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ABSTRACT 

Tackling inherent uncertainty of Cyber-Physical Systems (CPSs) is essential for their reliable operations. A way 

of ensuring the quality of CPS under uncertainty is via methodical testing techniques such as Model-based 

Testing (MBT). Towards this direction, we present an Uncertainty Modeling Framework (UMF) for modeling test 

ready models to support MBT of CPSs under uncertainty at the three testing levels: Application, Infrastructure, 

and Integration. UMF relies on the definition of a UML profile (named as UML Uncertainty Profile (UUP)) and 

an extensive set of UML model libraries extending UUP. In addition, UMF also relies on the UML profile for 

Modeling and Analysis of Real-Time and Embedded Systems (MARTE) and the UML Testing Profile (UTP) V.2 

for developing test ready models. UMF was evaluated by modeling test ready models with uncertainty for two 

industrial CPS case studies and one open source CPS case study from the following four perspectives: 1) 

Completeness and Coverage of the profiles and model libraries in terms of concepts defined in their underlying 

uncertainty conceptual model for CPSs called U-Model that was published earlier and MARTE, 2) Effort required 

to model uncertainty with UMF, and 3) Assessing Correctness of the developed models via simulating the test 

ready models with executable UML, 4) Experience of using UTP V.2 to create test ready models with uncertainty. 
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1. INTRODUCTION 

Uncertainty in Cyber-Physical Systems (CPSs) during their real operations is inevitable and hence must be 

properly handled with systematic verification and validation techniques during their development phases to the 

maximum extent. Uncertainty in CPSs is an immature area of research in general and several efforts have just 

begun to study uncertainty in CPSs [50]. One such effort is being done in an EU project under the Horizon2020 

program called U-Test (www.u-test.eu). The U-Test project aims to devise a set of modeling and testing 

methodologies for explicitly modeling test ready models (with uncertainty) for CPSs under test with the ultimate 
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aim of automatically generating test cases from the test ready models with Model-Based Testing (MBT) 

techniques. 

In this paper, we report the Uncertainty Modeling Framework (UMF) developed under the U-Test project for 

modeling test ready models with known uncertainty at the three CPS testing levels: Application, Infrastructure, 

and Integration [2]. The core of UMF is the UML Uncertainty Profile (UUP), which is defined based on the 

uncertainty conceptual model for CPSs (U-Model) [50]. The UUP profile consists of three parts (i.e., Belief, 

Uncertainty, and Measurement profiles) and an internal library containing enumerations required in the profiles. 

In addition to UUP, UMF also defines an extensive set of UML model libraries by extending the UML profile for 

Modeling and Analysis of Real-Time and Embedded Systems (MARTE) [18]. The key libraries include 

Uncertainty Pattern Library, Measure Library and Time Library. In addition, UMF relies on the UML Testing 

Profile (UTP) V.2 to model test ready models with uncertainty. Last, UMF also includes a set of guidelines with 

recommendations and alternative scenarios for applying these modeling notations.  

UMF was evaluated with two industrial case studies and one extended open source case study from the literature. 

The first industrial case study is GeoSports provided by Future Position X, Sweden1, a U-Test project partner. The 

second industrial case study is embedded Videoconferencing Systems developed by Cisco, Norway 2 and was 

used in our previous work [50]. The third open source case study is SafeHome from [37]. We performed 

evaluation from these four perspectives: 1) Completeness and coverage of UUP/Model Libraries to U-Model and 

MARTE, 2) Effort required to model uncertainty using UMF in terms of the number of model elements and effort 

measured in terms of time, 3) Correctness of the developed models using simulation with executable UML, and 4) 

Experience of applying UTP V.2 for creating test ready models. 

The rest of the paper is organized as below. Section 2 presents the background, followed by a running example 

(Section 3). Section 4 presents the overview of UMF. Section 5 discusses details of the UUP profile and Section 6 

discusses the model libraries. Section 7 presents the guidelines for applying UMF. Section 8 presents the 

evaluation and Section 9 presents the related work. We conclude the paper in Section 10. 

2. BACKGROUND 
2.1 Cyber-Physical Systems and Testing Levels 
A CPS is defined in [2] as: “A set of heterogeneous physical units (e.g., sensors, control modules) communicating 

via heterogeneous networks (using networking equipment) and potentially interacting with applications deployed 

on cloud infrastructures and/or humans to achieve a common goal” and is conceptually shown in Figure 1. As 

defined in [2], uncertainty can occur at the following three logical levels (Figure 1): 1) Application level, due to 

events/data originating from the application of the CPS; 2) Infrastructure level, due to various interactions (e.g., 

                                                        
1 www.fpx.se/geo-sports/ 
2 www.cisco.com/ 
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events/data) among physical units, networking infrastructure, and/or cloud infrastructure, 3) Integration level, due 

to either interactions between components at the application level and ones at infrastructure levels, or interactions 

of uncertainties across these two levels.  

 
Figure 1. Conceptual model of a Cyber-Physical System [2] 

2.2 U-Model 

In our previous work [50], to understand uncertainty in CPSs, we developed a conceptual model called U-Model 

to define uncertainty and associated concepts, and their relationships at a conceptual level. Some of the U-Model 

concepts were further extended for supporting MBT of all the three levels of CPS under uncertainty (Section 2.1). 

U-Model was developed based on an extensive review of existing literature on uncertainty from several 

disciplines including philosophy, healthcare and physics, and two industrial CPS case studies from the two 

industrial partners of the U-Test project. In this paper, we implement U-Model as UMF (including UUP and a set 

of model libraries) to support the construction of test ready models with uncertainty. Details of U-Model is given 

in [50].  

2.3 UML TESTING PROFILE 

UML Testing Profile (UTP) [17] is the MBT standard at Object Management Group (OMG). With UTP, either 

System Under Test (SUT) is modeled using the UTP or test cases for the SUT are modeled using UML and UTP. 

Transformations from UTP models to executable test cases can be performed using specialized test generators. 

The version 2.0 of UTP is being under developed, where the second and third authors of the paper are the work 

group members. To enable MBT of CPSs under uncertainty, we rely on UTP V.2 to model the testing aspects of 

test ready models. UTP V.2 defines a set of stereotypes such as Test Case, Test Data, and Test Design Model and 

model libraries such as various types of test case Verdict (pass, fail). 

3. RUNNING EXAMPLE 

To illustrate UMF throughout the paper, we present a running example in this section. It is about a simplified 

security function of the SafeHome system described in [37]. The test ready models of the running example were 

developed as a class diagram, a composite structure diagram and a set of state machine using IBM Rational 
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Software Architect (RSA) 9.1 [24]. For the sake of simplicity, we only show one security function related to 

intrusion detection.  

In general, the security system controls and configures the Alarm and related Sensors through their corresponding 

interfaces (class diagram in Figure 2). In Figure 4, we show a composite structure of the security system. Notice 

that the alarm and sensors do not talk to each other directly. Instead, they communicate via the interface of the 

system: ISecuritySystem. For example, the security system receives the IntrusionOccurred signal via portSecurity, 

which is sent by a sensor from portSensor when an intrusion is detected (see the implementation of effect 

notifyIntrusion in Figure 6).  

