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Abstract—Coupled matrix and tensor factorizations (CMTF)
are frequently used to jointly analyze data from multiple sources,
a task also called data fusion. However, different characteristics
of datasets stemming from multiple sources pose many challenges
in data fusion and require to employ various regularizations, con-
straints, loss functions and different types of coupling structures
between datasets. In this paper, we propose a flexible algorithmic
framework for coupled matrix and tensor factorizations which
utilizes Alternating Optimization (AO) and the Alternating Direc-
tion Method of Multipliers (ADMM). The framework facilitates
the use of a variety of constraints, loss functions and couplings
with linear transformations in a seamless way. Numerical ex-
periments on simulated and real datasets demonstrate that the
proposed approach is accurate, and computationally efficient
with comparable or better performance than available CMTF
methods for Frobenius norm loss, while being more flexible. Using
Kullback-Leibler divergence on count data, we demonstrate that
the algorithm yields accurate results also for other loss functions.

Index Terms—tensor factorizations, coupled tensor factoriza-
tions, linear couplings, AO-ADMM.

I. INTRODUCTION

N many areas of science, various sensing technologies are

used to obtain information about a single system of interest.
Often, none of the datasets alone contains a complete view
of the system, but the data measured from different modali-
ties can complement each other. For instance, brain activity
patterns can be captured using both electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI)
signals, which have complementary temporal and spatial
resolutions. Similarly, in metabolomics, multiple analytical
techniques such as LC-MS (Liquid Chromatography - Mass
Spectrometry) and NMR (Nuclear Magnetic Resonance) spec-
troscopy are used to measure chemical compounds in biologi-
cal samples, providing a more complete picture of underlying
biological processes. Joint analysis of datasets from multiple
sources, also referred to as data fusion (or multi-modal data
mining), exploits these complementary measurements, and
allows for better interpretability and, potentially, more accurate
recovery of patterns characterizing the underlying phenomena.
Nevertheless, data fusion poses many challenges, and there is
an emerging need for data fusion methods that can take into
account different characteristics of data from multiple sources
in many disciplines [1[]-[4].
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Data from multiple sources can often be represented in the
form of matrices and higher-order tensors. Coupled matrix
and tensor factorizations (CMTF) are an effective approach
for joint analysis of such datasets in many domains including
social network analysis [5]-[8]], neuroscience [9]-[13]], and
chemometrics [2f], [14]. In such coupled factorizations, each
dataset is modelled by a low-rank approximation (Fig. [T).
One of the most popular tensor factorization methods, Canon-
ical Polyadic Decomposition (CPD) (also known as CAN-
DECOMP/PARAFAC (CP)) [15]-[17] models tensor T of
order D as the sum of R (usually a small number) rank-one
components,

R
T =~ ZCl(:,r) 0Ca(:,r)0...0Cp(:,r) =: [Ca]ir, (1)
r=1

where Cg(:,r) is the rth column of factor matrix in the dth
mode, and o denotes the vector outer product. Those com-
ponents may reveal patterns of interest in the data. Coupled
factorization problems are often formulated by extracting the
same latent factors from the coupled mode [6]—[9], [18], as
in the following formulation, where a third-order tensor 77 is
coupled with a matrix T in the first mode:

min | T1 = [C1,1,Cr2,Ci8] |5 + | T2 — C21C3 ||
{Ci’d}i:l,2
d<D,
s.t. Ci1=0Ca2,1

@)
where C; g denotes the factor matrix in the dth mode for
dataset 7, and D; is the order of dataset 7.

However, factors corresponding to the coupled mode are
not necessarily equal in datasets from different modalities.
Therefore, in this paper, we focus on more general linear
coupling relationships. In particular, we cover the cases, where
not all factors are shared between tensors [2], [[L1]], [19]—[23]].
For the time being, we assume that the number of shared
components is known or estimated beforehand. Moreover,
linear transformations are also used to couple factors that
are sampled from a continuous phenomenon with different
sampling rates [24] or aggregation intervals [25]. Using such
linear couplings, different resolutions of EEG and fMRI sig-
nals have been previously incorporated while jointly analyzing
data from these two modalities [10], [[11]]. Linear couplings for
spatial and spectral transformations also appear in the context
of hyperspectral super-resolution [26].

In order to address the challenges in data fusion applica-
tions, in addition to more general couplings, the formulation
in needs to be further extended to incorporate various
constraints and loss functions. In many applications, it is
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Fig. 1. Illustration of data tensors and their decompositions.

necessary to impose certain constraints or regularizations on
the latent factors to obtain physically meaningful and iden-
tifiable patterns. Popular constraints include non-negativity
[7], 1101, [19], [27], sparsity [20]], [28] and smoothness [29].
Furthermore, while Frobenius norm-based loss functions have
so far been common in coupled factorizations, this loss func-
tion implicitly assumes that entries in the data tensor 7T ; are
normally distributed around their mean parameterized by the
CPD model. However, for nonnegative, discrete or binary data,
this assumption is usually not valid and other loss functions
yield more accurate results [S], [7]], [30[], [31].

Existing algorithmic approaches for coupled matrix and
tensor factorizations can incorporate constraints, linear cou-
plings and different loss functions but none of them has
shown to be flexible enough to incorporate all. For instance,
Alternating least squares (ALS)-based approaches, solving for
one factor matrix at a time by fixing the others, are one
of the most commonly used techniques for solving (2) [9],
[32], with linear couplings as described in [24], [26]], [33[] or
with various constraints [20]], [34]. However, they are limited
to Frobenius norm-based loss functions. Other alternating
methods resorting to block coordinate descent methods have
also been used to fit CMTF models with linear couplings [25]],
but without any constraints and using a Frobenius norm-based
loss function. The CMTF Toolbox [18|] which uses all-at-once
gradient-based optimization with quasi-Newton methods can
only handle box-constraints, and sparsity [28]. Some other
constraints and regularizations are possible but require the
algorithm to be redesigned. The same holds in principle for
Gauss-Newton (GN) type algorithms used in Tensorlab [J3]],
[35]], where nevertheless a variety of constraints are available
via a transformation of variables, and also linear couplings
can be incorporated as in [10], [[11]. Within the all-at-once
optimization framework, in order to have a flexible modelling
framework that can incorporate various constraints, a general
purpose optimization solver has been used to solve constrained
CMTF problems [27]]; however, that has not considered linear
couplings and different loss functions. Gradient-based all-at-
once methods can be extended to other differentiable loss
functions as proposed in [30]] for a single CP decomposition.
However, such extensions to coupled factorizations are not
yet available. Another framework for handling general loss
functions, derived from the exponential family of distributions,
in a coupled setting has been proposed [36]]. There, factor
matrices are updated alternatingly using a Gauss-Newton
method, which results in efficient multiplicative and additive
update rules in special cases for non-negative and real data,
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respectively. This algorithm, however, is limited in terms of
constraints and efficient only for special instances, e.g., for
nonnegativity constraints [7[]. More recently, Huang et al. [|37]]
proposed a flexible and efficient framework for constrained
matrix and tensor factorizations that seamlessly incorporates a
wide variety of constraints, regularizations and loss functions.
The framework uses Alternating Optimization (AO), where
each subproblem is solved inexactly using the Alternating
Direction Method of Multipliers (ADMM) [38]]. However,
coupled factorizations are not explicitly considered.

In order to address these limitations, in this paper we
introduce a general algorithmic framework to solve a large
class of constrained linearly coupled matrix-tensor factoriza-
tion problems, building onto the AO-ADMM framework [37].
Using numerical experiments on simulated and real data, we
demonstrate that the proposed framework is:

o flexible: A large variety of constraints, regularizations,

coupling structures and loss functions can be handled in

a plug-and-play fashion.

o accurate: In the case of Frobenius loss, the accuracy
achieved by the proposed framework is comparable to
state-of-the-art methods. For other loss functions, our
proposed framework achieves more accurate results than
the extension of the approach introduced in [37] to
coupled factorizations.

« efficient: We provide efficient closed form updates for a
number of commonly used linear coupling relations in the
case of Frobenius loss. We show in extensive numerical
experiments on simulated data that our approach achieves
competitive performance compared to existing methods
for problems with exact coupling, and comparable or even
superior performance on problems with linear couplings.

In our preliminary results, we have previously demonstrated
the promise of AO-ADMM approach for Frobenius norm loss
and exact linear couplings [39]. Here, we provide a more
detailed derivation and discussion of the algorithm, and the
extension to other loss functions. We also include extensive
experiments on synthetic data with different levels of difficulty
and using different loss functions, as well as a demonstration
on real datasets from two different domains.

