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Abstract A new method for solving algebraic equation systems common in cryptanalysis
is proposed. Our method differs from the others in that the equations are not represented as
multivariate polynomials, but as a system of Multiple Right Hand Sides linear equations. The
method was tested on scaled versions of the AES. The results overcome significantly what
was previously achieved with Gröbner Basis related algorithms.
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1 Introduction

Most of the cryptanalysis done on symmetric key ciphers in the last few years has been
focused on algebraic attacks. One important feature algebraic attacks have is the fact that you
only need very few known plain-texts in order to set up an equation system describing the
cipher and determining the key uniquely. Strategies for solving non-linear equation systems
have been described [8,9,12] and some have been developed into cryptanalytic attacks [4–6].
All of them are based on the Gröbner Basis (or XL) related algorithms which make use of
multivariate polynomial representation of equations.

In this article the equations describing encryption are represented as systems of Multiple
Right Hand Sides (MRHS) linear equations. This is a more general representation than that
independently introduced in [10] and earlier in [13]. Algorithms to solve MRHS linear equa-
tions are presented. Linear substitutions is a common tool providing diffusion properties
of encryption in modern ciphers. So MRHS linear equations, which take into account such

H. Raddum · I. Semaev (B)
Department of Informatics, University of Bergen, Bergen, Norway
e-mail: igor@ii.uib.no

H. Raddum
e-mail: hra081@uib.no

123



148 H. Raddum, I. Semaev

layers, make equations representation quite compact and computations more efficient in
comparison with methods based on the Gröbner Basis related algorithms.

Our experiments have been inspired by the work in [3], where the smaller clones of the
AES were defined. We adopt the notation from that paper: with SR*(n, r, c) we will mean the
variant of the AES that has n rounds, and where the cipher block has r rows and c columns,
see [3] for details. Variants using the field G F(24) could also be considered, but in our tests
we only looked at AES variants where the underlying finite field is G F(28).

In [3] standard techniques (F4 and Buchberger’s algorithm) for solving non-linear equa-
tion systems were applied to some of the systems representing the small versions of the
AES, to see which ones that actually could be solved using this approach on a computer
with 1GB of RAM. The computer could not solve the system for SR*(5,1,1) this way, even
though the key is only 8 bits long. Solving SR*(4,1,1) took 20286.18 s. This suggests that
using these techniques may be the wrong way to go with algebraic cryptanalysis of the
AES. The methods proposed in this article are general in nature, and we will show that they
make a far better approach to solving equations from the different versions of the AES. For
instance, SR*(4,1,1) is solved in 0.032 s without guessing any variables and more compli-
cated instances are solved on a common computer. Our methods are also significantly faster
on AES comparable random systems, which do not incorporate any key variables.

Besides the Introduction, the paper comprises Sect. 2, where MRHS linear equations and
their systems are presented. Sections 3, 4 and 5 describe the main techniques Agreeing,
Gluing and Linear equations extracting we use. The Agreeing being the core approach is
presented in much detail. It is shown in Sect. 5.1 how the above techniques are combined in
equations solving. Finally, our experiments with reduced versions of the AES are described
in Sect. 6.

We now stress the contributions of the authors to this paper’s main results. Representation
of nonlinear algebraic equations as MRSH linear equations and generalized Agreeing and
Gluing techniques (Sects. 2–4) are due to Semaev. Linear equations extracting and applica-
tion of the whole method to the scaled AES and AES comparable random systems (Sects. 5,
6) are due to Raddum.

This is the full version of an abstract earlier published in [11]. The authors thank two
anonymous referees for their suggestions on improving the presentation.

2 Multiple Right Hand Side linear equations

All matrices and vectors are over G F(2), the field with two elements. A G F(q) variant
of the method is easy to deduce. Let X be a set of n Boolean variables represented as a
column-vector. An equation

AX = a1, a2, . . . , as (1)

is called a MRHS system of linear equations if A is a matrix of size k × n and rank k, and
a1, a2, . . . , as are column-vectors of length k. A solution to (1) is a Boolean n-vector satis-
fying one of the particular linear equation systems AX = ai . The set of all solutions to (1)
is the union of solutions to the linear systems for all ai . Suppose f (X) is a Boolean function
such that

f (X) = g(AX), (2)

where g(Y ) is a Boolean function in k ≤ n variables Y and A is a k × n-matrix of rank k. We
call the representation (2) nontrivial if k < n. Let now a1, a2, . . . , as be all solutions to the
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Solving Multiple Right Hand Sides linear equations 149

equation g(Y ) = 0. Then the equation f (X) = 0 is described by the system of the MRHS
linear equations (1) and vice versa (1) implies (2). One also represents the right hand sides
of (1) as a k × s matrix L whose columns are a1, a2, . . . , as . So that (1) becomes AX = [L]
and is called a symbol, we write [L] to stress that is not an ordinary equality with matrices.
If the matrix A has just one nonzero entry in each row, we get the old definition of a symbol
from [10].

