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Abstract. The widespread applicability of the multi-penalty regularization is limited by the
fact that theoretically optimal rate of reconstruction for a given problem can be realized by a one-
parameter counterpart, provided that relevant information on the problem is available and taken into
account in the regularization. In this paper, we explore the situation, where no such information is
given, but still accuracy of optimal order can be guaranteed by employing multi-penalty regulariza-
tion. Our focus is on the analysis and the justification of an a posteriori parameter choice rule for
such a regularization scheme. First we present a modified version of the discrepancy principle within
the multi-penalty regularization framework. As a consequence we provide a theoretical justification
to the multi-penalty regularization scheme equipped with the a posteriori parameter choice rule. We
then establish a fast numerical realization of the proposed discrepancy principle based on a model
function approximation. Finally, we provide extensive numerical results which confirm and support
the theoretical estimates and illustrate the robustness and the superiority of the proposed scheme
compared to the “classical” regularization methods.
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1. Introduction. In recent years there has been a fast growing interest in study-
ing multi-penalty regularization for solving inverse and ill-posed problems. In several
inspiring applications such as image reconstruction, option pricing [7, 19], reconstruc-
tion of the Earth gravity potential [30, 2], multi-penalty regularization schemes have
been successfully applied. Moreover, relevant theoretical results appeared in a few pa-
pers (see, for instance, [3, 4, 5, 9, 11, 17, 26]). However, apart from recent promising
results the widespread applicability of the multi-penalty regularization has remained
questionable due to the fact that the theoretically optimal rate of reconstruction for a
given problem can be realized by a one-parameter counterpart. One-parameter regu-
larization is well-developed and proves to be particularly simple and effective, though
only in the case when relevant information on a solution is provided. Precisely, in this
case, the theory of inverse and ill-posed problems provides us with a concrete recipe
how to measure the accuracy of the reconstruction.

It is well-known that the reconstruction accuracy depends on a noise model and on
the smoothness of the solution. On the one hand, the noise model is provided together
with the given data and cannot be changed. On the other hand, the smoothness can
be measured in various spaces (see, for instance, [20]), and depending on this, different
bounds on the best possible approximation can be derived. Once this space is fixed,
the general regularization theory provides us with the best possible error bound that
can be achieved if the regularization is performed in the chosen space. Moreover,
the theory promises us that this bound can be achieved in the framework of the
one-parameter regularization [8, 16].

However, one principal problem is left untouched: Who is going to tell us in which
space we need to measure the smoothness of the unknown solution? Apparently,
this principal question started to be discussed only recently and have not yet been
systematically explored in regularization theory.

Differently from the “classical” works on regularization theory, we continue to
investigate in this paper multi-penalty regularization, where one is given the freedom
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of performing the regularization in several spaces simultaneously with the goal of
possibly achieving a better accuracy than given by an a priori fixed one-parameter
counterpart. Definitely one of the leading ingredients for the optimal performance
of multi-penalty regularization is an appropriate (a posteriori) choice of the multiple
regularization parameters. This issue has been essentially studied in the framework of
multi-parameter regularization in the papers [3, 11, 17, 12]. However, as will be seen
later, the theory developed in [11, 17] is not sufficient for multi-penalty regularization
and need to be extended. The conceptually closest work [26] considers a heuristic
parameter choice rule strategy, though it does not provide any theoretical justification.
In this paper we will combine theoretical and heuristic concepts of the parameter
choice strategies to justify the optimality of multi-penalty regularization equipped
with an a posteriori parameter choice rule.

The rest of the paper is organized as follows: Section 2 is devoted to studying
a multi-parameter discrepancy principle, the so-called discrepancy domain principle,
as a parameter choice rule for multi-penalty regularization. We show that there exist
many combinations of the regularization parameters satisfying the discrepancy prin-
ciple which corresponds to a reconstruction accuracy of the optimal order. While
the estimation of the discrepancy requires the computation of a solution relative to
each pair of parameters, which can be a demanding task, in Section 3 we replace the
exact discrepancy by a locally approximating surrogate function of the parameters.
We show that the proposed model function approximation of the discrepancy domain
leads to an efficient iterative algorithm for choosing the regularization parameters.
The paper is concluded by extensive numerical experiments involving toy and sim-
ulated problems which clearly demonstrate that the proposed scheme allows us to
achieve better results than the corresponding one-parameter competitor. Addition-
ally, we demonstrate how the model function approximations can be profitably use
to find a domain of the regularization parameters, which lead to the optimal order of
the reconstruction accuracy.

2. Preliminaries. As mentioned previously, we are in particular interested in
the solution of a linear ill-posed problem

(2.1) Ax = y

where A : X → Y is a bounded linear operator between Hilbert spaces X and Y with
a non-closed range R(A). We denote the inner product and the corresponding norm
on the Hilbert spaces by 〈·, ·〉 and ‖ · ‖ respectively. In the sequel, we assume that the
operator A is injective and y belongs to R(A) such that there exists a unique solution
x† ∈ X of the equation (2.1). In general, the observed data is additionally corrupted
by noise ξ

(2.2) yδ = Ax† + ξ,

where ξ ∈ Y, ‖ξ‖ ≤ δ, δ ∈ (0, 1). Due to non-closedness of R(A), the solution x† does
not depend continuously on data and can be reconstructed in a stable way from yδ
only by means of a regularization method [8].

A well-known technique to stabilize an ill-posed problem is by Tikhonov-Phillips
(TP) regularization, i.e., by minimizing the functional

(2.3) TP (α;x) = ‖Ax− yδ‖2Y + α‖x‖2X .
The minimization has a unique solution

(2.4) xδα = xδα(yδ) = (αI +A∗A)−1A∗yδ



Parameter Choice Strategies for Multi-Penalty Regularization 3

with α > 0 being the regularization parameter and I is the identity operator.
Let us shortly recall that the accuracy of the reconstruction depends both on the

noise model and on the smoothness of the solution. For regularization methods as
(2.3) of the operator equation (2.1) in Hilbert spaces, the smoothness of x† is usually
expressed in the form of the inclusion

(2.5) x† ∈ Aϕ(R) := {x ∈ X : x = ϕ(A∗A)g, ‖g‖X ≤ R},

where ϕ : [0, ‖A‖2] → [0, 1], ϕ(0) = 0, is called an index function which is assumed
to be continuous, increasing, and such that t

ϕ(t) is nondecreasing. Note that the

condition of the type (2.5) is usually called the source condition (see, [21, 20], for
instance). Then the order of the best possible accuracy, which can be guaranteed
within the framework of the given noise model for xδα, is given as

inf
α

sup
x†∈Aϕ(R)

sup
yδ

‖x† − xδα(yδ)‖X = O(ϕ(θ−1
ϕ (δ))),

where θϕ(t) = ϕ(t)
√
t and ϕ2((θ2ϕ)

−1(t)) is assumed to be concave. This order is

attainable at α = θ−1
ϕ (δ). Since ϕ(t) = ct is the best index function for which t

ϕ(t)

is nondecreasing, the best guaranteed error for Tikhonov-Phillips regularization is
known to be O(δ2/3), regardless of the smoothness of the solution x†.

On the other hand, this order can be potentially improved if one employs the
original idea of Tikhonov [27] and changes the form of the penalty term in (2.3),
namely instead of the identity operator I within the penalty term, an unbounded
self-adjoint strictly positive operator B on the Hilbert space X is considered. In this
case, the regularized solution xδβ,B is defined as the minimizer of the functional

(2.6) T (β;x) = ‖Ax− yδ‖2Y + β‖Bx‖2X ,

over the domain D(B) of the operator B. In the classical work of Tikhonov [27],
the operator B is given as a square root of the self-adjoint second order differential
operator.