Behaviors of the system, alarm and sensors are specified as three state machines shown in Figure 8, Figure 5 and 

Figure 6 respectively. The alarm state machine has two states as shown in Figure 5: AlarmDeactivated and 

AlarmActivated. AlarmDeactivated represents the state that the alarm is not ringing, whereas the AlarmActivated 

state denotes that the alarm is ringing.  The sensor state machine has two states (Figure 6): SensorDeactivated 

denoting the state that a sensor is deactivated to detect intrusion, whereas SensorActivated represents that a sensor 

is activated to sense intrusion. The security system state machine (Figure 8) has two concurrent regions in the 

composite state MonitoringAndAlarm and a set of sequential states (e.g., Idle and Ready). The top region 

(Monitor Intrusion) of the MonitoringAndAlarm composite state has two states: Normal and IntrusionDetected 

representing that an intrusion is not detected and detected, respectively. The bottom region (Timer Control) has 

three states: Timer Stopped, Timer Started, and Police Notified representing the states that the timer of the system 

is stopped to notify the police (Timer Stopped), the timer is activated to wait for 3 minutes before notifying the 

police (TimerStarted), and the police is notified (PoliceNotified). 

Table 1. Details on Transition «BeliefElement» IntrusionOccurred 

Transition Normal→IntrusionDetected (Figure 8, B.1) 
trigger*  <SignalEvent>IntrusionOccurred(sensorID:String) 
effect* activateAlarm() the body of this operation is as below: 

portSecurity.send(new StartAlarm()) 
UUP::Stereotype «BeliefElement» 
agent «BeliefAgent» SafeHomeSoftwareEngineer 
beliefDegree Measurement 

-measureInDTViaClass: «BeliefMeasure»ReceiveIntrusionOccurred 
-measurementInVS:<InstanceValue>VeryLikely 

Uncertainty Uncertainty 
-kind: UncertaintyKind::Occurrence 
-referredCause: «IndeterminacySource» notifyIntrusion (the effect of IntrusionDetected 

transition, see Figure 6, A) 
-referredEffect: «BeliefElement, Effect» AlarmActivated (C) 

trigger * represents the “triggers” attribute of the Transition in UML. effect * represents the “effects” attribute of the Transition in UML. 
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Figure 2. Class diagram of the Simplified Security System 

 
Figure 3. The Example of Applying UUP with Model 

Libraries  

. 
Figure 4. Composite Structure diagram of the 

Security System 

 
Figure 5. State Machine of Alarm 

 
Figure 6. State Machine of Sensor 

StateInvariant «CheckPropertyAction» of IntrusionDetected 

(self.systemStatus = SecuritySystemStatus:: Monitoring or 

(self.systemStatus = SecuritySystemStatus::MonitoringAndAlarm 

and self.alarm.isRinging)) and self.sensors->forAll 

(s:Sensor|s.isActivated) and self.sensors-

>one(s:Sensor|s.isIntrusionOccured) 

Figure 7. StateInvariant (in OCL) of 
IntrusionDetected (B.2) 

 
Figure 8. State Machine of the Security System 

A 

C 

B.2 B.1 
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These three state machines communicate via signals using the ports defined in the composite structure (Figure 4). 

One typical scenario in case of security breach is: 1) When a sensor is in the state of SensorActivated, it sends the 

IntrusionOccurred signal to the security system (UAL code in the comment in Figure 6) once the intrusion is 

detected via the effect notifyIntrusion defined in the self transition (Figure 6, A) of the SensorActivated state; 2) 

When the Security System receives the IntrusionOccurred signal, it transits to the IntrusionDetected state from the 

Normal state (Figure 8, B.1). In parallel, as one can see from the bottom region (Timer Control) of the 

MonitoringAndAlarm composite state of the system (Figure 8), the system sends the StartAlarm signal to the 

Alarm state machine via effect activateAlarm (Figure 8 and effect* in the Table 1) and triggers the StartTimer() 

when entering IntrusionDetected state (Figure 8, B.2), which leads to the transition from TimerStopped to 

TimerStarted (Figure 8). From TimerStarted, after 3 minutes (time event), the system notifies the police and 

transits to PoliceNotified; 3) The Alarm state machine receives the StartAlarm signal in the AlarmDeactivated 

state and activates the alarm and transits to AlarmActivated. 

To illustrate how to model uncertainty using UUP combined with Model library, CPS Testing Levels profile and 

UTP V.2, we also apply these profiles in the running example, and more details are presented in the following 

sections.  

4. OVERVIEW OF UNCERTAINTY MODELING FRAMEWORK 

An overview of UMF is presented in Figure 9. Notice that our framework is exclusively developed to develop test 

ready models with uncertainty to facilitate MBT of CPS under uncertainty. This means that UMF is not proposed 

for supporting modeling of CPSs and uncertainty from the design and development perspectives. 

The core of UMF is to implement U-Model [50]. More specifically, the core part of U-Model is implemented as 

UUP comprising of three parts: Belief, Uncertainty and Measurement. All these profiles import the 

Internal_Library that defines the necessary Enumerations required in the profiles. The framework also consists of 

a small CPS profile that permits modeling specific aspects of the three testing levels of CPS, i.e., Application, 

Infrastructure, and Integration, exclusively for facilitating MBT. 

The framework also consists of three UML model libraries: Measure Library, Pattern Library, and Time Library 

(that extend MARTE [18]). The framework relies on UTP V.2 to bring necessary MBT concepts to test ready 

models. Finally, the framework provides a set of guidelines to use its modeling notations to construct test ready 

models for enabling MBT of CPSs under uncertainty.  
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Figure 9. Overview of Uncertainty Modeling Framework (UMF) 

5. UUP AND CPS TESTING LEVELS PROFILES 

This section presents UUP, whose modeling notations are composed of stereotypes and classes for Belief, 

Uncertainty and Measurement, as shown in Figure 10, Figure 11 and Figure 12.The definitions of the profile 

modeling elements are provided in [49] for reference. 

There are two approaches discussed in the literature for defining UML profiles [29]. One approach directly 

defines a UML profile for a specific purpose. The second approach is a more systematic as it starts with a 

conceptual model defining detailed concepts and relationships among them independent of any detail on for 

example which UML metaclass to extend. A UML profile is then developed based on the conceptual model. Note 

that not all the concepts defined the conceptual model are transformed into model elements in the UML profile. 

We opted for the second approach to create the UUP profile, as it has been used to define several well-known 

standardized UML profiles such as MARTE [18] and UTP V.2. 

5.1 UUP Belief 

The Belief part of UUP (Figure 10) implements concepts in U-Model:BeliefModel [50] (the mapping is provided 

in Table 2 and further discussion is provided in Section 8.1). As shown in Figure 10 and Table 2, five stereotypes 

are defined, among which «BeliefElement» is the key stereotype associated to various UML metaclasses. For 

example, a StateMachine (subtype of metaclass Behavior) itself can be a belief element such that «BeliefElement» 

can be applied on it to characterize it with additional information such as to which extent a modeler (stereotyped 

with «BeliefAgent») is confident about the state machine (i.e., beliefDegree of BeliefStatement), all uncertainties 

(i.e., Uncertainty) associated to the state machine, and their Measurements. In the context of the U-Test project, 
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we extend UML state machines. However, it is worth mentioning that «BeliefElement» can extend other UML 

modeling notations such as activity and sequence diagrams if needed. We intentionally kept the profile generic 

such that different MBT techniques based on different diagrams can be defined when needed.  