After establishing some background and notations, in Sec-
tion |lI| we state the general coupled factorization problems
we aim to solve. We briefly explain the basics of ADMM
and alternating optimization in Section before we derive
the AO-ADMM framework for regularized linearly coupled
matrix and tensor factorizations in Section [Vl Details of the
algorithm are given in Section [V} Numerical experiments on
simulated and real data are presented in Section [VI Finally,
limitations of the proposed framework and possible extensions
are discussed in Section The supplementary material
contains a discussion on the coupling model, experimental
details and an extension to flexible couplings.

a) Background and Notation: Here, we define some
important tensor notations and concepts, for a full review
we refer to [40]. We denote tensors by boldface uppercase
calligraphic letters 7, matrices by boldface uppercase letters
M, vectors by boldface lowercase letters v and scalars by
lowercase letters a. A tensor is a multidimensional array, each
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dimension is called a mode, and the number of modes is called
the order. We denote the rank-R; CP decomposition of a tensor
T; of order D; and size ny, X ng, X ... x np, as [Cya]L%,,
as defined in (I), where Cia € R4 % Ri are called the
factor matrices. We use the same notation for the matrix
case D; = 2, where [C;1,C; 2] = CMCZQ corresponds to
a generic matrix decomposition. Furthermore, % denotes the
(element-wise) Hadamard product between two equally sized
matrices, ® denotes the Kronecker product of two matrices
A € RM*N B e REx/,

A(1,1)B A(1,N)B

c RJWKXNJ

A(M,N)B

A®B= :
A(M,1)B
and ® denotes the Khatri-Rao product

AOB=[A(;1)®B(;1) A(;,N)®B(;,N)]

between two matrices with the same number of columns
A € RMXN B ¢ REXN_ Operator vec(C) refers to
a column-wise vectorization of matrix C, and T[d] denotes
the mode-d unfolding of tensor 7 into a matrix as defined
in [40]. The mode-d unfolding of the CPD model tensor
X, = [[Ci,lv Ci’g, . Ci,Diﬂ has the form Xz[d] = Ci,dM;{d
[40], where

Mi,d = Ci,Di ®...® Cz’,d+1 ® Ciydfl ®...® Cz’,1~ 3)

Finally, by Ir we denote the R X R unit matrix.

II. REGULARIZED CMTF WITH LINEAR COUPLINGS

We start by introducing the formalism needed for the
general regularized linearly coupled factorization problems we
aim to solve. We consider N tensors {7;},_; . of not
necessarily equal order D; > 2 and size ng, X ’I'Lg; X o XN D;-
Thus, matrices are also included. We suppose that each tensor
T ; follows approximately a CPD with rank R;,

T~ [Ciall,,

where C; 4 € R™: %R denotes the factor matrix of mode d
in tensor T ;.

Moreover, we suppose that some of the factors C; 4 are
regularized using proper lower semi-continuous convex func-
tions g; 4(C; 4). This covers the important case of constrained
factors: suppose factor C; 4 should belong to a convex set C; 4,
then we may set g; 4 = (c, ,, Where i, , is the characteristic
function which is null on C; 4 and infinity elsewhere. Also,
gi,a can, for instance, be a sparsity inducing norm such as
the /1 norm. As we discuss later on, we only require that the
proximity operator of g; ¢ is computable.

Finally, we suppose that some factors are shared across
tensors. We consider the case of exact linearly coupled factors,
where two or more tensors 7 ; are coupled in any mode d via
some underlying matrix Ay € R"1.4X™2.4_ a5 follows:

H; 4vec(C;q) = HYvec(Ay), i=1,...,N, (4)

for given transformation matrices H; 4 € Rhi.axRina; gapd
H-Ad € RNM.axmuamz2a This type of coupling includes

7
many useful cases such as the coupling of modes that have
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different sampling rates or the partial coupling of tensors
that only share a subset of components. Illustrations of such
coupling instances are given in Section The proposed
coupling formulation, which introduces consensus variables
Ay, is a generalization of pairwise couplings (i.e. couplings
such as H; gvec(C;4) = H;j vec(C;q)) and allows for
paralellization, see the Supplementary Material for more de-
tails. While we focus on exact, i.e., hard, couplings in this
paper, we propose an extension of our algorithmic framework
for approximate, flexible/soft, couplings [11f], [[13], [24], in
the Supplementary Material. For ease of notation, for the
remainder of the paper we assume that couplings between
different tensors are only in the same mode and there does
not exist more than one coupling in each mode.

Using general (convex) loss functions £;(-,-), we aim at
solving optimization problems of the form

N D,
Z |:wi£i (Ti7 [[Ci,dﬂdD:il) + Zgi,d (Cia)

argmin
{ci’d‘Ad}ngi,iSN i=1 d=1
s.t. H; qvec(C;,q) = Hf‘d vec(Ag)

(5)
where w; are weighting parameters.
Some reductions. While problem (5) may seem intricate, the
following particular settings help reducing its complexity.

o Loss functions: Usually, loss functions are chosen to be
the squared Frobenius norm. However, in some situations
other loss functions may be preferable, see Section [[V-B]

o Regularization-free: Note that setting g; 4 to zero gives
the regularization-free, i.e., unconstrained, case.

o Coupling-free: Similarly, setting H; 4, H;4 and
Hf‘d, Hﬁd to contain only zeros, means there is no
coupling between tensors ¢ and j in mode d. Note
that for any two coupled matrices C; 4 and C; 4 the
constraints, if any, should be compatible with each other
and with the transformations.

o Coupled Matrix and Tensor Factorization (CMTF):
By setting g; ¢ = 0 for all (¢,d) and H; ; = Hfl =I,,.r
for i = 1, 2, the coupled factorization in @]) where shared
factors in mode 1 are exactly identical, is obtained [18].

Problem () is non-convex, and typically difficult to solve
for all 7 and d simultaneously, in particular, when various
constraints or regularizations are imposed on the factors.
However, for many choices of £ and g, the cost function is
convex Ww.r.t. {Cz‘,d}?}:l with fixed d. Therefore, we propose
an Alternating Optimization (AO) algorithm, where each sub-
problem is solved inexactly using ADMM.

III. AO-ADMM PRELIMINARIES
A. ADMM

Alternating Direction Method of Multipliers (ADMM) is a
primal-dual algorithm that aims at solving convex constrained
optimization problems of the form

argmin  f(x) + g(z),
(©)
s.t. Ax+Bz=c
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Algorithm 1 Skeleton of scaled-form ADMM [38]]
while convergence criterion is not met do
xF+D) = argmin f(x) + £Ax+Bz® —c+ p® ”;

z+ D) = argmin 9(z) + g | Ax*+Y) 4 Bz — ¢ 4+ pu® ||§
z
pFtD = ) AxFHD 4 Bz _ ¢
k=k+1
end while

where f and g are (extended-real-valued) convex functions and
f is smooth [38]. ADMM makes use of Dual Ascent on the
augmented Lagrangian to find a solution to (). The augmented
Lagrangian is a cost function L obtained by transforming the
linear constraints Ax + Bz = c into a penalty term involving
a dual variable p, here in scaled form [38]]:

P
L(x,2, 1) = f(x) +9(2) + 5 || Ax + Bz — ¢ + 5

ADMM is based on the duality theory for convex optimization:
the augmented Lagrangian should be minimized for constant
p, but the dual function G(p) = miny , L(x,z, 1) should
be maximized w.r.t. p. Therefore, ADMM simply alternates
between the minimization of L along variables x,z and
a gradient ascent step to maximize G(w) as described in
Algorithm

Following [38]], based on primal and dual feasibility condi-
tions, a reasonable termination criterion is that primal (r(k))
and dual residuals (s(k)) must be small, i.e.,

Ir® [, = [| Ax®) + Bz® — ¢, < e,
1891, = [ pATB (a4 —a®) |, < e,

where € > 0 and e%¥ > 0 are feasibility tolerances, which
can be set as follows:

™ = /length(c)e™ + ¢ max {|| Ax™ |1, || B2™ ||, | c|l,},
6dl.lal _ /length(x)ﬁabs + €relp || ATIJ/(k) ||2 7

with € > 0 and € > 0 denoting the absolute and relative
tolerance, respectively.

ADMM has become popular in recent years because of
mainly two features. First, given mild hypotheses on the con-
vex functions f and ¢ [38], it is guaranteed to converge to the
optimal solution of (6). Second, in many particular instances,
ADMM can be implemented using parallel computing, which
leverages modern computer architectures. Moreover, ADMM
is built upon the theoretical development of proximal opera-
tors. For any A > 0, a proximal operator of a function g is the
following function [41], [42]

)

proxAg(x) = argmin g(u) + N |x —u ||§ , (8)
u
which is single-valued for convex g and well-defined for
proper lower semi-continuous g. For many functions g such as
characteristic functions of convex sets, a closed-form expres-
sion is available, see Table[[land lists here [42]], [43]]. One may
notice that ADMM updates for x and z are proximal operators
if respectively A or B are orthogonal matrices, although since
f is differentiable the x(**+1) update can be carried out by

smooth convex descent algorithms.
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B. AO-ADMM: ADMM within block-coordinate descent.