If f (X) is given as a multivariate polynomial or by a truth table and the number of vari-
ables n is small we can map it into a symbol in the following way. The space G( f ) of
Boolean n-vectors a satisfying f (X + a) = f (X) is computed. This computation takes
at most 22n n-bit xor’s. The space G( f ) is of rank m for some 0 ≤ m ≤ n. There exist
n-vectors b1, . . . , bm , a basis for G( f ). Take any matrix A of size k×n and of rank k = n−m
such that Abi = 0 for all i = 1, . . . m. The matrix A is computed by solving m homogenous
independent linear equations in n variables. Define now the Boolean function g in k variables
by the rule g(b) = f (a) for any Boolean k-vector b such that b = Aa. The function g is
correctly defined and the following statements are obvious.

Lemma 1 1. The representation (2) holds for the so defined Boolean function g and
matrix A.

2. The representation (2) is nontrivial if and only if the rank of G( f ) is nonzero.

The running time of the procedure does not exceed the cost of computing G( f ) that is
22n n-bit xor’s.

For example, the polynomial

x1x2 + x1x4 + x2x4 + x2 + x3 + x4 = (x1 + x2)(x1 + x4) + (x1 + x2) + (x1 + x3)

+(x1 + x4)

has four variables, but can be written using only three linear combinations. Hence f (X) can
be written as g(AX), where g(Y ) only takes three variables, and not four, ref. [2].

In practice, there is often no need to construct (1) for f as it is already given in the defi-
nition of the problem or very easy to deduce. This is so for the AES and many other modern
ciphers.

2.1 MRHS equation systems

A system of MRHS linear equations (symbols):

S1: A1 X = [L1], . . . , Sm: Am X = [Lm] (3)

is considered, where Ai and Li are matrices such that the number ki of rows in matrices Ai

and Li is bounded by a number k. Some of the variables may not appear in some equations.
This means that the related columns in Ai are zero, so the Ai -matrices all have exactly n
columns. The maximal number of columns in Li is 2ki . So the number k should be relatively
small in order to keep all symbols (3) in memory. The solution to (3) is an assignment to
variables X satisfying all the equations. The goal is to find all solutions. We will present a
generalization of the technique introduced in [10].

Assume (3) has a unique solution X0. Then Ai X0 will select exactly one of the columns
in Li , which is the only possible right hand side for Ai X . Selecting any other column in the
symbol Si will lead to an inconsistent linear system for any choice of columns from the other
symbols. Hence a column in Li can be thought of as correct if it is selected by a solution to
the system, or as wrong if it is never selected by any solution to the system. The main idea for
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solving (3) is to identify wrong columns in the symbols and delete them. If we can remove
enough wrong columns only the correct ones will remain, and it becomes easy to pick one
right hand side from each symbol such that the combined linear system, now with a unique
right hand side, is consistent. This linear system can be solved easily to find the solution.

3 Agreeing

Let two symbols

Si: Ai X = [Li ] and S j: A j X = [L j ] (4)

be given. The matrices Li are of size ki × si . We say the symbols (4) agree if for any a1 ∈ Li ,
there exists an a2 ∈ L j such that the linear system(

Ai

A j

)
X =

(
a1

a2

)
(5)

is consistent, and for any a2 ∈ L j there exists an a1 ∈ Li such that (5) is consistent.
When Si and S j do not agree, one removes columns a1 from Li such that Ai X = a1 is

inconsistent with A j X = [L j ]. Similarly, one removes columns a2 from L j if A j X = a2 is
inconsistent with Ai X = [Li ]. The columns removed this way must be wrong columns. The
straightforward approach is to remove a1 if the pair Ai X = a1 and A j X = a2 composes
an inconsistent system of linear equations for any column a2 ∈ L j . This requires O(s1s2)

linear algebra steps to agree Si and S j .
We will present a faster algorithm for agreeing. Let A = (Ai

A j

)
be the concatenation of the

matrices Ai and A j found in (5), so that A is a matrix with t = ki + k j rows. Similarly,

Ti =
(

Li

0

)
and Tj =

(
0

L j

)
are matrices with t rows. The joint MRHS equation for Si and

S j can then be written as

AX = [Ti ] + [Tj ], (6)

where we are supposed to pick one column from Ti and one column from Tj and add them
to create a possible right hand side.
Agreeing two symbols

1. Compute r = t − rank(A). If r = 0 the symbols Si and S j agree and we stop.
2. If r > 0 there are linear dependencies among the rows of A. We compute an r × t matrix

U = Ui j of full rank such that U A = 0. The system (5) is consistent if and only if
U

(a1
a2

) = 0.
3. Let Pi = U Ti and Pj = U Tj . Multiplying (6) with U gives the equation 0 = [Pi ]+[Pj ],

where we should select one column from Pi and one column from Pj . Only selecting
equal cloumns from Pi and Pj will give consistency.