«Evidence» is defined to capture any evidence for supporting the definition of a measurement for an uncertainty. 

The stereotype extends UML metaclass Element, implying that any UML model element (e.g., Class) can be used 

to specify evidence. Each uncertainty is also associated to a set of indeterminacy sources, which can be explicitly 

specified using «IndeterminacySource» and classified with enumeration IndeterminacyNature (Figure 10).   

The profile also implements OCL constraints defined in U-Model. For example, as shown in Figure 10, each 

beliefDegree (an instance of Measurement) of a «BeliefStatement» must have exactly one measure associated to 

it, which can be specified in three different ways: a «Measure» (via attribute measure of Measurement), DataType 

(via measureInDT) or Class (via measureInDTViaClass). This OCL constraint is given below:  

context BeliefStatement: 

self.beliefDegree->size()>0 and self.beliefDegree->select(measurement:Measurement|measurement->size()>0)-
>forAll(measurement:Measurement|(measurement.measureInDT->size()+measurement.measureInDTViaClass->size()=1) xor (not 
measurement.measure.oclIsUndefined())) 

When we look at the running, the belief agent (Figure 3) is SafeHomeSoftwareEngineer (stereotyped with 

«BeliefAgent») who defines three state machines: one for the alarm, one for the sensors, and one for the security 

system itself. As shown in Table 1, the «BeliefElement» stereotype is applied IntrusionOccurred transition from 

state Normal to IntrusionDetected (Figure 8, B.1). The belief agent of this belief element is class 

SafeHomeSoftwareEngineer (stereotyped with «BeliefAgent» shown in Figure 3). The belief degree of this belief 

element is specified as a value specification “VeryLikely” and measured as Probability_7Scale. The belief 

element has one occurrence uncertainty, which is associated to «IndeterminacySource» notifyIntrusion of Sensor 

(Table 1). 

 
Figure 10. The Belief Profile 

5.2 UUP Uncertainty and Measurement  

The Uncertainty and Measurement parts of the UUP Profile are presented in Figure 11 and Figure 12. The key 

element is Uncertainty, which is characterized with a list of attributes such as kind (typed with enumeration 
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UncertaintyKind) indicating a particular type of uncertainties. All of the attributes (except kind and field) are 

optional. For example, an uncertainty might or might not have an indeterminacy source (i.e., 

indeterminacySource).  

The U-Model concepts of Effect, Pattern, Lifetime, and Risk can be specified with UUP in difference ways. For 

example, one can specify the effect of an uncertainty simply as a string (attribute effect of Uncertainty). One can 

also create a UML model element and stereotype it with «Effect» and the uncertainty can then associate to it (i.e., 

referredEffect). More details regarding the possible alternatives can be found in Section 7. 

«IndeterminacySource», «BeliefStatement», Uncertainty, «Effect» and «Risk» can be further elaborated with 

Measurement. A measurement can be specified in different ways: 1) as a string (attribute measurement of class 

Measurement), 2) as a value specification (measurementInVS), 3) as a package stereotyped with a subtype of 

«Measurement», and 4) a constraint stereotyped with «MeasurementConstraint». The abstract stereotype of 

«Measurement» is further classified into five subtypes, corresponding to the five elements that need to be 

measured.  

 

Figure 11. The Uncertainty Profile 

 

Figure 12. The Measurement Profile 

Abstract stereotype «Measure» is defined to classify different types of measures and provide users an option to 

denote classes and data types with concrete measure types such as «EffectMeasure». Such a stereotyped class or 
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data type is linked via Measurement to «IndeterminacySource», «Effect», Uncertainty, «Risk» or 

«BeliefStatement».        

A set of OCL constraints has been implemented in UUP. One of the example is that Element with applied 

«Effect» stereotype should be referred at least once via the “referredEffect” attribute of the Uncertainty instance:  

context Effect: 

self.base_Element.getAppliedStereotype('UUP::Uncertainty::Effect')<>null implies Uncertainty.allInstances()->one 

(u:Uncertainty|u.referredEffect->includes(self)) 

For the running example, «BeliefElement, Effect» ActivatedAlarm is associated with Uncertainty of 

«BeliefStatement» IntrusionOccurred via “referredEffect” attribute (Table 1). 

Table 2. Definitions of the Stereotypes and Classes in UUP 

 Profile Stereotype/Class U-Model [50] Definition (Most of concepts are defined in the U-Model [50]) 

Belief 

«BeliefStatement» 
BeliefModel:: 
BeliefStatement 

As defined in [50], “A BeliefStatement is a concrete and explicit specification of 
some Belief held by a BeliefAgent about possible phenomena or notions belonging to 
a given subject area.” 

«BeliefElement»  This stereotype is specialization of «BeliefStatement» that is more relevant in the 
context of UML and modeling in general. 

«BeliefAgent» BeliefModel:: 
BeliefAgent 

As defined in [50], “A BeliefAgent is a physical entity owning one or more Beliefs 
about phenomena/notion”. 

«Indeterminacy 
Source» 

BeliefModel:: 
IndeterminacySource 

As defined in [50], “It represents a situation whereby the information required 
ascertaining the validity of a BeliefStatement is indeterminate in some way, resulting 
in Uncertainty being associated with that statement.” 

Uncertainty 
BeliefModel::Uncertainty As defined in [50], “uncertainty is a state (i.e., worldview) of some agent or agency – 

henceforth referred to as a BeliefAgent – that, for whatever reason, is incapable of 
possessing complete and fully accurate knowledge about some subject of interest.” 

Measurement 
 

BeliefModel::Measurement As defined in [50], “Measurement represents the result of measuring stated in the 
BeliefStatement related to the existing Measure.” 

«Evidence» 
BeliefModel::Evidence As defined in [50], “Evidence is either an observation or a record of a real-world 

event occurrence or, alternatively, the conclusion of some formalized chain of logical 
inference that provides information that can contribute to determining the validity 
(i.e., truthfulness) of a BeliefStatement.” 

Uncertainty 

«Cause»  Anything from which an Uncertainty occurs in the BeliefStatement.  
«Effect» UncertaintyModel::Effect Effect represents the result of Uncertainty in the BeliefStatement.  
«Lifetime» UncertaintyModel:: 

Lifetime 
As defined in [50], “Lifetime represents an interval of time, during which an 
Uncertainty exists”. 

«Risk» UncertaintyModel::Risk The risk associated with the uncertainty 
«Pattern» UncertaintyModel::Pattern A pattern represents a particular pattern in which an uncertainty can occur. 

Measurement/
Measure 

«Measurement» BeliefModel::Measurement Please see  the definition of Measurement under Belief Category 
«BeliefDegree» “beliefDegree” attribute of 

Belief 
As defined in [50], “This Measurement is used for representing confidence degree 
from BeliefAgent held this Belief.” 

«Indeterminacy 
Degree» 

“indeterminacyDegree 
“attribute of 
IndeterminacySource 

As defined in [50], “This set of Measurement represents the quantification (or 
qualification) of this IndeterminacySource.” 

«EffectMeasurement» “measurement” attribute of 
Effect 

This value is used for representing what kind of measurement may be used to 
measure the Effect. 

