefers to rent out

its resource.

∙ When P𝑡
𝑏,𝐶2 = P𝑡

𝑏,𝐶2,𝑖
∗
, the best utility is obtained with

the best response 𝑥𝑡
𝑏,𝑖

∗
= 0 and accordingly u𝑡𝑏,𝑖

∗
(SP𝑡

𝑖) =
0. In this case, the SP does not expect to rent out its

resource.

∙ When P𝑡
𝑏,𝐶2 > P𝑡

𝑏,𝐶2,𝑖
∗
, the best utility can be obtained

with the best response 𝑥𝑡
𝑏,𝑖

∗
< 0. This violates positivity

requirement of 𝑥𝑡
𝑏,𝑖. In this case, the SP refuses to rent

out its resource.

By comparing eqns. (13) and (19), we can further obtain the

critical point of price (PP). For the same service provider,

the prices in 𝐶𝑎𝑠𝑒1 and 𝐶𝑎𝑠𝑒2 are the same, thus, P𝑡
𝑏,𝐶2 =

−P𝑡
𝑏,𝐶1. We compare the different best utility function for one

service provider 𝑖, and we have

𝑤𝑡
𝑏,𝑖 log(

𝑤𝑡
𝑏,𝑖

P𝑡
𝑏,𝐶1

ln2
)−

𝑤𝑡
𝑏,𝑖

ln 2 + P𝑡
𝑏,𝐶1 = 𝑤𝑡

𝑏,𝑖 log(
𝑤𝑡

𝑏,𝑖

P𝑡
𝑏,𝐶1

ln2
)−

𝑤𝑡
𝑏,𝑖 −

𝑤𝑡
𝑏,𝑖

ln 2 + 2P𝑡
𝑏,𝐶1.

(23)

Therefore,

P𝑡
𝑏,𝐶1

∗∗

= 𝑤𝑡
𝑏,𝑖. (24)

Here, P𝑡
𝑏,𝐶1

∗∗
denotes PP. It is easy to get the result when

𝑀𝑃 < 𝑃𝑃 < 𝐶𝑃 . Therefore, the classification of SP is
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������
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Fig. 2: Classification in each case

based on the price given by the NP (NPP), and follows the

rules shown by the price zone distribution in Fig. 2 [15].

∙ If NPP < PP, the SP prefers to rent extra resource. It is

represented by the blue line in the red square in Fig. 2.

∙ If NPP > PP, the SP prefers to rent out its own resource.

It is represented by the blue line out of red square in Fig.

2.

∙ If NPP = PP, the SP will be self-sufficient. It is repre-

sented by the point between blue line and red square in

Fig. 2.

The analysis process for computing resources is similar, and

thus straightforward.

IV. DISCUSSION ON COALITION RESULT

A. Pareto Optimality

In a coalition game, players prefer joining different coali-

tions to improve their own utility. There are several possible

operations: i) an individual player would like to join a certain

coalition if the utility cloud be improved in this coalition; ii) a

player of a coalition 𝐴 would like to leave 𝐴 but join coalition

𝐵 if 𝐵 provides a better utility; iii) a player would like to leave

a coalition and work alone if leaving brings a larger utility.

We employ a simple but effective mechanism, namely merge-

and-split, to derive the coalition game stable formation. In the

merge-and-split mechanism, Pareto optimality is used as the

criterion of the operations of the players.

Definition 1: Consider two sets of coalitions 𝒢1 = {𝐺1
1,

𝐺1
2, ⋅ ⋅ ⋅ , 𝐺

1
𝑙 } and 𝒢2 = {𝐺2

1, 𝐺
2
2, ⋅ ⋅ ⋅ , 𝐺

2
𝑚}, which are two

different partitions of a same set 𝐺 ⊂ 𝒮 . For a player 𝑆𝑃𝑖,

let 𝑢𝑘(𝑆𝑃𝑖) denote the utility of 𝑆𝑃𝑖 in the coalition 𝒢𝑘 (𝑘 =
1, 2). The coalition 𝒢1 is preferred over 𝒢2 by Pareto order,

denoted by 𝒢1 ⊳ 𝒢2, if and only if

𝑢1(𝑆𝑃𝑖) ≥ 𝑢2(𝑆𝑃𝑖), ∀𝑆𝑃𝑖 ∈ 𝒮 ′,

with at least an inequality for a player 𝑆𝑃𝑘.
(25)

Following the criterion of Pareto order, the players will be

reorganized so that the coalitions are reformed for improving

the utilities. This procedure usually takes many rounds. In
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each round, all the coalitions should be involved so that their

utilities are ensured to increase, or at least not to decrease.

