
Algebraic Analysis of the Simon Block Cipher Family

Håvard Raddum

Simula Research Laboratory, Norway

Abstract. This paper focuses on algebraic attacks on the Simon family of block ciphers. We
construct equation systems using multiple plaintext/ciphertext pairs, and show that many vari-
ables in the cipher states coming from different plaintexts are linearly related. A simple solving
algorithm exploiting these relations is developed and extensively tested on the different Simon
variants, giving efficient algebraic attacks on up to 16 rounds of the largest Simon variants.
Key words: block cipher, algebraic attack, equation system, Simon

1 Introduction

The Simon and Speck families of block cipher were published by the National Security Agency
in June 2013 [1]. Both families consist of lightweight block ciphers, where the Simon ciphers
are optimized for hardware and the Speck ciphers are optimized for software. The ciphers use
very little area and have high throughput.

In the publication from the NSA all ciphers were specified, but there was no security
analysis. In the relatively short time since the Simon and Speck ciphers became known the
cryptographic community has spent a lot of effort cryptanalyzing them. Some work focused on
differential cryptanalysis has been published [2,3], as well as a paper on linear cryptanalysis of
Simon [4]. Several other papers on cryptanalysis of Simon have also been posted to the IACR
eprint archive [5,6,7,8,9,10,11].

The work in [10] is focused on cube attacks, but other than that we have not seen any pub-
lished work on Simon’s resistance to algebraic attacks. This paper investigates to what extent
algebraic attacks may be applied to the Simon family of ciphers and helps to fill this gap in
the cryptanalysis of Simon. The main contribution of this work is the analysis that finds linear
relations between variables coming from different plaintext/ciphertext pairs. Using the linear
relations we may reduce the number of variables a lot when constructing an equation system
based on several chosen plaintexts. We use a simple and straight-forward solving algorithm to
test how many rounds of different Simon variants that can be broken when the linear relations
are exploited. For instance, for Simon with a 128-bit block we can solve a system representing
16 rounds of the cipher using 20 chosen plaintexts in three and a half minutes on a MacBook
Air, even though the equation system initially contains 15488 variables.

The paper is organized as follows. In Section 2, we give a brief description of the Simon
ciphers. In Section 3 we construct equation systems representing Simon, and in particular look
at reusing variables across different plaintext/ciphertext pairs. In Section 4 we introduce a
simple way to eliminate redundant variables, which turns into a solving algorithm when all
variables get eliminated. Extensive experiments on solving equation systems representing five
different Simon variants are also reported here. Section 5 concludes the paper.

2 Description of the Simon Family of Ciphers

The Simon family of block ciphers consists of 10 members. There are two parameters that can
be varied: the block size and the key size. For each of the allowed choices of block and key



sizes the number of rounds is given. The variants of Simon ciphers that have been defined are
listed in Table 1.

Block size Key size Rounds
32 64 32
48 72 36
48 96 36
64 96 42
64 128 44
96 96 52
96 128 54
128 128 68
128 192 69
128 256 72

Table 1: Parameters for the Simon variants.

Each cipher is a traditional Feistel cipher with a simple round function, depicted in Figure
1. Two copies of the bitstring input to the round function are cyclically shifted by 1 and 8
positions to the left, respectively. These two words are joined together with bit-wise AND.
Then the input word rotated by 2 positions to the left and the round key are XORed onto the
output from the AND-operation and the result forms the output of the round function.

Input (n bits)

<<<8

<<<1

<<<2

AND ⊕
Ki

Output (n bits)

Fig. 1: Round function of the Simon ciphers.

Following the specification in [1], we let the left half of the cipher block be the input to the
round function, and we include the swap also after the last round. The left and right halves of
the plaintext are denoted by P1 and P0, respectively. The left and right halves of the ciphertext
are similarly denoted C1 and C0. We start the numbering of the rounds at 0, so the first and
last rounds in an r-round variant of Simon is round 0 and round r − 1, respectively. The size
of one half of the cipher block is denoted by n, and the key size is denoted by k. A member of
the Simon family having block size 2n and key size k will be referred to as Simon2n/k.