However, the superiority of the latter regularization scheme over (2.3) has been
theoretically justified only under the assumption that the operators A and B are
related by the so-called link condition for which

(2.7) ‖B−sx‖ ≤ ‖Ax‖ ≤ b‖B−sx‖, for all x ∈ X,

where s > 0 and b ≥ 1 are some constants. Then Natterer [25] has shown that the

regularized solutions xδβ,B converge towards the exact solution with the rate O(δ
p

p+s )
in the norm of X, if the regularization parameter β is chosen properly and if the
exact solution x† satisfies an analog of the source condition formulated in terms of
the operator B as follows

(2.8) x† ∈ D(Bp) = {x : x = B−pg, ‖g‖X ≤ R}, p > 0.

It is easily seen that under assumptions (2.7), (2.8), and p > 2s the best guaran-
teed error for Tikhonov regularization is better than the one guaranteed for Tikhonov-
Phillips regularization.

However, the efficiency of Tikhonov regularization is limited by a serious bot-
tleneck. Precisely, the theoretical superiority of xδβ,B is justified only under the link
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condition (2.7), which is sometimes hardly verifiable. At the same time, when the
link condition is violated Tikhonov regularization may perform poorly as it will be
shown in the last section.

Since in reality we do not know the smoothness of x†, it is not clear which of the
source conditions should be taken into account in the regularization and which of the
one-parameter regularization methods is more suitable for a problem at hand. In the
spirit of DeVore [6], we require the blindness of the algorithms with respect to the
conditions (of smoothness) on the solution (which is unknown!) for achieving optimal
approximation.

In the recent paper [26] a new multi-penalty regularization scheme as an addresser
of the above-mentioned problematic issue has been introduced. In this scheme one
considers the multi-objective optimization of a functional of the form

(2.9) Φ(α, β;u, v) := ‖A(u+ v)− yδ‖2Y + α‖u‖2X + β‖Bv‖2X .

The minimizers uδα,β and vδα,β of (2.9) have the representation

uδα,β = (αI +A∗A)−1(A∗yδ −A∗Avδα,β),(2.10)

vδα,β = α(βB2 + αA∗A(αI +A∗A)−1)−1(αI +A∗A)−1A∗yδ,(2.11)

and a reconstruction of the solution of interest xδα,β is calculated then as the sum
of these minimizers. For the sake of completeness, we recall the theorem from [26],
which shows the compensatory properties of multi-penalty regularization, in the sense
that it performs similar to the best of the single-parameter regularization with the
corresponding penalizing operator, either I or B.

Theorem 2.1.

(1) Assume that the link condition (2.7) is satisfied. Then for α > 1 there is
β = β(α, δ, yδ) such that xδα,β = uδα,β + vδα,β approximates x† with the best
order of accuracy guaranteed by Tikhonov method.

(2) Assume that the link condition (2.7) is violated. Then for β > 1 there is
α = α(β, δ, yδ) such that xδα,β = uδα,β + vδα,β approximates x† with the best
order of accuracy guaranteed by Tikhonov-Phillips method.

3. Discrepancy Domain Principle. In order to provide a practical and theo-
retically justified rule for the choice of optimal parameters as claimed in Theorem 2.1,
we need here to extend the well-known theory of regularization for single parameter
to multi-penalty regularization. Recall that for the single-parameter regularization
schemes, such as (2.3)–(2.4) or (2.6), for example, the discrepancy principle [23]

αDP = max{α : ‖Ax− yδ‖ ≤ cδ}, c > 1, with x = xδα or x = xδβ,B,

is theoretically justified to be an order-optimal parameter choice rule under the con-

ditions that in (2.5) the function ϕ is such that
√
t

ϕ(t) is nondecreasing, or (2.7), (2.8)

hold with p ≤ s+ 2.
Here we consider an extension of the classical discrepancy principle and look for

a parameter set (α, β) satisfying the so-called discrepancy domain principle, i.e.,

(3.1) (α, β) ∈ D(δ) = {(α, β) : δ < ‖A(uδα,β + vδα,β)− yδ‖ ≤ cδ}, c > 1.

Here and below we will follow the convention that the symbol c denotes a quantity
that does not depend on α, β, δ and needs not be the same at different occurrences.
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For technical reasons, in the following proofs we shall mainly consider the dis-
crepancy domain principle to be given in terms of the equality, namely

(3.2) ‖A(uδα,β + vδα,β)− yδ‖ = cδ, c > 1,

whereas in the numerical experiments we follow (3.1).

3.1. Error bound under satisfied link condition. We begin with the case
where the link condition is satisfied. The following theorem shows that multi-penalty
regularization equipped with the a posteriori parameter choice rule allows to achieve
the best order of accuracy guaranteed by Tikhonov regularization.

Theorem 3.1. Let the link condition (2.7) be satisfied with s > 1, and x† ∈
D(Bp), p ∈ [1, s + 2]. Then for any (α, β) ∈ D(δ) such that α > 1, we have an
order-optimal error bound

(3.3) ‖x† − (uδα,β + vδα,β)‖ = O(δ
p

p+s ),

where the coefficient implicit in O−symbol depends only on ‖Bpx†‖ and ‖A‖.
Before providing the proof we need to recall the notion of a Hilbert scale {Xk}

induced by the operator B, where Xk is the completion of D(Bk) with respect to the
Hilbert space norm ‖x‖k = ‖Bkx‖.

Proof. The difference between the exact solution x† and its approximation given
by multi-penalty regularization can be bounded as

(3.4) ‖x† − (uδα,β + vδα,β)‖ ≤ ‖x† − vδα,β‖+ ‖uδα,β‖.

Keeping in mind that yδ = Ax† + ξ and α > 1 we can deduce from (2.10) that

‖uδα,β‖ ≤ ‖(αI+A∗A)−1A∗A(x† − vδα,β)‖ + ‖(αI+A∗A)−1A∗ξ‖

≤ ‖x† − vδα,β‖+
δ

2
√
α

≤ ‖x† − vδα,β‖+
δ

2
.

Hence, it is sufficient to estimate ‖x† − vδα,β‖. Assume that (α, β) is a set of

positive parameters satisfying the discrepancy domain principle and uδα,β, v
δ
α,β are

the solutions corresponding to (α, β). Taking into account that uδα,β, v
δ
α,β are the

minimizers of the functional (2.9), we have

‖A(uδα,β + vδα,β)− yδ‖2 + α‖uδα,β‖2 + β‖Bvδα,β‖2 ≤ ‖Ax† − yδ‖2 + β‖Bx†‖2

≤ δ2 + β‖Bx†‖2.

Since the discrepancy domain principle is satisfied, with (3.2) as a defining con-
dition, this inequality yields

c2δ2 + α‖uδα,β‖2 + β‖Bvδα,β‖2 ≤ δ2 + β‖Bx†‖2.

Keeping in mind that β > 0 and c ≥ 1, we can conclude that ‖Bvδα,β‖ ≤ ‖Bx†‖ and

‖Bvδα,β −Bx†‖2 = 〈Bvδα,β , Bvδα,β〉 − 2〈Bvδα,β , Bx†〉+ 〈Bx†, Bx†〉
≤ 2〈Bx†, Bx†〉 − 2〈Bvδα,β , Bx†〉
= 2〈Bx† −Bvδα,β , Bx

†〉 = 2〈B2(x† − vδα,β), x
†〉

= 2〈B2−p(x† − vδα,β), B
px†〉 ≤ 2R‖B2−p(x† − vδα,β)‖.
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In terms of the Hilbert scales the latter inequality can be rewritten as

‖x† − vδα,β‖21 ≤ 2R‖x† − vδα,β‖2−p.