«RiskMeasurement»  This value is used for representing what kind of measurement may be used to 
measure the Risk 

«Uncertainty 
Measurement» 

“measuredValue” attribute 
of Uncertainty 

As defined in [50], “This value is used for representing confidence degree of 
uncertainty by the agent making the BeliefStatement.” 

«Measure» MeasureModel::Measure As defined in [50], “Measure is an objective concept specifying method of measuring 
uncertainty.” 

«BeliefDegree 
Measure» 

“measure” attribute of 
Measurement 

BeliefDegreeMeasure represents the measure specifying method of measuring belief 
degree. 

«IndeterminacyDegree 
Measure» 

“measure” attribute of 
Measurement 

IndeterminacyDegreeMeasure represents the objective concept specifying method of 
measuring indeterminacy degree. 

«RiskMeasure»  RiskMeasure represents the objective concept specifying method of measuring risk. 
«UncertaintyMeasure» “measure” attribute of 

Measurement 
UncertaintyMeasure represents the objective concept method of measuring 
uncertainty. 

«EffectMeasure» “measure” attribute of 
Measurement 

EffectMeasure represents the objective concept specifying method of measuring 
effect. 
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5.3 CPS Testing Levels Profile 

We define a small CPS Testing Levels profile with the three stereotypes, as shown in Figure 13, to denote which 

model element belongs to which of the three CPS testing levels: Application, Infrastructure and Integration. All 

the three stereotypes extend UML metaclass Element, as one can apply them to a class, a state, a state machine 

and many other model elements.  

It is important to point it out that this CPS profile is defined for the purpose of enabling MBT of CPS under 

uncertainty from the three logical levels and we have no intention to break down CPS according to their system 

architectures by denoting physical units, sensors, network, etc. For example, class Sensor in Figure 2 is 

stereotyped with «IndeterminacySource» and «InfrastructureElement», meaning that sensors are infrastructure 

elements. As shown in Figure 4, the composite structure of the system describes the interactions between the 

infrastructure elements (alarm and sensors) and the application level elements: portSensor, portAlarm and 

portSecurity, which are typed by three interfaces (i.e., ISensor, IAlarm and ISecuritySystem) as shown in Figure 2. 

This is the reason that the composite structure is stereotyped as «IntegrationElement». 

 

Figure 13. The CPS Testing Level Profile 

6. MODEL LIBRARIES 

To model uncertainty with advanced modeling features, we define three model libraries (Figure 14, Figure 15, 

Figure 16) that can be used together with UUP (Figure 9): model libraries for modeling uncertainty Patterns, 

uncertainty Measurements (corresponding to Probability, Vagueness, and Ambiguity) and Time related properties. 

Measure, Pattern and Time  libraries import the MARTE_PrimitiveTypes library [18] to faciliate the expression 

of data in the domain of CPSs, e.g. Real. Respectively, the Measure library adapts the operation of 

NFP_CommonType  of MARTE [18] related to probability distributions. The Pattern library imports elements 

related to Pattern from the BasicNFP_Types library of MARTE [18] (e.g., AperiodicPattern) and further extends 

them. For example, the Transient pattern does not exist in MARTE [18] and has been newly defined. The Time 

library imports the MARTE_DataTypes library [18] to facilate the expression of time, e.g., Duration and 

Frequency.  

6.1 Measure Libraries 

We define the three measure packages (Probability, Ambiguity, and Vagueness) to facilitate modeling different 

uncertainty measures as shown in Figure 9.   
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In the Ambiguity library, we define the data types corresponding to the relevant Ambiguity measures published in 

the literature as shown in Figure 14. Since these measures are well-known, we do not provide further details in 

this paper; however, interested readers may consult the provided references for more details. The BeliefInterval is 

adopted from [5], Belief from [5], Plausibility from [5], Conflict from [40], ShannonEntropy from [5], 

HartleyMeasure from [20], AlternativeMeasure from [30], DissonanceMeasure from [43],  U_Uncertainty from 

[21], PossibleDistribution from [47], and PignisticDistribution from [42]. Some further details of these data types 

including their attributes are provided in the technical report corresponding to this paper [49]. 

 

Figure 14. The Ambiguity Model Library 

 

The concepts of the fuzzy theory [45] are defined in the Vagueness library (Figure 15). HedgeKind is adopted 

from [35], MembershipDegree and FuzzySet (FuzzySetOperationKind, FuzzyLogicOperation, FuzzyLogic and 

FuzzyNumber)  from [45], FuzzySetCut from [11], FuzzyEntropy from [28], Fuzziness (further classification 

EuclidFuzziness, HammingFuzziness, and MinkowskiFuzziness) from  [6; 51], Roughness and RoughSet from 

[36], LFuzzySet from [12], IntuitionisticFuzzySet from [3], IntervalValuedFuzzySet from [14; 26; 46], VagueSet 

from [10], and Sharpness from [4]. For example, as shown in Figure 3, the IndeterminacyDegree of 

SensorNotifyIntrusion which is used to measure the occurrence of notify Intrusion, the effect of self-transition of 

SensorActivated (Figure 6), is expressed by BeliefInterval3 [5] that is composed of belief (97%) and plausibility 

(99%), which are pre-defined in the Ambiguity library (Figure 14).  Some further details of these data types are 

provided in the technical report corresponding to this paper [49] and interested readers may consult the provided 

references for more details. 

                                                        
3 This concept borrows from Dempster-Shafer is used to specify belief interval that is a boundary of probability. 
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Figure 15. The Vagueness Model Library 

Various data types related to the probability are defined in the Probability library (Figure 16). All the modeled 

probability distributions are well-known and thus we do not present further details in this paper. Some details of 

these distributions are provided in the technical report corresponding to this paper [49]. The other data types such 

as Percentage, Probability, Probability_Interval, and different qualitative scales of probability (e.g., 

Probability_4Scale) are from basic statistics and thus are not further explained. 

  

 

Figure 16. The Probability Model Library 

6.2 Pattern Library 

This section presents the Pattern Library shown in Figure 17. All the patterns except Transient and 

PersistentPattern are imported from MARTE [18] . Details of these patterns can be consulted from the MARTE 

specification and the technical report corresponding to this paper [49]. The definition of transient is adopted from 
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[50], i.e., “Transient is the situation whereby an uncertainty does not last long”. Transient inherits from 

IrregularPattern. The newly introduced attributes are: minDuration and maxDuration describing the duration for 

which the uncertainty lasts. The definition of PersistentPattern is adopted from [50], i.e., “the uncertainty that 

lasts forever”. The definition of “forever” varies. For example, an uncertainty may exist permanently until 

appropriate actions are taken to deal with the uncertainty. On the other hand, an uncertainty may not be able to 

resolve and stays forever. The duration attribute of PersistentPattern is set to “forever” to indicate that the 

uncertainty with this pattern stays forever until resolved.  

 

Figure 17. Pattern Library 

6.3 Time Library 

This section presents the necessary time concepts borrowed from the MARTE Library [18]. An overview diagram 

is shown in Figure 18. Some further details of these data types are provided in the technical report corresponding 

to this paper [49] and interested readers may also consult the MARTE specification [18].  