Now, suppose the following optimization problem is given:

argmin f(X,y) + g« (%) + g,(y) )
X,y

where f is non-convex, but f, + g, : y — f(x,y) + g(y) is
convex as well as f, + g,. A simple yet powerful idea is to
partially solve () w.r.t. x for fixed y, then for y with fixed x,
and to iterate this process until convergence. Namely, the cost
function is (approximatively) minimized over blocks x and
y alternatively, an optimization method commonly known as
block-coordinate descent. To solve each convex constrained
subproblem, it is possible to use ADMM described above in a
straightforward manner. The resulting optimization algorithm,
that solves alternatively partial problems using ADMM, has
been named as AO-ADMM [37]. The convergence of AO-
ADMM, to the best of our knowledge, is not proven, see
also [37] for an overview of convergence results. It is only
known, that if the minimum of each subproblem is uniquely
attained and the cost is non-increasing on the update path, ev-
ery limit point of the algorithm is guaranteed to be a stationary
point [44] (3rd ed., proposition 3.7.1 pp324). To ensure there
is a unique solution to the subproblems, a majorized version
can be solved which is strongly convex, the so called block
succesive upper-bound minimization (BSUM) [45]. This can,
for example, be done by adding a proximal regularization term,
with ag;k > 0, such that the update for x becomes [37]

ok

S
2

x(

= argmin f(x,y") + g,(z) +

C. Related work: ADMM for constrained tensor factorizations

Besides the already mentioned AO-ADMM framework [37],
many examples of ADMM-based algorithms for constrained
matrix or tensor factorizations can be found in the literature.
For instance, the AO-ADMM framework [37] has been ex-
tended to deal with robust tensor factorization, where some
slabs are grossly corrupted [46]. A parallelization strategy
and high performance implementation of the AO-ADMM
framework [37] has been presented [[47]]. Furthermore, ADMM
has been used for non-negative matrix factorizations with the
beta-divergence [48], [49]], and for fitting CP models with
various constraints [50]], [S1]. Recently, Afshar et al. have
also used ADMM to fit a constrained PARAFAC2 model
[52]. Direct ADMM has also been applied to coupled matrix
factorizations with ¢; loss in the Robust JIVE algorithm [53]].

IV. AO-ADMM FOR REGULARIZED CMTF WITH LINEAR
COUPLINGS

Using the algorithms described in the previous section, we
can now derive a flexible algorithmic framework to solve the
general optimization problem for regularized linearly coupled
matrix and tensor factorizations @, which is repeated here for
convenience:

N D;
argmin Z |:wi£i (T,’, [[Ci,dﬂfzil) + Z 9i,d (Cia)
{Ciada}t,p on =1 d=1
s.t. H; 4 vec(Ciq) = HYyvec(Ay)
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This problem is non-convex with respect to all argu-
ments. However, the problem w.r.t. the block of parameters
{{Ci,d};\; , A4} with fixed mode d, e.g., for mode 1,

N

argmin Z [wzﬁi (Ti: [[Ci,d]]dDél) + gi1 (Ci,l)]
{Cz‘,r}iSN,Al i=1
S.t. Hi,l VGC(CZ‘J) = Hfl VeC(Al)

is convex for convex functions £; and g; 1. For each factor
matrix C;; we define a “split” matrix variable Z; 1, similar
to z in (6), which separates the regularization from the
factorization, but introduces the additional equality constraint
Ci,1 =1Z,;;. Variable A; can also be seen as a split variable
since it decouples the coupled factor matrices. This leads to a
convex optimization problem similar to (6),

5 [

argmin L; (7'1'7 [[Ci,d]]g):il) + g1 (Zi1)
{ci,lvzi‘l}iSNaAl i=1
S.t. Hi’l vec(Ciyl) = Hﬁl vec(Al)

Cii=2Z;1

(10)
which can be solved with ADMM. We introduce two sets
of dual variables, {[J%l(z)}ig ~ (matrix-valued) for the regu-
larization constraint and {y; 4 }i<n (vector-valued) for the
coupling constraint. The augmented Lagrangian can then be
written explicitly as follows, with § denoting vec(A):

S

i=1

L (Tm [[Ci,d]]fil)

2

F
2
|
Analogously to Algorithm [I] alternating minimization of
this augmented Lagrangian with respect to {C;;}i<n,
{Z;1}i<ny and A; and gradient ascent for the dual variables
{Ki1 i<y and {Ni,1(5)}i§N results in the ADMM Algo-
rithm

Note that both for loops can be computed using parallel pro-
gramming. For unconstrained factor matrices C; ;, all terms
involving Z; ; become unnecessary and are omitted. Similarly,
uncoupled, but constrained, factor matrices C; ; are updated
in an independent ADMM loop, where all terms involving &4
are omitted. Finally, for uncoupled and unconstrained factor
matrices C; 1, ADMM iterations are not necessary, since the
exact solution can be obtained by a least-squares update. Note
that Algorithm [2] is presented for mode 1 only, for ease of
notation, but can easily be adapted to any other mode. Using
alternating optimization (AO) as explained in Section
Algorithm [2] is then repeatedly looped over all modes d to
estimate all the variables C; 4. This alternating optimization
constitutes the frame of our algorithm and is illustrated in
Algorithm [3] Note that factors of different modes are updated
sequentially, but one mode for all tensors at the same time
as shown in Algorithm |2} This results in independent ADMM
runs for uncoupled factors and one AO-ADMM run for all
coupled factors of that mode.

L(Ci,h Zi,17 617/"'i,1(z)7 /"‘z’,l((;))

+9i1(Zin) + g H Cii—2Zix+ Hi,

+ g H H; VeC(Ci,l) -

A
H’Llél + l"/i,l((;)
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Algorithm 2 ADMM for subproblem w.r.t. mode 1 of regu-
larized linearly coupled CPD

1: while convergence criterion is not met do

22 fori=1,....N do
Cg,kl-'—l) = argmin wlﬁl (Tu [[)(7 Ci’z, ceey CI,DLH)
X
. 14 (k) ) ||?
3 +§HX7Z1,1 +ll‘i,l(z) ‘F
2
+ || o vee) — O 4 i) \!2
end for
5<k+1) = argmrn Z HH 1vec(C(k+1)) HY

6: fori=1,. N do

ZE”CIH) = argmin g;1(Z) + p H C(kﬂ) Z+p, 10:)
7: Z

= proxa, (C(-’““) +Ni,IEI:)>)
k k
8: 1, 1Ek)+1) =, 121:)) + C( +1) ZE’1+1)
k k

9: I"'z 1Ek)+1) = Iy 1(5) + Hz 1 VeC(C§,1+1)) - Hﬁlag )
10: end for
11: k=k+1

12: end while

Algorithm 3 AO-ADMM algorithm for regularized coupled
CPD

initialize

{Z; 4}a<D,,i<N,

{Ad}dgmax(Di)7

{/Li,d(z)}dSDi,igN

{Ci.a}a<p;.i<N,
{130 Ya<pii<n,

while convergence criterion is not met do
for d =1,...,max; (D;) do
update {Cz atisns Adr {Ziatisn, {Miag i<y
{Mia (= )}1< ~, using few iterations of Algorrthmi?]
end for
end while
return factor matrices {C; 4}a<p, i<N

The main advantage of ADMM is that it splits the prob-
lem (I0) into easier individual problems for C; 1, Z; ; and 41,
respectively. For the commonly used squared Frobenius norm
loss, the update of factor matrices C;; (line 3 of Algorithm
[2) results in the solution of a linear least-squares problem,
which can be solved efficiently, provided H; ; and HA have
a specific structure. In this case, also the d; update (hne 5 of
Algorithm [2)) can be computed efficiently. This is discussed in
detail in Section [[V-Al In case of other loss functions than the
squared Frobenius norm, we resolve to numerical optimization
to update C; 1, as discussed in Section Furthermore,
handling the regularization reduces to the computation of

the proximal operator prox1 (C(k+1) + “18) to update

9i,1
Zgﬁﬂ) (line 7 of Algorithm . For many commonly used
regularization functions g, the corresponding proximal opera-
tor can easily be computed, see Table |lI} The implementation
of the above algorithm can be found in [54].

