Synthesis of Attributed Feature Models
From Product Descriptions

Guillaume Bécan

Razieh Behjati

Arnaud Gotlieb

Inria - IRISA - University of SIMULA SIMULA
Rennes 1 Norway Norway
France behjati@simula.no arnaud@simula.no

guillaume.becan@inria.fr

Mathieu Acher
Inria - IRISA - University of
Rennes 1
France
mathieu.acher@inria.fr

ABSTRACT

Many real-world product lines are only represented as non-
hierarchical collections of distinct products, described by
their configuration values. As the manual preparation of fea-
ture models is a tedious and labour-intensive activity, some
techniques have been proposed to automatically generate
boolean feature models from product descriptions. How-
ever, none of these techniques is capable of synthesizing fea-
ture attributes and relations among attributes, despite the
huge relevance of attributes for documenting software prod-
uct lines. In this paper, we introduce for the first time an
algorithmic and parametrizable approach for computing a
legal and appropriate hierarchy of features, including fea-
ture groups, typed feature attributes, domain values and
relations among these attributes. We have performed an
empirical evaluation by using both randomized configura-
tion matrices and real-world examples. The initial results
of our evaluation show that our approach can scale up to
matrices containing 2,000 attributed features, and 200,000
distinct configurations in a couple of minutes.

1. INTRODUCTION

Many real-world product lines are represented as collec-
tions of distinct products, each exhibiting specific configu-
ration values. Users can customize or choose their product
according to numerous configuration options for satisfying
their functional needs without e.g. reaching a maximum
budget. Options (also referred as features or attributes) are
ubiquitous and may refer to functional or non-functional as-
pects of a system, at different level of granularity — from
parameters in a function to a whole service.

Modeling features or attributes of a given set of products
is a crucial activity in software product line engineering.
The formalism of feature models (FMs) is widely employed
for this purpose [2,8,21]. FMs delimit the scope of a fam-
ily of related products (i.e., an SPL) and formally docu-
ment what combinations of features are supported. Once
specified, FMs can be used for model checking an SPL [28],
automating product configuration [19], computing relevant
information [8] or communicating with stakeholders [10]. In
many generative or feature-oriented approaches, FMs are
central for deriving software-intensive products [2]. Feature

attributes are a useful extension, intensively employed in
practice, for documenting the different values across a range
of products [4,8,12]. With the addition of attributes, op-
tional behaviour can be made dependent not only on the
presence or absence of features, but also on the satisfaction
of constraints over domain values of attributes [13]. Re-
cently, languages and tools have emerged to fully support
attributes in feature modeling and SPL engineering (e.g.,
see [4,8,12,17,19]).

The manual elaboration of a feature model — being with
attributes or not — is known to be a daunting and error-
prone task [1,3,5,15,16,18,20,23-27]. The number of fea-
tures, attributes, and dependencies among them can be very
important so that practitioners can face severe difficulties
for accurately modeling a set of products. In response, nu-
merous synthesis techniques have been developed for syn-
thesising feature models [5, 15,20, 23,26,27,27]. Until now,
the impressive research effort has focused on synthesizing
basic, Boolean feature models — without feature attributes.
Despite the evident opportunity of encoding quantitative in-
formation as attributes, the synthesis of attributed feature
models has not yet caught attention.

Developing techniques for synthesizing attributed feature
models requires to cope with extra complexity. A synthe-
sis algorithm must decide what becomes a feature, what
becomes an attribute and identify the domain of each at-
tribute. Compared to features, the domain of an attribute
may contain more than two values. Moreover, the placement
of the attributes further increases the number of possible hi-
erarchies in a feature model. Finally, cross-tree constraints
over attributes are now possible; this level of expressiveness
(beyond Boolean logic) challenges synthesis techniques.

