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Abstract—In the context of multiple GPUs that share the same
PCIe bus, we propose a new communication scheme that leads to
a more effective overlap of communication and computation. Be-
tween each pair of GPUs, multiple CUDA streams and OpenMP
threads are adopted so that data can simultaneously be sent
and received. Moreover, we combine our scheme with GPUDirect
to provide GPU-GPU data transfers without CPU involvement.
A representative 3D stencil example is used to demonstrate the
effectiveness of our scheme. We compare the performance of our
new scheme with an MPI-based state-of-the-art scheme. Results
show that our approach outperforms the state-of-the-art scheme,
being up to 1.85⇥ faster. However, our performance results also
indicate that the current underlying PCIe bus architecture needs
improvements to handle the future scenario of many GPUs per
node.
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MPI, GPUDirect, P2P, Asynchronous Communication, Intra-Node
communication

I. INTRODUCTION

Heterogeneous systems have lately emerged in the super-
computing landscape. Such systems are made up of compute
nodes that contain, in addition to CPUs, non-CPU devices
such as graphics processing units (GPUs) or many integrated
core (MIC) coprocessors. The Top 500 list [1] from June
2014 clearly shows this trend. The non-CPU devices, often
called accelerators, have considerably higher floating-point
capabilities than the CPUs, and also a greater power efficiency.
The downside is however that more effort is needed for
using heterogeneous systems, mostly because programming
accelerators can be very different from programming CPUs.

An expected feature of future heterogeneous systems is that
each compute node will have more than one accelerating de-
vice, adding a new level of hardware parallelism. Some of the
current heterogeneous supercomputers have already adopted
multiple devices per node. The most prominent example is the
world’s current No. 1 supercomputer, Tianhe-2 (see [1]), which
is equipped with three MIC coprocessors on each node. Having
multiple devices per node has its advantages with respect to
space, energy and thereby the total cost of computing power.

When multiple accelerating devices are used per node in a
cluster, data exchanges between the devices are of two types:

inter-node and intra-node. MPI [2] is the natural choice for
the first type. However, when it comes to intra-node data
exchanges, MPI might not be the best solution. Although it
is possible to let one MPI process (or more MPI processes)
control each accelerator, a few potential inefficiencies arise
with this strategy. First, most MPI implementations do not have
a hierarchical layout, meaning that intra-node communication
is inefficiently treated as inter-node communication. Second,
one MPI process per device will increase the overall memory
footprint, in comparison with using one MPI process per
node. Third, using multiple MPI processes per device requires
the creation of additional process contexts, thus additional
overhead on top of the enlarged memory footprint.

Due to the inefficiencies connected with MPI in the context
of intra-node communication, recent research such as [3]
has therefore focused on utilizing a single MPI process per
node while adopting multiple OpenMP threads per node. For
example, in [3], a single thread is spawned per device. Despite
these efforts, the underlying methodologies are essentially the
same and imperfect in efficiency. Hence, we believe that a new
approach is needed.

In this work, we explore the intra-node communication
between multiple GPUs that share the same PCIe bus –
on a variety of multi-GPU configurations - including dual-
GPU cards where two GPU devices are placed on the same
physical card. To improve the state-of-the-art communication
performance, we make use of multiple CUDA streams together
with multiple OpenMP threads. To fully benefit from the
host-avoiding communication technology, we also adopt direct
GPU-GPU transfers.

The primary contributions of this paper are as follows:

• We propose an efficient intra-node communication
scheme1, which lets multiple OpenMP threads jointly
control each GPU to improve the overlap between
computation and communication. Moreover, for each
pair of neighboring GPUs, two CUDA streams are
used to enable completely simultaneous send and
receive of data.

1Source code available at github.com/mohamso/icpads14



• We quantify the performance advantage of our new
intra-node communication scheme by using a repre-
sentative 3D stencil example, for which inter-GPU
data exchanges have a dominating impact on perfor-
mance.

The rest of this paper is organized as follows: Section II
provides the reader with background information on heteroge-
neous computing, GPUDirect and multi-GPU programming.
The current state-of-the-art scheme is presented in Section III.
A detailed examination of our new communication scheme is
presented in Section IV. We discuss our performance results
in Section VI. Section VII surveys related work. Finally, in
Section VIII, we conclude with some remarks and describe
future work.