The rest of the proof is based on the interpolation inequality

(3.5) ‖x‖r ≤ ‖x‖(a−r)/(s+a)−s ‖x‖(s+r)/(s+a)a

which holds for all r ∈ [−s, a], a+ s 6= 0.
Taking r = 2− p and a = 1 we can continue as follows

‖x† − vδα,β‖21 ≤ 2R‖x†− vδα,β‖2−p ≤ 2R‖x†− vδα,β‖
(2+s−p)/(s+1)
1 ‖x† − vδα,β‖

(p−1)/(s+1)
−s ,

which is the same as

‖x† − vδα,β‖1 ≤ (2R)(s+1)/(s+p)‖x† − vδα,β‖
(p−1)/(s+p)
−s .

Observe now that from (2.10) and (3.2) it follows that for α > 1 we have

cδ = ‖A(uδα,β + vδα,β)− yδ‖ = ‖Avδα,β − yδ +A(αI+ A∗A)−1(A∗yδ −A∗Avδα,β)‖
= ‖(I−A(αI +A∗A)−1A∗)(Avδα,β − yδ)‖ ≥ (1 + ‖A‖2)−1‖Avδα,β − yδ‖.(3.6)

Using this bound and the link condition (2.7) we get

‖x† − vδα,β‖−s ≤ ‖Ax† −Avδα,β‖ ≤ (‖y − yδ‖+ ‖yδ −Avδα,β‖)
≤ δ(1 + c(1 + ‖A‖2)).

Then we obtain

‖x† − vδα,β‖1 ≤ (2R)(s+1)/(s+p)
(

1 + c(1 + ‖A‖2)
)(p−1)/(s+p)

δ(p−1)/(s+p).

Using again interpolation inequality (3.5) with r = 0 and a = 1, we finally receive the
statement of the theorem

‖x† − vδα,β‖0 ≤ ‖x† − vδα,β‖
s/(s+1)
1 ‖x† − vδα,β‖

1/(s+1)
−s

≤ (2R)s/(s+p)
(

1 + c(1 + ‖A‖2)
)p/(s+p)

δp/(s+p).(3.7)

The fact that for x† ∈ D(Bp) the order of accuracy O(δ
p

s+p ) cannot be in general
improved follows, for example, from [24].

Remark 3.2. Actually, one can choose α > α0 > 0 changing the lower bound in
(3.6) and eventually the constant in (3.7). However, the larger α0 is the better and
just to fix a bound we choose α0 ≡ 1.

3.2. Error bound under violated link condition. Now, assuming that the
link condition is violated, we will show that the best order of accuracy guaranteed by
Tikhonov-Phillips regularization is achieved by multi-penalty regularization equipped
with the a posteriori parameter choice rule.

Theorem 3.3. Let (2.5) be satisfied. Then, for any (α, β) ∈ D(δ) such that
β > ‖B−2‖max{‖A‖, ‖A‖2}, we have an order-optimal error bound

(3.8) ‖x† − (uδα,β + vδα,β)‖ = O(ϕ(θ−1
ϕ (δ))),
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where
√
t

ϕ(t) is a nondecreasing function and θϕ(t) = ϕ(t)
√
t.

Proof. From (2.10), (2.11) we get

βB2vδα,β = A∗(yδ −A(vδα,β + uδα,β)).

Due to our choice of β (β > ‖B−2‖‖A‖), it gives us the following bound

‖vδα,β‖ ≤ ‖yδ −A(vδα,β + uδα,β)‖ ≤ cδ.

Moreover, using the notation xδα = (αI+A∗A)−1A∗yδ and (2.10) we can rewrite

uδα,β = xδα − (αI+A∗A)−1A∗Avδα,β .

In view of the discrepancy domain principle it holds

cδ = ‖A(uδα,β + vδα,β)− yδ‖
= ‖Axδα − yδ +Avδα,β −A(αI +A∗A)−1A∗Avδα,β‖
≥ ‖Axδα − yδ‖ − ‖A‖‖vδα,β‖,

which is the same as

‖Axδα − yδ‖ ≤ cδ + ‖A‖‖vδα,β‖

≤ cδ +
1

β
‖B−2‖‖A‖2‖yδ −A(uδα,β + vδα,β)‖

≤ ĉδ.

Thus, if there are sets (α, β) that belong to the discrepancy domain and such
that β is sufficiently large (β > ‖B−2‖‖A‖2)) then Tikhonov-Phillips regularization
xδα with the same α as in the pair (α, β) meets the discrepancy principle with a

constant ĉ > 1. Then from [22] it follows that for x† = ϕ(A∗A)g such that
√
t

ϕ(t) is a

nondecreasing function, we have

‖x† − xδα‖ ≤ c1ϕ(θ
−1
ϕ (δ)),

where the constant c1 does not depend on δ and the order O(ϕ(θ−1
ϕ (δ))) cannot be

improved in general.
Therefore, for (α, β) meeting the discrepancy principle with a sufficiently large β

we have

‖x† − uδα,β − vδα,β‖ ≤ ‖x† − xδα + (αI +A∗A)−1A∗Avδα,β − vδα,β‖
≤ ‖x† − xδα‖+ α‖(αI+A∗A)−1‖‖vδα,β‖
≤ c1ϕ(θ

−1
ϕ (δ)) + cδ ≤ (c1 + c)ϕ(θ−1

ϕ (δ)),

and the order O(ϕ(θ−1
ϕ (δ))) cannot be in general improved.

Remark 3.4. In the context of Theorem 3.1 and Theorem 3.3 one still needs
to decide which of the parameters α, β should be taken large enough. If such a
decision is made then the theorems guarantee the optimal order of accuracy provided
that another parameter has been chosen such that (α, β) ∈ D(δ). In Section 5.1 we
propose to address the issue about the choice of the larger parameter by combining the
discrepancy domain principle with the heuristic quasi-optimality criterion.
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4. Model function approximation for the discrepancy domain principle.

In the present section we discuss a numerical realization of the discrepancy domain
principle based on the model function approximation [13, 15, 29, 17, 18].

For the standard one-parameter Tikhonov-Phillips method it has been proposed in
[13, 15, 29] to implement the discrepancy principle by approximating the discrepancy
‖Axδα−yδ‖ locally by means of some simple model function m(α) of the parameter α.
Then the underlying concept has been extended to the multi-parameter regularization.
We may refer to [17, 18] for more details on this issue.

However, let us shortly mention that the existing approaches to the construction of
a model function presuppose that values of the regularization parameters are smaller
than 1. Therefore, they cannot be directly used in our case, since, as can be seen
from the above theorems, the order-optimality is achieved under the assumption that
(α, β) ∈ D(δ) and one of the parameters is sufficiently large. This forces us to
consider a special form of the model function which allows for an approximation of
the corresponding regions of the parameters, and which is able to satisfy the specifics
of the presented multi-penalty scheme. For the subsequent analysis we need the
following proposition which can be proven similarly to [15].

Proposition 4.1. The minimizers uδα,β, v
δ
α,β are differentiable as functions of

α, β > 0.
Now let F (α, β) denotes the minimal value of the functional (2.9) for given α, β >

0, i.e., F (α, β) := Φ(α, β;uδα,β , v
δ
α,β). The partial derivatives of the corresponding

function are derived in the following lemma.
Lemma 4.2. The first order partial derivatives of F (α, β) are given by

∂F

∂α
(α, β) = ‖uδα,β‖2,

∂F

∂β
(α, β) = ‖Bvδα,β‖2.

