
Simula Research Laboratory, Technical Report 2016-2 June, 2016

An Integrated Modeling Framework to Facilitate
Model-Based Testing of Cyber-Physical Systems under

Uncertainty

1Man Zhang, 1Shaukat Ali, 1,2Tao Yue
1Simula Research Laboratory,

2University of Oslo
Oslo, Norway

{manzhang, shaukat, tao}@simula.no

Roland Norgre
Future Position X,

Gävle, Sweden
roland.norgren@fpx.se

ABSTRACT

Tackling inherent uncertainty of Cyber-Physical Systems (CPSs) is essential for their reliable operations. A way

of ensuring the quality of CPS under uncertainty is via methodical testing techniques such as Model-based

Testing (MBT). Towards this direction, we present an Uncertainty Modeling Framework (UMF) for modeling test

ready models to support MBT of CPSs under uncertainty at the three testing levels: Application, Infrastructure,

and Integration. UMF relies on the definition of a UML profile (named as UML Uncertainty Profile (UUP)) and

an extensive set of UML model libraries extending UUP. In addition, UMF also relies on the UML profile for

Modeling and Analysis of Real-Time and Embedded Systems (MARTE) and the UML Testing Profile (UTP) V.2

for developing test ready models. UMF was evaluated by modeling test ready models with uncertainty for two

industrial CPS case studies and one open source CPS case study from the following four perspectives: 1)

Completeness and Coverage of the profiles and model libraries in terms of concepts defined in their underlying

uncertainty conceptual model for CPSs called U-Model that was published earlier and MARTE, 2) Effort required

to model uncertainty with UMF, and 3) Assessing Correctness of the developed models via simulating the test

ready models with executable UML, 4) Experience of using UTP V.2 to create test ready models with uncertainty.

Keywords

Uncertainty; Cyber-Physical System; UML Profile; Model-based Testing

1. INTRODUCTION

Uncertainty in Cyber-Physical Systems (CPSs) during their real operations is inevitable and hence must be

properly handled with systematic verification and validation techniques during their development phases to the

maximum extent. Uncertainty in CPSs is an immature area of research in general and several efforts have just

begun to study uncertainty in CPSs [50]. One such effort is being done in an EU project under the Horizon2020

program called U-Test (www.u-test.eu). The U-Test project aims to devise a set of modeling and testing

methodologies for explicitly modeling test ready models (with uncertainty) for CPSs under test with the ultimate

Simula Research Laboratory, Technical Report 2016-2 June, 2016

aim of automatically generating test cases from the test ready models with Model-Based Testing (MBT)

techniques.

In this paper, we report the Uncertainty Modeling Framework (UMF) developed under the U-Test project for

modeling test ready models with known uncertainty at the three CPS testing levels: Application, Infrastructure,

and Integration [2]. The core of UMF is the UML Uncertainty Profile (UUP), which is defined based on the

uncertainty conceptual model for CPSs (U-Model) [50]. The UUP profile consists of three parts (i.e., Belief,

Uncertainty, and Measurement profiles) and an internal library containing enumerations required in the profiles.

In addition to UUP, UMF also defines an extensive set of UML model libraries by extending the UML profile for

Modeling and Analysis of Real-Time and Embedded Systems (MARTE) [18]. The key libraries include

Uncertainty Pattern Library, Measure Library and Time Library. In addition, UMF relies on the UML Testing

Profile (UTP) V.2 to model test ready models with uncertainty. Last, UMF also includes a set of guidelines with

recommendations and alternative scenarios for applying these modeling notations.

UMF was evaluated with two industrial case studies and one extended open source case study from the literature.

The first industrial case study is GeoSports provided by Future Position X, Sweden1, a U-Test project partner. The

second industrial case study is embedded Videoconferencing Systems developed by Cisco, Norway 2 and was

used in our previous work [50]. The third open source case study is SafeHome from [37]. We performed

evaluation from these four perspectives: 1) Completeness and coverage of UUP/Model Libraries to U-Model and

MARTE, 2) Effort required to model uncertainty using UMF in terms of the number of model elements and effort

measured in terms of time, 3) Correctness of the developed models using simulation with executable UML, and 4)

Experience of applying UTP V.2 for creating test ready models.

The rest of the paper is organized as below. Section 2 presents the background, followed by a running example

(Section 3). Section 4 presents the overview of UMF. Section 5 discusses details of the UUP profile and Section 6

discusses the model libraries. Section 7 presents the guidelines for applying UMF. Section 8 presents the

evaluation and Section 9 presents the related work. We conclude the paper in Section 10.

2. BACKGROUND
2.1 Cyber-Physical Systems and Testing Levels
A CPS is defined in [2] as: “A set of heterogeneous physical units (e.g., sensors, control modules) communicating

via heterogeneous networks (using networking equipment) and potentially interacting with applications deployed

on cloud infrastructures and/or humans to achieve a common goal” and is conceptually shown in Figure 1. As

defined in [2], uncertainty can occur at the following three logical levels (Figure 1): 1) Application level, due to

events/data originating from the application of the CPS; 2) Infrastructure level, due to various interactions (e.g.,

1 www.fpx.se/geo-sports/
2 www.cisco.com/

Simula Research Laboratory, Technical Report 2016-2 June, 2016

events/data) among physical units, networking infrastructure, and/or cloud infrastructure, 3) Integration level, due

to either interactions between components at the application level and ones at infrastructure levels, or interactions

of uncertainties across these two levels.

Figure 1. Conceptual model of a Cyber-Physical System [2]

2.2 U-Model

In our previous work [50], to understand uncertainty in CPSs, we developed a conceptual model called U-Model

to define uncertainty and associated concepts, and their relationships at a conceptual level. Some of the U-Model

concepts were further extended for supporting MBT of all the three levels of CPS under uncertainty (Section 2.1).

U-Model was developed based on an extensive review of existing literature on uncertainty from several

disciplines including philosophy, healthcare and physics, and two industrial CPS case studies from the two

industrial partners of the U-Test project. In this paper, we implement U-Model as UMF (including UUP and a set

of model libraries) to support the construction of test ready models with uncertainty. Details of U-Model is given

in [50].

2.3 UML TESTING PROFILE

UML Testing Profile (UTP) [17] is the MBT standard at Object Management Group (OMG). With UTP, either

System Under Test (SUT) is modeled using the UTP or test cases for the SUT are modeled using UML and UTP.

Transformations from UTP models to executable test cases can be performed using specialized test generators.

The version 2.0 of UTP is being under developed, where the second and third authors of the paper are the work

group members. To enable MBT of CPSs under uncertainty, we rely on UTP V.2 to model the testing aspects of

test ready models. UTP V.2 defines a set of stereotypes such as Test Case, Test Data, and Test Design Model and

model libraries such as various types of test case Verdict (pass, fail).

3. RUNNING EXAMPLE

To illustrate UMF throughout the paper, we present a running example in this section. It is about a simplified

security function of the SafeHome system described in [37]. The test ready models of the running example were

developed as a class diagram, a composite structure diagram and a set of state machine using IBM Rational

Simula Research Laboratory, Technical Report 2016-2 June, 2016

Software Architect (RSA) 9.1 [24]. For the sake of simplicity, we only show one security function related to

intrusion detection.

In general, the security system controls and configures the Alarm and related Sensors through their corresponding

interfaces (class diagram in Figure 2). In Figure 4, we show a composite structure of the security system. Notice

that the alarm and sensors do not talk to each other directly. Instead, they communicate via the interface of the

system: ISecuritySystem. For example, the security system receives the IntrusionOccurred signal via portSecurity,

which is sent by a sensor from portSensor when an intrusion is detected (see the implementation of effect

notifyIntrusion in Figure 6).

Behaviors of the system, alarm and sensors are specified as three state machines shown in Figure 8, Figure 5 and

Figure 6 respectively. The alarm state machine has two states as shown in Figure 5: AlarmDeactivated and

AlarmActivated. AlarmDeactivated represents the state that the alarm is not ringing, whereas the AlarmActivated

state denotes that the alarm is ringing. The sensor state machine has two states (Figure 6): SensorDeactivated

denoting the state that a sensor is deactivated to detect intrusion, whereas SensorActivated represents that a sensor

is activated to sense intrusion. The security system state machine (Figure 8) has two concurrent regions in the

composite state MonitoringAndAlarm and a set of sequential states (e.g., Idle and Ready). The top region

(Monitor Intrusion) of the MonitoringAndAlarm composite state has two states: Normal and IntrusionDetected

representing that an intrusion is not detected and detected, respectively. The bottom region (Timer Control) has

three states: Timer Stopped, Timer Started, and Police Notified representing the states that the timer of the system

is stopped to notify the police (Timer Stopped), the timer is activated to wait for 3 minutes before notifying the

police (TimerStarted), and the police is notified (PoliceNotified).