In this paper, we develop the theoretical foundations and
algorithms for synthesizing attributed feature models given
a set of product descriptions. We present parametrizable,
tool-supported techniques for computing hierarchies, feature
groups, placements of feature attributes, domain values, and
constraints. We describe algorithms for comprehensively®
computing logical relations between features and attributes.
The synthesis is capable of taking knowledge (e.g., about the

!The interest reader can find more details — including proofs
of soundness and completeness, theoretical complexity — in
the technical report accompanying the paper [6].

hierarchy and placement of attributes) into account so that
users can specify, if needs be, a hierarchy or some placements
of attributes. Our work both strengthens the understanding
of the formalism and provides a tool-supported solution.

Furthermore we perform a complexity analysis of our syn-
thesis procedure with regards to the number of configura-
tions, features, attributes, and domain values. We evaluate
the practical scalability of the synthesis using randomized
configuration matrices and real-world examples. Our results
show that our approach can scale up to matrices containing
2,000 attributed features, and 20,000 distinct configurations
in less than a couple of minutes.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 further motivates the
need of synthesising attributed FMs. Section 4 exposes the
problem of synthesizing attributed FMs. Section 5 presents
our algorithm targeting this problem. Section 6 evaluates
the synthesis techniques from a practical point of view. In
Section 8 we discuss threats to validity. Section 9 summa-
rizes the contributions and describes future work.

2. RELATED WORK

Numerous works address the synthesis or extraction of
FMs. Despite the availability of some tools and languages
supporting attributes, no prior work consider the synthesis
of attributed FMs; they solely focus on Boolean FMs.

Techniques for synthesising an FM from a set of depen-
dencies (e.g., encoded as a propositional formula) or from a
set of products (e.g., encoded in a matrix) have been pro-
posed [15,20,22,26,27]. In [27], the authors calculate a dia-
grammatic representation of all possible FMs from a propo-
sitional formula (CNF or DNF). In [5], we propose a set of
techniques for synthesizing FMs that are both correct w.r.t
input propositional formula and present an appropriate hi-
erarchy. The algorithms proposed in [20, 23] take as input
a set of configurations. As in the case of [5, 20, 22, 26, 27],
the considered configurations only contain Boolean values.
Furthermore the generated feature diagram may be an over-
approximation of the input configurations. Our work aims
to study whether similar properties arise in the context of
attributed feature models.

She et al. [26] proposed heuristics to synthesize an FM
presenting an appropriate hierarchy. Janota et al. [22] de-
veloped an interactive editor, based on logical techniques,
to guide users in synthesizing an FM from a propositional
formula. In prior works [5], we develop techniques for tak-
ing the so-called ontological semantics into account when
synthesizing feature models. Our work shares the goal of
interactively supporting users — this time in the context of
synthesizing attributed feature models.

Considering a broader view, reverse engineering techniques
have been proposed to extract FMs from various artefacts
(e.g., product descriptions [3,16,18,25], architectural infor-
mation [1] or source code [24]). However, they do not sup-
port the synthesis of attributes despite the presence of non
Boolean data in some of these artefacts. In this paper, we
do not consider such a broad view; we focus solely on the
synthesis of attributed FMs.

In addition to synthesis techniques, there are numerous
existing academic (or industrial) languages and tools for
specifying and reasoning about FMs [4,8,11-13,19]. None
of the existing tools propose support for synthesizing at-
tributed FMs.

Product Comparison Matrices,
Spreadsheets

Textual product Manual elaboration

description /
Configuration
matrix

Synthesis

AFM

Reasoning Understanding a domain, Forward engineering
(product configuration, Communication with stakeholders (engineering a configurator,
extraction of information, relating an AFM to another
T-wise testing, artefact, etc.)
multi-objective, etc.)

Figure 1: Core problem: synthesis of attributed fea-
ture model from configuration matrix

3. MOTIVATION AND BACKGROUND

In this section, we motivate the need for an automated
encoding of product descriptions as attributed feature models
(AFMs). We also introduce background related to AFMs.

3.1 Product Descriptions and Feature Models

Many modern companies provide solutions for customiza-
tion and configuration of their products to match the needs
of each specific customer. From a user’s perspective, it
means a large variety of products to choose from. It is there-
fore crucial for companies not only to provide comprehensive
descriptions of their products, but also to do it in an easily
navigable manner.