4. For any column in Pi not found in Pj , remove the corresponding column in Li . These
columns are inconsistent with the symbol S j and must be wrong columns. Likewise, for
any column in Pj not found in Pi , remove the corresponding column in L j .

One particular column can occur several times in Pi . We define the set of different col-
umns in Pi to be Vi . The algorithm of agreeing two symbols is approved by the following
statement.

Lemma 2 The symbols (4) agree if and only if r = 0 or Vi = Vj .
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Solving Multiple Right Hand Sides linear equations 151

Proof Let the symbols agree and r > 0. We will prove Vi = Vj . Take any b ∈ Vi and fix
a1 ∈ Li such that b = U

(a1
0

)
. There exists a2 ∈ L j such that the system of linear equations

(5) composed by Ai X = a1 and A j X = a2 is consistent. The latter is true if and only if
AX = (a1

0

)+( 0
a2

)
is consistent. Multiplying through with U we get 0 = (U A)X = b+U

( 0
a2

)
,

which is only possible if b = U
( 0

a2

)
. Therefore b ∈ Vj and so Vi ⊆ Vj . The inclusion Vj ⊆ Vi

can be checked similarly, and so Vi = Vj .
We will prove the reverse statement now. Let r > 0 and Vi = Vj . Then for any a1 ∈ Li

we will find a2 ∈ L j such that (5) is consistent. Let b = U
(a1

0

)
. As Vi = Vj , there exists

a2 ∈ L j such that U
( 0

a2

) = b. So U
(a1

a2

) = U
(a1

0

) + U
( 0

a2

) = b + b = 0. By the definition of

U , the system AX = (a1
a2

)
is consistent. Similarly, we prove that for any a2 ∈ L j one finds

a1 ∈ Li such that (5) is consistent. Therefore, the symbols agree.
Finally, assume that r = 0. Then the matrix A = (Ai

A j

)
is of full rank t . That means that

the system (5) is consistent for every a1 ∈ Li and a2 ∈ L j . Therefore, the symbols agree.
This finishes the proof of the lemma. ��

The running time of the agreeing is defined by sorting and table look-ups. So with neglect-
ing the contribution from t and n, the running time is O(s1 log s1 + s2 log s2) linear algebra
steps. In order to agree symbols several times, as in the case of solving (3), the computation
of the matrices U , U Ti , and U Tj may be done once, as in the Agreeing2 Algorithm presented
below.

Example Two equations A1 X = [L1] and A2 X = [L2] in variables X = {x1, x2, x3, x4, x5}:

⎛
⎝ 1 1 0 0 0

1 0 1 0 0
1 0 0 1 0

⎞
⎠

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎠ =

⎡
⎣ 1 0 0 1

0 1 0 0
0 0 1 1

⎤
⎦,

⎛
⎝0 1 0 0 1

0 0 1 0 1
0 0 0 1 1

⎞
⎠

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎠ =

⎡
⎣0 1 0 0

1 1 0 0
1 1 0 1

⎤
⎦

are given. In the algebraic normal form they are:

x1x4 + x1x2 + x2x4 + x2 + x3 + x4 + 1 = 0,

x2x3 + x2x5 + x3x4 + x4x5 + x2 + x3 = 0.

The first equation can also be represented in the form of (2) as

y1 y3 + y1 + y2 + y3 + 1 = 0,

⎛
⎝ y1

y2

y3

⎞
⎠ =

⎛
⎝ 1 1 0 0

1 0 1 0
1 0 0 1

⎞
⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ .

The representation (2) for the second equation is

y1 y2 + y2 y3 + y1 + y2 = 0,

⎛
⎝ y1

y2

y3

⎞
⎠ =

⎛
⎝ 1 0 0 1

0 1 0 1
0 0 1 1

⎞
⎠

⎛
⎜⎜⎝

x2

x3

x4

x5

⎞
⎟⎟⎠ .
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The matrix A is produced and its rank determined to be 4, so r = 2.

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

U =
(

1 1 0 1 1 0
1 0 1 1 0 1

)
.

Put now

T1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and T2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
1 1 0 0
1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and compute

U T1 =
(

1 1 0 1
1 0 1 0

)
and UT2 =

(
1 0 0 0
1 0 0 1

)
.