 

Figure 18. Time Library 

7. UMF MODELING METHODOLOGY 

In this section, we present a modeling methodology for the U-Model notations. The rest of this section is 

organized as follows: Section  7.1 presents the overview of modeling activities, Section 7.2 presents modeling 

activities at Application Level, Section 7.3 presents modeling activities at Infrastructure Level, Section 7.4  

presents modeling activities at Integration level, and Section 7.5 presents the modeling activities of applying UUP 

which is invoked at above three level.  
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7.1 Overview 

The modeling methodology is naturally organized from the viewpoints of the three types of stakeholders: 

Application Modeler, Infrastructure Modeler and Integration Modeler, as shown in Figure 19. For activities 

performed by each type of modelers, we distinguish them by tagging each of them (in their names) using “AP”, 

“IF” and “IT”, respectively.  

 

Figure 19. The Top Level Guideline 

As shown in Figure 19, all modelers are recommended to start from creating a package (i.e., AP1, IF1 and IT1), 

which is used to group and contain model elements for each respective level. Next, application and infrastructure 

modelers apply the U-Model notations to model system behaviors of the application and infrastructure levels, 

respectively (i.e., AP2 and IF2). These two structured activities are further elaborated in Sections 7.2 and 

7.3.When these two activities are finished, integration modelers take their results as inputs and perform IT2: 

Model Integration Behavior. Details of this structured activity are further discussed in Section 7.4.  

7.2 Application Level Modeling 

The application level modeling activities include three sequential steps: creating application level class diagrams 

(AP2.1), creating application level state machines (AP2.2) and applying the UUP notations on the created class 

and state machines (AP2.3).  

A class diagram created for the application level should capture domain concepts that are needed for specifying 

the API information to gain access to the data and behavior of the system. It is important to mention that such a 

class diagram usually needs to specify Signal, which is a Classifier for specifying communication of send requests 

across objects. When creating a class diagram for the application level, for each class, each of its attributes 

captures an observable system attribute, which may be typed by a DataType in the UUP’s Model Libraries 

(Section [49]) or MARTE_Library [18]. An attribute may represent a physical observation on a device (e.g., 

Battery Status on an X4 device). Each operation of a class in a class diagram represents either the API of the 

application software or an action physically performed by an operator (e.g., switching on or off of an X4 device).  
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Each state in a state machine created for the application level is defined, with an OCL constraint specifying its 

state invariants. Such an OCL constraint is constructed, based on one or more attributes of one or more classes of 

an application level class diagram. Each transition in a state machine should have its trigger defined as a call event 

corresponding to an API or a physical action defined in the class diagrams of the application level, and have its 

guard condition modelled as an OCL constraint on the input parameters of the trigger of the transition. 

Next, application modelers need to apply UUP on state machines (AP2.3) to specify uncertainties and apply the 

UTP profile to add testing information (e.g., indicating TestItem). The application of the UUP is the same for the 

three levels and thus we only it under the Integration Level Modeling section (Section 7.4.).   

 

Figure 20. Application Level Guideline 

7.3 Infrastructure Level Modeling 

For the infrastructure level, a similar modeling procedure as the one defined for the application level should be 

followed to derive class diagrams and state machines, apply UUP and the UTP profile (further details in Section 

7.4), as shown in Figure 21. One difference is that attributes of the infrastructure level class diagrams should 

capture observable infrastructure attributes. For example, an attribute can be the percentage of data loss between 

an X4 device and the Radio Antenna. Operations of the infrastructure level class diagrams represent APIs for 

manipulating infrastructure level components. Regarding state machines, they should be consistent with the 

infrastructure level class diagrams. In other words, states should have their invariants defined as OCL constraints 

based on the attributes defined in the infrastructure level class diagrams, and transitions having their triggers 

defined as call events or time/change events.  

 

Figure 21. Infrastructure Level Guideline 

7.4 Integration Level Modeling 

Recall that, activity IT2 is started after class diagrams and state machines created for the application and 

infrastructure levels. As shown in Figure 22, the IT2 activity starts from creating integration level class diagrams 

(IT2.1) and state machines (IT2.2), followed by applying UUP and the UTP profile.  
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Regarding creating class diagrams for the integration level, such a class diagram should focus on specifying 

interactions between the application software and infrastructure. Particularly, signal receptions should be defined 

to model events that a class can receive from the infrastructure and/or application levels. Each signal reception 

corresponds to an instance of UML Signal defined in a created integration level class diagram. Notice that 

creating class diagrams for the integration level is not mandatory. Model elements that have been defined in the 

application and infrastructure level class diagrams can appear in the integration level class diagrams and they 

should be specified from the perspective of integration level modelers. 

There are different ways of defining model elements for the integration level. One way is to refine the created 

application and infrastructure level state machines by directly introducing new model elements to them. For 

example, a state in the application level can send a Signal to the infrastructure level and vice versa. Transitions of 

a state machine in the application (infrastructure) level should capture triggers of type Signal Reception and 

effects containing Signals from the infrastructure (application) level. Another way is to keep the application and 

infrastructure level state machines untouched by applying a specific modeling methodology (e.g., Aspect Oriented 

Modeling methodologies) to specify crosscutting behaviors separately. In addition, one should also benefit from 

advanced features of UML state machines (e.g., concurrent state machines, parallel regions) to for example refer 

to existing state machines defined in the application and infrastructure levels.   

 

Figure 22. Integration Level Guideline 

7.5 Apply UUP (AP2/IF2/IT2) 

Recall that the activity of applying UML Uncertainty Profile (UUP) is invoked at all the three levels. We tag each 

type of activities of the activity diagrams from Figure 23 to Figure 31 with S, C and A to represent structured 

activities, call behavior and normal activity nodes. As shown in Figure 23, applying UUP starts from applying the 

«BeliefElement» stereotype on any allowed state machine model element according to UUP. Then a modeler can 

optionally specify values for the “from” and “duration” attributes of the stereotype, model belief agents, model 

belief degree, and/or model uncertainties (Figure 23).   
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Figure 23. Applying UUP 

As shown in Figure 24, there are two ways to model belief agents (S1.1 and S1.2). A modeler can specify belief 

agents simply as one or more strings via the “beliefAgent” attribute of «BeliefElement» (S1.1). She/he can also 

create a package to organize all the belief agents (S1.2). In this case, each belief agent can be modelled as a class 

in the package and the package is stereotyped with «BeliefAgent». Alternatively, one can model each belief agent 

as a class and stereotype it with «BeliefAgent». The other option is to model each belief agent as a class and 

stereotype it with «BeliefAgent» and also stereotype the package with «BeliefAgent». When choosing to apply 

options 2, 3 and 4, one needs to link a created belief agent package to the agent attribute of «BeliefElement» (S2).  

 

Figure 24.  Model «BeliefAgent» 

Modeling BeliefDegree is presented in Section 7.5.1 and modeling uncertainties is discussed in Section 7.5.2. 

7.5.1 Measurement Modeling 

Modeling measurements and measures are important for applying UUP. These activities are used to measure 

beliefDegree, Uncertainty, indeterminacyDegree, Risk and Effect. As shown in Figure 25, one first needs to 
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create a package to contain measurements for indeterminacyDegree, beliefDegree, uncertaintyMeasurement, 

measurement of Risk and measurement of Effect (A1). Then, a modeler can optionally specify Evidence (S1), 

followed by the specification of each measurement instance and its corresponding measure (S3 and S2).    