Product descriptions are usually represented in tabular
formats, such as spreadsheets and product comparison ma-
trices. The objective of such formats is to describe the char-
acteristics of a set of products in order to document and
differentiate them. From now on, we will use the term con-
figuration matriz to refer to these tabular formats. Con-
figuration matrices provide an enumerative description of a
set of products and are by definition not succinct. Feature
models provide an alternative format with a compact and
formalized view of a set of products.

Figure 1 summarizes our motivation for synthesizing an
AFM from a configuration matrix. As shown in the upper
part of Figure 1, the input to the synthesis algorithm is a
configuration matrix (see Definition 1).

Definition 1 (Configuration matrix). Let c1,...,cm be a
given set of configurations. Fach configuration c; is an N-
tuple (ci1,...,ci,n), where each element c;j; is the value of
a variable V;. A wvariable represents either a feature or an
attribute. Using these configurations, we create an M x N
matriz C such that C = [c1,...,cum]t, and call it a configu-
ration matrix.

Configuration matrices act as a formal, intermediate rep-
resentation that can be obtained from various sources, such
as (1) spreadsheets and product comparison matrices (e.g.,
see [7]), (2) disjunction of constraints, or (3) simply through
a manual elaboration (e.g., practitioners explicitly enumer-
ate and maintain a list of configurations [10]).

For instance, let us consider the domain of Wiki engines.
The list of features supported by a set of Wiki engines can be
documented using a configuration matrix. Figure 2 is a very
simplified configuration matrix, which provides information
about eight different Wiki engines.

Figure 2: A configuration matrix for Wiki engines.

LanguageSupport LicenseType WYSIWYG
Language: {Java, Python, LicensePrice: {0, 10, 20}
Perl, PHP}

< =
‘Commercial‘ ‘NoLimiﬁ

Commercial => LicensePrice = 10 NoLimit => —=LanguageSupport
LicensePrice = 10 => Commercial —LanguageSupport => NoLimit
Commercial => Java GPL => LanguageSupport
Java => Commercial NoLimit => LicensePrice >= 10
GPL => LicensePrice <= 10 —PHP => WYSIWYG

Python => LicensePrice = 0
® = -WYSIWYG <=> PHP A LicensePrice =0

Figure 3: One possible attributed feature model for
representing the configuration matrix in Figure 2

The resulting AFM (see lower part of Figure 1) can as well
be used to document a set of configurations and open new
perspectives. First, state-of-the-art reasoning techniques for
AFM can be reused (e.g., [4,13,19,28]). Second, the hier-
archy helps to structure the information and a potentially
large number of features into multiple levels of increasing
detail [14]; it helps to understand a domain or communicate
with other stakeholders [8,10, 14]. Finally, an AFM is cen-
tral to many product line approaches and can serve as basis
for a forward engineering [2] (e.g., through a mapping with
source code or design models).

Overall, configuration matrices and feature models are se-
mantically related and aim to characterize a set of config-
urations. The two formalisms are complementary; we aim
to better understand the gap and switch from one repre-
sentation to the other. For instance, Figure 3 depicts an at-
tributed feature diagram as well as constraints that together
provide one possible representation of the configuration ma-
trix of Figure 2.

3.2 Attributed Feature Models

Several formalisms supporting attributes exist [4,9,12,17].
In this paper, we consider an extension of FODA-like FMs
including attributes and inspired from the FAMA frame-
work [8,9]. An AFM is composed of a feature diagram (see
Definition 2 and Figure 4) and an arbitrary constraint (see
Definition 3).