It means that, the reorganization of coalitions is naturally a

global operation. In order to facilitate the procedure, we decou-

ple the global operation by a series of distributed operations

using the following two fundamental rules.

∙ Merge: For any set of coalitions {𝐺1, ⋅ ⋅ ⋅ , 𝐺𝑙}, if

{
∪𝑙

𝑗=1 𝐺𝑗}⊳{𝐺1, ⋅ ⋅ ⋅ , 𝐺𝑙}, then merge {𝐺1, ⋅ ⋅ ⋅ , 𝐺𝑙} to

{
∪𝑙

𝑗=1 𝐺𝑗}, denoted by {𝐺1, ⋅ ⋅ ⋅ , 𝐺𝑙} → {
∪𝑙

𝑗=1 𝐺𝑗}.

∙ Split: For any coalitions 𝑈 𝑙
𝑗=1𝐺𝑗 , if {𝐺1, ⋅ ⋅ ⋅ , 𝐺𝑙} ⊳

{
∪𝑙

𝑗=1 𝐺𝑗}, then split {
∪𝑙

𝑗=1 𝐺𝑗} into {𝐺1, ⋅ ⋅ ⋅ , 𝐺𝑘},

denoted by {
∪𝑙

𝑗=1 𝐺𝑗} → {𝐺1, ⋅ ⋅ ⋅ , 𝐺𝑘}.

By using these rules of merge-and-split, the SPs are allowed

to negotiate and constitute the local coalitions. So the globally

Pareto-optimal collection of coalitions can be consolidated

gradually.

B. Conditions of Coalition Formation

In the coalition game, both the members in 𝐶𝑎𝑠𝑒1 and

in 𝐶𝑎𝑠𝑒2 try to maximize their utility values. Therefore,

they prefer to the condition which makes them achieve the

maximum utility. There are two conditions: working alone or

working in a coalition.

1) Condition 1: Working alone.

After coalition game, some SPs may work alone. If, these

SPs do not find other SPs to improve their utility since the

total number of members in the two sides may be different.

Besides, some SPs cannot improve their utility by working in

any coalition, such as, the self-sufficient SPs.

2) Condition 2: Resource trading in a coalition.

In this condition, there is at least one SP in 𝐶𝑎𝑠𝑒1 SP𝑡
𝐴

and one SP in 𝐶𝑎𝑠𝑒2 SP𝑡
𝐵 in one coalition. We suppose

SP𝑡
𝐴 and SP𝑡

𝐵 are both their final choice in a coalition, thus,

𝐺𝑗 = {SP𝑡
𝐴, SP𝑡

𝐵}. Here also we consider radio resource

discussion, and the process of computing resource is similar.

As the rule of equivalent quantity of trading resource, we use

the DBSP𝐴
and DBSP𝐵

to balance the ratio differences, which

are caused by the different quantity of resource. Let P𝑡
𝑏,𝐶1,𝑛

and P𝑡
𝑏,𝐶2,𝑛 denote the negotiated price for renting resources

of SP𝑡
𝐴 and SP𝑡

𝐵 , respectively. Here, NP will charge a service

fee of 𝜎P𝑡
𝑏,𝐶2,𝑛(0 < 𝜎 < 1), which could be a very small part

of renting price. If 𝜎 = 1, no SP will participate in coalition

formation since the loss outweighs the gain. Therefore, eqn.

(12) and (18) take the form

⎧⎨
⎩

𝑥𝑡
𝑏,A =

𝑤𝑡
𝑏,A

P𝑡
𝑏,𝐶1,𝑛

ln2
− 1,

𝑥𝑡
𝑏,B = −(

𝑤𝑡
𝑏,B

P𝑡
𝑏,𝐶2,𝑛

ln2
+ 2),

DBA𝑥
𝑡
𝑏,A +DBB𝑥

𝑡
𝑏,B = 0,

P𝑡
𝑏,𝐶1,𝑛 = −(1 + 𝜎)P𝑡

𝑏,𝐶2,𝑛.

(26)

After solving these equations, we can obtain the quantity of

trading resources 𝑥𝑡
𝑏,A and 𝑘𝑥𝑡

𝑏,𝐵 , and the two prices, P𝑡
𝑏,𝐶1,𝑛

and P𝑡
𝑏,𝐶2,𝑛. Moreover, the balance ratio can be denoted as 𝑘.