Table 1. Details on Transition «BeliefElement» IntrusionOccurred

Transition Normal→IntrusionDetected (Figure 8, B.1)
trigger* <SignalEvent>IntrusionOccurred(sensorID:String)
effect* activateAlarm() the body of this operation is as below:

portSecurity.send(new StartAlarm())
UUP::Stereotype «BeliefElement»
agent «BeliefAgent» SafeHomeSoftwareEngineer
beliefDegree Measurement

-measureInDTViaClass: «BeliefMeasure»ReceiveIntrusionOccurred
-measurementInVS:<InstanceValue>VeryLikely

Uncertainty Uncertainty
-kind: UncertaintyKind::Occurrence
-referredCause: «IndeterminacySource» notifyIntrusion (the effect of IntrusionDetected

transition, see Figure 6, A)
-referredEffect: «BeliefElement, Effect» AlarmActivated (C)

trigger * represents the “triggers” attribute of the Transition in UML. effect * represents the “effects” attribute of the Transition in UML.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

Figure 2. Class diagram of the Simplified Security System

Figure 3. The Example of Applying UUP with Model

Libraries

.
Figure 4. Composite Structure diagram of the

Security System

Figure 5. State Machine of Alarm

Figure 6. State Machine of Sensor

StateInvariant «CheckPropertyAction» of IntrusionDetected

(self.systemStatus = SecuritySystemStatus:: Monitoring or

(self.systemStatus = SecuritySystemStatus::MonitoringAndAlarm

and self.alarm.isRinging)) and self.sensors->forAll

(s:Sensor|s.isActivated) and self.sensors-

>one(s:Sensor|s.isIntrusionOccured)

Figure 7. StateInvariant (in OCL) of
IntrusionDetected (B.2)

Figure 8. State Machine of the Security System

A

C

B.2 B.1

Simula Research Laboratory, Technical Report 2016-2 June, 2016

These three state machines communicate via signals using the ports defined in the composite structure (Figure 4).

One typical scenario in case of security breach is: 1) When a sensor is in the state of SensorActivated, it sends the

IntrusionOccurred signal to the security system (UAL code in the comment in Figure 6) once the intrusion is

detected via the effect notifyIntrusion defined in the self transition (Figure 6, A) of the SensorActivated state; 2)

When the Security System receives the IntrusionOccurred signal, it transits to the IntrusionDetected state from the

Normal state (Figure 8, B.1). In parallel, as one can see from the bottom region (Timer Control) of the

MonitoringAndAlarm composite state of the system (Figure 8), the system sends the StartAlarm signal to the

Alarm state machine via effect activateAlarm (Figure 8 and effect* in the Table 1) and triggers the StartTimer()

when entering IntrusionDetected state (Figure 8, B.2), which leads to the transition from TimerStopped to

TimerStarted (Figure 8). From TimerStarted, after 3 minutes (time event), the system notifies the police and

transits to PoliceNotified; 3) The Alarm state machine receives the StartAlarm signal in the AlarmDeactivated

state and activates the alarm and transits to AlarmActivated.

To illustrate how to model uncertainty using UUP combined with Model library, CPS Testing Levels profile and

UTP V.2, we also apply these profiles in the running example, and more details are presented in the following

sections.

4. OVERVIEW OF UNCERTAINTY MODELING FRAMEWORK

An overview of UMF is presented in Figure 9. Notice that our framework is exclusively developed to develop test

ready models with uncertainty to facilitate MBT of CPS under uncertainty. This means that UMF is not proposed

for supporting modeling of CPSs and uncertainty from the design and development perspectives.

The core of UMF is to implement U-Model [50]. More specifically, the core part of U-Model is implemented as

UUP comprising of three parts: Belief, Uncertainty and Measurement. All these profiles import the

Internal_Library that defines the necessary Enumerations required in the profiles. The framework also consists of

a small CPS profile that permits modeling specific aspects of the three testing levels of CPS, i.e., Application,

Infrastructure, and Integration, exclusively for facilitating MBT.

The framework also consists of three UML model libraries: Measure Library, Pattern Library, and Time Library

(that extend MARTE [18]). The framework relies on UTP V.2 to bring necessary MBT concepts to test ready

models. Finally, the framework provides a set of guidelines to use its modeling notations to construct test ready

models for enabling MBT of CPSs under uncertainty.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

Figure 9. Overview of Uncertainty Modeling Framework (UMF)

5. UUP AND CPS TESTING LEVELS PROFILES

This section presents UUP, whose modeling notations are composed of stereotypes and classes for Belief,

Uncertainty and Measurement, as shown in Figure 10, Figure 11 and Figure 12.The definitions of the profile

modeling elements are provided in [49] for reference.

There are two approaches discussed in the literature for defining UML profiles [29]. One approach directly

defines a UML profile for a specific purpose. The second approach is a more systematic as it starts with a

conceptual model defining detailed concepts and relationships among them independent of any detail on for

example which UML metaclass to extend. A UML profile is then developed based on the conceptual model. Note

that not all the concepts defined the conceptual model are transformed into model elements in the UML profile.

We opted for the second approach to create the UUP profile, as it has been used to define several well-known

standardized UML profiles such as MARTE [18] and UTP V.2.

5.1 UUP Belief

The Belief part of UUP (Figure 10) implements concepts in U-Model:BeliefModel [50] (the mapping is provided

in Table 2 and further discussion is provided in Section 8.1). As shown in Figure 10 and Table 2, five stereotypes

are defined, among which «BeliefElement» is the key stereotype associated to various UML metaclasses. For

example, a StateMachine (subtype of metaclass Behavior) itself can be a belief element such that «BeliefElement»

can be applied on it to characterize it with additional information such as to which extent a modeler (stereotyped

with «BeliefAgent») is confident about the state machine (i.e., beliefDegree of BeliefStatement), all uncertainties

(i.e., Uncertainty) associated to the state machine, and their Measurements. In the context of the U-Test project,

Simula Research Laboratory, Technical Report 2016-2 June, 2016

we extend UML state machines. However, it is worth mentioning that «BeliefElement» can extend other UML

modeling notations such as activity and sequence diagrams if needed. We intentionally kept the profile generic

such that different MBT techniques based on different diagrams can be defined when needed.

«Evidence» is defined to capture any evidence for supporting the definition of a measurement for an uncertainty.

The stereotype extends UML metaclass Element, implying that any UML model element (e.g., Class) can be used

to specify evidence. Each uncertainty is also associated to a set of indeterminacy sources, which can be explicitly

specified using «IndeterminacySource» and classified with enumeration IndeterminacyNature (Figure 10).

The profile also implements OCL constraints defined in U-Model. For example, as shown in Figure 10, each

beliefDegree (an instance of Measurement) of a «BeliefStatement» must have exactly one measure associated to

it, which can be specified in three different ways: a «Measure» (via attribute measure of Measurement), DataType

(via measureInDT) or Class (via measureInDTViaClass). This OCL constraint is given below:

context BeliefStatement:

self.beliefDegree->size()>0 and self.beliefDegree->select(measurement:Measurement|measurement->size()>0)-
>forAll(measurement:Measurement|(measurement.measureInDT->size()+measurement.measureInDTViaClass->size()=1) xor (not
measurement.measure.oclIsUndefined()))

When we look at the running, the belief agent (Figure 3) is SafeHomeSoftwareEngineer (stereotyped with

«BeliefAgent») who defines three state machines: one for the alarm, one for the sensors, and one for the security

system itself. As shown in Table 1, the «BeliefElement» stereotype is applied IntrusionOccurred transition from

state Normal to IntrusionDetected (Figure 8, B.1). The belief agent of this belief element is class

SafeHomeSoftwareEngineer (stereotyped with «BeliefAgent» shown in Figure 3). The belief degree of this belief

element is specified as a value specification “VeryLikely” and measured as Probability_7Scale. The belief

element has one occurrence uncertainty, which is associated to «IndeterminacySource» notifyIntrusion of Sensor

(Table 1).