The key schedule for Simon comes in three different variants, depending on which member
of the Simon family is used. We omit the details here (they can be found in [1]), but note
that all three variants are linear. The bits of each round key can be expressed as a linear
combination of the user-selected key bits.

3 Constructing Simon Equation Systems Using Multiple
Plaintext/Ciphertext Pairs

We proceed to create equation systems representing instances of a Simon cipher. First we
create an equation system using a single plaintext and its corresponding ciphertext. In all



systems we work with, all variables will represent the values of single bits, and all additions
and multiplications will be over the binary field.

3.1 Equations Representing the Encryption of One Plaintext

The only non-linear part of Simon is the AND-operation in the round function. This operation
works on individual bits in parallel, taking 2 input bits and producing 1 output bit. For two
input variables x and y producing the output z the equation is simply x · y = z.

To keep equations simple and quadratic, we introduce variables representing the cipher
state at the output of the AND-operations. In addition, the user-selected key bits are also
variables. As noted above, the bits of each round key can be expressed as linear combinations
of the user-selected key bits. All other operations in Simon are linear, so every input and
output bit to each AND-operation can be described as linear combinations of these variables.

Note that there is no key material introduced before the AND-operation in the round
function, so in the first and last rounds we do not need to introduce any variables. The
outputs of the AND-operations in these rounds are simply constants depending on the left
half of the (known) plaintext and the right half of the ciphertext.

For an r-round version of Simon using block size 2n and key size of k bits we will get
n(r − 2) basic equations in n(r − 2) + k variables. Each equation will have the form

la · lb = xc, (1)

where la and lb are linear combinations of variables and xc is a single variable in the output
of the AND-operation.

The set of basic equations will represent an r-round encryption of some plaintext using
a Simon cipher. The system of equations we construct following the description given so far
is underdefined by k variables. The following proposition shows how to eliminate another 2n
variables from the system.

Proposition 1. Let F be an r-round Feistel cipher, where (C1, C0) = F(P1, P0). Denote the
output of the round function in round j by uj, for 0 ≤ j ≤ r − 1. Then both XOR sums

b r−1
2
c∑

j=0

u2j and
b r−1

2
c∑

j=0

u2j+1

can be expressed as the XOR of one half of P and one half of C.

Proof: Denote the input to round j by ij for 0 ≤ j ≤ r − 1, and assume F has a swap
after the last round. Then i0 = P1 and ir−1 = C0. Define i−1 = P0 and ir = C1. In the Feistel
cipher F , ij is given as ij = uj−1 + ij−2 for 1 ≤ j ≤ r, or equivalently

uj = ij−1 + ij+1, 0 ≤ j ≤ r − 1.

The sum of u’s with even indices then becomes

b r−1
2
c∑

j=0

u2j = (i−1 + i1) + (i1 + i3) + (i3 + i5) + . . . ,



where the last term will be ir−1 when r is even and ir when r is odd. All terms in the sum
except for the first and last will cancel, so the sum just becomes the sum of P0 and C0 or C1.

The sum
∑

u2j+1 similarly becomes a telescope sum where all terms except for the first
and last will cancel. The first term will be P1 and the last term will be C0 when r is odd and
C1 when r is even. ut

All outputs from the round function in Simon can be expressed as linear combinations of
the variables we have introduced, and using Proposition 1 we can derive 2n independent linear
equations (assuming known plaintext) that can be used to eliminate 2n variables. After doing
this the number of variables in the basic system becomes n(r− 4) + k, and the system will be
underdefined by k − 2n variables.

When the block and key sizes are equal one known plaintext is expected to be enough to
uniquely determine the key in Simon, otherwise we will need at least two known plaintexts to
have enough information to uniquely determine the user-selected key.

3.2 Equation System Representing Encryptions of Two Plaintexts

We call the set of equations and variables representing the encryption of plaintext P into
ciphertext C for a (P,C)-instance.