Definition 2 (Attributed Feature Diagram). An attributed
feature diagram FD is a tuple (F, H, En, Gurx, Gxor,
Gor, A, D, §, a, RC) such that:

e [is a finite set of boolean features.

e H = (F,E) is a rooted tree of features where E C FxXF
is a set of directed child-parent edges.

e Ey C FE is a set of edges that define mandatory fea-

Id License Lice.nse Language Lang WYSI RC := bool_factor ‘=" bool_factor
Type Price Support uage WYG s
Wi T Commorcial 0 Yos Tava Yos bool_factor ::= feat}lre,name\ = feature,n::lme | rel_expr
W2 NoLimit 50 No — Yos rel_expr := attribute_name rel_op num literal
W3 | NoLimit 10 No - Yos relop =2 | =
W4 GPL 0 Yes Python Yes
W5 GPL 0 Yes Perl Yes
W6 GPL 10 Yes Perl Yes Figure 4: The grammar of readable constraints.
W7 GPL 0 Yes PHP No
W8 GPL 10 Yes PHP Yes

tures.

e Grurx,Gxor,Gor C P(E\En) are sets of feature
groups. Fach feature group is a set of edges. The
feature groups of Gurx, Gxor and Gor are non-
overlapping and all edges in a group share the same
parent.

e A is a finite set of attributes.

e D is a set of possible domains for the attributes in A.

e § € A — D is a total function that assigns a domain
to an attribute.

e a € A— F isa total function that assigns an attribute
to a feature.

e RC is a set of constraints over F' and A that are con-
sidered as human readable and may appear in the fea-
ture diagram in a graphical or textual representation
(e.g., binary implication constraints can be represented
as an arrow between two features).

A domain d € D is a tuple (Vg,0q,<a) with Vg a finite
set of values, 04 € Vg the null value of the domain and <4
a partial order on Vy. When a feature is not selected, all
its attributes bound by a take their null value, i.e., V(a, f) €
a with §(a) = (Va, 04, <a), we have ~f = (a = 04).

For the set of constraints in RC, formally defining what
is human readable is essential for automated techniques. In
this paper, we define RC' as the constraints that are consis-
tent with the grammar in Figure 4. Some examples of such
constraints can be found in the bottom of Figure 3. We
consider that these constraints are small enough and sim-
ple enough to be human readable. In this grammar, each
constraint is a binary implication, which specifies a rela-
tion between the values of two attributes or features. Fea-
ture names and relational expressions over attributes are
the boolean factors that can appear in an implication. Fur-
ther, we only allow natural numbers as numerical literals
(num_literal).

The grammar of Figure 4 and the formalism of attributed
feature diagrams (see Definition 2) are not expressively com-
plete regarding propositional logics, and therefore cannot
represent any set of configurations (more details are given
in Section 4.2). Therefore, to enable accurate representation
of any possible configuration matrix, an AFM is composed of
an attributed feature diagram and a propositional formula:

Definition 3 (Attributed Feature Model). A feature model
s a pair (FD,®) where FD is an attributed feature diagram
and ® is an arbitrary constraint over F and A that repre-
sents the constraints that cannot be expressed by RC'.

Example. Figure 3 shows an example of an AFM describ-
ing a product line of Wiki engines. The feature WikiMatriz
is the root of the hierarchy. It is decomposed in 3 features:
LicenseType which is mandatory and WYSIWYG and Lan-
guageSupport which are optional. The xor-group composed
of GPL, Commercial and NoLimit defines that the wiki en-
gine has exactly 1 license and it must be selected among

these 3 features. The attribute LicensePrice is attached to
the feature LicenseType. The attribute’s domain states that
it can take a value in the following set: {0, 10, 20}. The
readable constraints and ® for this AFM are listed below its
hierarchy (see Figure 3). The first one restricts the price of
the license to 10 when the feature Commercial is selected.

The main objective of an AFM is to define the valid con-
figurations of a product line. A configuration of an AFM
is defined as a set of selected features and a value for every
attribute. A configuration is valid if it respects the con-
straints defined by the AFM (e.g., the root feature of an
AFM is always selected). The set of valid configurations
corresponds to the configuration semantics of the AFM (see
Definition 4).

Definition 4 (Configuration semantics). The configuration
semantics [m] of an AFM m is the set of valid configurations
represented by m.