Proof. First it is useful to observe that for any function f of the form f(t) =
‖Qxt − g‖2 its derivative can be represented as

df

dt
= 2〈Qxt − g,Qx′t〉,

where x′t is the derivative of xt as a function of the index t.
Using this observation, we have

∂F

∂α
(α, β) = 2〈A(uδα,β + vδα,β)− yδ, A(u

δ
α,β + vδα,β)

′
α〉+ 2α〈uδα,β, (uδα,β)′α〉

+ ‖uδα,β‖2 + 2β〈Bvδα,β , B(vδα,β)
′
α〉

= ‖uδα,β‖2 + 2〈A∗A(uδα,β + vδα,β)−A∗yδ + αuδα,β, (u
δ
α,β)

′
α〉

+ 2〈A∗A(uδα,β + vδα,β)−A∗yδ + βB2vδα,β , (v
δ
α,β)

′
α〉.

Observe also that (2.10), (2.11) can be rewritten in the variational form as

(4.1)

{ 〈A(uδα,β + vδα,β), Ag〉+ α〈uδα,β , g〉 = 〈yδ, Ag〉
〈A(uδα,β + vδα,β), Ag〉+ β〈B2vδα,β , g〉 = 〈yδ, Ag〉,

for all g ∈ X.
Then, by taking g = (uδα,β)

′
α in the first equation and g = (vδα,β)

′
α in the second

one of (4.1) and plugging them in the above representation for ∂F
∂α (α, β), we get that

∂F
∂α (α, β) = ‖uδα,β‖2.
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Analogously, one can derive the representation for ∂F
∂β (α, β).

By definition (2.9) and Lemma 4.2, we can rewrite (3.2) for (α, β) ∈ D(δ) as

(4.2) F (α, β) − α
∂F

∂α
− β

∂F

∂β
= c2δ2.

Note that by taking g = uδα,β in the first equation, and g = vδα,β in the second
equation of (4.1) and summing them up, we obtain

α‖uδα,β‖2 + β‖Bvδα,β‖2 + ‖A(uδα,β + vδα,β)‖2 = 〈yδ, A(uδα,β + vδα,β)〉.

Then, using this equality, we can derive

F (α, β) = ‖A(uδα,β + vδα,β)− yδ‖2 + α‖uδα,β‖2 + β‖Bvδα,β‖2

= ‖A(uδα,β + vδα,β)‖2 − 2〈A(uδα,β + vδα,β), yδ〉+ ‖yδ‖2 + α‖uδα,β‖2 + β‖Bvδα,β‖2

= ‖yδ‖2 − ‖A(uδα,β + vδα,β)‖2 − α‖uδα,β‖2 − β‖Bvδα,β‖2.(4.3)

In the following, we discuss how one can construct a simple parameterized func-
tion, the so-called model function m(α, β), which preserves the main properties of the
function F (α, β). To this end, we first derive a new form of the model function which
provides an approximation taking into account our specific interest in the parameter
choice. Then we present necessary specifications for each of the two cases, when either
α or β is sufficiently large.

4.1. Model function construction. In the following, we make the technical
assumption that

‖yδ‖2 − ‖A(uδα,β + vδα,β)‖2 = C1δ
2.

This assumption can be rigorously justified in the regime of δ ∈ (δ0, 1), where δ0 ≈
0, δ0 > 0. In fact, one can find a positive number C = C(δ0) such that

‖yδ‖2 − ‖A(uδα,β + vδα,β)‖2 ≤ C(δ0)(‖yδ‖ − ‖A(uδα,β + vδα,β)‖)2

≤ C(δ0)‖yδ −A(uδα,β + vδα,β)‖2

≤ C(δ0)cδ
2.

Thus, our technical assumption holds true with C1 = C(δ0)c. Then we get the ap-
proximate formula

F (α, β) ≈ C1δ
2 − α

∂F

∂α
(α, β)− β

∂F

∂β
(α, β).

Now we want to derive a surrogate function m(α, β) for which the above formula
is exact such that we define

m(α, β) = C1δ
2 − α

∂m

∂α
(α, β)− β

∂m

∂β
(α, β).

Solving this partial differential equation we obtain a parametric family of the
solutions

(4.4) m(α, β) = C1δ
2 +

C2

α
+
C3

β
+

C4√
αβ

,
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where C1, C2, C3, C4 are constants to be determined. We refer to the function (4.4)
as the four-parameter model function.

We want to realize an approximate solution to (3.2) by an iterative procedure,
which, using the model functions of the form (4.4), produces sequences {βk(α)}, k =
1, 2, . . . , with the fixed α = α∗ > 1 and {αk(β)}, k = 1, 2, . . . , with β = β∗ > 1.

To this end, we assume that α = α∗, β = βk(α
∗), or β = β∗, α = αk(β

∗), have
been already found, and the minimizers uδα,β, v

δ
α,β are given by the formulae (2.10),

(2.11) for these values of the parameters. Then we determine C1, . . . , C4 in such a
way that the corresponding function (4.4) interpolates the function F (α, β) and its
first order partial derivatives, as well as the mixed derivative at the given point (α, β).
Then, it means that the parameters C1, . . . , C4 should solve the system

(4.5)



























m(α, β) = C1δ
2 + C2

α + C3

β + C4√
αβ

= F (α, β),
∂m
∂β (α, β) = −C3

β2 − 1
2

C4√
αβ3

= ∂F
∂β (α, β) = ‖Bvδα,β‖2,

∂m
∂α (α, β) = −C2

α2 − 1
2

C4√
α3β

= ∂F
∂α (α, β) = ‖uδα,β‖2,

∂2m
∂α∂β (α, β) = 1

4
C4√
α3β3

= ∂2F
∂α∂β (α, β) = 2〈uδα,β,

∂uδ
α,β

∂β (α, β)〉.

For clarity, below we derive the formula for the calculation of
∂uδ

α,β

∂β . By (2.10) we
have that

∂uδα,β
∂β

= −(αI+A∗A)−1A∗A
∂vδα,β
∂β

.

At first observe that the derivative of functions of the form z(β) = (βB2 + C)−1g is
given by

dz

dβ
= −(βB2 + C)−1B2(βB2 + C)−1g.

Then, using this fact, we can easily deduce that
(4.6)
∂vδα,β
∂β

= −α(βB2+αA∗A(αI+A∗A)−1)−1B2(βB2+αA∗A(αI+A∗A)−1)−1(αI+A∗A)−1A∗yδ.

Combining (4.6) with (4.5) and solving the above system of equations, we finally
derive the formulae for the unknown coefficients at any point (α, β) ∈ D(δ) :
(4.7)






























C1(α, β) = (‖yδ‖2 − ‖A(uδα,β + vδα,β)‖2)/δ2,
C2(α, β) = −α2‖uδα,β‖2 − 1

2C4

√

α
β ,

C3(α, β) = −β2‖Bvδα,β‖2 − 1
2C4

√

β
α ,

C4(α, β) = 8
√

α5β3〈uδα,β, (αI+A∗A)−1A∗A(βB2 + αA∗A(αI+A∗A)−1)−1B2×
×(βB2 + αA∗A(αI+A∗A)−1)−1(αI+A∗A)−1A∗yδ〉.

Then the model function (4.4) with the obtained coefficients (4.7) is used to find
an updated value of the regularization parameter β = βk+1 = βk+1(α

∗), α∗ > 1, i.e.,
by solving in β the equation

m(α∗, β)− α∗ ∂m

∂α
(α∗, β)− β

∂m

∂β
(α∗, β) = c2δ2,
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which corresponds to the model function approximation of the discrepancy principle
(4.2). It is easy to see that this equation is equivalent to a quadratic equation, and
its solutions β = βk+1, if they exist, are given as

(4.8) βk+1 = β1,2
k+1 =

16C2
3

(

− 2C4√
α
±
√

4C2
4

α − 8C3(
2C2

α + (C1 − c2)δ2)

)2 .