We see that the second and the fourth columns of U T1 do not match any columns of U T2.
So the second and the fourth columns of L1 should be removed. Similarly, the second and
the third columns of L2 should be removed. The new symbols now become:

⎛
⎝ 1 1 0 0 0

1 0 1 0 0
1 0 0 1 0

⎞
⎠

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎠ =

⎡
⎣ 1 0

0 0
0 1

⎤
⎦ ,

⎛
⎝ 0 1 0 0 1

0 0 1 0 1
0 0 0 1 1

⎞
⎠

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎠ =

⎡
⎣ 0 0

1 0
1 1

⎤
⎦ ,

and they agree.
In the next two sections we will present algorithms for producing pairwise agreed symbols

from (3). Though the algorithms do not necessarily solve the equation system, they are in the
core of our methods for finding solutions.

3.1 Agreeing1 Algorithm

The Agreeing1 Algorithm works by repeatedly finding two indices i and j such that Si and
S j disagree, and apply the agreeing procedure then. When running the Agreeing1 Algorithm
we often run into situations where Si and S j agree, but S j and Sl disagree. After deleting
some L j -columns from S j to make it agree with Sl , it may well be that Si and S j disagree. In
other words, applying the agreeing procedure to one pair of symbols may cause disagreement
in other pairs. We may get a chain-reaction of deletions of columns that will actually remove
a lot of wrong columns.
Agreeing1 Algorithm

while symbols (3) do not pairwise agree
– find Si and S j which do not agree
– agree Si , S j with the Agreeing Procedure.
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Solving Multiple Right Hand Sides linear equations 153

Lemma 3 1. The output of the Agreeing1 Algorithm does not depend on the order of pair-
wise agreeings.

2. The running time of the Agreeing1 Algorithm is bounded by O(m3k222k) bit operations.
The memory requirement is O(mnk + mk2k) bits.

Proof We will prove the first statement. Consider a set of sub-symbols Ai X = [Ui ], where
Ui ⊆ Li , meaning that columns of Ui are among columns of Li , for all 1 ≤ i ≤ m. The
set of sub-symbols is called a maximal agreed set of sub-symbols if Ai X = [Ui ] pairwise
agree and for any sets U ′

i of columns, where Ui ⊆ U ′
i ⊆ Li , with Ui ⊂ U ′

i for at least one
i , the sub-symbols Ai X = U ′

i , 1 ≤ i ≤ m do not pairwise agree. We will prove that the
maximal agreed set of sub-symbols is unique and is produced with the Agreeing1 Algorithm
regardless of the order of pairwise agreeings.

Assume there are two maximal agreed sets of sub-symbols: Ai X = [Ui ], 1 ≤ i ≤ m and
Ai X = [U ′

i ], 1 ≤ i ≤ m. Then one constructs the new set of sub-symbols Ai X = [Ui ∪ U ′
i ],

1 ≤ i ≤ m. They pairwise agree. That is only possible when Ui = U ′
i , 1 ≤ i ≤ m. So the

maximal agreed set of sub-symbols is unique.
Let Ai X = [Ui ], 1 ≤ i ≤ m be the output of the Agreeing1 Algorithm and Ui ⊆ U ′

i ⊆ Li

for some set of symbols Ai X = [U ′
i ], 1 ≤ i ≤ m which pairwise agree. An intermediate

stage of the Agreeing algorithm is the set of sub-symbols Ai X = [L ′
i ], where L ′

i ⊆ Li .
Let this be the stage just before deleting any of the columns in U ′

i \ Ui , 1 ≤ i ≤ m. Then
U ′

i ⊆ L ′
i , 1 ≤ i ≤ m. The Agreeing1 Algorithm now deletes some a1 ∈ U ′

i \ Ui . This
means there is a symbol A j X = [L ′

j ] such that Ai X = a1 is inconsistent with A j X = a2

for any a2 ∈ L ′
j and, therefore, for any a2 ∈ U ′

j . This means that the symbols Ai X = [U ′
i ]

and A j X = [U ′
j ] do not agree. The contradiction implies U ′

i = Ui for all 1 ≤ i ≤ m. So
Ai X = [Ui ], 1 ≤ i ≤ m is the maximal agreed set of sub-symbols. That proves the first
statement.

We will prove the second statement now. In order to delete at least one column from some
matrix Li one should find at least one pair Si and S j of symbols which disagree. To this end
the matrices U , U Ti , and U Tj are computed. Then the symbols are checked for agreeing and
made agreed with list sorting of size at most 2k and table look-ups which costs O(k22k) bit
operations. That is to delete one column costs O(m2k22k) bit operations in the worst case. As
one should delete at most m2k columns, this implies the running time estimate. The memory
requirement is obvious as m matrices Ai and m of Li should be kept. That finishes the proof
of the lemma. ��

3.2 Agreeing2 Algorithm

In this section another approach to pairwise agreeing of the equations (3) is presented. It is
significantly faster than the previous variant but requires some additional memory.

