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The Certus Centre (www.certus-sfi.no)
● Centre for research-based innovation (Norwegian SFI)
● Hosted by Simula Research Laboratory in Oslo
● Dedicated to Software Validation & Verification
● Industrial collaborations and public partners
● Expertise: 

○ Intelligent testing through artificial intelligence techniques 
(Constraint Programming, Machine Learning)

Kongsberg Maritime Cisco Systems Norway ABB Robotics, Norway Cancer Registry of Norway
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Constraint Optimization solvers transform an 
optimization problem into a search tree.

Search TreeConstraint Optimization Problem

3



Constraint Optimization solvers transform an 
optimization problem into a search tree.

Search TreeConstraint Optimization Problem

4



An objective boundary reduces the search space

Full Search Tree

constraint objective < X

Pruned Search Tree
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We train a regression model from solved instances 
to estimate objective boundaries.
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Objective boundaries allow to discard parts of the 
search tree and help to solve the problem.
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The regression model in boundary estimation can be 
any supervised machine learning model.
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A supervised model is trained by providing a set 
training samples consisting of inputs and targets.

Instance Objective Value+

Instance Objective Value+

Instance Objective Value+

Instance Objective Value+

Inputs Targets

Minimize Gap between 
Estimated Value and Target
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Each problem instance is represented by a fixed size 
feature vector.
9 instance features statistically describe the parameters of each data structure:

Number of elements, Minimum, Maximum, Mean, Median, Std. Deviation, 
Interquartile range, Skewness, Kurtosis

95 model features describe the constraint model, broadly categorized in:

Variables, Domains, Constraints, Global Constraints, Objective Variable

The model features follow
Amadini, R., Gabbrielli, M., & Mauro, J. (2014). An enhanced features extractor for a portfolio of constraint solvers. In Symposium on Applied 
Computing (pp. 1357–1359).  https://doi.org/10.1145/2554850.2555114
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Misestimations can render the problem unsatisfiable, 
therefore we need to take countermeasures.
If the estimated objective is is too low, 
all solutions are excluded 
and the problem instance is 
unsatisfiable.

Three counter-measures:

a) Label-shift
b) Asymmetric loss function
c) Restart with negated constraint Unsatisfiable Problem
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Label shift moves the labels of training samples 
away from true label to allow larger errors.

Negative Error ✗ 
(Underestimation)

Positive Error 
✔�
(Overestimation)

True Training
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Label shift moves the labels of training samples 
away from true label to allow larger errors.

Negative Error ✗ 
(Underestimation)

Positive Error 
✔�
(Overestimation)
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Label shift moves the labels of training samples 
away from true label to allow larger errors.

y’true = ytrue + λ * (UpperObjDomain - ytrue)

y’true: Adjusted objective value of training sample

ytrue: Original objective value of training sample

λ: Configuration parameter (λ ∊ [0,1])

UpperObjDomain: Upper domain boundary of objective variable
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Standard model training uses symmetric loss and 
penalizes under- and overestimations equally.
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An asymmetric loss functions steers the model 
towards only over- or underestimations.
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An asymmetric loss functions steers the model 
towards only over- or underestimations.
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Positive Error 
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If an unsatisfiable instance occurs at runtime, the 
solver can be restarted with a negated constraint.

constraint objective < X constraint objective >= XNegate constraint

✖� Unsatisfiable ✓ Satisfiable
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Evaluation
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We selected 7 COPs with the most instances from 
the MiniZinc benchmark repository.

Problem Number of Instances

MRCPSP 11182

RCPSP 2904

2D Bin Packing 500

Cutting Stock 121

Jobshop 74

VRP 74

Open Stacks 50

Available at https://github.com/MiniZinc/minizinc-benchmarks20



The regression model in boundary estimation can be 
any supervised machine learning model.

● Gradient Tree Boosting (GTB) with symmetric and asymmetric loss

● Neural Networks (NN) with symmetric and asymmetric loss

● Support Vector Machines (SVM) with symmetric loss

● Linear Regression (LR) with symmetric loss
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First, we compare the performance of the models to 
estimate the objective value.
● Repeated 10-fold cross-validation

● Train regression model per problem on 9 folds and test on remaining fold

● Average results over multiple repetitions with different random initialization

● Evaluation metrics

Gap: Objective Boundary compared to true objective (for model comparison)

Pruned (Prn): Reduction in objective domain size
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Boundary estimation with neural networks prunes 
the objective domain up to 73%.
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Second, we measure the effect an estimated 
objective boundary has on the solver performance.
● 100 instances per problem

● Quality of first solution and time to find it

● Solvers used
○ Chuffed

○ Gecode 6.0

○ Google OR-Tools 6.7

● Default search heuristic of model or solver
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Boundary estimation can result in better first 
solutions in similar time.
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● No correct estimation guarantees -> Counter-measures to reduce risk

● Limited number of instances for most problems

● Potentially limited representational power through general features

● Which problems benefit from boundary constraints? Propagation possible?

We identified challenges and limitations, that need to 
be addressed in future work.
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Boundary estimation can improve the solving 
process from historical information.
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Boundary estimation can improve the solving 
process from historical information.

Thank you! Questions?28


