
THE POWER OF 
PYTHON

Simon Funke (simon@simula.no)

IN SCIENCE AND EDUCATION



About me

● Researcher @ Simula Research Laboratory:

○ Numerical solution of PDEs
○ PDE-constrained optimisation
○ Applications

● Teaching intermediate-level Python-course @ UiO

● Scientific software



Why should we teach Python?

TIOBE Index - very Long Term History



Python is (relatively) easy to learn



Python has extensive set of 
scientific libraries

● Numpy
● Cython
● Numba
● py.test

● Matplotlib
● Pandas
● Scipy
● xarray
● IPython
● Jupyter Notebook
● Pytables
● yt

● FEniCS
● Scikit-learn
● PyMC3
● SymPy
● networkX
● Sunpy
● ...

Python Package Index (pypi.python.org)

} }● Python
● PyPy }



Python can be accelerated with mixed programming

Performance study of a 1D diffusion process 

Python Python + 
Numpy

Python + 
Cython

Python + 
C

Ti
m

e

27ms
1.21 ms

1.28 s

1.04 ms



Development Test

Development
Test

Development
Final execution & Paper writing

Python accelerates development by avoiding common 
“low-level” issues



Development Test Final execution & Paper writingDevelopment Test Development

Python accelerates development by avoiding common 
“low-level” issues



Teaching Python

My experience

- “Higher-level programming” bachelor/master 
course at University of Oslo

- Initiated by Hans-Petter Langtangen
- Students from CS/Physics/Maths/Chemistry

“Learning by doing and reviewing”



The goal of the course is to teach tools that make 
computational science more effective

Syllabus

● The Python language (3 week crash-course)
● Numerical Python with numpy/matplotlib
● Accelerating Python with mixed programming
● Pandas, flask, regular expressions
● Best practices: Git, documentation, testing

Coding assignments are the core of the course



Assignments example: Fractal generator

Task: 

● Implement a fractal generator
● Accelerate and compare timings 

between different versions:
○ Python
○ Python + Numpy
○ Cython
○ Pure C

Contest: best picture award



More assignments examples

Jupyter Notebook Clone

Core techniques taught: 
● Graphical user interface (web)
● Advanced Python

File syntax highlighter

Core techniques taught: 
● Regular Expressions

Temperature/CO2 level analysis and predictions

Core techniques taught: 
● Data analysis with Pandas



Good coding practices are enforced through test 
assignments and points on documentation



“Learning by doing and reviewing”
> 300 students signed up for the course last year

Peer-review of assignmentsStudents deliver assignments digitally 

Lectures are available 
as Jupyter notebooks 

and on Youtube

Students help each other Guest lecturers

virtual-classroom



The coding assignments form the core of the 
course

● Two type of assignments: 
○ Short (1 week)
○ Long (2-3 weeks), peer-reviewed

● Each student has their own private github repository

● Points are given for correctness and quality of code and documentation



Non peer-reviewed assignment

Students get assignment Students push solution to 
their github repository

Teaching assistant 
corrects assignments

1 week



Peer-reviewed assignment

Students get assignment Students push solution to 
their github repository

Teaching assistant 
corrects assignments 

and peer-review

2-3 weeks

● Student reviews other student’s 
solution

● And pushes suggestions to the 
students repository

Each student gets read/write 
access to another (random) 
student’s repository

1 week

!!! Carefull !!!
Do not ask students to grade each other.



The peer-review is delivered as a Latex report or as a git 
pull-request 



virtual-classroom manages the peer-review process

● Creates private repositories for every student in a 
course. 

● Divides students into groups for exercise assessment. 
● Openes up private repositories temporarily for 

assessment groups.

Scripts are available at https://github.com/hplgit/virtual-classroom



Jupyter notebook allows students to experiment with the 
slides

● Students can download slides, run and 
change them

● Lecturer can test that slides still work

Tipp: Use the RISE plugin to convert a Jupyter 
notebook to a slideshow



Guest lectures bring domain-experts into the classroom

Benjamin Ragan-Kelley
Core developer of Jupyter Notebook

“Introduction to Jupyter Notebooks”

Jonathan Feinberg
Data scientist at Expert Analytics

“Introduction to Regular Expression”



Piazza is a Q&A for classes that allows 
students to help each other

● Typically high-quality answers and fast 
response time

● Reduced load of teaching assistants 
● Difficult topics become visible to 

teaching staff
● Allows students to suggest 

improvements/raise problems quickly



The Anaconda Python distribution is a good 
choice installation 

● Works on Windows, Mac, Linux
● Can be installed locally or globally
● Provides a consistent Python installation across all 

students 

Anaconda: Surprisingly few problems - except Cython on 
Windows machines



Summary
● Python is easy-to-learn, flexible and can be made 

performant
● Teaching Python tips:

○ Code peer-reviews allow to learn from others
○ Best practices can be taught “on the side”
○ Tools like github, virtual-classroom and piazza allow to 

scale the course

“Learning by doing and reviewing”

Course material (lecture slides, videos, assignments) are available on goo.gl/SEfw1u
Email me (simon@simula.no) if you have any questions.

http://goo.gl/SEfw1u
mailto:simon@simula.no


Crucial for student projects with students without a computer science 
background.

Less time coding/fixing code means more time doing research

Python is (relatively) easy to learn



Python for high-performance computing

Chris N. Richardson, Garth N. Wells,
Parallel scaling of DOLFIN on ARCHER, 2015