Most of the work in agreeing two symbols lies in doing linear algebra to find linear
dependencies in the various A-matrices different pairs of symbols produce. Also, the num-
ber of right hand sides in one symbol is sometimes big, so operations where we need to
traverse many of them can be expensive. These complexity issues are sought to be improved
in the Agreeing2 Algorithm. First of all, the various U -matrices generated by the different
pairs of symbols are only computed once, and stored. Secondly, there are no rearrangments
done on right hand sides in the symbols when some of them are deleted. Any particular
right hand side stays in the same memory location throughout the whole execution of the
algorithm.
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Agreeing2 Algorithm

(Precomputation.) For each pair of symbols Si and S j , where i < j , the number r = ri j ≤ k
of linear dependencies in

(Ai
A j

)
and the matrix U = Ui j are computed. If r = 0, then there

is nothing to do. If r > 0, then U Ti , and U Tj are computed, but only U should be kept for
the main step of the algorithm. For each r -bit address b the tuple (Li jb, L jib) is computed
and kept. The list Li jb consists of columns a1 from Li such that U

(a1
0

) = b. Similarly, L jib

denotes the list of columns a2 from L j such that U
( 0

a2

) = b. The set of tuples is sorted
with some linear order. During the Algorithm execution columns in lists Li jb are being
deleted. In order not to change the addresses of other columns they are simply marked. So
saying Li jb is “empty” means that all columns in Li jb are marked.
(Agreeing.) The Algorithm starts with any tuple (Li jb, L jib), where just one list is empty
and follows the rules:
1. Let the list Li jb in the current tuple (Li jb, L jib) be empty, while L jib is not. Then

all unmarked columns a are deleted(marked) from L jib one after one and it is made
empty.

2. When the column a is being deleted (marked) from L jib, one computes the address
d = U jl

(a
0

)
if j < l (or U jl

(0
a

)
if j > l), where r jl > 0. Then a is deleted from L jld ,

where (L jld , Ll jd) (or (Ll jd , L jld)) is now the current tuple.
3. If just one of L jld or Ll jd is empty, then apply Step 1, otherwise apply Step 2 for a

new l. If there are no new l, then delete(mark) new a from L jib, otherwise go to the
tuple last to (Li jb, L jib). If (Li jb, L jib) is the root tuple in the current tree, then take
another starting tuple from the list.

4. For each starting tuple the algorithm walks through a search tree with backtracking.
If new deletions do not occur in the current tree, then a new tuple, where just one list
is empty, is taken and the above steps repeat. Remark that no new tuple with just one
empty list can appear in the list of all tuples after this step.

5. The algorithm stops when in all tuples (Li jb, L jib) the lists both are empty or both
non-empty. Then all columns earlier deleted from the tuples are now deleted from Li .

By Lemma 3 the order of the tuples the algorithm walks through is irrelevant for the result.
The complexity of the Agreeing2 Algorithm is estimated with the following lemma.

Lemma 4 The complexity of the Agreeing2 Algorithm is bounded by O(m2k22k) bit oper-
ations. The memory requirement is O(mnk + m2k2k) bits.

Proof The precomputation costs O(m2k22k) bit operations. Each deletion (marking) of a
column a ∈ L jib, when Li jb is empty, results in at most m −1 computations of the addresses
d = U jl

(a
0

)
, table look-ups, and marking a in L jld . As one should delete(mark) at most m2k

different columns in all lists Li jb, the algorithm running time is O(m2k22k) bit operations or
at most O(m22k) look-ups. There should be enough memory locations to keep m matrices
Ai of size at most k × n and m matrices Li of size at most k × 2k . Besides, for each pair
of symbols Si , S j the matrix Ui j are kept, then all tuples (Li jb, L jib) on the whole com-
prising at most m(m − 1)2k of k-bit columns are kept too. So the memory requirement is
O(mnk + m2k2k) bits. This proves the lemma.

We remark that the Agreeing Algorithms’ output may be far away from any solution of
the system. What typically happens for the equation systems from ciphers is that all symbols
are pairwise agreed already from the beginning, e.g. all ri j = 0 or Vi = Vj . So one should
do something to start deletions by agreeing. We will describe two approaches to the problem:
gluing symbols, which may produce ri j > 0 or Vi 	= Vj , and guessing variables which may
result in Vi 	= Vj .
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Solving Multiple Right Hand Sides linear equations 155

4 Gluing

By definition, the gluing of the symbols (4) is a MRHS system of linear equations B X = [L]
whose set of solutions is the set of common solutions to Ai X = [Li ] and A j X = [L j ].
The point of this operation is that to represent (find) all common solutions to the above two
equations takes at most O(s1 log s1 + s2 log s2 + s) steps of sorting and linear algebra, where
s is the number of columns in L . This may be significantly faster than a full search over all
strings in relevant variables.