Following a similar path, we can update the value of the regularization parameter
α = αk+1 = αk+1(β

∗), β∗ > 1, by solving w.r.t. α the equation of the approximate
discrepancy principle

m(α, β∗)− α
∂m

∂α
(α, β∗)− β∗ ∂m

∂β
(α, β∗) = c2δ2,

whose solutions are given as

(4.9) αk+1 = α1,2
k+1 =

16C2
2

(

− 2C4√
β
±
√

4C2
4

β − 8C2(
2C3

β + (C1 − c2)δ2)

)2 .

Finally, we can formulate a parallel iterative algorithm based on the model func-
tion approximation in the form of an alternating procedure as follows:
Step 0. Given δ, c, yδ, A, and α0, β0 : (α0, β0) 6∈ D(δ), set k = 0.
Step 1. (1) Fix α∗ > 1 and calculate xδα∗,βk

= uδα∗,βk
+ vδα∗,βk

; calculate the coeffi-
cients C1(α

∗, βk), C2(α
∗, βk), C3(α

∗, βk), and C4(α
∗, βk) in accordance

with (4.7), where α = α∗, β = βk; update β = βk+1 in accordance with
(4.8), where we choose among β1,2

k+1 the one that belongs to (0, 1).

(2) Calculate xδα∗,βk+1
by solving (2.10) and (2.11) with α = α∗ and β =

βk+1.
(3) GO to Step 2 if the stopping criteria ‖Axδα∗,βk+1

− yδ‖ ≤ cδ is satisfied;

otherwise set k = k + 1, GOTO (1).
Step 2. (1) Fix β∗ > 1 and calculate xδαk,β∗ = uδαk,β∗ + vδαk,β∗ ; calculate the coeffi-

cients C1(αk, β
∗), C2(αk, β

∗), C3(αk, β
∗), and C4(αk, β

∗) in accordance
with (4.7), where α = αk, β = β∗; update α = αk+1 in accordance with
(4.9), where we choose among α1,2

k+1 the one that belongs to (0, 1).

(2) Calculate xδαk+1,β∗ by solving (2.10) and (2.11) with α = αk+1 and
β = β∗.

(3) STOP if the stopping criteria ‖Axδαk+1,β∗ − yδ‖ ≤ cδ is satisfied; other-

wise set k = k + 1, GOTO (1).
Remark 4.3. Note that because the definitions of βk+1 (4.8) and αk+1 (4.9)

involve the solution of the quadratic equations at each iteration, it may not always be
straightforward to pick βk+1 or αk+1 : it may happen that an equation has either two
or no solutions. In the first case, when two solutions exist and one of them is positive,
one naturally takes the smallest positive root as the new parameter. In the latter case,
when no positive solution exists, the following approximation formulae for βk+1 and
αk+1 can be used

βk+1 =
4α∗C2

3

C2
4

,

αk+1 =
4β∗C2

2

C2
4

,
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which are the least squares solutions of the equations Gm(α∗, β) = c2δ2 and Gm(α, β∗) =
c2δ2 respectively.

In our numerical experiments never occurred that there were no positive solutions
to define βk+1, αk+1.

Remark 4.4. Potentially Newton-type reconstruction methods could also be used
to reconstruct the discrepancy domain. For instance, the authors in [15] considered a
modification of the original Newton method to solve the damped discrepancy principle.
However, in our case the application of any Newton-type method requires knowledge
of the partial derivatives of uδα,β and vδα,β , which in turn can be obtained by solving
additionally four equations of the form (4.6) at each point. At the same time, employ-

ing the model function approach, we are asked for only one partial derivative
∂vδα,β

∂β ,
which makes each iteration step less expensive to perform.

4.2. Properties of the model function approximation. In this subsection
we are going to show that the algorithm of the four-parameter model function ap-
proximation produces decreasing sequences of the regularization parameters {αk(β∗)}
with β∗ > 1 and {βk(α∗)} with α∗ > 1 provided that in each step the discrepancy is
larger than a given threshold.

In each updating step the discrepancy function

G(α, β) = ‖A(uδα,β + vδα,β)− yδ‖2

is approximated by the function

Gm(α, β) = m(α, β) − α
∂m

∂α
(α, β) − β

∂m

∂β
(α, β).

By definition

G(α, β) = F (α, β)− α
∂F

∂α
− β

∂F

∂β

and for any k = 0, 1, . . . , we have

G(α∗, βk) = Gm(α∗, βk), G(αk, β
∗) = Gm(αk, β

∗).

Now we show that the sequences of the parameters produced by the model func-
tion approximation are decreasing with k.

Theorem 4.5. Assume that for (α∗, βk) we have ‖A(uδα∗,βk
+ vδα∗,βk

)− yδ‖ > cδ.
If β = βk+1 is given by the formula (4.8) as the positive solution of the equation
Gm(α∗, β) = c2δ2 corresponding to the model function approximation of the discrep-
ancy principle, then βk+1 < βk.

Proof. Observe that g(β) := Gm(α∗, β) is an increasing function of β since

dg(β)

dβ
=
∂m

∂β
(α∗, β)− α∗ ∂

2m

∂α∂β
(α∗, β)− ∂m

∂β
(α∗, β)− β

∂2m

∂β2
(α∗, β)

= −1

4

C4
√

α∗β3
− β

(

2
C3

β3
+

3

4

C4
√

α∗β5

)

= −1

4

C4
√

α∗β3
− 1

β2

(

−2β2‖Bvδα∗,β‖2 − C4

√

β

α∗

)

− 3

4

C4
√

α∗β3
= 2‖Bvδα∗,β‖2 > 0.
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Since βk+1 satisfies g(βk+1) = Gm(α∗, βk+1) = c2δ2, from g(βk) = Gm(α∗, βk) =
G(α∗, βk) > c2δ2 and the monotonicity of g(β), we have

βk+1 < βk.

A similar theorem is also valid for the case of αk+1(β
∗), β∗ > 1.

Theorem 4.6. Assume that for (αk, β
∗) we have ‖A(uδαk,β∗ + vδαk,β∗)− yδ‖ > cδ.

If α = αk+1 is the minimal positive solution of the equation Gm(α, β∗) = c2δ2, then
αk+1 < αk.

Remark 4.7. From the above theorems it follows that the discrepancy domain
can be approximately reconstructed by taking grids of the parameters

α ∈ QαN = {α = αi = α0q
i, i = 0, 1, 2, . . . , N}, q > 1,

β ∈ P βM = {β = βj = β0p
j, j = 0, 1, 2, . . . ,M}, p > 1.(4.10)

Then one constructs two sequences {αk(β∗)} for each β∗ = βj > 1, β∗ ∈ P βM and
{βk(α∗)} for each α∗ = αi > 1, α∗ ∈ QαN . The constructed points (αk(β

∗), β∗) and
(α∗, βk(α∗)) will converge and, as numerical experiments show, lie in the discrepancy
domain.

5. Numerical realization and illustrations. In this section we provide a com-
putational confirmation that, as predicted by Theorem 3.1 and Theorem 3.3, multi-
penalty regularization may perform better than the corresponding one-parameter
counterpart. The regularization parameters for both one-parameter regularization
schemes (2.3) and (2.6) are chosen in accordance with the discrepancy principle,
whereas as the parameter choice rule for multi-penalty regularization we consider
the newly introduced discrepancy domain principle in combination with the quasi-
optimality criterion. The latter was originally proposed in [28] and has been recently
advocated in [14]. Moreover, we show that the discrepancy domain can be accurately
and fast approximated using the model function approach, introduced in the previous
section.

Finally, motivated by some positive results in [17], we also consider the three-
penalty regularization scheme as a possible step towards generalization of the given
multi-penalty regularization approach.

5.1. Discrepancy Domain Principle and Quasi-Optimality Criterion.

We start the discussion of the numerical results with the realization of the discrepancy
domain principle in combination with the quasi-optimality criterion. Recall that from
Theorem 3.1 and Theorem 3.3 it follows that the application of the multi-penalty
regularization leads to an order-optimal solution xδα,β = uδα,β + vδα,β that is achieved
either for (α, β) ∈ D(δ), α > 1 or (α, β) ∈ D(δ), β > 1.