Above we constructed the equations representing the encryption of the single plaintext P
into C, introducing variables for the cipher state. If we repeat the construction for another
plaintext/ciphertext pair P ′ and C ′ we must in general make new variables for the cipher state
in the (P ′, C ′)-instance. However, we may construct P and P ′ in some particular way to try
to make the cipher states in the first few rounds similar, or related. This will allow us to not
introduce new variables for some of the cipher state bits in the (P ′, C ′)-instance, but rather
re-use the variables from the (P,C)-instance.

The benefit will be a more overdefined total system, with fewer variables, which should
be easier to solve. Two questions are: How many rounds of Simon must be executed before
the cipher states of the two instances become unrelated, and how many new variables can be
avoided in the (P ′, C ′)-instance?

Constructing Plaintexts The plaintexts P and P ′ may be constructed as follows. Let P1

be a string of n 0-bits. Let the rightmost bit of P ′1 be 1, and the rest of the bits in P ′1 be 0.
The output of the AND-operation for P1 and P ′1 will be the all-zero word in both cases. After
adding the input word shifted by 2 positions to the left, the difference in the output of the
round function will be 4, hexadecimally. Choosing P0 to be anything, and P ′0 = P0 + 4, the
differences will cancel in the addition at the end of the first round and the inputs to the second
round will be the same for both texts. Hence the variables to be introduced in the output of
the AND-operation in the second round of the (P ′, C ′)-instance are exactly the same as in the
(P,C)-instance. The situation is depicted in Figure 2.

Tracing Relations Further The inputs to the third round will differ in the rightmost bit
due to the XOR of P1 and P ′1 onto the outputs from the second round. This difference means
that two of the bits in the output of the AND-operation may be unequal in the two instances.



<<<8

<<<1

<<<2

AND ⊕
K0

⊕

0 P0

<<<8

<<<1

<<<2

AND ⊕
K0

⊕

1 P0⊕4

0 0

<<<8

<<<1

<<<2

AND ⊕
K1

⊕
<<<8

<<<1

<<<2

AND ⊕
K1

⊕
xn-1..x0 xn-1..x0

Fig. 2: Chosen plaintexts allowing reuse of all variables in second round.

The other n− 2 bits will still be the same, so n− 2 of the third-round variables in the (P,C)-
instance carry over and can be used in the (P ′, C ′)-instance directly. However, we do not need
to introduce new variables for the two bits that differ, either.

Let la be the linear combination representing the rightmost bit in the input of the third
round of the (P,C)-instance. Then the same bit will be represented as la + 1 in the (P ′, C ′)-
instance. One equation using la in the first instance will be la · lb = xc for some lb and xc. In
the second instance the same equation will be (la+1) · lb = xd, where xd is a (temporary) new
variable in the second instance. Adding these two equations will cause the quadratic terms
to cancel, and we get the relation xd = xc + lb, which can be used to express xd as a linear
combination of variables only from the (P,C)-instance.

In general, when the two sets of input bits (represented as linear combinations) to the
AND-operations only differ in the constant terms, the output bits are related through a linear
equation. We can then reuse variables across the instances. Only when inputs in two instances
differ in more than the constant term will we have to make new variables in the second instance.

Complete Mapping of Linear Relations We have made a computer program for trac-
ing the relations between two (P,C)- and (P ′, C ′)-instances in Simon2n/k for all different
choices for n. Figure 3a shows how the individual bits in the input to the round functions in
Simon32/64 will be related between two plaintexts prepared as explained above. The bits in
the input to the round function can be either white, light grey, dark grey or black. A white
bit indicates that the linear combinations for this bit are equal in the two instances. A light
grey bit indicates that the linear combinations differ in the constant term only. A dark grey
bit means that the linear combination in the second instance can be written exclusively with
variables from the first instance. A black bit indicates that a new variable has been introduced,
and that there is no linear relation between the bits in this position. As can be seen in Figure
3a, only in the ninth round input will all linear relations between the two instances have been
completely wiped out.