4. SYNTHESIS FORMALIZATION

Two main challenges of synthesizing an AFM from a con-
figuration matrix are (1) preserving the configuration se-
mantics of the input matrix; and (2) producing a maximal
and readable diagram (for a further exploitation by practi-
tioners, see Figure 1). Synthesizing an AFM that represents
the exact same set of configurations (i.e., configuration se-
mantics) as the input configuration matrix is primordial; a
too permissive AFM would expose the user to illegal config-
urations. To prevent this situation, the algorithm must be
sound (see Definition 5). Conversely, if the AFM is too con-
strained, it would prevent the user from selecting available
configurations, resulting in unused variability. Therefore,
the algorithm must also be complete (see Definition 6).

Definition 5 (Soundness of AFM Synthesis). A synthests
algorithm is sound if the resulting AFM (afm) represents
only configurations that exist in the input configuration ma-
triz (cm), i.e., [afm] C [em].

Definition 6 (Completeness of AFM Synthesis). A synthe-
sis algorithm is complete if the resulting AFM (afm) repre-
sents at least all the configurations of the input configuration
matriz (cm), i.e., [em] C [afm].

To avoid the synthesis of a trivial AFM (e.g., an AFM
with the input matrix encoded in the constraint ¢ and no
hierarchy, i.e., £ = @), we target a maximal AFM as output
(see Definition 7). Intuitively, we enforce that the feature
diagram contains as much information as possible. Defini-
tion 8 formulates the AFM synthesis problem.

Definition 7 (Maximal Attributed Feature Model). An
AFM is mazximal if its hierarchy H connects every feature in
F and if none of the following operations are possible without
modifying the configuration semantics of the AFM:

add an edge to Enr

add a group to Gurx,Gxor or Gor

move a group from Gyrx or Gor to Gxor

add a constraint to RC that is not redundant with other
constraints of RC'.

TODO (Guillaume): wvalidate precision on rendundancy

of RC

The restriction on the redundancy of RC constraints avoids
a potentially infinite number of constraints. Without this re-
striction, a synthesis algorithm would be forced to synthesize
all possible constraints respecting the configuration seman-
tics of the AFM.

Definition 8 (Attributed Feature Model Synthesis Prob-
lem). Given a set of configurations sc, the problem is to
synthesize an AFM m such that [sc] = [m] (ie., the syn-
thesis is sound and complete) and m is mazimal.

4.1 Synthesis Parametrization

In Definition 8, we enforce the AFM to be maximal to
avoid trivial solutions to the synthesis problem. Despite this
restriction, the solution to the problem may not be unique.
Given a set of configurations (i.e., a configuration matrix),
multiple maximal AFMs can be synthesized.

This property has already been observed for the synthesis
of Boolean FMs [5,26,27]. Extending boolean FMs with at-
tributes exacerbates the situation. In some cases, the place
of the attributes and the constraints over them can be modi-
fied without affecting the configuration semantics of the syn-
thesized AFM.

Wiki engine
Language: {Java, Python, Perl, PHP}
LicensePrice : {0, 10, 20}
-

LicenseType

O @)
LanguageSupportl | WYSIWYG I

Commercial => LicensePrice = 10 —LanguageSupport => NoLimit
LicensePrice = 10 => Commercial GPL => LanguageSupport

Commercial => Java NoLimit => LicensePrice >= 10

Java => Commercial =PHP => WYSIWYG

GPL => LicensePrice <= 10 Python => LicensePrice = 0

NoLimit => —~LanguageSupport —LanguageSupport => Language = "--"

® = =WYSIWYG <=> PHP A LicensePrice = 0

Figure 5: Another attributed feature model repre-
senting the configuration matrix in Figure 2

Ezample. Figures 3 and 5 depict two AFMs represent-
ing the same configuration matrix of Figure 2. They have
the same configuration semantics but their attributed fea-
ture diagrams are different. In Figure 3, the feature WYSI-
WYG is placed under Wiki engine whereas in Figure 5, it is
placed under the feature LicenseType. Besides the attribute
LicensePrice is placed in feature LicenseType in Figure 3,
whereas it is placed in feature Wiki engine in Figure 5.