II. BACKGROUND

Apart from aggregating the computation capacity, using
multiple GPUs is also motivated from a memory perspective.
In comparison with a compute node’s system memory that be-
longs to the CPU host, a GPU’s device memory has consider-
ably smaller capacity. For example, 32-64 GB is a typical size
for the system memory, whereas a single GPU has between
4 and 12 GB device memory. When dealing with large-scale
scientific applications, the size of the device memory may thus
become a limiting factor. One way of overcoming this barrier
is to make use of multiple GPUs, by either interconnecting
multiple single-GPU nodes or installing multiple GPUs within
a single compute node. The latter configuration is the focus of
this study.

The current generation of GPUs targeted at the HPC market
does not share the same memory space with its CPU host. A
programmer thus has to explicitly transfer data between the
device and host. Although the most recent version of CUDA
can abstract the data transfer calls, the physical data motion
still takes place. Using multiple GPUs per node adds to the
complexity. Independent of the direction, data transfers incur
a performance penalty when moving across the high-latency
PCIe bus that connects a GPU with its host. Therefore, one of
the main objectives of our new communication scheme is to
better hide the costs of data transfers.

The latest research activities have focused on improving
the efficiency of inter-node MPI communication. Researchers
have extended several open-source MPI implementations to
support GPU-accelerated systems [4], [5]. Implementations
such as OpenMPI, MVAPICH, and MPICH now have specific
interfaces for interacting with CUDA devices (Nvidia GPUs).
This group of CUDA friendly implementations is commonly
collected under the umbrella term CUDA-Aware MPI. The
main focus of these implementations has so far been to provide
a more user friendly MPI interface for directly passing pointers
to GPU memory.

A. GPUDirect

The concept of peer-to-peer (P2P) memory access between
two GPUs was introduced in GPUDirect v2. P2P allows
direct data transfers between two GPUs on the same PCIe
bus, completely avoiding copies via the system memory. A
precondition for a P2P setup is that the two devices must be
located on the same I/O hub or PCIe switch. GPUDirect v2

has two modes: direct access and direct transfers. In the first
mode, a GPU can directly read/store data from/to the device
memory of another GPU. In the second mode, data is explicitly
moved from the device memory of one GPU to that of another
GPU, using CUDA’s cudaMemcpyPeerAsync commands.

Using P2P transfers in MPI requires either a CUDA-aware
MPI implementation that is able to detect multiple GPUs
sharing the same PCIe bus or manually through the use of
CUDA Inter Process Communication (IPC). The latter is a
specific interface that gives a remote process direct access to
the memory of a GPU. CUDA-aware MPI implementations
usually rely on CUDA IPC in order to transfer data directly
between two peers. Consequently, there is an overhead con-
nected to the use of CUDA IPC. This overhead comes on top
of the overhead of passing messages. However, these two MPI-
related overheads can be avoided if threads are used to control
the GPUs within a node. A quantification of the overheads of
CUDA IPC is presented in [6].

B. Multi-GPU Programming
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Fig. 1. A simple two-neighbor example. The send buffers correspond to
the boundary region (purple), and the receive buffers match the ghost region
(green).

As shown i Figure 1, a subdomain is the responsible com-
putation area of a GPU. The data values that are needed by the
neighbors constitute the so-called boundary region, whereas
the data values that are to be provided by the neighbors
constitute the so-called ghost region.

Between each pair of neighboring GPUs, the data exchange
process consists of first copying data from the “outgoing”
buffer of a GPU to the host, and then from the host into
the “incoming” buffer of a neighboring GPU. Alternatively,
P2P can be used (by cudaMemcpyPeerAsync) to directly
transfer the content of each outgoing buffer to a matching
incoming buffer on a receiving GPU.

Computation is launched first in the boundary region,
followed by data exchange of the boundaries. Concurrently
with the data exchange, computation of the inner points is per-
formed. If P2P is used in asynchronous implementations, the
aforementioned cudaMemcpyPeerAsync command should
be used.

III. STATE OF THE ART

This section describes how boundary data exchanges (com-
munication) and computation are handled in the current state-
of-the-art intra-node communication scheme, which uses an



asynchronous solution as exemplified in [3], [7]–[12]. The
state-of-the-art scheme uses one MPI process or OpenMP
thread to control each device, and two CUDA streams per
device to overlap communication with computation.

