A Self-Adaptive Network Architecture for InfiniBand based HPC Clouds

Feroz Zahid, Ernst Gunnar Gran, Tor Skeie Simula Research Laboratory, Norway Control Adapt Monitor 7th Cloud Control Workshop Nässlingen, Sweden InfiniBand Subnet

June 9, 2015

This presentation leads to the discussion session after briefly introducing our contributions and future goals

Background and Contributions

The Goal: Self-Adaptive IB Subnets

Problems and Discussion

InfiniBand (IB) is a popular interconnect for HPC systems

500 44.8% share in November 2014 top supercomputers list

Interconnect Family System Share

In commonly used HPC topologies, the choice of multiple paths is available between a source-destination pair

Our aim is to design a holistic self-adaptive architecture for the HPC Clouds based on feedback-control loop

Monitor and Collect

- Performance Data
- Faults / Failures

Analyze and Plan

- Based on collected data
- Management Directives

Execute and Reconfigure

- Reconfigure resources
- Execute new configuration

By considering node roles in routing, the overall network utilization can be substantially improved

- In wFatTree routing, nodes are assigned a new parameter weight
- Weights can be assigned based on
 - Known node roles e.g. storage nodes
 - Known traffic priorities e.g. following QoS levels
 - Traffic profiling
- Nodes are routed in the order of their weights: Predictable
- Port selection is based on both Downward and Upward weight

27 Switches with rcv nodes

36 Switches with rcv nodes

Tenant-aware routing provides better isolation and also improves performance in cloud systems

- The pFTree routing has two objectives in the order of priority
 - Well-balanced LFTs, Partition isolation
- Balancing using port counters
- Partition-isolation
 - Physical level, if enough resources available
 - Virtual Lanes

By employing intelligent techniques in the routing algorithm, cost of reconfiguration can be reduced significantly

- Reconfigured needed for:
 - Faults and Failures
 - Performance Maintenance
- Network Reconfiguration in IB
 - Static
 - Dynamic
 - Costly!
- Minimal Routing Update
 - Preserve existing paths
- SlimUpdate Routing algorithm
 - Fat-tree topologies
 - Low path updates

Big Picture: Enable smart network provisioning for the HPC clouds – We focus on four important components

We aim to combine our pieces together to build a selfadaptive architecture for HPC clouds based on MAPE

We aim to combine our pieces together to build a selfadaptive architecture for HPC clouds based on MAPE

Discussion Time

Questions / Challenges

Monitoring

- · Monitoring mechanisms available in InfiniBand
 - SMAs notifications, probes
- Challenges
 - Dynamic workload
 - Virtualized environments
 - Shared-port, vSwitch, vPorts
 - · Quick fault detection

Analysis

- Two dimensions
 - Is current configuration satisfying constraints?
 - Can we do better optimze?
- Model-based approach enough?
 - Dynamic workload
- QoS, SLA violations
- Multi-tenancy, fairness

Planning

- Decision Making
 - Multi-criterion decision making (MCDM) problem
 - · Define quality of routing?
 - Multiple same-quality routings available
- How to predict performance for the new reconfiguration
 - Test runs, simulations?

Execution

- · Network reconfiguration in InfiniBand
 - Static reconfiguration
 - Dynamic reconfiguration
 - Avoid deadlocks!
 - For large subnets, interim routes
- Minimal routing update is desirable

Putting all together

- Is this problem realistic?
- Are feedback-control systems feasible?
- What existing solutions we should look at?
- What policies can be applied in the available solutions?

In summary, a self-adaptive network architecture is needed to efficiently support dynamic HPC clouds based on IB

State-of-the-art network architecture with static configurations

A Self-adaptive network architecture enabling dynamic HPC clouds

Thanks for your attention!