 

Figure 25. Common Measurement Modeling Activity 

A. Specify Evidence 
As shown in Figure 26, there are two ways to specify evidence. Option 1 is to specify evidence as a String value 

(in the “measurement” attribute of Measurement). Option 2 is to create a package for evidence if such a 

package does not exist and optionally stereotype it with «Evidence» (S1.2.1). One can then create any UML 

model element to represent evidence, according to UUP and optionally stereotype it with «Evidence» (S1.2.2). 

The last step of Option 2 is to link either the package or UML model elements representing evidence to the 

“referredEvidence” attribute of Measurement (S1.2.3).  

 

Figure 26. Specify Evidence 

B. Specify Measure 

As shown in Figure 27, to specify a measure, a modeler needs to create a class diagram (A1) and then create 

instances of Measures (for measurements of either “indeterminacyDegree”, “beliefDegree”,	

“uncertaintyMeasurement”, measurement of Risk or measurement of Effect) as classes or datatypes (A2). One 
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then needs to add attributes to these classes or datatypes by using the datatypes defined in the Measure Libraries. 

One can optionally apply corresponding measure stereotypes (e.g., «UncertaintyMeasure») to the classes or 

datatypes (A4). The last step is to link a measure to an instance of Measurement (A5).   

 

Figure 27. Specify Measure 

C. Specify Measurement 
There are three ways to specify measurements, as shown in Figure 28: specifying a measurement as a String of 

the measurement attribute of Measurement (A1), ValueSpecification (A2), and an OCL constraint owned by a 

class or datatype representing a measure, based on the attributes defined in the class or datatype (A3.1). One can 

also optionally apply «MeasurementConstraint» to an OCL constraint defined to specify a measurement (A3.2).  

 

Figure 28. Specify Measurement 

7.5.2 Uncertainty Modeling 

As shown in Figure 29, one first needs to specify the kind of an uncertainty (A1), optionally specify values for 

attributes “from”, “field”, and “locality” of the uncertainty, optionally model Lifetime (or Cause, Pattern, Effect) 
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of the uncertainty, optionally define IndeterminacySource(s), optionally model uncertaintyMeasurement and 

Risk.  

 

Figure 29. Model Uncertainty(ies) 

A. Model Lifetime/Cause/Pattern/Effect of Uncertainty 
A modeler has two options to specify Lifetime/Cause/Pattern/Effect of an uncertainty, as shown in Figure 30. 

One option is to simply specify an instance of these as a String value owned by the uncertainty (via attributes 

“lifetime”, “cause”, “effect”, “pattern”	or “risk” of Uncertainty). The second option needs to start from creating 

a package for Lifetime/Cause/Pattern/Effect if such a package does not exist, and optionally apply «Lifetime», 

«Cause», «Pattern», or «Effect» (S1.2.1). After creating packages, one needs to create 

Lifetime/Cause/Pattern/Effect as any UML model element and optionally apply the corresponding stereotypes. 

Since Effect can be measured, an instance of it can be optionally associated with one or more measurements 

(Section 7.5.1). The last step of Option 2 is to associate each created package or element to corresponding 

attributes of Uncertainty, i.e., “referredPattern”,	“referredEffect”,	“referredLifetime”,	or	“referredCause”. 
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Figure 30. Model Lifetime/Cause/Patten/Effect of Uncertainty 

B. Model IndeterminacySource 
As shown in Figure 31, a modeler can simply specify an indeterminacy source as a String value of attribute 

“indeterminacySource” of Uncertainty (Option 1). Alternatively, one can create a package to organize 

indeterminacy sources (A2.2.1), create instances of any UML Classifier to represent an indeterminacy source and 

apply «IndeterminacySource» on them (A2.2.2), specify the nature and description of each indeterminacy source 

(A2.2.3), specify measurements for each indeterminacy source (C1), and associate the created classifiers to the 

“referredIndeterminacySource” attribute of Uncertainty. 

 

Figure 31. Model IndeterminacySource 
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C. Model Risk 
A modeler can also optionally associate an uncertainty to Risk. As shown in Figure 32, one can simply specify 

Risk as a String value of the “riskLevel” attribute of Uncertainty (Option 1) or one of the predefined risk levels 

in enumeration RiskLevel (Option 2). Alternatively, one can create a package for Risk if such a package does not 

exist, followed by creating classes and/or datatypes to represent Risks and optionally applying «Risk» (A4.3.2). 

Afterwards, a modeler can also optionally specify measurement for Risk (C1), and link the created classes and 

datatypes to Uncertainty via the “riskInDTViaClass” and/or “riskInDT” attributes (A4.3.3).  

 

Figure 32. Model Risk 

8. EVALUATION 

For evaluating UMF, we used three case studies. The first case study is a modified version of the SafeHome case 

study provided in [37]. This case study implements various security and safety features in smart homes including 

intrusion detection, fire detection, and flooding. We extended the original case study by defining a set of 

executable UML models. The second case study is a Videoconferencing System (VCS) developed by Cisco, 

Norway. This case study has been used in our previous work [1] and was extended for evaluating UMF. The third 

case study is GeoSports provided by Future Position X (FPX) Sweden as part of the U-Test project. Some 

descriptive statistics of the test ready models developed for these case studies are provided in Table 3. For each 

case study, 1) the number of modeled UML diagrams is presented in the first row, 2) the second, third, and fourth 

rows represent the number of application, infrastructure, and integration level elements respectively, 3) the last 

row shows the number of uncertainties modeled for each case study.  

Note that the second and third authors of the paper are working with the working group of UTP V.2 and have 

implemented it in IBM RSA. This implementation was used to model the case studies. 

Table 3. Characteristics of the Case Studies 

 
CPS Profile Class Diagram State Machine Total 

SafeHome # of diagrams 2 15 17 
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# Application Elements 15 10 

66 
# Infrastructure Elements 16 19 
# Integration Elements 3 3 
# Uncertainties 9 10 19 

VCS 

# of diagrams 6 12 18 
# Application Elements 92 59 

442 
# Infrastructure Elements 103 67 
# Integration Elements 51 70 
# Uncertainties 41 83 124 

GeoSports 

# of diagrams 3 4 7 
# Application Elements 31 99 

226 
# Infrastructure Elements 36 34 
# Integration Elements 6 20 
# Uncertainties 12 29 41 

 

8.1 Mapping UUP/Model Libraries to U-Model and MARTE 

This section provides the descriptive statistics for the mapping of elements of UUP and the model libraries to 

concepts defined in U-Model and elements in MARTE.  

Table 4 is divided into four main sections. First, we provide the statistics of elements in UUP/Model Libraries 

that can be directly mapped to U-Model. For example, «BeliefStatement» in UUP can be directly mapped to the 

BeliefStatement concept defined in U-Model. Second, we provide the statistics of elements in UUP/Model 

Libraries (e.g., BeliefInterval) that can be indirectly mapped to U-Model concepts (e.g., Ambiguity). Third, we 

provide statistics of elements that are introduced to UUP/Model Libraries (e.g., «BeliefElement») by extending 

U-Model concepts (e.g., BeliefStatement). Fourth, since the model libraries are developed via extending MARTE, 

we also provide statistics for mapping elements in UUP/Model Libraries to elements in MARTE. For example, 10 

data types in the Measure library can be mapped to MARTE. 