A. Different types of linear coupling

In the case of squared Frobenius norm loss, the updates for
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factor matrices C; 1,

T 112
k) X ’ F
p (k) (k) ‘2
+ 2| x - 2R + n, .
p . 1A s(k)
+ 5 H H; 1 vee(X) — Hi 67 Hiigs) HQ

where M, ; is defined as in (3)), are given by a large linear
least-squares problem, which can hardly be computed effi-
ciently. However, for the following five special forms of linear
couplings H; ; vec(C, 1) = Hfl vec(A), efficient updates
are available.

1) Case 1: Hard coupling (no transformation): One way
of coupling tensors ¢ and j is simply requiring equality of
the factor matrices C;; = C; ;. This case has been used
in formulations of coupled matrix-tensor factorizations and
coupled tensor factorizations [[18], [32], [36], [55], [56] as well
as their applications in data mining [7]], [9], [57]]. Obviously,
coupled factor matrices have to be of the same size and obey
the same constraints. The coupling constraint can then simply
be written in matrix form as C; ; = A;. The update of C; ; is
obtained by solving the following linear system, where M)
denotes the matricized version of Hi(s)»

T
cl [l M + £ (1 +IR)} =
k) P k k k k
[wiT’i[lle(',l) + 5 <Z1<',1) ( ) + A( ) M, 122))]

The update of A is given by the average

N
w1y _ 1 (k+1) k)
A N Z; (Cm + “‘i,l(A)) .

2) Case 2: Transformations in mode dimension: Often,
measurements obtained from different instruments will cor-
respond to different temporal or spatial sampling grids or
aggregation intervals. For instance, assume tensors ¢ and j
have different dimensions 71, ni; in mode 1, due to different
sampling rates, but sample the same underlying function. Al-
though direct coupling would not make any sense, it may still
be possible to approximate the common underlying function
via interpolations. Those interpolations can then be compared
on a common sampling grid of size na, [33]], where the con-
sensus variable A; € R™21 %% represents the function on the
common grid. There are two possibilities for such couplings.
Iustrations of these are shown in Fig. 2] We discuss rank and
size restrictions on the particular transformation matrices in
the Supplementary Material.

a) Case 2a: The factor matrices can be coupled via
known transformation matrices I;Im € R"1%X™Mi pa, <
min; nq,, such that

an

H;,Ci1 = A

This results from setting HY, = I,,, .p and H; ; = IRoH;,
in (@). The update for C; is then given by the solution of
the following Sylvester equation

T
2 (ta+ AT 1) cltt ey MB M =
k k k k k
wiTi[l]Mz(',l) + By {ZE,) ®; 18 o (Ag ) — 18))}
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Examples of this type of coupling can be found in [10],
where a model of neurovascular coupling and downsampling
is exploited to deal with the different temporal resolutions of
EEG and fMRI. In [11] also the spatial mode of EEG and
fMRI is matched using the lead field matrix. In [13], the
transformation matrices correspond to first or second order
(numerical) derivative matrices. The update of A; is again
given by an average,

N
Al = % Z (I:Iz‘,lC,EﬁH) + H¢,1EZ))) :
i=1
Note that in [[10]] the matrix I:IM is actually a parameterized
model of a hemodynamic response function and the parameters
are fitted in the optimization process. We leave learning PNIM
as future work.

b) Case 2b: Transformations in Case 2a do not allow
the common sampling grid to have more points ., than the
smallest dimension n1, of all coupled factor matrices. This
restriction can be avoided by transformations of the form

Ci1= ﬂiA1A1>

where H 1 18 of size ny, X na,. This is obtained by setting
H;,; = In1 .r and Hl L = Ir ® Hl 1~ The updates of the
factor matrices result in solving the followmg linear systems

T
C«E,k1+1) [ Mikl) ME (IR+IR)] -

k)
1

k Kk K k
(Zz(',l) 22 15 ; +Hz 1A§ ) — N¢,1EA)))] .

and the update of A; is given by

N “1rnN
k41 AT e A AT k+1 k
AT = [Z (Fefy Hl)} [ZHl (c! >+ui,1§;))]-

=1

[wiTimMEfc)

An example of such a formulation can be found in the
context of tensor disaggregation [25]], where the transformation
corresponds to an aggregation matrix. It is also used in a tensor
fusion model for hyperspectral super-resolution, where the first
transformation corresponds to blurring and downsampling to
model the spatial degragation in the hyperspectral image and
the second transformation corresponds to band-selection and
averaging for spectral degragation in the multispectral image
[26]].

3) Case 3: Transformations in component dimension:
Transformations in the component dimension can be used in
cases where coupled tensors do not have the same rank and/or
share only a part of their components. We again differentiate
between two subtypes.

a) Case 3a: Setting Hfl =
I:Igjl ® I, results in linear couplings of the form

Inl-RA and Hi71 =

Ci.Hi1=Ay, (12)

with known transformation matrices H; ; € RF:*Ra_ This
is equivalent to matching linear combinations of the factor
vectors of different components via the consensus variable
A, € R"1*Ba Tt allows tensors with the same size ny, =
ni; = ny in mode 1, but different number of components
R; # R;, to be coupled. In particular, the special case of
rectangular “identity” matrices H; 1 € RE:xFa where the
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Fig. 2. Illustration of possible couplings in Case 2 where tensors 1 and 2
have different dimensions in mode 1 and the factor matrix C1,1 contains only
every second row of matrix Cg 1. Left: Case 2a. Right: Case 2b.

upper block consists of the Ra X Ra unit matrix and the
lower block contains only zeros has a meaningful application.
In that case, the consensus variable A contains the R shared
vectors of the possible larger factor matrices {C;1}, -
The number of those shared components has to be known
beforehand. An illustration of this can be seen in Fig. 3] on
the left side. The update of C; ; is then given by

T S
Cg,klﬂ) [wngﬁ) M'E,kl) + g (IRi + HileTl)] =

k k k A
[wiTi[l]Mz(,l) + g (ZE,B - H’i,lgg + (Ag ) I“i,1EkA))) H1T1)] .

The update of the consensus variable A; is again given by an
average,

N
. X
K+l ko A
= 13 (s ).
=1

Such coupled tensor factorizations with known number of
shared and unshared factors have been previously studied
and also used to jointly analyze EEG and fMRI signals [11].

b) Case 3b: On the other hand, in couplings of the form

TA
Ci,l = AlHi717

where H; 1 = I,,.z, and HY, = IA{“T ® I,,,, the consensus
variable A; € R™*Ea can be thought of as a dictionary from
which factor matrices are built via known linear combinations
of its elements. Especially, when some components are only
shared between some but not all coupled tensors, A; may
contain all columns of all coupled factor matrices {C; 1},
no matter if they belong to shared or unshared components.
This information can be encoded in “identity” matrices I:IiA,1 €
REaxRi which contain exactly one 1 per column and at most
one 1 per row. An illustration of this can be seen in Fig. 3] on
the right side. The update of the factor matrices is given by

T
Ci,le) [wngﬁ) Mg,kl) + g (Ir, + IR,-)} =
[T iM®E + 2 (28 =, &)+ AP -0, 8]

i,l(z)

The update of A; results in a linear system of the form

k+1
AR =

i=1 i=1

N N —1
~ T ~ A~ T
S (O 4+, ) 2 ] [z (A8 )] |
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CiaHii = A, Cii = AHP,
HI.\
C]_] CL]
o— = . =
H,, A 4
Cay _J Cor _J
Fig. 3. Illustration of possible coupling where two components are shared

between tensor 1 and 2, tensor 1 has two additional components, tensor 2 has
one additional component. Left: Case 3a. Right: Case 3b.

An example of this type of coupling has been used in audio
source separation , where a binary transformation matrix
is used to make sure that only a predefined number of columns
of a spectral template are used in one of the decompositions.

Additionally, for the combination of coupling Cases 2a with
3b and 2b with 3a, efficient updates with small linear systems
or Sylvester equations, respectively, can be derived in a similar
way.