Phase 1 GPU$0$ GPU$1$ GPU$2$ GPU$3$

I/O$HUB$
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(a) The Left-Right Approach on Four GPUs

Phase 1 GPU$0$ GPU$1$ GPU$2$ GPU$3$
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Phase 2 GPU$0$ GPU$1$ GPU$2$ GPU$3$

I/O$HUB$

(b) The Pairwise Approach on Four GPUs

Fig. 2. Two variations of a multi-GPU communication scheme, both involving
two stages as discussed in [13].

There are two variations of data exchanges in the state-
of-the-art scheme. They are presented in [13] as the left-right
and pairwise approaches. In both approaches, data exchange
is done in two phases. During the first phase of the left-right
approach, see Figure 2(a), data is sent to the right neighbor
and received from the left neighbor. The direction of data
movement is reversed during the second phase. Furthermore,
in the pairwise approach, see Figure 2(b), the first phase
consists of exchanging border data between some pairs of
GPUs. In the second phase, data is exchanged between the
remaining neighboring pairs. Another difference between these
two approaches is that communication is uni-directional in the
left-right approach, while it is bi-directional in the pairwise
approach.

CUDA streams can be used to overlap communication
and computation on Nvidia GPUs. Streams are sequence of
operations that are executed in the order they are issued. The
operations are queued. A queue manager picks an operation
from the front of the queue, before feeding it to the device. The
overall idea of streams is to increase concurrency by executing
multiple operations simultaneously.

The state-of-the-art communication scheme relies on using
two CUDA streams per GPU to overlap communication and
computation. As Figure 3 reveals, the first stream is dedicated
to computing the boundary points and exchanging data, while
the second stream is dedicated to computing the inner points.
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Fig. 3. Two CUDA streams are used in the state-of-the-art scheme to
overlap communication and computation. Due to space constraints, only the
data blocks for one side of the subdomain is shown for Stream One.

In the Send Boundary Data block of Figure 3, data from the
GPU memory is copied to a data buffer on the host, followed
by a CUDA stream or device synchronization. Synchronization
is necessary to ensure that the data transfer from the GPU
to the host is indeed completed, before data can be copied
from the host to a buffer of the target device. If MPI is used
for intra-node data exchange, an additional layer of process
communication and synchronization is added. As a result, the
synchronization gap depicted in Figure 3 is widened further.

IV. A NEW COMMUNICATION SCHEME

We propose a new intra-node communication scheme that
targets multiple GPUs sharing the same PCIe bus. In this
section, we describe the two fundamental components of
our scheme, namely multiple OpenMP threads per GPU and
multiple CUDA streams per pair of neighboring GPUs, and
how these two components can be combined to outperform
the state-of-the-art communication scheme.

A. Multi-Threading
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(a) Single-threaded execution sequence
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(b) Multi-threaded exe-
cution sequence

Fig. 4. Using a single host thread or multiple host threads to launch kernels on
multiple GPUs, where ti denotes the thread number. Each green bar represents
the time for switching from one device to another, each purple bar corresponds
to computing the boundary region, and each blue bar corresponds to computing
the inner points.

Our context of study is intra-node communication between
multiple GPUs that share the same PCIe bus. When a thread-
based programming model is used, a single or multiple threads



can be used to control the GPUs. Although the single-threaded
approach is easier to implement, it has distinct disadvantages,
because the application execution is serialized, including the
kernel launches. Figure 4(a) depicts the situation if all the
actions of the host are executed serially. That is, the kernels
on GPU 0 is launched first, then on GPU 1, and so on. As
the figure shows, the overhead of using a single thread is
considerable. For this reason, we choose not to use a single
thread to control multiple GPUs in our scheme. Instead, we
choose to use multiple OpenMP [14] threads.

Similar to the state-of-the-art scheme, we let one OpenMP
thread control each GPU as the main thread. The benefit of the
one-thread-per-GPU approach is that the different kernels can
be launched in parallel, and thus, eliminating kernel launch
overheads. Figure 4(b) illustrates this in greater detail.