As we can see from Table 4 (last row), 33% of the elements in UUP/Model Libraries can be directly mapped to 

U-Model, whereas 13% of elements can be indirectly mapped to U-Model, 54% of elements are newly introduced 

by extending U-Model concepts. In addition, 10% of UUP/Model Libraries elements were either directly adopted 

from MARTE or are extensions of MARTE elements.  

The last column of Table 4 shows coverage of the U-Model concepts, from which, one can observe that 83% of 

the U-Model concepts were implemented in UUP, whereas 9% of the U-Model concepts were implemented in the 

model libraries. The remaining 8% of the concepts that were not mapped to any element of UUP and the model 

libraries are the ones related to Knowledge. Such concepts are important at the conceptual level and are defined 

based on well defined taxonomies of Knowledge [27], but are not required to be implemented in UUP and the 

model libraries. 
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Table 4. Mapping UUP/Model Libraries to U-Model and MARTE 

 

U-Model 
Directly Mapped 

(x,y,z,t) 
Indirectly Mapped 

(x,y,z,t) 
Newly Added 

(x,y,z,t) MARTE Coverage 
(n,p) 

UUP 

Belief 8 13 3 24 0 6 0 6 1 0 0 1 0 27 30% 
Uncertainty 7 12 7 26 1 9 0 10 1 3 0 4 0 32 36% 

Measure 7 5 5 17 0 1 12 13 12 10 0 22 0 15 17% 
Total 22 30 15 67 1 16 12 29 14 13 0 27 0 74 83% 

Model 
Library 

Risk 1 0 0 1 0 0 0 0 9 0 0 9 0 0* 0% 
Pattern 7 4 0 11 0 0 0 0 4 0 0 4 8 6 7% 

Measure 0 0 0 0 3 0 0 3 55 34 3 92 10 0* 0% 
Time 2 0 0 2 0 0 0 0 4 0 0 4 6 2 2% 
Total 10 4 0 14 3 0 0 3 72 34 3 109 24 8 9% 

Total 32 34 15 81 4 16 12 32 86 47 3 136 24 82 92% 
Percentage 13% 14% 6% 33% 2% 6% 5% 13% 35% 19% 1% 54% 10% 

  #x is the number of Class/Stereotype/ Enumeration/DataType in 
UUP/Model Libraries 
#y is the number of Attributes/Associations in UUP/Model Libraries 
#z is the number of Constraint(s) in UUP/Model Libraries 
#t is the sum of #x, #y and #z 

#n is the number of concepts (Class/Enumeration/ Association) in 
U-Model that are mapped to UUP 
#p is the percentage of coverage, 𝑝 = !

!"
 (the total number of 

concepts of U-Model is 89) 
0* means the number that is covered by others. 
 

8.2 Application of UUP/Model Libraries 

We discuss the application of UUP/Model Libraries from two aspects: 1) the percentage of the applied 

UUP/Model Libraries elements in all the test ready models (UML class diagrams and state machines) developed 

for all the three case studies, and 2) the effort required to apply UUP/Model Libraries.    

As shown in Table 5, for the SafeHome case study, in total we modeled 21 classes in the class diagrams, seven 

out of which have UUP stereotypes applied (e.g., the «IndeterminancySource» sensor is applied to Sensor, see 

Figure 2). For the modeled state machines, three states out of 17 require the application of UUP/Model Libraries, 

whereas seven out of 29 transitions required the application of UUP/Model Libraries. In total, as shown in the last 

column of the table, around 20% of the modeling elements of the SafeHome case study required the application of 

UUP/Model Libraries. Similarly, 12% (16%) of the modeling elements for the VCS (GeoSoports) case study 

required the application of UUP/Model Libraries. For all the three case studies, on average 16% of the model 

elements require applying UUP/Model Libraries.  

Table 6 summarizes effort (measured in time (hours)) spent on constructing the test ready models (i.e., UML class 

diagrams, state machines, with UUP/Model Libraries applied) for the three case studies. The effort is divided into 

two parts: time for applying standard UML notations and additional effort required for applying UUP/Model 

Libraries. For example, as shown in Table 6, for SafeHome, it took us 4.5 hours for modeling UML class 

diagrams, whereas additional 0.5 hour was spent on applying UUP/Model Libraries. For UML state machines, it 

took 22.5 hours, whereas additional 7.5 hours were spent on applying UUP/Model Libraries. For SafeHome, as 

shown in the last column (%Time) of Table 6, it took additional 22% of time to apply UUP/Model Libraries. 
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Similarly, for VCS it took additional 23% of time and 15% of additional time for GeoSports. On average for all 

the three case studies together, on average modeling with UUP/Model Libraries required additional 20% of the 

total modeling effort. 

Table 5. Percentage of UUP/Model Libraries Concepts to UML Concepts 

Case Study Class Diagram State Machine % 
Class(u/t) Relationship(t) State(u/t) Transition(u/t) 

SafeHome 7/21 18 3/17 7/29 20 
VCS 24/197 303 39/216 61/278 12 
GeoSports 10/62 56 13/82 26/106 16 
Average Percentage: 16% 

#u: the number of elements with applied UUP/Model Libraries; #t: the total number of elements modeled using UML 

 

Table 6. Effort (Time in Hours) of Applying UUP/Model Libraries 

Case Study 
Class Diagram State Machine % Time 

UML (hr.) 
Modeling 

UUP/Model libraries  
(hr.) Modeling  

UML (hr.) 
Modeling  

UUP/Model libraries 
(hr.) Modeling  

SafeHome 4.5 0.5 22.5 7.5 22 
VCS 22.5 6 45 15 23 
GeoSports 37.5 3.5 52.5 12.5 15 
Average Percentage of Time: 20% 
 

8.3 Verification of Test Ready Models via Simulation using Executable UML 

In this section, we present the results of the verification of the test ready models developed with UMF for the 

three case studies. The overall aim is to check the correctness of the test ready models against collected 

(uncertainty) requirements. The test ready models were enriched with the UML Action Language (UAL, a 

implementation of the Action Language For Foundational UML, Alf [16])—a formal language supported in IBM 

RSA [24] for executing UML models implemented in Java. UML models with UAL can be executed with the 

IBM RSA Simulation Toolkit [25].  

Table 7 shows the results of the verification. We classified identified problems during the verification process into 

two main categories: Incorrect and incomplete model elements for each case study. In Table 7, we classified the 

model elements into two categories states and transitions. For State, more specifically, we report problems 

identified in state invariants and «BeliefElement». For Transition, more specifically, we report problems identified 

in Guard, Trigger, Effect, and «BeliefElement». For State, in total, 56 problems (10+46) were identified across the 

three case studies, where 10 problems were related to Incorrectness and 46 were related to Incompleteness. For 

«BeliefElement» related to State, we identified 24 missing stereotypes. For transition, we discovered 85 problems 

(9+76), where 9 problems were related to Incorrectness and 76 problems were related to Incompleteness. For 

«BeliefElement» related to Transition, we identified 25 missing stereotypes. 
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The typical problems identified included: 1) transition happening between the states without any event, 2) even 

after firing a transition the state change didn’t happen or state changed to an unexpected one, 3) failure to send 

signals across concurrent state machines, 4) non-deterministic transitions from a state, 5) unexpected exit, block, 

or deadlock observing in a state machines, 6) unreachable states, 7) guard conditions that are always true. Notice 

that these problems are not comprehensive set of problems, but provide most commonly observed problems. After 

simulating the test ready models, we ensure that our models are correct and complete and hence can be used for 

facilitating MBT.  