Determining linear relations between cipher state bits can also be done from the ciphertext
side. The attacker does not have control over the differences in the ciphertexts, so the linear
relations between two instances are expected to be wiped out faster than from the chosen



plaintexts. Figure 3b shows the situation in a 10-round version of Simon32/64 after tracing
linearly related bits from both the plaintext and the ciphertext sides. In the figure, the colour
of a bit has the lightest colour found when tracing from both sides.

In the example of Figure 3b there are only 21 bits of internal cipher state that must be
represented by new variables in the (P ′, C ′)-instance. The number of new variables we have to
introduce from a new (P ′, C ′)-instance will vary slightly according to how “lucky” we are with
the ciphertexts. However, if we had created the second instance directly from the description
of Section 3.1 we would have had to introduce 96 new variables in a 10-round version of
Simon32/64.

F ⊕

F ⊕

F ⊕

F ⊕

F ⊕

F ⊕

F ⊕

F ⊕

F ⊕

(a) Tracing linearly related cipher state bits from
chosen plaintexts only.

F ⊕

F ⊕

F ⊕

F ⊕

F ⊕

F ⊕

F ⊕

F ⊕

F ⊕

F ⊕

(b) Tracing linearly related cipher state bits from
both plaintext and ciphertext sides.

Fig. 3: Tracing linearly related cipher state bits in Simon32/64.

We have traced and mapped the linearly related cipher state bits for all variants of Simon
using plaintexts prepared as described above. The rotations in Simon shift the words with a
constant number of positions, independent og the block size, so we can expect the number of
rounds needed to wipe out all linear relations between two instances to increase in the larger
variants. Figures for the larger Simon variants will not fit in the paper in a readable way, but
in Table 2 we report on the number of white, light grey, dark grey and black bits in the input
to each round for the different Simon variants.

3.3 Equation System Using Multiple (P,C)-Instances

We can make an equation system using as many (P,C)-instances as we like. For each new
instance added, we can trace the linear relations the new instance has to all previous instances.



Input to Round Simon32 Simon48 Simon64 Simon96 Simon128
0 (15,1,0,0) (23,1,0,0) (31,1,0,0) (47,1,0,0) (63,1,0,0)
1 (16,0,0,0) (24,0,0,0) (32,0,0,0) (48,0,0,0) (64,0,0,0)
2 (15,1,0,0) (23,1,0,0) (31,1,0,0) (47,1,0,0) (63,1,0,0)
3 (13,1,2,0) (21,1,2,0)) (29,1,2,0) (45,1,2,0) (61,1,2,0)
4 (10,1,2,3) (17,2,2,3) (25,2,2,3) (41,2,2,3) (57,2,2,3)
5 (6,1,2,7) (12,1,4,7) (20,1,4,7) (36,1,4,7) (52,1,4,7)
6 (2,1,2,11) (5,1,4,14) (12,1,4,15) (27,2,4,15) (43,2,4,15)
7 (0,0,2,14) (1,0,1,22) (6,0,2,24) (19,1,3,25) (35,1,3,25)
8 (0,0,0,16) (0,0,0,24) (2,0,0,30) (12,0,1,35) (27,1,1,35
9 (0,0,0,16) (0,0,0,24) (0,0,0,32) (6,0,0,42) (20,0,1,43)
10 (0,0,0,16) (0,0,0,24) (0,0,0,32) (2,0,0,46) (12,0,1,51)
11 (0,0,0,16) (0,0,0,24) (0,0,0,32) (0,0,0,48) (6,0,0,58)
12 (0,0,0,16) (0,0,0,24) (0,0,0,32) (0,0,0,48) (2,0,0,62)
13 (0,0,0,16) (0,0,0,24) (0,0,0,32) (0,0,0,48) (0,0,0,64)

Table 2: Numbers and types of linearly related bits in Simon using two chosen plaintexts. In
each 4-tuple the first entry is the number of equal linear combinations, the second entry is
the number of linear combinations only differing in the constant term, the third entry is the
number of linear combinations differing in more than only the constant term, and the fourth
entry is the number of non-linearly related bits.