B. Different loss functions

Various data mining applications may require cost functions
other than the Frobenius norm, which relies on the underlying
assumption that the data follows a Gaussian distribution.
Social network analysis often relies on count data, which
does not follow the Gaussian assumption; therefore, other loss
functions such as the Kullback-Leibler (KL) divergence have
shown to be more effective for this kind of data [7]]. Similarly,
if T contains music pieces, an Itakuro-Saito (IS) divergence-
based cost function has shown to reveal more interpretable
results [48]. From a statistical perspective, the cost function
is a by-product of the distribution of the entries of 7~; around
their mean parameterized by the CPD model, recently studied
in detail in [30]. Therefore, it is possible to imagine a situation
where various 7T ; have various data fitting functions. For a
general loss function £;(-,-), the minimization problem in
line 3 of Algorithm [2] may not have a closed form solution.
Therefore, we resolve to numerical optimization. We use the
limited-memory BFGS with bound constraints (L-BFGS-B)
in the implementation [59]. Using L-BFGS-B has the
advantage that bound constraints, like non-negativity which
is necessary for several loss functions, can be ensured in
every iteration of the algorithm. The disadvantage of using a
gradient based optimization method is that our framework will
be limited to loss functions £;(-, -) which are differentiable in
the second argument. Details about the gradient computation
can be found in the Supplementary Material. Nevertheless,
many loss functions are differentiable and can be handled by
this approach, some important examples are given in Table []
together with references to some of their applications in matrix

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

and tensor factorizations. There, ¢ denotes the element-wise
loss function, such that
=Y Ut 7)),

L(T, X) 13)
jeg

where j is a multiindex j = (j1,42,...,4p) and J the
set of all possible indices. Note that some loss functions
introduce non-negativity constraint on the tensor entries in

[Ci1,Ciz2,....,C;ip,], which we enforce via non-
negativity constraints on all factor matrices. As described
before, these bound constraints can be handled by L-BFGS-
B, without the need to introduce additional variables Z; ;. -
and «a-divergences are generalized families of divergences and
include the squared Frobenius norm, KL and IS divergence as
special cases. The Huber loss can be thought as a smooth
approximation to the ¢;-loss [30], which is often used for
robust fitting when the data is sparsely corrupted by outliers
[60].

Another approach to solving the problem in line 3 of
Algorithm 2] (without the coupling) in an AO-ADMM setting
is proposed in [[37]. There, another auxiliary tensor variable T
is introduced which is fitted to the data tensor 7 ; via the loss
function £;(-, ), while T, = [Ci1,Ci2, ..., Cip,] is treated
as another constraint using ADMM. This results in closed
form updates for a number of possible loss functions and
is thus more efficient than numerical optimization. However,
our experiments show that it typically takes a large number
of outer iterations before this approach converges. We also
observe that it is less accurate than our approach in the case
of KL divergence, see Section We suspect that the
“double approximation” first in Frobenius norm and then in
the loss function can have negative effects on accuracy. In the
following, we refer to this approach as split AO-ADMM.

C. Some useful proximal operators

When a factor matrix C; ; is regularized, the update of the
corresponding auxiliary variable Z; ; in Algorithm [2]is given
by the proximal operator (8]

Zz(le) = Proxi,

7 (C(Hl) Hug;)

where the function g;; can be any proper, lower semi-
continuous and convex function [41], [42], [64]. Thus, besides
hard constraints given by a characteristic function ¢¢ of a con-
vex set C, soft constraints are also included in this framework
via convex regularization functions. In many cases, closed
form solutions and/or efficient algorithms exist, see [42], [|64]]
and the references therein, and we resort to the implementa-
tions collected in The Proximity Operator Repository [43]]. In
Table |lIf we recall only a few constraints and regularizations,
which are of practical interest, while many others are also
possible [42], [64]. Note that the regularization can be defined
as an element-wise function g(z) or act on columns x of factor
matrices. As a result of the scaling ambiguity in the CPD
model, normalization of the factors may be needed in coupled
factorizations. The usual way to tackle norm constraints on the
factors is to consider a ¢y constraint, e.g., i) =1
where j is any column index [13]], [65]. Here, we can also

http://dx.doi.org/10.1109/JSTSP.2020.3045848

tackle the normalization of the factors in the same way as
other constraints by applying the proximal operator of the /o
unit ball on the columns of the split variables Z; ;. In some
cases, it is possible to combine different constraints with one
proximal operator, see [42], [66]. In practice it is possible
to handle also non-convex regularization functions g, as long
as a solution of the corresponding proximal operator can be
computed, since its solution may not be unique.

V. ALGORITHM DETAILS

In this section, we present some algorithmic aspects in more
detail and discuss complexity and efficient implementations.

A. Stopping conditions

We adapt the stopping criterion of the inner ADMM
iterations to Algorithm [2] by splitting it into coupling and
constraint related conditions, as follows:

Z (Hc(k) (k)H /Hc(k)HF) S Ep,constr
> (I vee(c) -

7
k k
Z8 e /i lr ) <

> (1% -
80 ) N2/l 3)112) <

5 (i (5 -

All of the above conditions should be satisfied to stop the
algorithm, except when a predefined maximum number of
inner iterations is reached. We usually set this to a reasonably
small number between 5 and 10, since we do not want to
solve the subproblems exactly in the beginning of the algo-
rithm, when the initializations are probably far away from the
optimal solution. As the algorithm proceeds, the inner ADMM
algorithm typically terminates due to the relative tolerances
and the number of iterations goes down. For a study of the
maximum number of inner iterations, see also the experiment
in Section [VI-B2] The whole algorlthm is terminated, when
each of the following residuals f* ,

(k) } :
tensors wl

foonings = Z (I vee(C{) — HE 6| /|[HL vee(C)] 2 )

60|/ |[H s veo(CR) ) < e

d,constr
€

d ,coupl

Tza [[Cz 1,

Ci2,...,Cin,])

i,d
k k k k
T = 2 (1€ =2 /1CE 15 ) -
id
(14)
has either reached a small absolute tolerance €*°"r  or has

not changed more than some small relative tolerance e™houer

compared to the previous iteration,
ik) ’ |f,£k) _ ffk—l) |/|f£k) | < ¢rel.outer

or a predefined number of maximal outer iterations is reached.

< 6abs,ouler

B. Choice of p

To the best of our knowledge, an optimal step-size p has
been derived for ADMM applied to quadratic programming
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TABLE I
OVERVIEW OF DIFFERENT LOSS FUNCTIONS
[ loss | underlying distribution | elementwise loss fucntion [ references |
Kullback-Leibler (KL) divergence Poisson Lt,z) =z —tlogx +tlogt—t, t € N,x >0 [5ﬁ61]
Itakura-Saito (IS) divergence Gamma Lt,x) = % +logz —logt —1,t,z >0 48]
B-divergence ot,z) = mgi‘il) + 2 — 71 geRr\{0,1} (71, 1491, l62]
a-divergence Lt z) = ﬁ (t*z'=* —at + (a — 1)z), a € R\ {0,1} [62U63]
(t —x)? iflt—z|<d
Huber-loss Ut x;d) = . 53
uberrloss (t,2;d) {2d|t— x| —d?  otherwise B3
TABLE II
SOME PROXIMAL OPERATORS
structure function g(z) ‘ proximal operator prox 1 g(:p)
o
non-negativity R, (%) max {0,z }
box-constraints LBox[¢,u] (T) min {max {z, ¢}, u}
simplex constraints LAy (%) [max {0, 2n — A} <, <n» With A € R s.t. Zﬁ:j:l max {0,zn — A} =1

monotonicity Uy <z2<...<wn}(X)

: 1 k ]
max i min T _ .
{ 1<j<n n<k<N k—j+1 2271 4 1<n<N

hard sparsity constraints Yl x ngT}(x)

with soft-thresholding operator Ty (z) = max {0, |z | — A} sgn(z),

x, xlly <7

7—)\* (X),

%y >,

and \* is any positive solution of || TA(x) |l; =7

normalization Yl xllp<1} (%)

1/ (max {[[x[|,,1}) x

Lasso regularization B3N soft-thresholding operator T~ (x)
P
L _ q
{o-Regularization Y]y (1 Pl ”2"‘//9}) X
2 2y T -1
Smoothness v Dx |5 <7D D+ I) X

Normalized sparsity Lx: | x|la=1 n{x:|x]lo<k}

Hy(x)/||Hg(x)||2 where Hy, is the hard-thresholding operator [66]]

only [67]. In choosing p we follow [37] and choose a different
step-length pgkd) for the update of each factor matrix Cgk;i) as

k k )T c(k
pha = IML I/ Re = trace(ML) M)/ Ry,
which can be efficiently computed from (I6).

15)

C. Efficient implementations

In all types of linear couplings described in Section
with the exception of Case 2a, the update of the factor
matrix C; ; reduces to the solution of a linear system where
the matrix inverse is only of size R; x R;. Note that
this matrix inverse is never explicitly computed. Instead, a
Cholesky decomposition which costs O(R3) is precomputed
outside the ADMM loop. Thus, solving the linear systems
at each ADMM iteration reduces to one forward- and one
backward-substitution with complexity O(R?ny,). Also for
the update of A;, a Cholesky decomposition of the matrices
PO (fIlAlTI;IlAl) and {Zf\il (ﬂf‘lﬂffg] in Cases 2b and
3b respectively, can be precomputed at the beginning of the
AO-ADMM algorithm. In Case 2b, this can be expensive, with
the Cholesky decomposition having a complexity of 0(”21)
and each forward and backward-substitution O(n% R;), in
contrast to O(R3) and O(R%n) for Case 3b. In Cases 1,
2a and 3a, the update of A; is computed as an average with
complexity O(NniR), O(Nna,n1,R) and O(NniR;RA),
respectively.