𝑥𝑡
𝑏,A = −𝑘𝑥𝑡

𝑏,𝐵 =
(2𝑘 + 1)𝑤𝑡

𝑏,𝐴

𝑤𝑡
𝑏,𝐴 + 𝑘(1 + 𝜎)𝑤𝑡

𝑏,𝐵

− 1, (27)

P𝑡
𝑏,𝐶1,𝑛 =

𝑤𝑡
𝑏,𝐴 + 𝑘(1 + 𝜎)𝑤𝑡

𝑏,𝐵

(2𝑘 + 1) ln 2
, (28)

P𝑡
𝑏,𝐶2,𝑛 = −

𝑤𝑡
𝑏,𝐴 + 𝑘(1 + 𝜎)𝑤𝑡

𝑏,𝐵

(2𝑘 + 1) ln 2(1 + 𝜎)
, (29)

𝑘 =
DBB

DBA
. (30)

C. Stability of the Coalition Formation

In this section, we mainly discuss the stability and conver-

gence of the proposed strategy of coalition formation. We use

Pareto-optimal 𝔻𝑐-stable partition to demonstrate the stability

of coalition according to [16].

Definition 1: A collection of coalitions 𝑆 = {𝑆1, ..., 𝑆𝑘} is

said to be 𝔻𝑐-stable if it satisfies two conditions:

(a) 𝑖 ∈ {1, ..., 𝑘} and for each partition {𝑃1, ..., 𝑃𝑙} of the

coalition 𝐺𝑖: 𝑢(𝐺𝑖) ≥
𝑙∑

𝑗=1

𝑢(𝑆𝑃𝑗).

(b) 𝑆 ⊆ {1, ..., 𝑘}:
∑
𝑗∈𝑆

𝑢(𝐺𝑖) ≥ 𝑢(∪𝑖∈𝑇𝐺𝑖).

Theorem 1: The final coalition formation under the pro-

posed strategy can be 𝔻𝑐-stable [17].

Proof: We first consider condition (a). In the final coalition

set 𝒢 = {𝐺1
1, 𝐺

1
2, ⋅ ⋅ ⋅ , 𝐺

1
𝑙 }, we assume that the SP𝑖 is

included in the coalition 𝐺𝑘, i.e., SP𝑖 ∈ 𝐺𝑘. However, if the

SP𝑖 can obtain a higher utility by working alone, or joining

other coalitions 𝐺𝑙, condition (a) will be violated. Therefore,

according to split-and-merge rules, SP𝑖 will leave from the

current coalition 𝐺𝑘. Thus, coalition 𝐺𝑘 will not exist. The

coalition formations in 𝒢 are unstable and can not be the final

coalition set. Therefore, condition (a) must be satisfied for any

stable coalition generated under the proposed strategy.

For condition (b), we consider the situation in the same

final coalition set 𝒢 = {𝐺1
1, 𝐺

1
2, ⋅ ⋅ ⋅ , 𝐺

1
𝑙 }. If coalition 𝐺𝑘 can

obtain a higher utility, when it combines with other SPs and

come into a larger coalition 𝐺′

𝑘(𝐺𝑘 ⊆ 𝐺′

𝑘), the 𝐺𝑘 will merge

into 𝐺′

𝑘, such that 𝑢(𝐺𝑘) < 𝑢(𝐺′

𝑘). 𝒢 can not be the final

coalition set for the same reason. Thus, for stable formation

of the final coalition set, condition (b) needs to be satisfied.

In summary, conditions (a) and (b) will both involve into

the final coalition set to ensure the stability of the final result.

Theorem 2: In the Theorem 1, the final coalition formation

is 𝔻𝑐-stable. Therefore, if this partition exists and is stable on

the final coalition set, the Pareto optimal solution will be the

only one stable solution.

Theorem 3: In the matching process, the coalition could

only be formed on the different sides.

Proof: If there exists a coalition on the side of 𝐶𝑎𝑠𝑒1,

the SP𝐴 and SP𝐵 both are included in coalition 𝐺𝑘, and

P𝑡
𝑏,𝐶2 < P𝑡

𝑏,𝐶2,𝐵
∗

< P𝑡
𝑏,𝐶2,𝐴

∗
according to the rules of

classification. Since the coalition will only exist on the mutual

benefit condition, SP𝐴 will be the buyer while SP𝐵 will be the

seller. The cooperation price PA,B will satisfy the condition
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(a) Total number of applications.
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(b) QoS of applications.

Fig. 3: The comparison of total number of applications and

QoS (𝜆 = 1, 𝜇 = 1).