Find a matrix W such that W A is upper triangular. The last r rows of W A are all-zero and
the last r rows of W may serve as the U -matrix containing all linear dependencies among
the rows of

(A1
A2

)
. Let B be the sub-matrix of W A in its t − r nonzero rows. The gluing of the

symbols is the symbol B X = [L], where L is a matrix of t − r rows and some number of
columns. Each column of L is the sum of one column from W Ti and one from W Tj having
the same projection to the last r coordinates, and reduced to the first t − r coordinates. One
checks that solutions of B X = [L] are exactly all common solutions to the equations (4)
in variables X . Then the new symbol S : B X = [L] satisfies all requirements to a MRHS
system of linear equations. We denote the result of the gluing as S = S1 ◦ S2.

The straightforward complexity of gluing is at most O(s1s2) linear algebra steps. On the
other hand, the bound O(s1 log s1 + s2 log s2 + s) is also true. To demonstrate this one sorts
the columns U Ti by their last r -coordinate sub-vectors and glue columns of U Ti and U Tj

(compute their sum to produce columns of L) with the same sub-vector by table look-ups.
The gluing of the above example symbols is computed as

⎛
⎜⎜⎝

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 1 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎣

1 0
0 0
0 1
0 0

⎤
⎥⎥⎦ . (7)

When the symbols (3) reach an agreeing state, we can glue together some of them to create
new equations. When gluing S1 and S2 together we discard S1 and S2, since all information
in them are contained in S1 ◦ S2. When we have glued together several pairs of symbols the
new set of symbols will in general not be in an agreeing state, so we can start the Agreeing
Algorithm again. The price to pay when gluing together symbols is longer right hand sides
lists. They may be as big as s1s2. We may run into cases where we can not afford any sym-
bols to be glued. Then a threshold is set up and we only glue together symbols that produce
symbols with the number of the right hand sides below this threshold.

5 From MRHS to URHS

Ordinary (Unique Right Hand Side) linear equations can often be produced from MRHS
linear equations. Consider a MRHS system of linear equations: S: AX = [L], where L is a
k×s matrix. We will try to produce linear equations in variables X satisfied by all solutions of
AX = [L]. To this end one triangulates L with a row transform W to get an upper-triangular
matrix with zeros in its last r1 ≥ 0 rows. Let A′ be the sub-matrix of W A in its last r1 rows.
Then A′ X = 0 is the system of all independent linear homogenous equations satisfied by
the solutions of AX = [L]. Non-homogenous equations may occur as well. It is enough to
construct one of them. With the above triangulation of L one finds out whether the rows of L
generate the all ones vector 1̄ of length s. If this is so, then the system bL = 1̄ has a solution
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b, which is a Boolean k-vector. Then (bA)X = 1 is the sought equation. That is, S admits
r1 or r1 + 1 linearly independent linear equations. One sees that if k ≥ s there should be at
least one linear equation produced from S. E.g. the symbol (7) is transformed to

⎛
⎜⎜⎝

1 1 0 0 0
0 1 0 1 0
1 0 1 0 0
0 1 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎣

1 0
1 1
0 0
0 0

⎤
⎥⎥⎦

with obvious row transformations. This implies three linear equations: x2+x4 = 1, x1+x3 =
0 and x2 + x5 = 0, which are equivalent to the system of the two initial quadratic equations.

5.1 Solving systems by guessing variables and collecting linear equations

Before starting solving the equations some symbols may be enlarged by gluing up to some
threshold. When a variable x ∈ X is guessed, the linear equation x = 0 or x = 1 is produced.
Several such guesses produce a system of linear equations A0 X = a0, that is a new symbol
S0. These equations are glued to other symbols (3) during their agreeing in order to enhance
deletions. An alternative and equivalent approach is to eliminate variables using current lin-
ear equations. After agreeing, the symbols where deletions have occurred are checked for
producing new linear equations with the approach from Sect. 5. Remark that the deletions
enhance symbols to imply linear equations as the number of right hand sides in the related
MRHS linear systems is reducing. All produced linear equations are being up-glued to the
symbol S0, enlarging the system A0 X = a0. Then the whole thing repeats.

One concludes that the guess was wrong when all right hand sides of a symbol have been
deleted or the system of linear equations in S0 is inconsistent. Then one backtracks and takes
another guess. When neither new linear equations nor new deletions in symbols are found,
some guesses of new variables should be made in order to restart the process until there are
enough linear equations to produce all solutions to (3) or to reject the current guess.

6 Equation systems for scaled versions of the AES

For readers not familiar with the internal structure of the AES, we refer to [7] or [3]. We
consider the general scaled AES, SR*(n, r, c). The variables of the equations we construct
will be:

– All bits from the user selected key which is identical to K0, the round key used to mask
the plaintext before the first round, 8rc variables.

– All bits in the leftmost columns of the round keys Ki , i = 1, . . . , n, that is 8nr variables.
– All bits in the cipher block after application of the S-boxes in each round, except for the

last, 8(n − 1)rc variables. In round i , the block is denoted Xi .