Figure 10. The Belief Profile

5.2 UUP Uncertainty and Measurement

The Uncertainty and Measurement parts of the UUP Profile are presented in Figure 11 and Figure 12. The key

element is Uncertainty, which is characterized with a list of attributes such as kind (typed with enumeration

Simula Research Laboratory, Technical Report 2016-2 June, 2016

UncertaintyKind) indicating a particular type of uncertainties. All of the attributes (except kind and field) are

optional. For example, an uncertainty might or might not have an indeterminacy source (i.e.,

indeterminacySource).

The U-Model concepts of Effect, Pattern, Lifetime, and Risk can be specified with UUP in difference ways. For

example, one can specify the effect of an uncertainty simply as a string (attribute effect of Uncertainty). One can

also create a UML model element and stereotype it with «Effect» and the uncertainty can then associate to it (i.e.,

referredEffect). More details regarding the possible alternatives can be found in Section 7.

«IndeterminacySource», «BeliefStatement», Uncertainty, «Effect» and «Risk» can be further elaborated with

Measurement. A measurement can be specified in different ways: 1) as a string (attribute measurement of class

Measurement), 2) as a value specification (measurementInVS), 3) as a package stereotyped with a subtype of

«Measurement», and 4) a constraint stereotyped with «MeasurementConstraint». The abstract stereotype of

«Measurement» is further classified into five subtypes, corresponding to the five elements that need to be

measured.

Figure 11. The Uncertainty Profile

Figure 12. The Measurement Profile

Abstract stereotype «Measure» is defined to classify different types of measures and provide users an option to

denote classes and data types with concrete measure types such as «EffectMeasure». Such a stereotyped class or

Simula Research Laboratory, Technical Report 2016-2 June, 2016

data type is linked via Measurement to «IndeterminacySource», «Effect», Uncertainty, «Risk» or

«BeliefStatement».

A set of OCL constraints has been implemented in UUP. One of the example is that Element with applied

«Effect» stereotype should be referred at least once via the “referredEffect” attribute of the Uncertainty instance:

context Effect:

self.base_Element.getAppliedStereotype('UUP::Uncertainty::Effect')<>null implies Uncertainty.allInstances()->one

(u:Uncertainty|u.referredEffect->includes(self))

For the running example, «BeliefElement, Effect» ActivatedAlarm is associated with Uncertainty of

«BeliefStatement» IntrusionOccurred via “referredEffect” attribute (Table 1).

Table 2. Definitions of the Stereotypes and Classes in UUP

 Profile Stereotype/Class U-Model [50] Definition (Most of concepts are defined in the U-Model [50])

Belief

«BeliefStatement»
BeliefModel::
BeliefStatement

As defined in [50], “A BeliefStatement is a concrete and explicit specification of
some Belief held by a BeliefAgent about possible phenomena or notions belonging to
a given subject area.”

«BeliefElement» This stereotype is specialization of «BeliefStatement» that is more relevant in the
context of UML and modeling in general.

«BeliefAgent» BeliefModel::
BeliefAgent

As defined in [50], “A BeliefAgent is a physical entity owning one or more Beliefs
about phenomena/notion”.

«Indeterminacy
Source»

BeliefModel::
IndeterminacySource

As defined in [50], “It represents a situation whereby the information required
ascertaining the validity of a BeliefStatement is indeterminate in some way, resulting
in Uncertainty being associated with that statement.”

Uncertainty
BeliefModel::Uncertainty As defined in [50], “uncertainty is a state (i.e., worldview) of some agent or agency –

henceforth referred to as a BeliefAgent – that, for whatever reason, is incapable of
possessing complete and fully accurate knowledge about some subject of interest.”

Measurement

BeliefModel::Measurement As defined in [50], “Measurement represents the result of measuring stated in the
BeliefStatement related to the existing Measure.”

«Evidence»
BeliefModel::Evidence As defined in [50], “Evidence is either an observation or a record of a real-world

event occurrence or, alternatively, the conclusion of some formalized chain of logical
inference that provides information that can contribute to determining the validity
(i.e., truthfulness) of a BeliefStatement.”

Uncertainty

«Cause» Anything from which an Uncertainty occurs in the BeliefStatement.
«Effect» UncertaintyModel::Effect Effect represents the result of Uncertainty in the BeliefStatement.
«Lifetime» UncertaintyModel::

Lifetime
As defined in [50], “Lifetime represents an interval of time, during which an
Uncertainty exists”.

«Risk» UncertaintyModel::Risk The risk associated with the uncertainty
«Pattern» UncertaintyModel::Pattern A pattern represents a particular pattern in which an uncertainty can occur.

Measurement/
Measure

«Measurement» BeliefModel::Measurement Please see the definition of Measurement under Belief Category
«BeliefDegree» “beliefDegree” attribute of

Belief
As defined in [50], “This Measurement is used for representing confidence degree
from BeliefAgent held this Belief.”

«Indeterminacy
Degree»

“indeterminacyDegree
“attribute of
IndeterminacySource

As defined in [50], “This set of Measurement represents the quantification (or
qualification) of this IndeterminacySource.”

«EffectMeasurement» “measurement” attribute of
Effect

This value is used for representing what kind of measurement may be used to
measure the Effect.

«RiskMeasurement» This value is used for representing what kind of measurement may be used to
measure the Risk

«Uncertainty
Measurement»

“measuredValue” attribute
of Uncertainty

As defined in [50], “This value is used for representing confidence degree of
uncertainty by the agent making the BeliefStatement.”

«Measure» MeasureModel::Measure As defined in [50], “Measure is an objective concept specifying method of measuring
uncertainty.”

«BeliefDegree
Measure»

“measure” attribute of
Measurement

BeliefDegreeMeasure represents the measure specifying method of measuring belief
degree.

«IndeterminacyDegree
Measure»

“measure” attribute of
Measurement

IndeterminacyDegreeMeasure represents the objective concept specifying method of
measuring indeterminacy degree.

«RiskMeasure» RiskMeasure represents the objective concept specifying method of measuring risk.
«UncertaintyMeasure» “measure” attribute of

Measurement
UncertaintyMeasure represents the objective concept method of measuring
uncertainty.

«EffectMeasure» “measure” attribute of
Measurement

EffectMeasure represents the objective concept specifying method of measuring
effect.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

5.3 CPS Testing Levels Profile

We define a small CPS Testing Levels profile with the three stereotypes, as shown in Figure 13, to denote which

model element belongs to which of the three CPS testing levels: Application, Infrastructure and Integration. All

the three stereotypes extend UML metaclass Element, as one can apply them to a class, a state, a state machine

and many other model elements.

It is important to point it out that this CPS profile is defined for the purpose of enabling MBT of CPS under

uncertainty from the three logical levels and we have no intention to break down CPS according to their system

architectures by denoting physical units, sensors, network, etc. For example, class Sensor in Figure 2 is

stereotyped with «IndeterminacySource» and «InfrastructureElement», meaning that sensors are infrastructure

elements. As shown in Figure 4, the composite structure of the system describes the interactions between the

infrastructure elements (alarm and sensors) and the application level elements: portSensor, portAlarm and

portSecurity, which are typed by three interfaces (i.e., ISensor, IAlarm and ISecuritySystem) as shown in Figure 2.

This is the reason that the composite structure is stereotyped as «IntegrationElement».

Figure 13. The CPS Testing Level Profile

6. MODEL LIBRARIES

To model uncertainty with advanced modeling features, we define three model libraries (Figure 14, Figure 15,

Figure 16) that can be used together with UUP (Figure 9): model libraries for modeling uncertainty Patterns,

uncertainty Measurements (corresponding to Probability, Vagueness, and Ambiguity) and Time related properties.

Measure, Pattern and Time libraries import the MARTE_PrimitiveTypes library [18] to faciliate the expression

of data in the domain of CPSs, e.g. Real. Respectively, the Measure library adapts the operation of

NFP_CommonType of MARTE [18] related to probability distributions. The Pattern library imports elements

related to Pattern from the BasicNFP_Types library of MARTE [18] (e.g., AperiodicPattern) and further extends

them. For example, the Transient pattern does not exist in MARTE [18] and has been newly defined. The Time

library imports the MARTE_DataTypes library [18] to facilate the expression of time, e.g., Duration and

Frequency.