P𝑡
𝑏,𝐶2,𝐵

∗
< PA,B < P𝑡

𝑏,𝐶2,𝐴
∗
. It means that after participating

into the coalition, SP𝐵 is still the seller, and SP𝐴 is the buyer.

Therefore, the coalition can only exist when it contains the

members from both the sides at the same time.

V. NUMERICAL RESULTS

We consider 20 mobile service providers and 10 service

areas. The reserved bandwidth of each service provider at

the base station is a random value which follows an uniform

distribution and ranges from 1 to 10 Mbps. The servers of

each service provider at the data center are random values

and follow an uniform distribution in the range [1,10]. We

consider the set of applications from users, whose bandwidth

and server requirements both follow an uniform distribution

that ranges from 1 to 4. The arrival and departure time of

applications follow Poisson distribution. 1
𝜆

is the arrival rate of

new applications and 𝜇 represents the average value of service

time [9].

1) Impact of coalition: Fig. 3(a) shows the average number

of running applications in every observation time. The solid

lines with squares represent the average number of running

applications without cooperation during the observation time.

The dotted lines with circles are the average number of running

applications with cooperation among SPs. Clearly, the average
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(b) The impact on the average coalition price (take the price of bandwidth for
example).
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(c) The impact on QoS of applications.

Fig. 4: Performance evaluation with respect to service fee of

the system (𝜆 = 1, 𝜇 = 1).

number of running applications with cooperation is larger than

that without cooperation. For instance, at 𝑡 = 14, the average

number with cooperation is almost twice of that without

cooperation. Considering the whole observation duration, the

average value of all running applications without cooperation

(dotted line) is about 13, while that without cooperation (solid

line) is about 9, which is 44% less than that with cooperation.

The figure clearly illustrates that cooperation among SPs can

improve resource utilization. Moreover, Fig. 3(b) shows the
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cooperation also improve all SPs’ QoS during working. As a

result, Fig. 3 illustrates that our proposed scheme improves

the resource utilization and the number of served applications

for SPs. And the proposed scheme also increases the QoS of

applications.

2) Impact of service price: The service fee, that is an-

nounced by the NP and the CP, will have a negative impact

on SPs cooperation. It is because that the service fee will

add extra cost to the SPs. For simplicity, we consider the

service fees of radio and computing resource are of the same

values. As mentioned above, the smaller 𝜎 brings the lower

service fee. Therefore, more and more SPs will participate in

coalition formation to improve utility. In Fig. 4(a), the line

with rhombus indicates the situation that no one is willing

to participate in the coalition formation. Without cooperation

between different SPs, the total number of service applications

is decided only by the remote reserving resources of each SP.

The figure shows that lower service fee during cooperation is

conducive to improve resource cooperation.

To further analyze the impact of service fee on coalition

formation, we compare the average coalition price with respect

to service fee. We use 𝛽 = [0.003, 0.002, 0.001] indicated

by in blue, black and red lines in Fig. 4(b), respectively.

The lines with circles represent the coalition price for renting

extra resources. The lines with squares represent the coalition

price for renting one’s own idle resources. The difference

of coalition price between the two cases will enlarge as the

service fee increases. Besides, the coalition price in 𝐶𝑎𝑠𝑒1
increases, while the coalition price in 𝐶𝑎𝑠𝑒2 decreases. Thus,

the extent of coalition formation will decrease, when SPs need

to pay higher extra price for local resource and the SPs will

earn less.

As shown in Fig. 4(c), the average QoS for each SP is

also affected by service fee of the system. The average QoS

in the case of no coalition, when 𝛽 = 0, is shown by the

line with rhombus which is a constant value. In the case of

coalition game, the average QoS will decrease as the service

fee increases or as the willingness to cooperate is reduced. In

summary, on one hand, the service fee will negatively affect

coalition formation. On the other hand, if more SPs are willing

to take part in the coalition game, SPs can receive high QoS.

VI. CONCLUSION

In this paper, we introduced a coalition game based model

for resource sharing between different service providers in the

mobile cloud computing environment. The service providers

conform with a virtual resource network which provides it

reserved radio and computing resources in order to support

the mobile applications. Among service providers, they can

cooperate with each other by renting their resource for a short

time. The coalition game based scheme promotes scalable

cooperation, from which both the SPs and the users can benefit

a lot. Further, we have introduced and applied the two-sided

matching theory to speed up the coalition formation process.

Simulation results indicate that our scheme enhances resource

utilization of the SPs and also improves the QoS of the users.
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