To find the pairs (α, β) which allow us to achieve this order-optimal reconstruction
we consider the two grids of the parameters (4.10) and search for those (α, β) which
satisfy the discrepancy domain principle (3.1).

Then, one would ideally find the pairs (αi∗ , βJ), (αI , βj∗) ∈ D(δ) such that
αI , βJ > 1 and

‖x† − xδαi∗ ,βJ
‖ = min{‖x† − xδαi,βj

‖ : (αi, βj) ∈ D(δ), βj > 1},
‖x† − xδαI ,βj∗

‖ = min{‖x† − xδαi,βj
‖ : (αi, βj) ∈ D(δ), αi > 1},
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and then choose the one that allows the most accurate reconstruction, i.e.,

(α+, β+) =

{

(αi∗ , βJ), if ‖x† − xδαi∗ ,βJ
‖ ≤ ‖x† − xδαI ,βj∗

‖,
(αI , βj∗), if ‖x† − xδαi∗ ,βJ

‖ > ‖x† − xδαI ,βj∗
‖.

Unfortunately, since x† is unknown, one can not determine such an ideal pair of
the parameters exactly. However, due to the belief [8] that in the quasi-optimality
criterion [28] for the one-parameter regularization schemes the values

‖xδαi
− xδαi−1

‖ or ‖xδβj ,B − xδβj−1,B‖

serve as “surrogates” of

‖x† − xδαi
‖ or ‖x† − xδβj ,B‖,

one can select α = αi∗ ∈ QαN , β = βj∗ ∈ P βM such that

‖xδαi∗
− xδαi∗−1

‖ = min{‖xδαi
− xδαi−1

‖, i = 1, 2, . . . , N}

or

‖xδβj∗ ,B
− xδβj∗−1,B‖ = min{‖xδβj,B − xδβj−1,B‖, j = 1, 2, . . . ,M}.

Thus, we employ the idea of the quasi-optimality criterion to use the above-
mentioned “surrogates” as the performance indicators and choose in the discrepancy
domain the pairs (αi∗ , βJ) and (αI , βj∗) that allow the minimum distance between
the regularized solutions corresponding to two successive values of the regularization
parameters:

‖xδαi∗ ,βJ
− xδαi∗−1,βJ

‖ = min{‖xδαi,βj
− xδαi−1,βj

‖ : (αi, βj) ∈ D(δ), βj > 1},
‖xδαI ,βj∗

− xδαI ,βj∗−1
‖ = min{‖xδαi,βj

− xδαi,βj−1
‖ : (αi, βj) ∈ D(δ), αi > 1}.

Then, similar to the ideal case we choose the pair of the parameters as follows

(α+, β+) =

{

(αi∗ , βJ), if ‖xδαi∗ ,βJ
− xδαi∗−1,βJ

‖ ≤ ‖xδαI ,βj∗
− xδαI ,βj∗−1

‖,
(αI , βj∗), if ‖xδαi∗ ,βJ

− xδαi∗−1,βJ
‖ > ‖xδαI ,βj∗

− xδαI ,βj∗−1
‖.

As one can see below, such combination of the discrepancy domain principle and
the quasi-optimality criterion is a quite flexible tool for choosing the regularization
parameters. Moreover, it is easily implementable and its computational efficiency is
justified with the use of the model function approximation approach, presented in the
previous section.

5.2. Numerical Illustrations and Comparisons: Operators with Known

Singular Value Expansion. Similar to [1, 26] in our first numerical experiment we
consider compact operators A and B−1 that are related as

(5.1) A =
∑

i

ai〈ψi, ·〉ϕi, B−1 =
∑

i

b−1
i 〈ψi, ·〉ψi,

where {ai}, {bi} denote sets of eigenvalues of the self-adjoint operators (A∗A)1/2 and
B correspondingly.
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Note that the knowledge of the singular value expansion of the operators allows
us to verify easily whether the link condition (2.7) is violated or not.

In the first experiments the operators A and B are given as diagonal matrices
of the size n. The matrix corresponding to the operator A has diagonal elements
ai = i−r, i = 1, 2, . . . , n, n = 50, r = 3. Further, we assume that the source condition
(2.5) is satisfied with ϕ(t) = tp, p = 4, and the solution x† is given in the form of the
n−dimensional vector

(5.2) x† = (A∗A)4g,

where g is a random vector which components are uniformly distributed on [0, 1]
and such that ‖g‖ = 10; here and below ‖ · ‖ means the standard norm in the n−
dimensional Euclidean space R

n. Then the exact right-hand side is produced as
y = Ax†.

Noisy data yδ are simulated in the form yδ = y + ξ, where ξ = δ ǫ
‖ǫ‖ and ǫ is

a random vector with uniformly distributed components. Both vectors g and ǫ are
generated 100 times, so that we have 100 problems of the form (2.1) with noisy data
yδ, and the noise level δ is given as δ = 0.01‖Ax†‖ that corresponds to 1% of data
noise.

In accordance with the theory, under the source condition (5.2) Tikhonov-Phillips
regularization may suffer from the saturation. On the other hand, this effect can be
relaxed by using Tikhonov regularization with a proper choice of the regularization
operator B for which the condition (2.7) is satisfied. At first, we choose the self-
adjoint operator B such that the corresponding diagonal matrix has the elements
bii = bi = i, i = 1, 2, . . . , n. For the considered A, the chosen operator B satisfies
(2.7) with s = 3. In the experiments, we use the discrepancy domain principle in
combination with the quasi-optimality criterion for multi-penalty regularization and
the classical discrepancy principle for the one-parameter counterparts. In all cases
grids of the parameters are given by (4.10) with the initial parameters α0 = β0 =
10−4, q = p = 1.25 and N =M = 60.

To assess the obtained results and compare the performance of the considered
regularization schemes, we measure the relative error (RE)

‖x− x†‖
‖x†‖

for x = xδα,β , x = xδα, and x = xδβ,B.
The results are displayed in Figure 5.1, where each circle represents a relative error

in solving the problems with one of 100 simulated data, for each of the three regular-
ization methods: multi-penalty regularization (MP), Tikhonov-Phillips regularization
(TP), and Tikhonov regularization (Tikhonov).

Moreover, in Table 5.1 the statistical measures such as the mean, the median,
and the standard deviation of the relative error, as well as the mean values of the
regularization parameters are given for each of the methods.

On the other hand, if we consider the operator B, corresponding to the diagonal
matrix with elements

bi =

{

i, i = 1, 3, . . . , 2j − 1,
1/i, i = 2, 4, . . . , 2j, j = n/2,

then from Figure 5.2 and Table 5.2 we can see that the saturation cannot be relaxed
by Tikhonov method due to the fact that for the considered B the link condition
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Table 5.1

Numerical illustration (first experiment). Statistical performance measures for the regularized
approximations xδ

α,β , xδ
α, xδ

β,B and 100 simulations of yδ with 1% noise

Mean RE Median RE Standard deviation RE Mean parameter

xδα,β 0.0069 0.0060 0.0036 α = 56.05, β = 0.002

xδα 0.0117 0.0114 0.0024 0.009
xδβ,B 0.0086 0.086 0.0009 0.009

Table 5.2

Numerical illustration (second experiment). Statistical performance measures for the regularized
approximations xδ

α,β
, xδ

α, xδ
β,B

and 100 simulations of yδ with 1% noise

Mean RE Median RE Standard deviation RE Mean parameter
xδα,β 0.0117 0.0115 0.0029 α = 0.0064, β = 56.05

xδα 0.0117 0.0114 0.0022 0.009
xδβ,B 0.0529 0.0535 0.0083 0.0116

(2.7) is violated (‖B−s‖ ≥ (n − 1)s ≥ 1 ≥ ‖A‖). At the same time, similar as it
was observed in [26], we can see that multi-penalty regularization equipped with the
discrepancy domain principle and the quasi-optimality criterion shows performances
at the level of the best single-penalty regularization.