However, unlike the state-of-the-art scheme, we take one
step further and make use of multiple threads per GPU for
improving the communication performance. The neighboring
sides of a subdomain are independent of each other. If decou-
pled, each part can be processed in parallel. The decoupling
process consists of splitting each neighboring side of the
subdomain into two parts: a send and a receive part. After
the split, each neighbor contains a send and a receive part.
Next, we spawn one assistant thread per neighbor, meaning
that the total number of OpenMP threads per GPU equals: 3⇥
the number of GPUs.

B. Multi-Streaming

Compute(
Boundaries(

Send(
Boundary(Data(

Left Send Stream 

Compute(
Boundaries(

Send(
Boundary(Data(

Receive(
Boundary(Data(

Right Receive Stream 

Left Receive Stream 

Compute Stream 

Streams 

Time 

Compute(Inner(Points(

Receive(
Boundary(Data(

Right Send Stream 

Fig. 5. Five streams used in our scheme to achieve better overlap of
communication and computation.

The previous section demonstrated how a group of threads
can increase scheme concurrency, and realize bi-directional
communication. In this section, we demonstrate how multiple
threads in tandem with multiple streams can be used to reduce
additional overheads.

In the state-of-the-art scheme, two CUDA streams are
created per GPU to overlap communication with computation.
To recap, the first stream is used for computing the boundaries
and performing communication, while the second stream is
responsible for computation of the inner points. Despite being
two independent operations, the second stream is launched

after the computation of the boundaries has finished in the
first stream [8]. Even if the boundary kernels were launched
simultaneously as the inner points kernel, the use of a single
thread/process per device would result in a delay between the
start of the inner points kernel.

GPU$0$ GPU$1$ GPU$2$ GPU$3$

I/O$HUB$

Fig. 6. Using separate CUDA streams can allow simultaneously sending and
receive data between multiple GPUs.

We repeat the subdomain splitting process mentioned in
Section IV-A. In addition we create a group of streams per
thread. These streams are created for the send, receive and
compute phases, as shown in Figure 5. In other words, the
number of streams per GPU is 2⇥ number of neighbors of the
GPU.

The different assistant OpenMP threads are associated with
each group of streams. The use of multiple streams has two
major advantages. One, it enables us to decouple the data
transfers going in different directions within each subdomain,
and as a result, the two phases depicted in Figure 2 can now be
merged into a single phase. Figure 6 illustrates our single phase
scenario. Two, by creating a group of streams and attaching
the assistant threads to each stream group, we are able to
mitigate the delays and overheads that arise in the state-of-
the-art scheme.

Another motivation for letting each assistant thread control
one group of streams is that, in the scenario where only a single
thread is used, i.e. the state-of-the-art scheme, synchronization
will stall the master thread. By using additional threads, we
avoid stalling the main execution thread. This is especially of
importance in real-world applications where the running thread
needs to attend to other tasks as well.

Multiple streams also express the independence that exists
between tasks more clearly. We found this property to be
especially useful on the Fermi GPUs, where placing multiple
streams inside a loop can lead to false dependencies. Further
information on this topic can be found in the documentation
about HyperQ [15].

C. Summary

Our scheme is built upon two principles: multi-threading
and multi-streaming. These two techniques are combined to
create a more efficient intra-node communication scheme that
increases the overall concurrency.

Multiple threads are used to reduce kernel launch overhead,
avoid stalling the running host thread and improve application
performance by reducing the gap between computation and
communication. We also believe that multiple threads can also
be useful for architectures that do not support streams.

Multiple streams are used to stack communication so that
data exchange can occur simultaneously on both sides of a



subdomain. The use of multiple streams gives us a more fine-
grained control of the different operations, enabling us to
launch all groups of streams at the same time, resulting in
bi-directional data transfers in a single phase. Moreover, the
combination of multiple threads and multiple streams reduces
the synchronization overhead that is needed between the send
and receive streams. Additionally, P2P can be adopted for
the purpose of reducing the overhead directly related to data
transfer.

V. EXPERIMENTS AND MEASUREMENTS

A. Experimental Platforms

GPU Name Tesla K20 Tesla C2050 GeForce GTX 590
Architecture Kepler Fermi Fermi
# SMs 13 14 2 x 16
# cores/SM 192 32 32
register file/SM 65K 32K 32K
storage/SM 64KB 64KB 64KB
memory size 5GB 3GB 2 x 1.5GB
bandwidth (GB/s) 208 144 2 x 163.8
SP, GFLOPs 3520 1030 2 x 1243
DP, GFLOPs 1170 515 2 x 155

TABLE I. AN OVERVIEW OF THE GPUS USED. SM DENOTES
STREAMING MULTI-PROCESSOR, WHEREAS STORAGE/SM MEANS SHARED

MEMORY PLUS L1 CACHE PER SM.