Furthermore, the matricized tensor times Khatri-Rao prod-
uct Ti[1]Mi,1, can be computed efficiently [40]], for which we

use the mt tkrp function from the Tensor Toolbox [68]]. It can
be precomputed outside the ADMM loop. Also the product of
Khatri-Rao products M%Mm can be computed efficiently
using the relation [40]

M/ M;; = C/,C;z%...xC] C; p, (16)
with precomputed products {CZdCi,d}iS N,d<D,- These prod-
ucts can be stored throughout the whole AO-ADMM algorithm
and need only to be updated for each mode after the corre-
sponding outer AO iteration.

The evaluation of the residual ft(eﬁzors for the stopping
condition can be computationally expensive. It is, therefore,
desirable to reuse as many previous computations as possible.
For tensors 7 and M, the difference in squared Frobenius
norm can be calculated as

1T = MG =T 7+ | Mz —2(T, M)

Here, 7 = T ; is the given tensor, which does not change,
and it is enough to compute its norm only once. The same
holds for other loss functions, e.g., for KL-divergence, it is
sufficient to compute the constant term >, - [t;logt; — ;]
only once. Furthermore, in the case of Frobenius norm, the
following holds:

| M5 =|[Ci1,Ciz,-...Cin] 7

T T T T
= e [Ci,lciJ * Ci72Ci,2 E O 3 Ci,DiC’inz] e,
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where e is a column vector of 1s with matching length. This is
useful since the products CZdCi,d can be reused. The tensor
inner product (7, M) can also be computed efficiently via

(Ti,[ICi1,Cizay ..., Cip,|]) = e” [TigMia*Ciale

where again the matricized tensor times Khatri-Rao product
T [d]M,;Vd from the last updated mode d of tensor ¢ can be
reused.

VI. EXPERIMENTS

In this section, we assess the performance of the proposed
AO-ADMM approach in terms of accuracy and computational
efficiency on synthetic datasets, and demonstrate its use on real
datasets in two applications. In the case of Frobenius loss, a
number of methods is available for comparison. However, their
ability to handle specific constraints and coupling structures
varies. So whenever applicable, we compare the performance
with other commonly used methods, namely Alternating Least
Squares (ALS) and all-at-once optimization using quasi-
Newton and Gauss-Newton methods. The results show that
the AO-ADMM approach achieves comparable performance
to state-of-the art methods on problems with hard coupling
(Case 1) in a number of settings with varying collinearity,
tensor sizes and constraints. Furthermore, our experiments
indicate that AO-ADMM has advantages over other methods
for problems with linear couplings. Moreover, in the case of
KL loss, we show that our AO-ADMM approach is more
accurate than the split AO-ADMM approach.

A. Experimental Set-up

For ALS (referred to as CMTF-ALS), we use our own
implementation for CMTF based on cp_als from the Tensor
Toolbox [68]. It can so far only handle hard couplings. For
nonnegativity constraints, we solve the alternating nonnegative
least squares problems using Hierarchical ALS (HALS) [69].
For all-at-once optimization with quasi-Newton methods, we
use cmtf_opt from the CMTF Toolbox [18] (referred to as
CMTF opt) using Nonlinear Conjugate Gradient (NCG) for
unconstrained cases and Limited Memory BFGS with bounds
(LBFGS-B) for nonnegativity constraints. The implementation
can only handle box-constraints. Linear couplings are theoret-
ically possible, but are not implemented. Finally, for Gauss-
Newton, we use the Tensorlab implementation sdf _nls [35]]
(referred to as Tensorlab GN), which can handle a variety of
constraints and coupling structures. Our implementation of the
AO-ADMM algorithm can be found in [54].

We monitor the convergence of different algorithms through
the function value fiensors and the factor match score (FMS).
Given the true factor matrices ?";f, the FMS for C,; 4 is
computed as

A (Cials), 5 (1))
FMS*H 3 anzd I, 1CE G

after finding the best permutation of factors. We run each
algorithm until the relative change in function value is less
than 107 !° or a maximum number of 3000 outer iterations
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has been reachecﬂ For AO-ADMM, we set the absolute
tolerance for the residuals in Eq. to 10~*. For each
dataset, five initializations (for the more difficult experiment
4, ten initializations) are used, and the best run, i.e., the one
with the lowest final function value, is reported. We also report
the number of failed runs in Tables [[IT] and [TV} where a run is
considered a failed run if it reaches the maximum number of
iterations or gives an FMS below the threshold 0.99%2:: D
When no constraints are imposed and Frobenius loss is used,
in the first run, factor matrices C; 4 are initialized using the
first R left singular vectors of the corresponding concatenated
(if coupled) and unfolded tensors in mode d. Otherwise, factor
matrices are initialized at random, drawing from the standard
normal or, in the case of nonnegativity, uniform distribution,
and the columns are normalized. All dual variables, as well
as coupling variables Ay, are initialized using the standard
normal distribution. The split variables Z; 4 are initialized
by prox; g, , (Cia). The experiments were performed on a
standard 16GB Windows 10 laptop using MATLAB R2019a,
without the use of parallel for-loops in Algorithm 2] Com-
puting times are measured using the tic-toc function in
MATLAB.

B. Simulated Data

For each experiment, we generate 50 random datasets.
Following the CP model, tensors X’; are constructed from
known factor matrices. In the case of Frobenius loss, i.e.,
experiments 1 — 4, tensors 7T ; are then generated by adding
noise tensors N; with entries drawn from a standard normal
distribution as follows:

Ti=X;+02(]| X; ||z /| NG || )N

This corresponds to a signal-to-noise ratio of around 14dB.
We normalize each tensor to have Frobenius norm 1 and
set the weights to w; = 1/2. In the case of other loss
functions, tensors T ; are generated by drawing each entry
from the underlying distribution, e.g., Poisson distribution for
KL-divergence, with the mean given by the corresponding
entry in X;.

1) Experiment 1: Frobenius loss, coupling Case 1 and
unconstrained:

a) Mildly Collinear Factors: In this example, a third-
order tensor of size 200 x 100 x 300 is coupled in the
first mode with a matrix of size 200 x 1000 based on hard
coupling, i.e., Case 1. These datasets are jointly analyzed using
Frobenius loss and no constraints are imposed. The ground-
truth factor matrices with rank R = 3 are generated with
entries drawn from a standard normal distribution and then
transformed as in [[70] such that the factors have a congruence
of 0.5. A summary of the convergence behaviour of different
algorithms for 50 random datasets is shown in Fig. 4, which
depicts the median curves and quantiles of function value and
factor match score over iterations and time. Here, only the

'Other parameters are set as follows:
B): MaxFuncEvals/maxTotalIts=105,
in Tensorlab: CGMaxIter=15, Tolx=10"32, TolAbs=0,
maxiter=500.

In cmtf_opt (NCG/LBFSG-
StopTol/pgtol=10"52,
in HALS:
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Fig. 5. Experimentlb: Median and quartiles of function values and FMS for
different algorithms.

best run (among five initializations), i.e., the one giving the
lowest function value, is reported for each dataset. Boxplots
showing the complete distribution of computing times can be
found in the Supplementary Material for this and the following
experiments. We observe that alternating methods CMTF-ALS
and AO-ADMM behave similarly, but AO-ADMM is more
accurate, achieving an FMS comparable with that achieved by
all-at-once methods. In the presence of collinearity, singular
vectors seem to be a bad choice for initialization for AO-
ADMM. Table |l1I] shows a high number of failed runs for AO-
ADMM which are all due to initializations based on singular
vectors. On the other hand, when we use factor matrices
with random collinearity, this type of initialization is not an
issue (results not shown here). It should also be mentioned
here that the timing comparisons do not include the time
needed for computing the singular value decomposition for the
first initialization. Since all-at-once methods usually perform
best with this initialization (in this experiment) their total
computation time is actually higher than shown in the figures.
Results for this setting with unbalanced data sizes and more
noise can be found in the Supplementary Material.

b) Highly Collinear Factors: Here, collinear factors are
generated using a congruence of 0.9. Fig. [5] shows that AO-
ADMM again behaves similar to ALS and is also accurate
except for the failing cases shown in Table [[T]] for the best 50
runs. In this case, Tensorlab GN is faster, which is expected. In
the presence of strong collinearity, ALS type algorithms strug-
gle due to ill-conditioned linear systems. GN type methods,
on the other hand, can find an accurate solution fast thanks to
the use of approximate second-order information [71].