6.1 Measure Libraries

We define the three measure packages (Probability, Ambiguity, and Vagueness) to facilitate modeling different

uncertainty measures as shown in Figure 9.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

In the Ambiguity library, we define the data types corresponding to the relevant Ambiguity measures published in

the literature as shown in Figure 14. Since these measures are well-known, we do not provide further details in

this paper; however, interested readers may consult the provided references for more details. The BeliefInterval is

adopted from [5], Belief from [5], Plausibility from [5], Conflict from [40], ShannonEntropy from [5],

HartleyMeasure from [20], AlternativeMeasure from [30], DissonanceMeasure from [43], U_Uncertainty from

[21], PossibleDistribution from [47], and PignisticDistribution from [42]. Some further details of these data types

including their attributes are provided in the technical report corresponding to this paper [49].

Figure 14. The Ambiguity Model Library

The concepts of the fuzzy theory [45] are defined in the Vagueness library (Figure 15). HedgeKind is adopted

from [35], MembershipDegree and FuzzySet (FuzzySetOperationKind, FuzzyLogicOperation, FuzzyLogic and

FuzzyNumber) from [45], FuzzySetCut from [11], FuzzyEntropy from [28], Fuzziness (further classification

EuclidFuzziness, HammingFuzziness, and MinkowskiFuzziness) from [6; 51], Roughness and RoughSet from

[36], LFuzzySet from [12], IntuitionisticFuzzySet from [3], IntervalValuedFuzzySet from [14; 26; 46], VagueSet

from [10], and Sharpness from [4]. For example, as shown in Figure 3, the IndeterminacyDegree of

SensorNotifyIntrusion which is used to measure the occurrence of notify Intrusion, the effect of self-transition of

SensorActivated (Figure 6), is expressed by BeliefInterval3 [5] that is composed of belief (97%) and plausibility

(99%), which are pre-defined in the Ambiguity library (Figure 14). Some further details of these data types are

provided in the technical report corresponding to this paper [49] and interested readers may consult the provided

references for more details.

3 This concept borrows from Dempster-Shafer is used to specify belief interval that is a boundary of probability.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

Figure 15. The Vagueness Model Library

Various data types related to the probability are defined in the Probability library (Figure 16). All the modeled

probability distributions are well-known and thus we do not present further details in this paper. Some details of

these distributions are provided in the technical report corresponding to this paper [49]. The other data types such

as Percentage, Probability, Probability_Interval, and different qualitative scales of probability (e.g.,

Probability_4Scale) are from basic statistics and thus are not further explained.

Figure 16. The Probability Model Library

6.2 Pattern Library

This section presents the Pattern Library shown in Figure 17. All the patterns except Transient and

PersistentPattern are imported from MARTE [18] . Details of these patterns can be consulted from the MARTE

specification and the technical report corresponding to this paper [49]. The definition of transient is adopted from

Simula Research Laboratory, Technical Report 2016-2 June, 2016

[50], i.e., “Transient is the situation whereby an uncertainty does not last long”. Transient inherits from

IrregularPattern. The newly introduced attributes are: minDuration and maxDuration describing the duration for

which the uncertainty lasts. The definition of PersistentPattern is adopted from [50], i.e., “the uncertainty that

lasts forever”. The definition of “forever” varies. For example, an uncertainty may exist permanently until

appropriate actions are taken to deal with the uncertainty. On the other hand, an uncertainty may not be able to

resolve and stays forever. The duration attribute of PersistentPattern is set to “forever” to indicate that the

uncertainty with this pattern stays forever until resolved.

Figure 17. Pattern Library

6.3 Time Library

This section presents the necessary time concepts borrowed from the MARTE Library [18]. An overview diagram

is shown in Figure 18. Some further details of these data types are provided in the technical report corresponding

to this paper [49] and interested readers may also consult the MARTE specification [18].

Figure 18. Time Library

7. UMF MODELING METHODOLOGY

In this section, we present a modeling methodology for the U-Model notations. The rest of this section is

organized as follows: Section 7.1 presents the overview of modeling activities, Section 7.2 presents modeling

activities at Application Level, Section 7.3 presents modeling activities at Infrastructure Level, Section 7.4

presents modeling activities at Integration level, and Section 7.5 presents the modeling activities of applying UUP

which is invoked at above three level.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

7.1 Overview

The modeling methodology is naturally organized from the viewpoints of the three types of stakeholders:

Application Modeler, Infrastructure Modeler and Integration Modeler, as shown in Figure 19. For activities

performed by each type of modelers, we distinguish them by tagging each of them (in their names) using “AP”,

“IF” and “IT”, respectively.

Figure 19. The Top Level Guideline

As shown in Figure 19, all modelers are recommended to start from creating a package (i.e., AP1, IF1 and IT1),

which is used to group and contain model elements for each respective level. Next, application and infrastructure

modelers apply the U-Model notations to model system behaviors of the application and infrastructure levels,

respectively (i.e., AP2 and IF2). These two structured activities are further elaborated in Sections 7.2 and

7.3.When these two activities are finished, integration modelers take their results as inputs and perform IT2:

Model Integration Behavior. Details of this structured activity are further discussed in Section 7.4.

7.2 Application Level Modeling

The application level modeling activities include three sequential steps: creating application level class diagrams

(AP2.1), creating application level state machines (AP2.2) and applying the UUP notations on the created class

and state machines (AP2.3).

A class diagram created for the application level should capture domain concepts that are needed for specifying

the API information to gain access to the data and behavior of the system. It is important to mention that such a

class diagram usually needs to specify Signal, which is a Classifier for specifying communication of send requests

across objects. When creating a class diagram for the application level, for each class, each of its attributes

captures an observable system attribute, which may be typed by a DataType in the UUP’s Model Libraries

(Section [49]) or MARTE_Library [18]. An attribute may represent a physical observation on a device (e.g.,

Battery Status on an X4 device). Each operation of a class in a class diagram represents either the API of the

application software or an action physically performed by an operator (e.g., switching on or off of an X4 device).

Simula Research Laboratory, Technical Report 2016-2 June, 2016

Each state in a state machine created for the application level is defined, with an OCL constraint specifying its

state invariants. Such an OCL constraint is constructed, based on one or more attributes of one or more classes of

an application level class diagram. Each transition in a state machine should have its trigger defined as a call event

corresponding to an API or a physical action defined in the class diagrams of the application level, and have its

guard condition modelled as an OCL constraint on the input parameters of the trigger of the transition.

Next, application modelers need to apply UUP on state machines (AP2.3) to specify uncertainties and apply the

UTP profile to add testing information (e.g., indicating TestItem). The application of the UUP is the same for the

three levels and thus we only it under the Integration Level Modeling section (Section 7.4.).

Figure 20. Application Level Guideline

7.3 Infrastructure Level Modeling

For the infrastructure level, a similar modeling procedure as the one defined for the application level should be

followed to derive class diagrams and state machines, apply UUP and the UTP profile (further details in Section

7.4), as shown in Figure 21. One difference is that attributes of the infrastructure level class diagrams should

capture observable infrastructure attributes. For example, an attribute can be the percentage of data loss between

an X4 device and the Radio Antenna. Operations of the infrastructure level class diagrams represent APIs for

manipulating infrastructure level components. Regarding state machines, they should be consistent with the

infrastructure level class diagrams. In other words, states should have their invariants defined as OCL constraints

based on the attributes defined in the infrastructure level class diagrams, and transitions having their triggers

defined as call events or time/change events.

Figure 21. Infrastructure Level Guideline

7.4 Integration Level Modeling

Recall that, activity IT2 is started after class diagrams and state machines created for the application and

infrastructure levels. As shown in Figure 22, the IT2 activity starts from creating integration level class diagrams

(IT2.1) and state machines (IT2.2), followed by applying UUP and the UTP profile.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

Regarding creating class diagrams for the integration level, such a class diagram should focus on specifying

interactions between the application software and infrastructure. Particularly, signal receptions should be defined

to model events that a class can receive from the infrastructure and/or application levels. Each signal reception

corresponds to an instance of UML Signal defined in a created integration level class diagram. Notice that

creating class diagrams for the integration level is not mandatory. Model elements that have been defined in the

application and infrastructure level class diagrams can appear in the integration level class diagrams and they

should be specified from the perspective of integration level modelers.