Note that for the operators (5.1) and the solutions (5.2) we can verify the conver-
gence rates indicated in Theorem 3.1 and Theorem 3.3. In the first experiment, when
bi = i, the solutions belong to the set (2.8) with p = 24, which is above the saturation
level p = s+2 = 5 calculated according to Theorem 3.1. Therefore, in the considered

situation the theorem guarantees us the accuracy of order O(δ
s+2

2s+2 ) = O(δ5/8). In Ta-

ble 5.3 we present the mean values of the numbers C =
‖x†−xδ

α,β‖
δ5/8

over 100 simulated

solutions x† of the form (5.2) for different noise levels δ and parameters α, β chosen
according to the discrepancy domain principle. As it can be seen from the table the
numbers exhibit a rather stable behaviour supporting the statement of Theorem 3.1.
In the second experiment, the link condition (2.7) is violated and in view of the sat-
uration of the discrepancy principle and Tikhonov-Phillips regularization itself, we
can expect only the accuracy of order O(δ1/2). The behaviour of the mean values of

the numbers C =
‖x†−xδ

α,β‖
δ1/2

for different δ is reflected in Table 5.4 and also can be
accepted as an evidence supporting the theory.

5.3. Numerical Illustrations and Comparisons: First Kind Fredholm

Integral Equations. In this subsection we are going to demonstrate that the com-
pensatory property of multi-penalty regularization or even improvement in the per-
formance can be observed in a more general case, when the singular value expansion
of the operators is not known. In such a case it may be hard to check the link con-
dition (2.7). On the other hand, as Figure 5.2 shows, Tikhonov regularization (2.6)
alone may perform poorly if a link condition is not granted. From such perspective,
multi-penalty scheme (2.9)-(2.11) can be seen as a tool to make the regularization
more flexible and reliable.

Remark 5.1. One may think that in the case of the failing link condition the
need for a compensatory property arises from restricting to the Tikhonov type reg-
ularization, and the use of multi-penalty regularization can be avoided by switching
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Table 5.3

Numerical illustration (first experiment). Estimation of the constants from the error bound
(3.8) for different noise levels

Noise level 10−1.5 10−1.8 10−2.1 10−2.4 10−2.7 10−3

Constant 0.2321 0.1860 0.1616 0.1347 0.1206 0.1190

Table 5.4

Numerical illustration (second experiment). Estimation of the constants from the error bound
(3.3) for different noise levels

Noise level 10−1.5 10−1.8 10−2.1 10−2.4 10−2.7 10−3

Constant 0.2171 0.3067 0.4332 0.6119 0.8644 1.2210

to usual single-parameter iterative regularization schemes, such as iterated Tikhonov
regularization [8, p. 123].

Note that such iterative schemes are also oriented towards smoothness expressed
in the form (2.5), but in contrast to Tikhonov-Phillips regularization, the iterative
schemes can guarantee an accuracy of order O(ϕ(θ−1

ψ (δ))) even in the case when the

function t
ϕ(t) is decreasing (see, e.g. [16, p.82]).

But the point is that for a given problem (2.1) a source condition (2.5) may not be
an adequate form of measuring the smoothness of x†. Then an iterative regularization
scheme may be outperformed by multi-penalty regularization (2.9)-(2.11) even if it
uses a penalizing operator B for which the link condition is not granted.

We illustrate this on Figure 5.4, where iterated Tikhonov regularization of order 3
(IterTP) performs better than Tikhonov-Phillips regularization, but both of them are
outperformed by multi-penalty regularization (2.9)-(2.11) and Tikhonov regularization
(2.6) that are based on the penalizing operator for which we do not know whether the
link condition is satisfied or not.

We would like to stress that the use of iterated Tikhonov regularization of order
higher than 3 does not change the picture. The authors are grateful to the anonymous
referee whose comment inspires this remark.

Similar to [17, 26] we generate the test problems of the form (2.1) by using the
functions shaw(n) and ilaplace(n, 1) from the Matlab regularization toolbox [10].
These functions occur as the results of a discretization of the first kind Fredholm
integral equation of the form

(5.3)

∫ b

a

k(s, t)f(t)dt = g(s), s ∈ [a, b],

with a known solution f(t). As in the two previous experiments, the operator A and
the solution x† are given as n×n−matrix and n−dimensional vector respectively. The
noisy data yδ are simulated 100 times in the same way as above, i.e., yδ = Ax† + ξ
with the noise level δ corresponding to 1% of data noise.

Moreover, the penalizing operator is given as n× n−matrix and defined as B =
(DTD)1/2, where

(5.4) D =











1 −1
−1 1

. . .

1 −1
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Fig. 5.1. Numerical illustration (first experiment). The figure presents relative errors (circles)
for 100 simulations of yδ with 1% noise

Table 5.5

Numerical illustration for the function shaw(100). Statistical performance measures for the
regularized approximations xδ

α,β , xδ
α, xδ

β,B and 100 simulations of yδ with 1% noise

Mean RE Median RE Standard deviation RE Mean parameter

xδα,β 0.0950 0.0924 0.0140 α = 2.7784, β = 0.0007

xδα 0.1736 0.1732 0.0029 0.0011
xδβ,B 0.1774 0.1768 0.0063 0.0146

is a discrete approximation of the first derivative on a regular grid with n points.
We perform the experiment with the function shaw(n) that is a discretization of

the equation (5.3) with a = −π/2 and b = π/2. The kernel and the solution are given
as

k(s, t) = (cos(s) + cos(t))2
(

sin(u)

u

)2

, u = π(sin(s) + sin(t)),

f(t) = 2e−6(t−0.8)2 + e−2(t+0.5)2 .

The corresponding equation (5.3) is discretized by a simple quadrature with n equidis-
tant points. Similar to [17, 26] we take n = 100. The results are displayed in Figure
5.3 and Table 5.5.

In the next experiment we consider the function ilaplace(n, 1), which occurs in a
discretization of the inverse Laplace transformation by means of the Gauss-Laguerre
quadrature with n knots and corresponds to the equation (5.3) with a = 0, b =
∞, k(s, t) = e−st, f(t) = e−t/2, g(s) = (s+ 1/2)−1.

For both problems the regularization parameters are chosen in accordance with
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Fig. 5.2. Numerical illustration (second experiment). The figure presents relative errors (cir-
cles) for 100 simulations of yδ with 1% noise

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Tikhonov

TP

MP

Fig. 5.3. Numerical illustration for the function shaw(100). The figure presents relative errors
(circles) for 100 simulations of yδ with 1% noise

the procedure described above, in which starting values of the parameter grids are
given as α0 = β0 = 10−4, q = p = 1.3, N =M = 40.

In Figure 5.4 we show the relative errors produced by the three regularization
methods. Moreover, Table 5.6 presents a statistical information about the perfor-
mance of the methods. Additionally, in Figure 5.4 one can see the relative errors
produced by iterated Tikhonov regularization of order 3, as it has been discussed in
Remark 5.1.
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Fig. 5.4. Numerical illustration for the function ilaplace(100, 1). The figure presents relative
errors (circles) for 100 simulations of yδ with 1% noise

Table 5.6

Numerical illustration for the function ilaplace(100, 1). Statistical performance measures for
the regularized approximations xδ

α,β , xδ
α, xδ

β,B and 100 simulations of yδ with 1% noise

Mean RE Median RE Standard deviation RE Mean parameter

xδα,β 0.0250 0.0209 0.0105 α = 2.7784, β = 0.0042

xδα 0.1323 0.1320 0.0005 0.0011
xδβ,B 0.0421 0.0418 0.0027 0.0706

Again superior performances of multi-penalty regularization are observed even
when it is not known a priori whether or not the link condition (2.7) is satisfied.