All tests were conducted on three different systems. The
first machine contains a single Intel Xeon E5620 CPU,
equipped with two Nvidia GeForce GTX 590 GPUs. These
are dual-device cards, i.e., two GPU devices are fused together
on the same physical print-circuit board. Therefore, the total
number of GPU devices is four. The second machine is a dual-
socket server containing two Intel Xeon E5-2650 CPUs with
four Nvidia Tesla K20 GPUs. The third and last machine is a
special multi-GPU node from NERSC’s GPU testbed, Dirac.
This node is equipped with two Intel Xeon 5520 CPUs with
four Nvidia Tesla C2050 GPUs. A more detailed technical
overview of the different GPUs is shown in Table I. All
calculations used double precision floating point with CUDA
version 5.5. Due to the lack of error-correction code (ECC)
support on the GTX 590, ECC was turned off on all GPUs.
Because of technical difficulties, we could not get MVAPICH2
v1.9 to work on one of our test systems, hence, we have used
OpenMPI 1.6.5.

B. Bandwidth Measurements

Communication is typically identified as one of the main
performance bottlenecks in multi-GPU applications. Hence,
the speed of the communication plays a vital role. We have
measured the bandwidth by taking the time it takes to transfer
data under the following circumstances:

• From one device to another device via the host (DtD)

• From one device to another device using P2P

Due to the nature of the GTX 590, we are also able
to transfer data directly between the two on-board devices.
A special PCIe bridge on the GTX 590 enables direct data
transfers between the two devices so that communication does
not have to go through the main PCIe bus. Figure 7 shows
how the bandwidth scales with data sizes up to 32 MB. Notice
that moving data directly between two devices (P2P) is almost

Fig. 7. Measured bandwidths for different configurations. The numbers in
the bracket refer to the devices used, e.g., [0-1] means a transfer from device
0 to device 1.

twice as fast as moving the same data through the host. The
performance is especially evident on the dual-GPU GTX 590.
If data motion occurs via the host on GTX 590, communicating
between on-board devices is equally fast as using the two
physically separated devices. Thus, the results for transferring
data from device 0 to device 2 (DtD [0-2]) have been omitted
from Figure 7.

The four Tesla C2050 cards are connected pairwise to two
CPUs. Devices 0 and 1 constitute the first pair, while devices
2 and 3 constitute the second pair. In contrast to the four GTX
590 devices, where P2P is available across all devices, P2P is
only available within each pair, because an I/O hub separates
the two pairs. In practice, this means that data motion across
the two pairs has to travel through an additional I/O hub.
There is thus a small performance penalty associated with this
configuration.

The four-way Tesla K20 server resembles the configuration
of the Tesla C2050 system, with one important distinction.
That is, there is only a single I/O hub. P2P is available between
devices 0 and 1, and between devices 2 and 3. In order to
communicate between e.g. device 1 and 2, data transfers must
be staged through the host.

P2P transfers between two directly connected P2P devices
on the Tesla C2050 and the K20 system are equally fast. Trans-
ferring data via the host is slightly faster on the K20 platform,
possibly due to faster QPI link speed. Our measurements also
reveal that the host-to-device bandwidth for device 2 and 3
is approximately 1.25x slower than device 0 and 1 on the
Tesla C2050 system. Moreover, the device-to-host bandwidth
for device 2 and 3 is about 1.4x slower compared to device
0 and 1 on the same system. We did not observe the same
bandwidth difference on the K20 system.

C. Benchmark Stencil Computation

Stencil computations constitute one fundamental tool of
scientific computing. They are typically used to discretely
solve a differential equation using finite difference methods,



which in turn give rise to a stencil calculation. For this paper,
we have chosen the following 7-point stencil that sweeps over
a uniform 3D grid:
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where ↵ and � are two scalar constants. This 3D stencil
computation can arise from discretizing the Laplace equation
(using �x = �y = �z) over a box and solving the resulting
system of linear equations by Jacobi iterations. In the literature,
this 3D stencil is thus widely referred to as the 3D Laplace
stencil. (The same stencil can also arise from solving a 3D
heat equation by a forward-Euler time stepping method.)