There are different ways of defining model elements for the integration level. One way is to refine the created

application and infrastructure level state machines by directly introducing new model elements to them. For

example, a state in the application level can send a Signal to the infrastructure level and vice versa. Transitions of

a state machine in the application (infrastructure) level should capture triggers of type Signal Reception and

effects containing Signals from the infrastructure (application) level. Another way is to keep the application and

infrastructure level state machines untouched by applying a specific modeling methodology (e.g., Aspect Oriented

Modeling methodologies) to specify crosscutting behaviors separately. In addition, one should also benefit from

advanced features of UML state machines (e.g., concurrent state machines, parallel regions) to for example refer

to existing state machines defined in the application and infrastructure levels.

Figure 22. Integration Level Guideline

7.5 Apply UUP (AP2/IF2/IT2)

Recall that the activity of applying UML Uncertainty Profile (UUP) is invoked at all the three levels. We tag each

type of activities of the activity diagrams from Figure 23 to Figure 31 with S, C and A to represent structured

activities, call behavior and normal activity nodes. As shown in Figure 23, applying UUP starts from applying the

«BeliefElement» stereotype on any allowed state machine model element according to UUP. Then a modeler can

optionally specify values for the “from” and “duration” attributes of the stereotype, model belief agents, model

belief degree, and/or model uncertainties (Figure 23).

Simula Research Laboratory, Technical Report 2016-2 June, 2016

Figure 23. Applying UUP

As shown in Figure 24, there are two ways to model belief agents (S1.1 and S1.2). A modeler can specify belief

agents simply as one or more strings via the “beliefAgent” attribute of «BeliefElement» (S1.1). She/he can also

create a package to organize all the belief agents (S1.2). In this case, each belief agent can be modelled as a class

in the package and the package is stereotyped with «BeliefAgent». Alternatively, one can model each belief agent

as a class and stereotype it with «BeliefAgent». The other option is to model each belief agent as a class and

stereotype it with «BeliefAgent» and also stereotype the package with «BeliefAgent». When choosing to apply

options 2, 3 and 4, one needs to link a created belief agent package to the agent attribute of «BeliefElement» (S2).

Figure 24. Model «BeliefAgent»

Modeling BeliefDegree is presented in Section 7.5.1 and modeling uncertainties is discussed in Section 7.5.2.

7.5.1 Measurement Modeling

Modeling measurements and measures are important for applying UUP. These activities are used to measure

beliefDegree, Uncertainty, indeterminacyDegree, Risk and Effect. As shown in Figure 25, one first needs to

Simula Research Laboratory, Technical Report 2016-2 June, 2016

create a package to contain measurements for indeterminacyDegree, beliefDegree, uncertaintyMeasurement,

measurement of Risk and measurement of Effect (A1). Then, a modeler can optionally specify Evidence (S1),

followed by the specification of each measurement instance and its corresponding measure (S3 and S2).

Figure 25. Common Measurement Modeling Activity

A. Specify Evidence
As shown in Figure 26, there are two ways to specify evidence. Option 1 is to specify evidence as a String value

(in the “measurement” attribute of Measurement). Option 2 is to create a package for evidence if such a

package does not exist and optionally stereotype it with «Evidence» (S1.2.1). One can then create any UML

model element to represent evidence, according to UUP and optionally stereotype it with «Evidence» (S1.2.2).

The last step of Option 2 is to link either the package or UML model elements representing evidence to the

“referredEvidence” attribute of Measurement (S1.2.3).

Figure 26. Specify Evidence

B. Specify Measure

As shown in Figure 27, to specify a measure, a modeler needs to create a class diagram (A1) and then create

instances of Measures (for measurements of either “indeterminacyDegree”, “beliefDegree”,	

“uncertaintyMeasurement”, measurement of Risk or measurement of Effect) as classes or datatypes (A2). One

Simula Research Laboratory, Technical Report 2016-2 June, 2016

then needs to add attributes to these classes or datatypes by using the datatypes defined in the Measure Libraries.

One can optionally apply corresponding measure stereotypes (e.g., «UncertaintyMeasure») to the classes or

datatypes (A4). The last step is to link a measure to an instance of Measurement (A5).

Figure 27. Specify Measure

C. Specify Measurement
There are three ways to specify measurements, as shown in Figure 28: specifying a measurement as a String of

the measurement attribute of Measurement (A1), ValueSpecification (A2), and an OCL constraint owned by a

class or datatype representing a measure, based on the attributes defined in the class or datatype (A3.1). One can

also optionally apply «MeasurementConstraint» to an OCL constraint defined to specify a measurement (A3.2).

Figure 28. Specify Measurement

7.5.2 Uncertainty Modeling

As shown in Figure 29, one first needs to specify the kind of an uncertainty (A1), optionally specify values for

attributes “from”, “field”, and “locality” of the uncertainty, optionally model Lifetime (or Cause, Pattern, Effect)

Simula Research Laboratory, Technical Report 2016-2 June, 2016

of the uncertainty, optionally define IndeterminacySource(s), optionally model uncertaintyMeasurement and

Risk.

Figure 29. Model Uncertainty(ies)

A. Model Lifetime/Cause/Pattern/Effect of Uncertainty
A modeler has two options to specify Lifetime/Cause/Pattern/Effect of an uncertainty, as shown in Figure 30.

One option is to simply specify an instance of these as a String value owned by the uncertainty (via attributes

“lifetime”, “cause”, “effect”, “pattern”	or “risk” of Uncertainty). The second option needs to start from creating

a package for Lifetime/Cause/Pattern/Effect if such a package does not exist, and optionally apply «Lifetime»,

«Cause», «Pattern», or «Effect» (S1.2.1). After creating packages, one needs to create

Lifetime/Cause/Pattern/Effect as any UML model element and optionally apply the corresponding stereotypes.

Since Effect can be measured, an instance of it can be optionally associated with one or more measurements

(Section 7.5.1). The last step of Option 2 is to associate each created package or element to corresponding

attributes of Uncertainty, i.e., “referredPattern”,	“referredEffect”,	“referredLifetime”,	or	“referredCause”.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

Figure 30. Model Lifetime/Cause/Patten/Effect of Uncertainty

B. Model IndeterminacySource
As shown in Figure 31, a modeler can simply specify an indeterminacy source as a String value of attribute

“indeterminacySource” of Uncertainty (Option 1). Alternatively, one can create a package to organize

indeterminacy sources (A2.2.1), create instances of any UML Classifier to represent an indeterminacy source and

apply «IndeterminacySource» on them (A2.2.2), specify the nature and description of each indeterminacy source

(A2.2.3), specify measurements for each indeterminacy source (C1), and associate the created classifiers to the

“referredIndeterminacySource” attribute of Uncertainty.

Figure 31. Model IndeterminacySource

Simula Research Laboratory, Technical Report 2016-2 June, 2016

C. Model Risk
A modeler can also optionally associate an uncertainty to Risk. As shown in Figure 32, one can simply specify

Risk as a String value of the “riskLevel” attribute of Uncertainty (Option 1) or one of the predefined risk levels

in enumeration RiskLevel (Option 2). Alternatively, one can create a package for Risk if such a package does not

exist, followed by creating classes and/or datatypes to represent Risks and optionally applying «Risk» (A4.3.2).

Afterwards, a modeler can also optionally specify measurement for Risk (C1), and link the created classes and

datatypes to Uncertainty via the “riskInDTViaClass” and/or “riskInDT” attributes (A4.3.3).

Figure 32. Model Risk

8. EVALUATION

For evaluating UMF, we used three case studies. The first case study is a modified version of the SafeHome case

study provided in [37]. This case study implements various security and safety features in smart homes including

intrusion detection, fire detection, and flooding. We extended the original case study by defining a set of

executable UML models. The second case study is a Videoconferencing System (VCS) developed by Cisco,

Norway. This case study has been used in our previous work [1] and was extended for evaluating UMF. The third

case study is GeoSports provided by Future Position X (FPX) Sweden as part of the U-Test project. Some

descriptive statistics of the test ready models developed for these case studies are provided in Table 3. For each

case study, 1) the number of modeled UML diagrams is presented in the first row, 2) the second, third, and fourth

rows represent the number of application, infrastructure, and integration level elements respectively, 3) the last

row shows the number of uncertainties modeled for each case study.