We expect to add fewer and fewer variables (up to some limit) for each new instance added. The
number of equations we get from each new instance is initially n(r−2), but we can expect many
of the new equations to be expressible through equations from other instances and therefore
redundant. However, the variables for the user-selected key remains the same, so the degree
of overdefinedness in the total system will increase with the number of (P,C)-instances used.
This is also confirmed in the experiments reported in Section 4.

When exploiting the fact that many of the cipher state bits from different (P,C)-instances
are linearly related, the equations in the total system will be a lot more connected than if only
the variables for the key were common. In the next section we develop a very simple solving
algorithm that exploits the linear relations that have been shown to exist.

4 Simple Solving Algorithm and Experiments

By creating variables as described in Section 3.1 we can easily construct the basic equations
in one (P,C)-instance. It is also straight-forward to construct a system from multiple (P,C)-
instances by introducing new variables in each instance. Identifying and using all the linear
relations we know exist in the first rounds of the Simon ciphers are a bit more complicated.

4.1 Identifying Linear Relations

Assume we have constructed all basic equations (1) as described in Section 3.1, including the
use of Proposition 1, and say we used t chosen (P,C)-instances. Then we will get a system of
tn(r − 2) equations in tn(r − 4) + k variables.

The form of each equation is la · lb + xc = 0 for some linear combinations la and lb. If we
have two such equations

la · lb + xc = 0

ld · le + xf = 0



where either

deg(la + ld) = deg(lb + le) = 0 or deg(la + le) = deg(lb + ld) = 0 (2)

we know that adding the two equations together will yield a linear equation. This linear
equation can be used to eliminate one variable. We could use diagrams like those in Figure 3
to find exactly which pairs of equations that will yield linear relations when added together.
A simpler but more time consuming method is just to try adding all pairs of equations and
see which additions that become linear.

To get a fast check of whether two equations will give a linear relation we do not actually
multiply out the product la · lb in (1), but rather just check if condition (2) holds.

4.2 Solving Algorithm

After finding all linear relations in a set of equations representing Simon, we can use them
to eliminate variables. The whole process can then be repeated, to see if some other pairs of
equations will yield new linear equations after the first substitution of variables. The pseu-
docode for the whole algorithm is given in Algorithm 1, and is nothing more than a simplified
version of ElimLin [12].

Algorithm 1 Solving system of equations on the form la · lb + lc = 0.
repeat

for every pair of equations f, g do
if f + g is linear then

Eliminiate one variable from system
end if

end for
until No more linear equations found

The complexity of Algorithm 1 on a system with m equations in n variables can be esti-
mated as follows. The inner for-loop iterates

(
m
2

)
= O(m2) times. At least one variable has to

be eliminated from the system each time the for-loop is run, otherwise the algorithm stops. As
there are n variables in the system the for-loop can be run at most n times, so the worst-case
complexity for the whole algorithm is O(m2n).

At the beginning of the research for this paper, Algorithm 1 was only considered to be a
preprocessing step for the equation system before applying a more advanced solver. We were
a bit surprised to find that the algorithm actually solved systems, by eliminating all variables.
If we store all the linear equations used to eliminate variables we get a uniquely defined linear
system of equations, which is easily solved to give the variables for the user-selected key. We
have verified that the returned solution from the solver actually gives the correct key.

4.3 Experiments

We have investigated how often our algorithm is able to solve the various Simon systems,
using different number of rounds r and different numbers t of (P,C)-instances. The results are
reported in the tables below.