We chose, for simplicity reasons, to decompose our prob-
lem domain along the z direction, resulting in a 1D decompo-
sition. One benefit of using a 1D decomposition is that kernels
developed for a single-GPU can be used without any additional
modification. Nevertheless, we acknowledge that using a 1D
domain could be considered as suboptimal due to the commu-
nication overhead that arises when working on extremely large
problem sizes or across many nodes. However, we believe it is
sufficient for our study, as we deal with neither extremely large
problem sizes nor many nodes. Previous studies such as [16]
have shown that 1D decomposition with similar problem size,
provides linear scaling up to 16 nodes.

Each result is divided into four scenarios, determined by
the type of implementation used: Baseline, MPI, OpenMP,
OpenMP w/P2P. The baseline version constitutes a naı̈ve
implementation where a single host thread is used to control
all GPU devices, and where all data transfers go via the host.

Our MPI implementation of state-of-the-art scheme utilizes
the Left-Right approach described in Figure 2(a). This turned
out to be marginally faster than Pairwise approach.

The GPUDirect v2 mode of the direct access has been
omitted for this paper, mainly due to two reasons. One,
the performance associated with direct access is considerably
lower than that associated with direct transfers. Two, only one
of the three experimental platforms supports direct access.

The size of the 3D grid ranges from 643 to 5123 inner
points. Due to memory size limitations it was not possible to
run experiments for the largest problem size on a single GTX
590 device.

VI. RESULTS

A. Experiments on Kepler

As Figure 8(a) shows, our scheme is able to outperform the
state-of-the-art scheme in every case by a considerable margin.
Interestingly, our scheme is faster for smaller problem sizes
when using two Kepler GPUs, and for the larger problem sizes
when using four Kepler GPUs. However, if the computation
part is big enough, communication can be entirely hidden. This
explains the good performance of the state-of-the-art scheme
for the largest problem sizes.

Using asynchronous P2P transfers is faster than the pure
OpenMP implementation. This is possible because the CUDA
subsystem overlaps the staged P2P transfers. The performance
advantage for the P2P implementations comes from the direct

P2P transfers that occur on the edges of the domain, that is,
between device 0 and 1 and device 2 and 3.

B. Experiments on Fermi

The performance results on the Fermi systems (see Fig-
ure 8(b) and Figure 8(c)) are similar to the results observed
on the Kepler platform.

For the Tesla C2050 system, direct P2P transfers are
staged but overlapped between device 1 and 2. However, as
the performance results indicate, thanks to faster direct P2P
transfers on the edges of the domain, the P2P solutions are
able to outperform the other implementations.

We are also able to outperform the state-of-the-art scheme
on the Fermi GPUs. The performance gaps are especially large
when four GPUs are involved. For example, our scheme is 58
percent faster for the largest problem size on the Tesla C2050
and 40 percent faster for the largest problem size on the GTX
590.

On the GTX 590 system, we can observe a larger perfor-
mance gap between the P2P and the other implementations,
because true P2P transfers are available between all devices
on this system.

Figure 8(d) shows a direct comparison of our scheme
versus the state-of-the-art scheme implemented in MPI on the
Tesla C2050 system. The same benchmark application is used.
We observe that our scheme is able to outperform the state-of-
the-art scheme quite considerably when two GPUs are used.
On the other hand, when four GPUs are used, the difference
between the two different schemes is not visible until we
reach the larger problem sizes. For larger problem sizes, our
scheme is better at hiding communication than the state-of-
the-art scheme.

VII. RELATED WORK

Paulius Micikevičius [12] has investigated how a fourth-
order wave equation can be solved on a single compute node
with up to four GPUs using MPI. Micikevičius reports linear
scaling in the number of GPUs used for all but one case. The
domain is decomposed along the z-axis and computation is
overlapped with communication.

We decompose the domain in the same manner and inter-
leave computation with communication. However, we rely on
the use of threads and not MPI processes to control multiple
GPUs. We also make use of GPUDirect to avoid potential
host intervention, as well as a new communication scheme
to increase the overlap. Depending on the setup and the data
communication method, we also observe the same linear and
superlinear speedup that Micikevičius reports. The superlinear
speedup seen in Figure 8(d) can be explained by reduced TLB
miss rate.