Note that the second and third authors of the paper are working with the working group of UTP V.2 and have

implemented it in IBM RSA. This implementation was used to model the case studies.

Table 3. Characteristics of the Case Studies

CPS Profile Class Diagram State Machine Total

SafeHome # of diagrams 2 15 17

Simula Research Laboratory, Technical Report 2016-2 June, 2016

Application Elements 15 10

66
Infrastructure Elements 16 19
Integration Elements 3 3
Uncertainties 9 10 19

VCS

of diagrams 6 12 18
Application Elements 92 59

442
Infrastructure Elements 103 67
Integration Elements 51 70
Uncertainties 41 83 124

GeoSports

of diagrams 3 4 7
Application Elements 31 99

226
Infrastructure Elements 36 34
Integration Elements 6 20
Uncertainties 12 29 41

8.1 Mapping UUP/Model Libraries to U-Model and MARTE

This section provides the descriptive statistics for the mapping of elements of UUP and the model libraries to

concepts defined in U-Model and elements in MARTE.

Table 4 is divided into four main sections. First, we provide the statistics of elements in UUP/Model Libraries

that can be directly mapped to U-Model. For example, «BeliefStatement» in UUP can be directly mapped to the

BeliefStatement concept defined in U-Model. Second, we provide the statistics of elements in UUP/Model

Libraries (e.g., BeliefInterval) that can be indirectly mapped to U-Model concepts (e.g., Ambiguity). Third, we

provide statistics of elements that are introduced to UUP/Model Libraries (e.g., «BeliefElement») by extending

U-Model concepts (e.g., BeliefStatement). Fourth, since the model libraries are developed via extending MARTE,

we also provide statistics for mapping elements in UUP/Model Libraries to elements in MARTE. For example, 10

data types in the Measure library can be mapped to MARTE.

As we can see from Table 4 (last row), 33% of the elements in UUP/Model Libraries can be directly mapped to

U-Model, whereas 13% of elements can be indirectly mapped to U-Model, 54% of elements are newly introduced

by extending U-Model concepts. In addition, 10% of UUP/Model Libraries elements were either directly adopted

from MARTE or are extensions of MARTE elements.

The last column of Table 4 shows coverage of the U-Model concepts, from which, one can observe that 83% of

the U-Model concepts were implemented in UUP, whereas 9% of the U-Model concepts were implemented in the

model libraries. The remaining 8% of the concepts that were not mapped to any element of UUP and the model

libraries are the ones related to Knowledge. Such concepts are important at the conceptual level and are defined

based on well defined taxonomies of Knowledge [27], but are not required to be implemented in UUP and the

model libraries.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

Table 4. Mapping UUP/Model Libraries to U-Model and MARTE

U-Model
Directly Mapped

(x,y,z,t)
Indirectly Mapped

(x,y,z,t)
Newly Added

(x,y,z,t) MARTE Coverage
(n,p)

UUP

Belief 8 13 3 24 0 6 0 6 1 0 0 1 0 27 30%
Uncertainty 7 12 7 26 1 9 0 10 1 3 0 4 0 32 36%

Measure 7 5 5 17 0 1 12 13 12 10 0 22 0 15 17%
Total 22 30 15 67 1 16 12 29 14 13 0 27 0 74 83%

Model
Library

Risk 1 0 0 1 0 0 0 0 9 0 0 9 0 0* 0%
Pattern 7 4 0 11 0 0 0 0 4 0 0 4 8 6 7%

Measure 0 0 0 0 3 0 0 3 55 34 3 92 10 0* 0%
Time 2 0 0 2 0 0 0 0 4 0 0 4 6 2 2%
Total 10 4 0 14 3 0 0 3 72 34 3 109 24 8 9%

Total 32 34 15 81 4 16 12 32 86 47 3 136 24 82 92%
Percentage 13% 14% 6% 33% 2% 6% 5% 13% 35% 19% 1% 54% 10%

 #x is the number of Class/Stereotype/ Enumeration/DataType in
UUP/Model Libraries
#y is the number of Attributes/Associations in UUP/Model Libraries
#z is the number of Constraint(s) in UUP/Model Libraries
#t is the sum of #x, #y and #z

#n is the number of concepts (Class/Enumeration/ Association) in
U-Model that are mapped to UUP
#p is the percentage of coverage, 𝑝 = !

!"
 (the total number of

concepts of U-Model is 89)
0* means the number that is covered by others.

8.2 Application of UUP/Model Libraries

We discuss the application of UUP/Model Libraries from two aspects: 1) the percentage of the applied

UUP/Model Libraries elements in all the test ready models (UML class diagrams and state machines) developed

for all the three case studies, and 2) the effort required to apply UUP/Model Libraries.

As shown in Table 5, for the SafeHome case study, in total we modeled 21 classes in the class diagrams, seven

out of which have UUP stereotypes applied (e.g., the «IndeterminancySource» sensor is applied to Sensor, see

Figure 2). For the modeled state machines, three states out of 17 require the application of UUP/Model Libraries,

whereas seven out of 29 transitions required the application of UUP/Model Libraries. In total, as shown in the last

column of the table, around 20% of the modeling elements of the SafeHome case study required the application of

UUP/Model Libraries. Similarly, 12% (16%) of the modeling elements for the VCS (GeoSoports) case study

required the application of UUP/Model Libraries. For all the three case studies, on average 16% of the model

elements require applying UUP/Model Libraries.

Table 6 summarizes effort (measured in time (hours)) spent on constructing the test ready models (i.e., UML class

diagrams, state machines, with UUP/Model Libraries applied) for the three case studies. The effort is divided into

two parts: time for applying standard UML notations and additional effort required for applying UUP/Model

Libraries. For example, as shown in Table 6, for SafeHome, it took us 4.5 hours for modeling UML class

diagrams, whereas additional 0.5 hour was spent on applying UUP/Model Libraries. For UML state machines, it

took 22.5 hours, whereas additional 7.5 hours were spent on applying UUP/Model Libraries. For SafeHome, as

shown in the last column (%Time) of Table 6, it took additional 22% of time to apply UUP/Model Libraries.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

Similarly, for VCS it took additional 23% of time and 15% of additional time for GeoSports. On average for all

the three case studies together, on average modeling with UUP/Model Libraries required additional 20% of the

total modeling effort.

Table 5. Percentage of UUP/Model Libraries Concepts to UML Concepts

Case Study Class Diagram State Machine %
Class(u/t) Relationship(t) State(u/t) Transition(u/t)

SafeHome 7/21 18 3/17 7/29 20
VCS 24/197 303 39/216 61/278 12
GeoSports 10/62 56 13/82 26/106 16
Average Percentage: 16%

#u: the number of elements with applied UUP/Model Libraries; #t: the total number of elements modeled using UML

Table 6. Effort (Time in Hours) of Applying UUP/Model Libraries

Case Study
Class Diagram State Machine % Time

UML (hr.)
Modeling

UUP/Model libraries
(hr.) Modeling

UML (hr.)
Modeling

UUP/Model libraries
(hr.) Modeling

SafeHome 4.5 0.5 22.5 7.5 22
VCS 22.5 6 45 15 23
GeoSports 37.5 3.5 52.5 12.5 15
Average Percentage of Time: 20%

8.3 Verification of Test Ready Models via Simulation using Executable UML

In this section, we present the results of the verification of the test ready models developed with UMF for the

three case studies. The overall aim is to check the correctness of the test ready models against collected

(uncertainty) requirements. The test ready models were enriched with the UML Action Language (UAL, a

implementation of the Action Language For Foundational UML, Alf [16])—a formal language supported in IBM

RSA [24] for executing UML models implemented in Java. UML models with UAL can be executed with the

IBM RSA Simulation Toolkit [25].