5.4. Three-penalty regularization. Motivated by some positive results with
a three-parameter regularization [17], in this subsection we also consider the three-
penalty regularization with a component wise penalization, in which the following
form of the functional is considered

(5.5) Φ1(α, β, γ;u, v, z) := ‖A(u+ v + z)− yδ‖2Y + α‖u‖2X + β‖Bv‖2X + γ‖Cz‖2X.

Then the regularized approximation xδα,β,γ is given as xδα,β,γ = uδα,β,γ + vδα,β,γ +

zδα,β,γ, where u
δ
α,β,γ , v

δ
α,β,γ , and z

δ
α,β,γ are the minimizers of the functional (5.5). In

order to write down the formulae for the minimizers explicitly, we, at first, introduce
two linear operators

M = (αI+ A∗A)−1A∗A,

K = B2(βB2 + αM)−1.

Then the minimizers uδα,β,γ , v
δ
α,β,γ , and z

δ
α,β,γ of the functional Φ1(α, β, γ;u, v, z)

have the form
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Table 5.7

Numerical illustration for the function shaw(100). Statistical performance measures for the
regularized approximations xδ

α,β,γ , xδ
α, xδ

γ,C , xδ
β,B, and 100 simulations of yδ with 1% noise

Mean RE Median RE Standard deviation RE Mean parameter

xδα,β,γ 0.0904 0.0872 0.0100 α = 2.39, β = 0.0001, γ = 1.4063

xδα 0.1732 0.1734 0.0019 0.0011
xδγ,C 0.2072 0.2070 0.0029 0.7850

xδβ,B 0.1770 0.1766 0.0037 0.0146

uδα,β,γ = (αI+A∗A)−1(A∗yδ − A∗A(vδα,β,γ + zδα,β,γ)),

vδα,β,γ = α(βB2 + αM)−1(αI+A∗A)−1(A∗yδ − zδα,β,γ),

zδα,β,γ = (KM +
γ

αβ
C2)−1K(αI+A∗A)−1A∗yδ.

In our numerical experiments the operators A, B are the same as before and the
second penalizing operator C = (D̂T D̂)1/2 is n×n−matrix, where (n−2)×n−matrix

D̂ =











−2 1
1 −2 1

. . .

1 −2











is the discrete approximation to the second derivative operator on the regular grid
with n points.

As in the previous subsection we consider the problems shaw(100) and ilaplace(100, 1)
with 1% of noise in data to compare performances of the three-parameter regulariza-
tion xδα,β,γ and the standard single-parameter ones xδα, x

δ
γ,C , and x

δ
β,B.

Recall that for the one-parameter schemes we employ as a parameter choice rule
the discrepancy principle and its corresponding modification for multi-penalty method
with starting parameters α0 = β0 = γ0 = 10−4 and step-size q = p = l = 1.7 for
α ∈ QαN , β ∈ P βM and

γ ∈ SγW = {γ = γk = γ0l
k, k = 0, 1, 2, . . . ,W}, l > 1.

The results are displayed in Figures 5.5 and 5.6 in which the notation is similar
to ones in the figures above. Note that the relative error corresponding to Tikhonov
regularization with the penalizing operator C is denoted as “Tikhonov 2” in the
respective figures. For the sake of completeness, we also indicate in Tables 5.7 and
5.8 the mean, the median, and the standard deviation of the relative errors, as well as
the mean values of the regularization parameters for all four regularization methods
under the consideration.

Remark 5.2. In the considered experiments three-penalty regularization performs
worse than the two-penalty one. It can be explained by the fact that xδα,β,γ involves
the penalizing operator C that produces the poorest regularization effect when it is
used alone in xδγ,C . The multi-penalty scheme is still able to compensate this poor
regularization, but, in this case, this compensation appears at a lower performance
level.
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Fig. 5.5. Numerical illustration for the function shaw(100). The figure presents relative errors
(circles) for 100 simulations of yδ with 1% noise

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 5.6. Numerical illustration for the function ilaplace(100, 1). The figure presents relative
errors (circles) for 100 simulations of yδ with 1% noise

Table 5.8

Numerical illustration for the function ilaplace(100, 1). Statistical performance measures for
the regularized approximations xδ

α,β,γ , xδ
α, xδ

γ,C , xδ
β,B, and 100 simulations of yδ with 1% noise

Mean RE Median RE Standard deviation RE Mean parameter
xδα,β,γ 0.0680 0.0577 0.0320 α = 2.81, β = 0.0001, γ = 1.65

xδα 0.1298 0.1298 0.0007 0.0008
xδγ,C 0.3261 0.3086 0.1427 0.0005

xδβ,B 0.0406 0.0404 0.0028 0.0583
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5.5. Four-parametric model function. In this subsection we demonstrate
the adequacy of the four-parametric model function approximation using it as a tool
for reconstructing the discrepancy domain. Recall that in view of Theorem 3.1 and
Theorem 3.3 this domain D(δ) is of interest, because any point (α, β) ∈ D(δ), where
one of the parameters is sufficiently large, provides us with a solution xδα,β = uδα,β +

vδα,β , realizing an accuracy of optimal order.
In the previous subsection we have used the reconstruction of the discrepancy

domain by a straightforward approach which consists in the direct calculation of the
discrepancy ‖Axδαi,βj

− yδ‖ for all grid points

(α, β) ∈ K = {(αi, βj) : αi = α0q
i ∈ QαN , βj = β0p

j ∈ P βM ,

i, j = 1, 2 . . . , 40, α0 = β0 = 0.0001, q = p = 1.3}.

Recall that we are interested in the parts of the domain where one of the param-
eters α or β is sufficiently large, i.e., greater than 1. Thus, we will reconstruct these
parts of the domain separately by means of the model function approach. To this
end, we distinguish two cases:

1. If α > 1, then for each αi ∈ QαN and αi > 1 the parameter βk+1 = βk+1(αi) is
found by iterations (4.8) with an initialization α = αi, β0 = 0.5. The stopping
criterion for the iteration (4.8) consists in checking that ‖Axδαi,βk+1

−yδ‖ ≤ cδ.

2. If β > 1, then for each βj ∈ P βM and βj > 1, αk+1(βj) is found by (4.9) with
an initial guess α0 = 0.5 and β = βj . We terminate the iteration (4.9) when
‖Axδαk+1,βj

− yδ‖ ≤ cδ.
Then in accordance with Theorem 3.1 and Theorem 3.3 the domain below the

points (αi, βk+1(αi)) for all αi ≥ 1 and (αk+1(βj), βj) with βj ≥ 1 can be seen as an
approximate reconstruction of the discrepancy domain.

0 5 10 15 20 25 30 35 40
0
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0
=β

0
 =0.5j

i

Fig. 5.7. Discrepancy domain and its reconstruction by means of the model function for the
function shaw(100).

Figure 5.7 displays the reconstruction of the discrepancy domain for the problem
shaw(100) with 1 % noise in data. Each dot corresponds to the indices (i, j) of the
parameters αi and βj respectively such that (αi, βj) ∈ D(δ), crosses indicate the
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indices of the parameters in which we are interested, namely αi > 1, 35 < i ≤ 40 or
βj > 1, 35 < j ≤ 40. The red lines represent the approximation of the boundary of the
domains D(δ) ∩ {α > 1}, D(δ) ∩ {β > 1} found by the model function approach. As
we can see the domain reconstructed by means of the model function almost coincides
with the one found by the direct calculation of the discrepancy for all grid points.
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