For each choice of r and t parameters we have generated 256 systems and tried to solve
them using Algorithm 1. The number of times we succeeded is indicated in each cell. For



r
t 4 5 6 8 10 12 16 20

7 0 0 0 0 37 42 44 198
8 0 68 109 164 250 251 252 254
9 26 213 240 253 256 255 256 256
10 0 2 152 255 255 255 255 256
11 0 0 0 0 0 3 35 50

Table 3: Number of times an equation sys-
tem representing Simon32/64 was solved
out of 256 tries.

r
t 4 5 6 8 10 12 16 20

8 6 159 185 231 255 256 256 256
9 74 229 247 256 256 256 256 256
10 0 44 231 256 256 256 256 256
11 0 0 0 0 1 27 220 250

Table 4: Number of times an equation sys-
tem representing Simon48/72 was solved
out of 256 tries.

r
t 4 5 6 8 10 12 16 20

8 0 7 20 54 211 226 242 256
9 1 115 177 229 255 256 256 256
10 5 135 242 256 256 256 256 256
11 0 0 38 253 256 256 256 256
12 0 0 0 0 5 137 255 256

Table 5: Number of times an equation sys-
tem representing Simon64/96 was solved
out of 256 tries.

r
t 4 5 6 8 10 12 16 20

9 8 165 222 248 256 256 256 256
10 2 89 234 253 256 256 256 256
11 0 5 66 231 256 256 256 256
12 0 1 23 143 233 248 256 255
13 0 0 0 82 189 233 251 255
14 0 0 0 0 2 62 225 250

Table 6: Number of times an equation sys-
tem representing Simon96/96 was solved
out of 256 tries.

each system, the P1-half of the plaintexts were chosen to be the bit string representing i, for
0 ≤ i ≤ t− 1. When t is less than 128 we know that the output of the AND-operation in the
first round will be 0 for all P1’s. An initial value v was chosen at random for the other half of
the plaintext, and the P0-values were given as v ⊕ (i << 2) for each of the t plaintexts. The
key was chosen at random for every system.

r
t 4 5 6 8 10 12 16 20

10 1 63 226 247 256 256 256 256
11 0 7 71 236 255 256 256 256
12 0 0 15 153 227 250 256 256
13 0 0 12 77 166 220 250 254
14 0 0 1 35 104 164 220 243
15 0 0 0 15 51 106 172 214
16 0 0 0 0 0 13 106 182

Table 7: Number of times an equation system representing Simon128/128 was solved out of
256 tries.

Attempts to solve systems representing more rounds than reported in the tables were
unsuccessful in the experiments.

When Algorithm 1 fails, we have tried to apply the CRHS method [13] for solving the
remaining system. This has only been successful in the smaller cases of Simon32/64 and
Simon48/72 in seven to nine round variants, using relatively few (i.e. three or four) plaintex-
t/ciphertext pairs. When Algorithm 1 stops without returning a solution we are left with a
non-linear equation systems containing several thousand variables in the larger cases. These
systems were too big to handle for the CRHS method on an ordinary computer.



It is still possible that deeper insight into the particular equations for Simon systems may
give a better solving algorithm for these special systems. This could be a topic for future work.

5 Conclusions

Simon’s resistance against differential and linear cryptanalysis has been thoroughly investi-
gated in [2,3,4]. In this paper we have looked at Simon’s resistance against algebraic attacks,
contributing to the cryptanalysis of the Simon family of ciphers.

We have traced how two (P,C)-instances of Simon, differing in a single bit in the plain-
texts, remain related through the first rounds of the cipher. Two instances of Simon32/64
are still linearly connected in two bits in the input of the eighth round, and two instances of
Simon128/128 are linearly related up to and including the thirteenth round. Using these rela-
tion mappings one can reduce the number of variables a lot when creating equation systems
representing Simon.

We developed a simple solving algorithm that exploits the many linear relations found in
Simon. Using several chosen plaintexts, we tested how many rounds of Simon that could be
broken with this method. The experiments verified the findings of Section 3, in that we always
could solve a few more rounds of Simon after the linear relations from the plaintext side had
completely disappeared. It is unusual that one can solve an equation system representing 16
rounds of a real cipher with 128-bit block and key sizes. Even though the largest systems tested
initially contained 15488 variables, and 4839 variables after the first iteration of finding linearly
related cipher state bits, they could be solved in three and a half minutes on a MacBook Air
2013.