Table 7 shows the results of the verification. We classified identified problems during the verification process into

two main categories: Incorrect and incomplete model elements for each case study. In Table 7, we classified the

model elements into two categories states and transitions. For State, more specifically, we report problems

identified in state invariants and «BeliefElement». For Transition, more specifically, we report problems identified

in Guard, Trigger, Effect, and «BeliefElement». For State, in total, 56 problems (10+46) were identified across the

three case studies, where 10 problems were related to Incorrectness and 46 were related to Incompleteness. For

«BeliefElement» related to State, we identified 24 missing stereotypes. For transition, we discovered 85 problems

(9+76), where 9 problems were related to Incorrectness and 76 problems were related to Incompleteness. For

«BeliefElement» related to Transition, we identified 25 missing stereotypes.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

The typical problems identified included: 1) transition happening between the states without any event, 2) even

after firing a transition the state change didn’t happen or state changed to an unexpected one, 3) failure to send

signals across concurrent state machines, 4) non-deterministic transitions from a state, 5) unexpected exit, block,

or deadlock observing in a state machines, 6) unreachable states, 7) guard conditions that are always true. Notice

that these problems are not comprehensive set of problems, but provide most commonly observed problems. After

simulating the test ready models, we ensure that our models are correct and complete and hence can be used for

facilitating MBT.

Table 7. Results of Verification of Test Ready Models

Case Study State Transition
StateInvariant «BeliefElement» Guard Trigger Effect «BeliefElement»

Incorrect
SafeHome 1 0 0 0 1 0
VCS 6 0 0 5 0 0
GeoSports 3 0 2 1 0 0

Incomplete
SafeHome 5 2 0 7 2 3
VCS 30 13 15 23 21 18
GeoSports 11 9 2 4 2 4

Total 56 (10, 46) 24 85(9, 76) 25
#Incorrect: the number of elements corrected after simulation;#Incomplete: the number of concepts newly added after simulation;

of triggers: #CallEvent + #SignalEvent + #TimeEvent
8.4 Application of UTP V.2

Applying UTP V.2 is the last step of UMF modeling as shown in Figure 22 to facilitate testing. In the running

example, the «TestItem» stereotype from the Test Context package of UTP V.2 is applied on SecuritySystem as

shown in the Figure 2 and «CheckPropertyAction» from the Arbitration Specification package of UTP V.2 is

applied to the StateInvariant of IntrusionDetected (Figure 8) shown in Figure 7.

Table 8 reports the results of the application of UTP V.2 to the models of the case studies. Notice that we only

report the statistics for the high level packages (e.g., Arbitration Specification) of UTP V.2 instead of providing

the number of applications of each stereotype due to space limitations. Notice that each high level package

contains a set of related stereotypes. For SafeHome, in total 54 stereotypes from UTP V.2 were applied, whereas

551 for VCS, and 209 for GeoSports.

Based on our experience of applying UTP V.2, we discovered that it is a generic UML profile for MBT and does

not cater for all our needs. However, we discovered that combining UUP/Model Libraries and UTP V.2 together

is sufficient to model test ready models with uncertainty in our case.

Table 8. Application of UTP V.2

Category SafeHome VCS GeoSports
Arbitration Specification 20 246 92
Test Data 29 278 106
Test Configuration 2 15 7

Simula Research Laboratory, Technical Report 2016-2 June, 2016

Test Context 3 12 4
Total 54 551 209

9. RELATED WORK

There are some works in the literature that attempt to deal with modeling uncertainty with UML. For example, the

authors of [41] proposed to perform fuzzy modeling with UML 1.5 without violating its semantics, based on

theoretical analyses of UML 1.5. However, the proposed extensions to UML 1.5 weren’t implemented and

validated. Moreover, there is no evidence to show the proposed extensions can be applicable for UML 2.x.

To model uncertainty (inherent in real world applications) with UML class diagrams, an extension was proposed

in [31; 32; 44], which is referred to as fuzzy UML data modeling. The extension relies on two theories: fuzzy set

and possibility distribution, and was later on further extended in [33] to transform fuzzy UML data models into

representations in the fuzzy description logic (FDLR) to check the correctness of fuzzy properties. Furthermore,

another automated transformation was proposed in [48] to transform fuzzy UML data models into web ontologies

to support automated reasoning on fuzzy properties in the context of web services.

In [19], the UML profile (named as fuzzy UML) was proposed to model uncertainty on use case diagrams,

sequence diagrams, and state machines. Another work in [34] formalizes UML state diagrams with fuzzy

information and transforms them into fuzzy petri nets for supporting automated verification and performance

analysis. In [13], the authors developed two stereotypes: moveTo and moveTo? for UML collaboration diagrams.

The first stereotype is applied when a modeler has full confidence, whereas the second stereotype is used when

the modeler lacks confidence.

In comparison to these works, our UMF focuses on modeling uncertainty in a comprehensive and precise manner

by considering various types of measures such as probability, vagueness, and fuzziness. The methodologies

proposed in [31; 32; 44] for specifying fuzzy UML data can easily integrated to our model libraries when needed.

Notice that UMF is proposed to explicitly capture uncertainty of CPSs for the purpose of supporting MBT of

CPSs under uncertainty and there is no evidence showing that these works can be used for this purpose.

The work reported in [9] is the closest to our work, where uncertainty in time is modeled in UML sequence

diagrams applied with the UML-SPT profile [15]. These sequence diagrams are then used for test case generation

by taking into consideration the uncertainties in time. This work, however, only supports modeling uncertainty in

time on messages of sequence diagrams. In contrast, UMF covers other types of uncertainties, in addition to time,

such as content and environment. Moreover, the work doesn’t cater for sources of time uncertainties that are

essential to be explicitly captured in order to introduce uncertainties for test execution.

In [38], the authors presented a solution to transform UML use case diagrams and state diagrams into usage

graphs appended with probability information about expected use of software. Such probability information can

be obtained in several ways by relying on domain expertise or usage profiles of software, for example. Usage

graphs with probability can be eventually used for testing. This work only deals with modeling uncertainty using

Simula Research Laboratory, Technical Report 2016-2 June, 2016

probabilities and dose not support other types of uncertainty measures such as ambiguity as supported in UMF. In

addition, the work only supports modeling application level uncertainties and cannot be used to model

uncertainties in the other two CPS levels as UMF.

In [39], a language-independent solution was proposed for Partial Modeling with four types of partialities: May

partiality, Abs partiality, Var partiality and OW partiality, to denote the degree of incompleteness specified by

model designers. The work also provides a solution for merging and reasoning possible partial models with tool

support [7; 8]. The approach was demonstrated on UML class and sequence diagrams [39]. This work is related to

our work in terms of expressing uncertainty of modelers. In UUP, the Belief related stereotypes and classes

capture subjective views of modelers and provide modeling notations for specifying the degree of their confidence

(uncertainty) on the models they built. A set of possible models may have different belief degrees provided by

different belief agents at the same time. In the context their work, the focus is on uncertainty in partial models for

supporting model refinement and evolution. In contrast, UUP focuses on modeling uncertainty (lack of

confidence) in test ready models to support MBT of CPSs under uncertainty.

10. CONCLUSION AND FUTURE WORK

To facilitate Model-Based Testing (MBT) of Cyber-Physical Systems (CPSs) under uncertainty, we proposed in

this paper Uncertainty Modeling Framework (UMF). UMF allows creating test ready models with uncertainty at

three logical testing levels of CPS: Application, Infrastructure, and Integration. The core of UMF is UML

Uncertainty Profile (UUP), which implements an existing uncertainty conceptual model for CPSs, called U-

Model. In addition, UMF defines a comprehensive set of UML model libraries extending the UML profile for

Modeling and Analysis of Real-Time and Embedded Systems (MARTE), which can be used together with UUP.

UMF also relies on the UML Testing Profile (UTP) V.2 to construct test ready. Finally, UMF defines concrete

guidelines for supporting the use of UMF for creating test ready models with uncertainty. We evaluated UMF

with two industrial and one open source case studies. As a future work, we are implementing test generators that

can take test ready models created with UMF as input and generate executable test cases.

ACKNOWLEDGMENT

This research was supported by the EU Horizon 2020 funded project U-Test (Testing Cyber-Physical Systems

under Uncertainty). Tao Yue and Shaukat Ali are also supported by RCN funded Zen-Configurator project, RFF

Hovedstaden funded MBE-CR project and RCN funded MBT4CPS project.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

REFERRENCE

[1] Ali, S., Briand, L.C., and Hemmati, H., 2012. Modeling robustness behavior using aspect-oriented

modeling to support robustness testing of industrial systems. Software & Systems Modeling 11, 4, 633-

670.