To synthesize a unique AFM, our algorithm uses domain
knowledge, which is extra information that can come from
heuristics, ontologies or a user of our algorithm. This do-
main knowledge can be provided interactively during the
synthesis or as input before the synthesis. Our synthesis
tool (Figure 6 shows the workflow) provides an interface for
collecting the domain knowledge so that users can:

e decide if a column of the configuration matrix should
be represented as a feature or an attribute;

e give the interpretation of the cells (type of the data,
partial order);

e select a possible hierarchy, including the placement of
each attribute among their legal possible positions;

[+% m = (- v O

Upload a Features Hierarchy Feature constraints AFM
Matrix Attributes Groups
Next
License License Language
Type Price Support Language WYSIWYG
Feature v Attribute v Feature v Attribute * Feature v
Null value Null value Null value Null value
0 Commercial 10 Yes Java Yes
1 NoLimit 20 No - Yes
2 NoLimit 10 No - Yes
3 GPL 0 Yes Python Yes
4 GPL 0 Yes Perl Yes
5 GPL 10 Yes Perl Yes
6 GPL 0 Yes PHP No
7 GPL 10 Yes PHP Yes
Figure 6: Web-based tool for gathering domain

knowledge during the synthesis

e select a feature group among the overlapping ones;
e provide specific bounds for each attribute in order to
compute meaningful and relevant constraints for RC'.

All steps are optional; in case the domain knowledge is
missing, the synthesis algorithm (see next section) takes ar-
bitrary yet sound decisions (e.g., random hierarchy).

FEzample. The domain knowledge that leads to the syn-
thesis of the AFM of Figure 3 can be collected with our
synthesis tool. Users specify what constitute an attribute or
a feature. For instance, the column Language represents an
attribute (for which the null value is - -”). In further step,
users can specify hierarchy and also precise that, e.g., 710"
is an interesting value for LicensePrice when synthesizing
constraints.

4.2 Over-approximation of the Attributed Fea-
ture Diagram

A crucial property of the output AFM is to characterize
the exact same configuration semantics as the input config-
uration matrix (see Definition 8). In fact, the attributed
feature diagram may over-approximate the configuration se-
mantics, i.e., [em] C [FD]. Therefore the additional con-
straint ® of an AFM (see Definition 3) is required for pro-
viding an accurate representation for any arbitrary configu-
ration matrix.

Ezxample. The diagrammatic part of the AFM in Figure 3
characterizes two additional configurations that are not in
the matrix of Figure 2: {LicenseType = GPL, LicensePrice
= 0, LanguageSupport = Yes, Language = PHP, WYSI-
WYG = Yes} and {LicenseType = GPL, LicensePrice =
10, LanguageSupport = Yes, Language = PHP, WYSIWYG
= No}. To properly encode the configuration semantics of
the configuration matrix, the AFM has to rely on a con-
straint ®. This particular constraint cannot be expressed
by an attributed feature diagram as defined in Definition 2.
Therefore, if ® is not computed the AFM would represent
an over-approximation of the configuration matrix.

A basic strategy for computing ® is to directly encode the
configuration matrix as a constraint, i.e., [em] = [®]. Such
a constraint can be achieved using the following equation,

where N is the number of columns and M is the number of
TOWS.

M N

o=\/ A\ V;=cy) (1)

i=1j=1

An advantage of this approach is that the computation is
immediate and ® is, by construction, sound and complete
w.r.t. the configuration semantics. The disadvantage is that
some constraints in @ are likely to be (1) redundant with the
attributed feature diagram; (2) difficult to read and under-
stand for a human.

Ideally, ® should express the exact and sufficient set of
constraints not expressed in the attributed feature diagram,
ie, [®] = [em] \ [FD]. Synthesizing a minimal set of
constraint may require complex and time-consuming com-
putations. The development of efficient techniques for sim-
plifying ® and investigating the usefulness and readability
of arbitrary constraints® are out of the scope of this paper.