To compensate for its very lightweight structure, the Simon ciphers have rather many
rounds. The attack reported here does not threaten the security of Simon, but it is nevertheless
interesting to see that large non-linear equation systems representing some cipher can still be
efficiently solved when the cipher has very simple operations.

References

1. R. Beaulieu, D.Shors, J. Smith, S. Treatman-Clark, B. Weeks, L. Wingers. The SIMON and
SPECK Families of Lightweight Block Ciphers, Cryptology ePrint Archive, Report 2013/404, 2013.
http://eprint.iacr.org/2013/404.

2. A. Biryukov, A. Roy, V. Velichkov. Differential Analysis of Block Ciphers SIMON and SPECK, Fast
Software Encryption 2014, LNCS 8540, pp. 546 – 570, Springer, 2014.

3. F. Abed, E. List, S. Lucks, J. Wenzel. Differential Cryptanalysis of Round-Reduced Simon and Speck, Fast
Software Encryption 2014, LNCS 8540, pp. 525 – 545, Springer, 2014.

4. Q. Wang, Z. Liu, K. Varici, Y. Sasaki, V. Rijmen, Y. Todo. Cryptanalysis of Reduced-round SIMON32 and
SIMON48, INDOCRYPT 2014, LNCS 8885, pp. 143 – 160, Springer, 2014.

5. H. A. Alkhzaimi, M. M. Lauridsen. Cryptanalysis of the SIMON Family of Block Ciphers, Cryptology
ePrint Archive, Report 2013/543, 2013. http://eprint.iacr.org/2013/543.

6. J. Alizadeh, N. Bagheri, P. Gauravaram, A. Kumar, S. K. Sanadhya. Linear Cryptanalysis of Round
Reduced SIMON, Cryptology ePrint Archive, Report 2013/663, 2013. http://eprint.iacr.org/2013/663.

7. N. Wang, X. Wang, K. Jia, J. Zhao. Improved Differential Attacks on Reduced SIMON Versions, Cryptology
ePrint Archive, Report 2014/448, 2014. http://eprint.iacr.org/2014/448.

8. J. Alizadeh, H. A. Alkhazaimi, M. R. Aref, N. Bagheri, P. Gauravaram, M. M. Lauridsen. Improved
Linear Cryptanalysis of Round Reduced SIMON, Cryptology ePrint Archive, Report 2014/681, 2014.
http://eprint.iacr.org/2014/681.

9. D. Shi, L. Hu, S. Sun, L. Song, K. Qiao, X. Ma. Improved Linear (hull) Cryptanalysis of Round-reduced
Versions of SIMON, Cryptology ePrint Archive, Report 2014/973, 2014. http://eprint.iacr.org/2014/973.

h
h
h
h
h
h


10. Z. Ahmadian, S. Rasoolzadeh, M. Salmasizadeh, M. R. Aref. Automated Dynamic Cube Attack on Block
Ciphers: Cryptanalysis of SIMON and KATAN, Cryptology ePrint Archive, Report 2015/040, 2015.
http://eprint.iacr.org/2015/040.

11. S. Kölbl, G. Leander, T. Tiessen. Observations on the SIMON block cipher family, Cryptology ePrint
Archive, Report 2015/145, 2015. http://eprint.iacr.org/2015/145.

12. N. Courtois, G.V. Bard. Algebraic Cryptanalysis of the Data Encryption Standard, IMA International
Conference, volume 4887, pp. 152 – 169, Springer, 2007.

13. T. E. Schilling, H. Raddum. Solving Compressed Right Hand Side Equation Systems with Linear Absorp-
tion, Sequences and Their Applications - SETA 2012, LNCS 7280, pp. 291 – 302, Springer, 2012.

h
h

	Algebraic Analysis of the Simon Block Cipher Family
	Håvard Raddum