2) Experiment 2: Frobenius loss, coupling Case 1 and
nonnegative: The setting of the second experiment is similar
to the first one. In addition, nonnegativity constraints are
imposed on factor matrices in all modes. The ground-truth
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Fig. 7. Experiment 2: Detailed convergence of one AO-ADMM run.

factor matrices are drawn from a uniform distribution and
thus the collinearity of the components is not controlled. The
convergence behaviour of different methods in Fig. [6] demon-
strates that AO-ADMM is computationally efficient, with an
average performance similar to CMTF-HALS. All methods
can accurately recover the true factors used to generate the
data. The convergence of the different residuals, see equation
(T4), in AO-ADMM can be seen in Fig. [7] for a single run of
AO-ADMM. It can be observed that even though the CP fitting
term does not seem to improve after a number of iterations
due to the noise, the residuals for couplings and constraints
keep improving, as well as the factor match score. In the right
most subfigure, the number of performed inner iterations is
plotted against the outer iterations for each mode. All modes
start with the maximum of 5 inner iterations. The iterations
go down fast and stay at 1 for modes 2 and 3, which are
the uncoupled tensor modes. The coupled modes 1 and 4
always have the same number of inner iterations since they are
updated together in one ADMM run. Also, inner iterations of
those coupled modes decrease stepwise after some iterations.
The only mode that stays at 5 inner iterations is mode 5, which
is in the presence of noise probably the most difficult one,
since it is the uncoupled matrix mode. Results for unbalanced
datasets, datasets with different number of components as
well as a study of different numbers of inner iterations in
the AO-ADMM algorithm can be found in the Supplementary
Material.

3) Experiment 3: Frobenius loss, coupling Case 2a and
unconstrained: In this experiment, we test the linear coupling
with transformation on a simple example. Linear couplings of
type 2a allow tensors with different dimensions to be coupled.
Here, a tensor 71 of size 400 x 100 x 300 is coupled in
the first mode with a matrix To of size 200 x 1000 via
a transformation I~{1710171 = A, that discards every other
row in Cj ;. The rank of both is again R = 3 and the true
factor matrices have entries drawn from the standard normal
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TABLE III
NUMBER OF FAILED RUNS IN EXPERIMENTS 1-4
AO-ADMM CMTF opt CMTF ALS TL GN
Exp. all best all best all best all best
init.  runs | init. runs | init. runs | init. runs
la 38 0 0 0 7 0 2 0
1b 82 17 0 0 0 0 3 0
2 0 0 0 0 0 0 0 0
3 7 0 - - - - 44 0
4 296 1 - - - - 323 0

distribution. We compare the AO-ADMM-based approach only
with Tensorlab GN since among the available methods that
can handle linear couplings, it is the most flexible in terms
of incorporating constraints. Fig. [§] shows that AO-ADMM
finds the true factors faster (on average) than Tensorlab GN.
Both are accurate while Tensorlab is slightly more sensitive
to initializations, see Table m

4) Experiment 4: Frobenius loss, coupling Case 3b and
unconstrained: Linear couplings of type 3b allow tensors
with different number of components to be coupled. We
demonstrate this type of coupling with an example, where
three tensors of size 200 x 100 x 300, 200 x 300 x 100,
200 x 100 x 100 and number of components R = 2,3,4,
respectively, are coupled in the first mode. Two components
are shared by all tensors while the additional component in
the second tensor is also present in the third tensor. The third
tensor has an additional unshared component. This ordering
of shared and unshared components makes the problem more
difficult and many random initializations will not converge to
this order, as shown in Table Therefore, we use 10 random
initializations for each dataset. However, when the best runs
out of multiple initializations are considered, both AO-ADMM
and Tensorlab GN are accurate while AO-ADMM finds the
true factors faster, see Fig. 9]
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TABLE IV
NUMBER OF FAILED RUNS IN EXPERIMENT 5

AO-ADMM KL split AO-ADMM KL | AO-ADMM Frobenius
all init.  best runs | all init. best runs all init. best runs
[ 0 0 [ 19 3 [ 0 0 ]

5) Experiment 5: KL-divergence and coupling Case 1:
In this experiment, instead of adding Gaussian noise, we
construct tensors containing count data 0,1,2,... by drawing
each entry from a Poisson distribution with mean given by
the CPD model of the ground-truth factor matrices. The factor
matrices are drawn from a gamma distribution with shape and
scale parameters equal to 1. This ensures that factor matrices
and, thus, the tensors constructed from them are non-negative.
A tensor of size 40 x 50 x 60 is coupled in the first mode
with a matrix of size 40 x 100 using coupling Case 1. The
rank of both is R = 3. We compare the performance of our
AO-ADMM implementation using KL divergence as described
in Section |IV-B| with the variant proposed in [37], which
is using another split tensor variable to deal with the KL
divergence. For fairer comparison and because the code is not
presently accessible online, we use our own implementation.
Results based on 50 random datasets can be seen in Fig.
@ For each dataset, 5 random initializations are used. Initial
factor matrices are drawn from a standard uniform distribution.
While in our implementation non-negativity constraints are
handled by using LBFGS-B E|with lower bound 0, in the split
AO-ADMM variant, non-negativity constraints are explicitly
imposed and handled via ADMM. The parameters used for the
split AO-ADMM are the same as for AO-ADMM. The split
tensor variable is initialized equal to the data tensor, while its
dual tensor is initialized with all zeros. The split AO-ADMM
approach is computationally more efficient and thus converges
faster than our approach, although it needs considerably more
outer iterations. Fig. [I0] shows that both algorithms achieve
FMS that are above the FMS achieved by using the squared
Frobenius norm loss. However, our approach is even more
accurate than the split AO-ADMM and achieves higher factor
match scores after convergence. It has no failed runs, while
the split AO-ADMM failed for 3 out of 50 random datasets,
see Table [V]

2with parameters m = 5, maxIts = 100, maxTotalIts = 5000,

factr = 10719 /eps, pgtol = 10710
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Fig. 11. Datasets from different platforms, coupled in the mixtures mode.

C. Real Data

Finally, we showcase the proposed framework on two
different applications from chemometrics and remote sensing.

1) Chemometrics: We first demonstrate an application of
the proposed framework by jointly analyzing measurements
of mixtures from multiple analytical platforms, and show that
underlying patterns of individual chemicals in the mixtures can
be accurately revealed. Datasets consist of measurements of 28
mixtures using fluorescence spectroscopy (excitation-emission
matrices (EEM)), LC-MS and diffusion NMR spectroscopy
(DOSY-NMR). Mixtures were prepared using five chemicals,
i.e., Valine-Tyrosine-Valine (Val-Tyr-Val), Tryptophan-Glycine
(Trp-Gly), Phenylalanine (Phe), Maltoheptaose (Malto) and
Propanol, based on a predetermined design. The fluorescence
data is represented as a third-order tensor, X s, with
modes: mixtures, excitation and emission wavelengths; DOSY-
NMR as a third-order tensor, Y narr, With modes: mixtures,
chemical shifts, and gradient levels, and LC-MS data as a
mixtures by features matrix, Zcprs. Datasets are coupled in
the mixtures mode (Fig. [TI). Three chemicals are visible in
all platforms while another chemical can be detected using
both NMR and LC-MS. The fifth chemical, i.e., Proponal, is
only visible by NMR, indicating that X prars, YNmRr, and
Z 1 c s have three, five and four components, respectively, if
each component models one chemical. In total, we use a 6-
component model since, in addition to the five chemicals, there
is an additional component modelling the structured noise in
LC-MS. See [65]], [[72] for a detailed discussion.

We jointly analyze these datasets by coupling the factor
matrices in the mixtures mode using the linear coupling given
in Case 3b, as follows:

. 2 2
min || Xpem — [Craliz: e+ | Ynmr — [C2.aliz1 [
{Ci,a}A1
i<3
a<D;
2 2
+ || Zroms — [Csala=1 || »
S.t. Ci,d >0,7 <3, d<D;
Ci1 = A1ﬂf:17 Co1 = AlﬂzA,h Cs1 = AII:ISA,D
a7
where HY = [e1e2e3], HY = [e1 ez e3 €4 €5 and
Hél = [e1 ey e3 e4 €g], with e; denoting the i-th unit

vector in RS. Nonnegativity constraints are imposed in all
modes since all factor matrices are expected to be nonnegative
(e.g., C11 models the relative concentrations of chemicals
in the mixtures while C, 2 corresponds to emission spectra).
By using Algorithm [3| to solve the optimization problem
in (I7), we can successfully extract components modelling

http://dx.doi.org/10.1109/JSTSP.2020.3045848

the individual chemicals in the mixtures. Fig. [I2] shows the
factor matrices Cj 1,Cs 1,C3s,1 coupled through the given
transformation matrices in the mixtures mode, demonstrating
that individual chemicals can be separated and the underlying
true design of the experiment can be recovered. While there
are six components in total, each dataset captures compo-
nents modelling some of the chemicals, as indicated in the
transformation matrices. Similarly, factor matrices in other
modes have also been extracted accurately and can be used to
identify the chemical being modelled by each component (not
shown). Here, we have used multiple initializations and the
one reaching the minimum function value has been reported
after checking the uniqueness of the model.