For example, the bytes that are variables of SR*(3,4,4) are shown below, marked with ‘X’,
at Fig. 1. Any bit in any of the round keys, and any bit at any stage of the encryption can be
expressed as a linear combination of in total 8rn(c + 1) Boolean variables.

Each S-box used in SR*(n, r, c) produces one MRHS linear equation. Each of the eight
bits going in or out of one S-box is expressed as a linear combination of the variables, and
possibly some plaintext or ciphertext bits (considered known constants), or round constants
from the key schedule. Let the eight linear combinations going into one S-box be denoted
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P C

Fig. 1 SR*(3,4,4) equations variables

l0, . . . , l7 and the eight linear combinations going out of the same S-box be l8, . . . , l15. Let A
be the matrix having the coefficients of li as row i . There are 256 possible inputs to the S-box,
each one producing a unique output. Hence there are 256 possible sets of values the 16 linear
combinations l0, . . . , l15 can have, namely the 16-bit string (a, S(a)) for all 8-bit strings a.
Collecting this we get the following MRHS equation AX = [L], where the columns of L
are written in hexadecimal notation:⎛

⎜⎜⎜⎜⎜⎜⎝

l0
. . .

l7
l8
. . .

l15

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎣

0 1 . . . F
0 0 . . . F
3 C . . . 6
6 7 . . . 1

⎤
⎥⎥⎦ . (8)

There are r S-boxes used when computing Ki+1 from Ki , and there are rc S-boxes used in
each round of SR*(n, r, c). Hence the total number of MRHS linear equations making up the
system is nr(c + 1). We expect the system to have a unique solution, so exactly one of the
columns in L will be consistent with the solution.

We have implemented SR*(n, r, c) for various choices of r, c and n, constructed the asso-
ciated MRHS equation systems, and tried to solve them by guessing key bits, running the
agreeing algorithm and gluing equations.

For variants where the key is 16 bits or less, the maximum number of columns in L when
gluing was set to 28. When the key size was above 16 bits, two symbols could be glued if the
number of right hand sides in the glued symbol was 216 or less.

We call the exact algorithm used for solving these systems the G algorithm. It is designed
to only guess variables when the other techniques fail, thus trying to solve the system with
as few guesses as possible. It works as follows:

while system not solved
– while something changed since last iteration

– run agreeing algorithm
– try to extract linear equations
– eliminate one variable for each linear equation extracted
– glue if new number of right hand sides small enough

– guess one variable from K0
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Table 1 The number of guessed key bits before SR*(n, r, c) is solved

8-bit key 16-bit key 32-bit key 64-bit key 64-bit key 128-bit key
n SR*(n,1,1) SR*(n,2,1) SR*(n,2,2) SR*(n,2,4) SR*(n,4,2) SR*(n,4,4)

3 0 (0.023) 5 16 48 48 112

4 0 (0.032) 8 16 48 48 112

6 0 (0.076) 8 16 48 48 112

7 0 (0.139) 8 16 48 48 112

10 0 (0.320) 8 16 48 48 112

Table 1 gives the number of K0-bits needed to guess in order to solve the system. For
comparison with [3], the time in seconds our computer used for solving SR*(n, 1, 1) is also
noted. In the trivial case of SR*(n, 1, 1) no guessing is necessary, the system is always solved
by agreeing and gluing alone.

What we immediately see is that for a k-bit key, the number of key bits needed to guess
when storing equations with up to 2l right hand sides is always k − l (except for the prob-
ably degenerate case of three-round SR*(3, 2, 1)). This seems to imply that l bits of the
key are guessed implicitly when storing equations with 2l right hand sides. This number-of-
guesses/memory tradeoff means it is (theoretically) possible to solve the full AES system by
guessing 64 key bits when allowing equations to have up to 264 righ hand sides. At this point,
this does not indicate a break of the AES, as the complexity of working with equations with
264 right hand sides is of the order of 264. Each right hand side must be visited at some point,
at least when it is deleted, hence the total complexity for solving such a system would still
be on the order of 2128. However, if a very fast way of agreeing is found this tradeoff may be
important.

It should also be noted that the G algorithm is sensitive to exactly which equations that are
chosen to be glued when gluings occur. The above numbers were obtained by always gluing
together the two equations that produce the smallest number of right hand sides (assuming it
is less than the 216 threshold). We also tried the variant where we glue together the first pair
we find that produce an equation with less than 216 right hand sides. This gave significantly
weaker results in all cases except for SR*(3, 4, 4) which was solved after 105 guesses.

6.1 Random systems comparable to the AES systems

The results from the previous section are from scaled versions of the AES. For comparison,
we tried the algorithm on random systems similar to the AES systems.