Table 7. Results of Verification of Test Ready Models 

Case Study State Transition 
StateInvariant  «BeliefElement» Guard Trigger  Effect «BeliefElement» 

Incorrect 
SafeHome 1 0 0 0 1 0 
VCS 6 0 0 5 0 0 
GeoSports 3 0 2 1 0 0 

Incomplete 
SafeHome 5 2 0 7 2 3 
VCS 30 13 15 23 21 18 
GeoSports 11 9 2 4 2 4 

Total 56 (10, 46) 24 85(9, 76) 25 
#Incorrect: the number of elements corrected after simulation;#Incomplete: the number of concepts newly added after simulation; 

# of triggers: #CallEvent + #SignalEvent + #TimeEvent 
8.4 Application of UTP V.2 

Applying UTP V.2 is the last step of UMF modeling as shown in Figure 22 to facilitate testing. In the running 

example, the «TestItem» stereotype from the Test Context package of UTP V.2 is applied on SecuritySystem as 

shown in the Figure 2 and «CheckPropertyAction» from the Arbitration Specification package of UTP V.2 is 

applied to the StateInvariant of IntrusionDetected (Figure 8) shown in Figure 7. 

Table 8 reports the results of the application of UTP V.2 to the models of the case studies. Notice that we only 

report the statistics for the high level packages (e.g., Arbitration Specification) of UTP V.2 instead of providing 

the number of applications of each stereotype due to space limitations. Notice that each high level package 

contains a set of related stereotypes. For SafeHome, in total 54 stereotypes from UTP V.2 were applied, whereas 

551 for VCS, and 209 for GeoSports. 

Based on our experience of applying UTP V.2, we discovered that it is a generic UML profile for MBT and does 

not cater for all our needs. However, we discovered that combining UUP/Model Libraries and UTP V.2 together 

is sufficient to model test ready models with uncertainty in our case.  

Table 8. Application of UTP V.2 

Category SafeHome VCS GeoSports 
Arbitration Specification 20 246 92 
Test Data 29 278 106 
Test Configuration 2 15 7 
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Test Context 3 12 4 
Total 54 551 209 

9. RELATED WORK 

There are some works in the literature that attempt to deal with modeling uncertainty with UML. For example, the 

authors of [41] proposed to perform fuzzy modeling with UML 1.5 without violating its semantics, based on 

theoretical analyses of UML 1.5. However, the proposed extensions to UML 1.5 weren’t implemented and  

validated. Moreover, there is no evidence to show the proposed extensions can be applicable for UML 2.x. 

To model uncertainty (inherent in real world applications) with UML class diagrams, an extension was proposed 

in [31; 32; 44], which is referred to as fuzzy UML data modeling. The extension relies on two theories: fuzzy set 

and possibility distribution, and was later on further extended in [33] to transform fuzzy UML data models into 

representations in the fuzzy description logic (FDLR) to check the correctness of fuzzy properties. Furthermore, 

another automated transformation was proposed in [48] to transform fuzzy UML data models into web ontologies 

to support automated reasoning on fuzzy properties in the context of web services.  

In [19], the UML profile (named as fuzzy UML) was proposed to model  uncertainty on use case diagrams, 

sequence diagrams, and state machines. Another work in [34] formalizes UML state diagrams with fuzzy 

information and transforms them into fuzzy petri nets for supporting automated verification and performance 

analysis. In [13], the authors developed two stereotypes: moveTo and moveTo? for UML collaboration diagrams. 

The first stereotype is applied when a modeler has full confidence, whereas the second stereotype is used when 

the modeler lacks confidence.  

In comparison to these works, our UMF focuses on modeling uncertainty in a comprehensive and precise manner 

by considering various types of measures such as probability, vagueness, and fuzziness. The methodologies 

proposed in [31; 32; 44] for specifying fuzzy UML data can easily integrated to our model libraries when needed. 

Notice that UMF is proposed to explicitly capture uncertainty of CPSs for the purpose of supporting MBT of 

CPSs under uncertainty and there is no evidence showing that these works can be used for this purpose.    

The work reported in [9] is the closest to our work, where uncertainty in time is modeled in UML sequence 

diagrams applied with the UML-SPT profile [15]. These sequence diagrams are then used for test case generation 

by taking into consideration the uncertainties in time. This work, however, only supports modeling uncertainty in 

time on messages of sequence diagrams. In contrast, UMF covers other types of uncertainties, in addition to time, 

such as content and environment. Moreover, the work doesn’t cater for sources of time uncertainties that are 

essential to be explicitly captured in order to introduce uncertainties for test execution. 

In [38], the authors presented a solution to transform UML use case diagrams and state diagrams into usage 

graphs appended with probability information about expected use of software. Such probability information can 

be obtained in several ways by relying on domain expertise or usage profiles of software, for example. Usage 

graphs with probability can be eventually used for testing. This work only deals with modeling uncertainty using 
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probabilities and dose not support other types of uncertainty measures such as ambiguity as supported in UMF. In 

addition, the work only supports modeling application level uncertainties and cannot be used to model 

uncertainties in the other two CPS levels as UMF. 

In [39], a language-independent solution was proposed for Partial Modeling with four types of partialities: May 

partiality, Abs partiality, Var partiality and OW partiality, to denote the degree of incompleteness specified by 

model designers. The work also provides a solution for merging and reasoning possible partial models with tool 

support [7; 8]. The approach was demonstrated on UML class and sequence diagrams [39]. This work is related to 

our work in terms of expressing uncertainty of modelers. In UUP, the Belief related stereotypes and classes 

capture subjective views of modelers and provide modeling notations for specifying the degree of their confidence 

(uncertainty) on the models they built. A set of possible models may have different belief degrees provided by 

different belief agents at the same time. In the context their work, the focus is on uncertainty in partial models for 

supporting model refinement and evolution. In contrast, UUP focuses on modeling uncertainty (lack of 

confidence) in test ready models to support MBT of CPSs under uncertainty.  

10. CONCLUSION AND FUTURE WORK 

To facilitate Model-Based Testing (MBT) of Cyber-Physical Systems (CPSs) under uncertainty, we proposed in 

this paper Uncertainty Modeling Framework (UMF). UMF allows creating test ready models with uncertainty at 

three logical testing levels of CPS: Application, Infrastructure, and Integration. The core of UMF is UML 

Uncertainty Profile (UUP), which implements an existing uncertainty conceptual model for CPSs, called U-

Model. In addition, UMF defines a comprehensive set of UML model libraries extending the UML profile for 

Modeling and Analysis of Real-Time and Embedded Systems (MARTE), which can be used together with UUP. 

UMF also relies on the UML Testing Profile (UTP) V.2 to construct test ready. Finally, UMF defines concrete 

guidelines for supporting the use of UMF for creating test ready models with uncertainty. We evaluated UMF 

with two industrial and one open source case studies. As a future work, we are implementing test generators that 

can take test ready models created with UMF as input and generate executable test cases. 
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