Thibault et al. [17] develop a multi-GPU Navier-Stokes
solver in CUDA that targets incompressible fluid flow in 3D.
In the study, one Pthread is spawned per GPU. The code runs
on a single Tesla S870 GPU server with four GPUs. Depending
on the number of GPUs and problem size, Thibault et al. report
speedup between 21� 100⇥ compared to a single CPU core.
The implementation presented in Thibault et al. does not
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(b) Performance results on GTX 590
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(c) Performance results on Tesla C2050 (d) Speedup comparison between state-of-the-art and our scheme

Fig. 8. The sustained performance results measured in GFLOPs on the three experimental platforms.

overlap computation with communication and CUDA streams
are not used. Results reported are also in single precision.

Thibault and Senocak’s work is extended by Jacobsen et
al. [11]. Major changes include the use of CUDA streams to
interleave computation with communication, and the use of
MPI processes in preference of Pthreads. One MPI process
was created per device. All experiments were conducted on a
cluster containing 128 GPUs. Each node was equipped with
two Tesla C1060 GPUs, putting the number of compute nodes
at 64. The implementation using all 128 GPUs is 130⇥ faster
than a multicore implementation running on only two CPU
cores on a dual-socket Intel Xeon E5530 quad-core processor
operating at 2.4 GHz.

In Bernaschi et al. [7], a CUDA-Aware MPI implemen-
tation is used to study the inter-node communication perfor-
mance by measuring the time it takes to update a single spin
of the 3D Heisenberg spin glass model. The scheme used in
Bernaschi et al. uses two streams, one for compute and one for

data exchange. P2P is used between two nodes (each equipped
with two different Fermi GPUs). Inter-node P2P is possible
thanks to the use of APEnet+, a custom 3D Torus interconnect
that can access the GPU memory without going through the
host.

Our proposed scheme uses up to five streams, four streams
for data exchange (two per each side of the subdomain) and
one for the inner points. In our scheme, the computation of
the inner points and the boundaries are scheduled to run at the
same time. Moreover, since our scheme uses threads, we are
able to easily pass pointers between GPUs with minimal over-
head, whereas exchanging GPU pointers using MPI processes
involves explicit message passing.

VIII. CONCLUSIONS

In this work we have studied the current state-of-the-art
intra-node communication scheme. Based on our findings, we
have proposed a new scheme that is faster than the existing



state-of-the-art scheme. The main ingredient of our scheme
is to combine multiple OpenMP threads with multiple CUDA
streams for a more efficient overlap of communication with
computation.

First, we make use of multiple OpenMP threads per device
to increase the scheme concurrency. This is in stark contrast
to the state-of-the-art where each device is controlled by a
single thread or process. Then, we create a group of CUDA
streams for each stage of the communication and computa-
tion, whereas the state-the-art scheme uses only two CUDA
streams. Finally, we combine the two techniques together to
create a more efficient intra-node communication scheme that
is able to perform bi-directional communication with lower
synchronization overhead.

Depending on the test platform, results indicate that our
scheme is able to outperform the state-of-the-art scheme with
quite a noticeable margin. The best speedup on the GTX 590
platform was 1.4⇥, 1.6⇥ on the C2050 platform and 1.85⇥
on the K20 platform.

Our investigations also show that there are scenarios where
P2P can further reduce communication overhead to some
degree. However, the importance P2P is limited. Our results
demonstrate that P2P is also impeded by todays PCIe bus.

We have three immediate extensions planned for the future.
The first extension involves studying the effect of larger ghost
regions. Currently, our implementations use the thinnest possi-
ble ghost region width. A thicker ghost region can potentially
benefit the computation of wider stencils such as a 19-point
stencil or in combination with time unrolling where two
sweeps are performed per time step. The use of time unrolling
increases the computation while at the same time reducing
the number of boundary data exchanges. Thus, time unrolling
can be regarded as an important feature with respect to
computation of smaller data sets where the majority of the time
is spent on communication. In this study we have looked at a
traditional stencil code, however, our scheme is by no means
limited to stencil code. We are in the process of exploring
the use of our strategies in connection with applications from
the real world. Finally, work is also underway to extend our
scheme to other architectures such as Intel’s Xeon Phi.
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