For real AES systems, we take advantage of the fact that the variables representing the
user-selected key are special. If most of these variables are known, the rest of the system can
be easily solved. If there is no such subset of special variables, how many variables do we
need to guess?

We constructed random equations of size similar to the AES equations (8) as follows. We
used the right hand sides of the AES equations as right hand sides for the random equations.
The A-matrix in a random equation is a 16×n-matrix with random linear independent rows,
for various values of n. Each equation puts an 8-bit constraint on the solution space, so with
n/8 equations we would expect the system to have about one solution, so we used systems
with n/8 equations. To make sure there was always at least one solution, we also generated
a random n-bit string to act as a solution to the system. The correct right hand side corre-
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Table 2 The number of guesses before the system in n variables is solved

n 48 56 64 80 96 112 128 160 192 224 256

# of guesses 0 7 13 29 45 61 76 108 140 172 204

sponding to this synthetic solution was computed for each equation, and replaced one of the
AES right hand sides.

We ran algorithm G on these systems, still with the 216-limit on the number of right hand
sides in one equation, to see how many guesses were needed to solve them. The results of
these experiments are in Table 2. As we see, the differences between the number of variables
and number of guesses are mostly 51 or 52. It seems that with the limit of number of right
hand sides set to 216, the techniques agreeing, gluing and extracting linear equations are able
to solve a random looking non-linear equation system with 52 variables.

Magma is a computer algebra program that has an efficient implementation of the F4-
algorithm [8] for computing Gröbner bases. This method is considered to be state-of-the-art
when it comes to solving general non-linear equation systems. To compare our methods to
F4, we also did the following experiments.

First we constructed a system of 6 random equations with 48 variables, with the AES right
hand sides, that is as in (8). This time we did not insert any synthetic solution. We used gluing
(max 216 right hand sides), agreeing and extracting linear equations to solve the system. On
the first two attempts we had constructed systems with no solutions, but on the third try the
system had two solutions. These solutions were found in between one and two seconds. We
then used the 24 linearly independent quadratic polynomials listed in [5] together with 16
extra quadrartic polynomials from [2] to generate the multivariate polynomials describing
the same system. This set of polynomials was imported into Magma. Together with the field
polynomials x2

i + xi we then had a set of 288 = 40 × 6 + 48 quadratic polynomials in 48
variables, and we called the function computing the Gröbner basis for this set. It returned
the same two solutions after more than twelve and a half hours of computing on the same
machine with a 450MHz UltraSparc II processor.

Next we constructed a system of 7 random AES equations in 56 variables. With a limit
of 216 right hand sides in one symbol we had to guess on the value of seven of the variables
before we could solve the system with gluing and agreeing. We found the unique solution to
the system, and the total time used for this was five and a half minutes. By allowing 223 right
hand sides in one symbol the same solution was found without any guessing in 19 s. We then
imported the corresponding set of quadratic polynomials into Magma and called its Gröbner
basis function. This time Magma consumed all available memory, more than 3 GB, before it
exited with an out-of-memory message.

7 Conclusion

We believe that the methods described in this article should be put into the toolbox for
algebraic cryptanalysis, together with the other algorithms for solving non-linear equation
systems.

We also argue that the MRHS representation of equations is much better suited for equa-
tions made from S-boxes than multivariate polynomials and CNF formulas as in [1]. There
are two reasons for this.

First, the input/output bits of an S-box are normally linear combinations of variables.
When expressing the S-box as a set of polynomials, the products of these linear combina-
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tions must be expanded before we get the polynomials into ANF form. On the other hand, a
lot of new variables should be introduced in order to construct k-CNF formulas with small k
suitable for an efficient application of modern SAT solvers. Then these two methods heavily
depend on the algebraic degree of the equations. The MRHS representation uses the fact that
the input/output bits of the S-box are linear combinations, keeps them intact, and becomes
a more compact representation. The method’s efficiency does not depend on the algebraic
degree of the equations.

Second, representing an S-box using multivariate polynomials gives a whole set of poly-
nomials, but they are all constructed from the same set of linear combinations, and really
belong together as a group. This is exactly what is done in the MRHS representation, making
one equation from one S-box.

Comparison with the findings in [3], together with our own experiments with Magma
show that our methods are generally far stronger than what has been considered the best way
to solve non-linear equation systems over G F(2). It was also mentioned in [1] that Magma
tends to be faster than SAT-solvers approach if it does not crash due to the lack of available
memory. This seems to show that our methods overcome [1] too.

The critical reader may argue that the comparison is not fair, since the algorithm for solv-
ing equation systems in Magma is designed to handle any system, and that the systems that
have been tested for both our program and Magma are special and constructed to suit our
methods. This really only proves our point: The methods for solving non-linear equation
systems presented in this paper are the best known for solving systems describing ciphers.
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