[2] Ali, S. and Yue, T., 2015. U-Test: Evolving, Modelling and Testing Realistic Uncertain Behaviours of

Cyber-Physical Systems IEEE, 1-2.

[3] Atanassov, K. and Georgiev, C., 1993. Intuitionistic fuzzy prolog. Fuzzy Sets and Systems 53, 2, 121-128.

[4] De Luca, A. and Termini, S., 1972. A definition of a nonprobabilistic entropy in the setting of fuzzy sets

theory. Information and control 20, 4, 301-312.

[5] Dempster, A.P., 1967. Upper and lower probabilities induced by a multivalued mapping. The annals of

mathematical statistics, 325-339.

[6] Didier, D. and Henri, P., 1980. Fuzzy sets and systems: Theory and Applcation. Mathematics in Scince

and Engineering 144.

[7] Famelis, M., Salay, R., and Chechik, M., 2012. Partial models: Towards modeling and reasoning with

uncertainty. In Software Engineering (ICSE), 2012 34th International Conference on IEEE, 573-583.

[8] Famelis, M. and Santosa, S., 2013. MAV-Vis: a notation for model uncertainty. In Modeling in Software

Engineering (MiSE), 2013 5th International Workshop on IEEE, 7-12.

[9] Garousi, V., 2008. Traffic-aware stress testing of distributed real-time systems based on UML models in

the presence of time uncertainty. In Software Testing, Verification, and Validation, 2008 1st International

Conference on IEEE, 92-101.

[10] Gau, W.L. and Buehrer, D.J., 1993. Vague sets. Systems, Man and Cybernetics, IEEE Transactions on 23,

2, 610-614. DOI= http://dx.doi.org/10.1109/21.229476.

[11] George J, K. and Bo, Y., 2008. Fuzzy sets and fuzzy logic, theory and applications. -.

[12] Goguen, J.A., 1967. L-fuzzy sets. Journal of mathematical analysis and applications 18, 1, 145-174.

[13] Grassi, V. and Mirandola, R., 2001. UML modelling and performance analysis of mobile software

architectures. In ≪ UML≫ 2001—The Unified Modeling Language. Modeling Languages, Concepts,

and Tools Springer, 209-224.

[14] Grattan‐Guinness, I., 1976. Fuzzy Membership Mapped onto Intervals and Many‐Valued Quantities.

Mathematical Logic Quarterly 22, 1, 149-160.

[15] Group, O.M., 2005. UML Profile For Schedulability, Performance, And Time.

[16] Group, O.M., 2013. Concrete Syntax For A UML Action Language: Action Language For Foundational

UML (ALF).

[17] Group, O.M., April, 2013. UML Testing Profile.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

[18] Group, O.M., June, 2011. UML Profile For MARTE: Modeling And Analysis Of Real-Time Embeded

Systems.

[19] Haroonabadi, A., Teshnehlab, M., and Movaghar, A., 2008. A novel method for behavior modeling in

uncertain information systems. World Academy of Science, Engineering and Technology 41, 959-966.

[20] Hartley, R.V.L., 1928. Transmission of information. Bell System Technical Journal, 535-563.

[21] Higashi, M. and Klir, G.J., 1982. Measures of uncertainty and information based on possibility

distributions. International Journal of General Systems 9, 1, 43-58.

[22] Höhle, U., 1981. Fuzzy plausibility measures. In Proceedings of the 3th International Seminar on Fuzzy

Set Theory, Johannes Kepler University, Linz, 7-30.

[23] Höhle, U., 1982. Entropy with respect to plausibility measures. In Proceedings of the 12th IEEE

International Symposium on Multiple-Valued Logic, 167-169.

[24] Ibm. IBM Rational Software Architect Modeling Tool2016.

https://http://www.ibm.com/developerworks/downloads/r/architect/.

[25] Ibm. IBM RSA Simulation Toolkit2016. http://www-

03.ibm.com/software/products/en/ratisoftarchsimutool.

[26] Jahn, K.U., 1975. Intervall‐wertige Mengen. Mathematische Nachrichten 68, 1, 115-132.

[27] Kerwin, A., 1993. None Too Solid Medical Ignorance. Science Communication 15, 2, 166-185.

[28] Kosko, B., 1986. Fuzzy entropy and conditioning. Information sciences 40, 2, 165-174.

[29] Lagarde, F., Espinoza, H., Terrier, F., André, C., and Gérard, S., 2008. Leveraging patterns on domain

models to improve UML profile definition. In Fundamental Approaches to Software Engineering

Springer, 116-130.

[30] Lamata, M.T. and Moral, S., 1988. Measures of entropy in the theory of evidence. International Journal

of General System 14, 4, 297-305.

[31] Ma, Z., 2005. Fuzzy information modeling with the UML. Idea.

[32] Ma, Z.M., Zhang, F., and Yan, L., 2011. Fuzzy information modeling in UML class diagram and

relational database models. Applied Soft Computing 11, 6, 4236-4245.

[33] Ma, Z.M., Zhang, F., Yan, L., and Cheng, J., 2011. Representing and reasoning on fuzzy UML models: A

description logic approach. Expert Systems with Applications 38, 3, 2536-2549.

[34] Motameni, H., Daneshfar, I., Bakhshi, J., and Nematzadeh, H., 2010. Transforming fuzzy state diagram to

fuzzy Petri net. Journal of Advances in Computer Research 1, 1, 29-44.

[35] Negnevitsky, M., 2005. Artificial intelligence: a guide to intelligent systems. Pearson Education.

[36] Pawlak, Z., 1982. Rough sets. International Journal of Computer & Information Sciences 11, 5, 341-356.

[37] Pressman, R.S., 2010. Software engineering: a practitioner's approach 7th edition. Palgrave Macmillan.

[38] Riebisch, M., Philippow, I., and Götze, M., 2002. UML-based statistical test case generation. In Objects,

Components, Architectures, Services, and Applications for a Networked World Springer, 394-411.

Simula Research Laboratory, Technical Report 2016-2 June, 2016

[39] Salay, R., Famelis, M., and Chechik, M., 2012. Language independent refinement using partial modeling.

In Fundamental Approaches to Software Engineering Springer, 224-239.

[40] Shafer, G., 1976. A mathematical theory of evidence. Princeton university press Princeton.

[41] Sicilia, M.-A. and Mastorakis, N., 2004. Extending UML 1. 5 for fuzzy conceptual modeling: An

strictlyadditive approach. WSEAS Transactions on Systems 3, 5, 2234-2239.

[42] Smets, P. and Kennes, R., 1994. The transferable belief model. Artificial intelligence 66, 2, 191-234.

[43] Yager, R.R., 1983. Entropy and specificity in a mathematical theory of evidence. International Journal of

General System 9, 4, 249-260.

[44] Yan, L. and Ma, Z.M., 2009. Extending nested relational model for fuzzy information modeling. In 2009

WASE International Conference on Information Engineering IEEE, 587-590.

[45] Zadeh, L.A., 1965. Fuzzy sets. Information and control 8, 3, 338-353.

[46] Zadeh, L.A., 1975. The concept of a linguistic variable and its application to approximate reasoning—I.

Information sciences 8, 3, 199-249.

[47] Zadeh, L.A., 1978. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 1, 3-28.

[48] Zhang, F. and Ma, Z.M., 2013. Construction of fuzzy ontologies from fuzzy UML models. International

Journal of Computational Intelligence Systems 6, 3, 442-472.

[49] Zhang, M., Ali, S., Yue, T., and H. Nguyen, P., 2016. Uncertainty Modeling Framework for the

Integration Level V.1. https://www.simula.no/publications/uncertainty-modeling-framework-integration-

level-v1

[50] Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., and Norgren, R., 2016. Understanding Uncertainty in

Cyber-Physical Systems: A Conceptual Model. In Proceedings of the ECMFA (2016), Simula Laboratory

Research. https://www.simula.no/publications/understanding-uncertainty-cyber-physical-systems-

conceptual-model-0

[51] Zimmermann, H.-J., 2011. Fuzzy set theory—and its applications. Springer Science & Business Media.