2) Hyperspectral super-resolution: In this second experi-
ment, we address the problem of reconstructing a full hyper-
spectral image X € R’* " (which is a collection of n; vec-
torized color images with ny pixels) from two smaller images.
These HyperSpectral and MultiSpectral Images (HSI-MSI)
Xy € RP*™ and X,,, € RY™*"™ have respectively fewer
pixels and fewer spectral bands. In this example, we will as-
sume that the transformations from the large image to the two
smaller ones, which are respectively a blurring/downsampling
(by a factor 9) matrix H and a spectral degradation function
S (we used the one from the Landsat 7 multispectral sensor),
are known.

There is a rather large body of literature on how to re-
cover the super-resolution image X. Here, our purpose is to
show that we can use the proposed algorithmic framework
to infer good parameters for a popular model based on joint
constrained nonnegative matrix factorization [[73]]. We aim at
solving

argmin || X — E(HA)" |5 + [ X — (SE)AT[5

n1XR ng X R
EcR " AR’y

+ns,., (A) +ns,, (HA)

(18)
for a fixed number of components . Here s, is the (column-
wise) characteristic function of the simplex of dimension n.
This regularization enforces that all abundances are nonneg-
ative and sum to one, which is a common assumption when
processing hyperspectral and multispectral images. It can be
noted that if every column of A is on the unit simplex, then so
are the columns of HA due to the construction of H. However
enforcing both constraints is only redundant at the optimum.

We set up our algorithm by splitting A, HA, E and
SE respectively into four different variables A,,,, A, Ep, E,,

constrained by coupling-type 2b, namely

A, =Ayu, Ay =HAy, E, =SAg, E, =Ap. (19)

Our baseline is the implementation of proximal alternat-
ing gradient descent from Lanaras et. al. (PALM), which
has a lower per-iteration complexity than the proposed AO-

ADMM [73]], [74]. We will compare both methods in terms
IX-X|r

of relative reconstruction error RMSE = Vo

given an

approximate full-resolution matrix X.
Because the problem is highly non-convex, we also need
a good initialization. Similarly to our baseline [73]], we used

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

http://dx.doi.org/10.1109/JSTSP.2020.3045848

Val-Tyr-Val Trp-Gl
= 04 2 S 04 05l =o.
i.o.z} ! i’“[\.W l =o. t
o o0 o o oY " d
0 10 20 30 0 10 20 30 0 10 20 30
Mixtures Mixtures
& Phe. 04 Malto. a
e i T R T T
(SR 0l - : o
0 10 20 30 0 10 20 30
Mixtures Mixtures Mixtures
05 Propanol & 04— P:o énol
=o. A
0 S
0 10 20 30 10 20

Mixtures Mixtures

(a) Columns of Cq 1 extracted from EEM.

(b) Columns of Cs 1 extracted from NMR.

14
= 04 & 041
< 02ff =02
o # W o o
o cine (SR (SR
0 10 20 30 0 10 20 30 0 30
Mixtures Mixtures Mixtures
Malto. . Phe, . Maito.
3 S 03 ) S 041 ¥
< 021 | Tl Y o2 \AL 4 A
501 PRI S0 M\ 7Y
O 0k O 0 bttt
30 0 10 20 0 10 20 30
Mixtures Mixtures Mixtures
05 Propanol & 05
MU 5 o]
0 [CR] (X
0 10 20 30 0 10 20 30
Mixtures Mixtures

(c) Columns of Cg3,1 extracted from LC-MS.

Fig. 12. Joint analysis of measurements from multiple platforms by solving the optimization problem in @ Blue lines indicate the true design of the
experiment while other colors are used to plot the columns of the factor matrices extracted by the model.

SISAL [75] to estimate Ej, while A}, is obtained by SUN-
SAL [76]. These methods do not constitue a deterministic
initialization, so we picked the best run out of three in terms
of RMSE for the baseline (but all runs reached similar results).

Finally, we used the well-known Urban datasetﬂ which we
degrade artifically to create the two smaller HSI and MSI.
It has been reported in the literature than a good rank for
decomposing Urban is between four and six, so we set R =
6 [77].

Figure [I3] shows the relative reconstruction error of the true
HSI with respect to time, while Figure [I4] shows the final
residual images. Both the proposed AO-ADMM algorithm and
the baseline have similar outputs, given their very similar
residual maps at fixed RMSE (estimated abundances and
endmembers are also very similar, see Supplementary Materi-
als). This means that our general framework can successfully
perform hyperspectral super-resolution using the model of
Lanaras et. al. [73]]. As expected, the proposed method is faster
per-iteration. However, the baseline reaches a given RMSE
threshold on average roughly six times faster than our method.
This is arguably not a bad performance, given that the baseline
is specifically written for hyperspectral super-resolution, with
particular code optimization and compiled components. On the
other hand, we used our AO-ADMM naively, without paying
particular attention to the structured nature of the coupling
matrices (except sparsity), as an average user would have
done. Our framework however allows for customization: we
may change the cost function, the constraints or the coupling
types without efforts. On the contrary, the PALM algorithm
would not straightfowardly handle a complexification of the
constraints as, for instance, projection on the intersection of
linear subspaces and the simplex is not trivial. Furthermore,
changes to the model require tinkering with the baseline
implementation.

VII. DISCUSSIONS

In this paper, we have presented a flexible algorithmic
framework for regularized and linearly coupled tensor fac-
torizations based on ADMM which is able to handle many

3 Available at |http://www.erdc.usace.army.mil/
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Fig. 14. Pixel-wise residual images, normalized in the [0, 1] range. The final
RMSE value is the same for both methods and is set to 0.0144.

important loss functions, coupling structures and regulariza-
tions in a plug-and-play fashion. Numerical experiments show
that our approach is computationally at least comparable, and
in linearly coupled cases superior, to other state-of-the-art
methods while being more flexible.

Nevertheless, there exist limitations of the current algo-
rithmic framework. Firstly, while the proposed algorithm can
incorporate many commonly used non-parametric constraints
via the proximal operator, parametric constraints can not
be handled straightforwardly. Moreover, using gradient-based
numerical optimization to update the estimates of factor ma-
trices, requires, on the one hand, the loss function £;(-,-)
to be differentiable in the second argument. This excludes,
amongst others, the ¢1-norm loss. On the other hand, even for
differentiable loss functions, the constraints on the entries of
the reconstructed tensor that arise from the assumptions on
the mean of the data distribution, may be difficult to handle,
for example, for binary data following a Bernoulli distribution.
Note that in [30], also non-linear link functions, which map
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the mean of the distribution to the CPD tensor entries, are
discussed which have the advantage that certain constraints can
be avoided. However, this non-linear transformation changes
the factor matrices irreversibly and one should be cautious
when interpreting the resulting factors, especially in a coupled
setting and when additional constraints are imposed on the
factor matrices. For this reason, we refrain from covering non-
linear link functions in this paper and in the code.

Furthermore, when coupled datasets have different statistical
properties, it is desirable to use different loss functions £; to
fit each tensor 7T ;. However, how to choose the weights w;
in equation (3), that compensate for different scales and noise
levels in the datasets, becomes a critical issue. The problem of
optimal weights is still more or less unresolved. In [23], the
authors propose a probabilistic approach for estimating the
dispersion parameters while estimating the factor matrices for
coupled tensor factorization models with mixed divergences.
Another approach is to estimate the variances in the datasets
beforehand (78], [79]].

A major limitation of the current framework is that linear
coupling transformations have to be known. Often, however,
they are not known exactly, but might be well approximated
by some parameterized function as in [[10]. We are therefore
currently investigating the possibilities of learning the (param-
eterized) transformation matrices within the framework. This
is also especially important for the automatic identification of
shared and unshared components. Another possibility to reveal
shared components is the ACMTF model proposed in [[65]],
which supposes that all factors are identical, but only a few
components have non-zero strength in each tensor 7 ;. This
model can theoretically be obtained within the AO-ADMM
framework by setting g; 4 as the sparsity-inducing ¢; norm on
the ¢ norms of columns of coupled factors, supposing other
factors are normalized.

Future work includes also the extension of this framework to
other tensor factorization models than the CPD. Furthermore,
it can be worthwhile to consider Nesterov-type acceleration
to increase efficiency of the AO-ADMM framework. Acceler-
ations of this type have previously been applied to ALS for
fitting CP decompositions [80], [81].
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