S. SYNTHESIS ALGORITHM

Algorithm 1 presents a high-level description of our ap-
proach for synthesizing an AFD. The two inputs of the al-
gorithm are a configuration matrix and some domain knowl-
edge for parametrizing the synthesis. The output is a maxi-
mal AFD. In complement to the AFD, we compute the con-
straint @ (as described by Equation 1). The addition of ®
and the AFD forms the AFM.

Algorithm 1 ATTRIBUTED FEATURE DIAGRAM SYNTHESIS

Require: A configuration matrix MTX and domain knowledge
DK
Ensure: An attributed feature diagram AFM
Extract the features, the attributes and their domains
1 (F,A,D,$) + extractFeaturesAndAttributes(MTX, DK)

Compute binary implications
2 BI <+ computeBinaryImplications(MTX)

Define the hierarchy

(BIG, MTXG@) < computeBIGAndMutexGraph(F, BI)
H + extractHierarchy(BIG, DK)

a + placeAttributes(BI, F, A, DK)

Ot W

Compute the variability information
6 E)j; < computeMandatoryFeatures(H, BIG)
7 FG <+ computeFeatureGroups(H, BIG, MTXG, DK)

Compute cross tree constraints
8 RC « computeConstraints(BI, DK, H, E);, FG)

Create the attributed feature diagram
9 return AFD(F, H, Ey, FG, A, D, §, o, RC)

5.1 Extracting Features and Attributes

The first step of the synthesis algorithm is to extract the
features (F'), the attributes (A) and their domains (D,).
This step essentially relies on the domain knowledge to de-
cide how each column of the matrix must be represented
as a feature or an attribute. We also discard all the dead

2We recall that relational constraints as defined by the
grammar of Figure 4 are already part of the synthesis. Arbi-
trary constraints represent other forms of constraints involv-
ing more than two features or attributes — hence questioning
their usefulness or readability by humans.

features, i.e., features that are always absent. The domain
knowledge specifies which values in the corresponding col-
umn indicate the presence (e.g., by default ”Yes”) or absence
(e.g., "No”) of the feature. For each attribute, all the dis-
tinct values of its corresponding column form the first part
of its domain (Vy). The other parts, the null value 04, and
the partial order <4, are computed accordingly. Some pre-
defined heuristics are implemented to populate the domain
knowledge and consist in (1) determining whether a column
is a feature or an attribute or (2) typing the domain values.
If needs be, users can override the default behaviour of the
synthesis and specify domain knowledge.

Ezample. Let us consider the variable LanguageSupport
in the configuration matrix of Figure 2. Its domain has
only 2 possible Boolean values: Yes and No. Therefore, the
variable LanguageSupport is identified as a feature. Follow-
ing the same process, WYSIWYG and License Type are also
identified as features while the other variables are identified
as attributes. For instance, LicensePrice is an attribute and
its domain is the set of all values that appear in its column:
{0,10,20}.

5.2 Extracting Binary Implications

An important step of the synthesis is to extract binary
implications between features and attributes. A binary im-
plication, for a given configuration matrix C, is of the form
(vi =u) = (vj € Siju), where ¢ and j indicate two distinct
columns of C, and S ;. is the set of all values in the jth col-
umn of C, for which the corresponding cell in the ith column
is equal to u. We denote the set of all binary implications of
C as BI(C). Algorithm 2 computes this set. The algorithm
iterates over all pairs (%, j) of columns and all configurations
¢k in C to compute S(4, j, ck,i) (i.e., Sijep i)

Algorithm 2 cOMPUTEBINARYIMPLICATIONS

Require: A configuration matrix C
Ensure: A set of binary implications BI
1 BI«+ 0
2 for all (4,7) such that 1 < 4,5 < N and i # j do
3 for all ¢, such that 1 <k < M do
4 if S(i,7, ck,;) does not exists then
5 S(4, 5, cr,i) < {cr,j}
6 B[<_BIU{<1/7]7U7S(Z7J7CK,'L)>}
7
8
9

else
S(i, g, cr,i) = S(i, 5, cr,i) U {er,j}
return BI

In line 4, the algorithm tests if S(i, j, ck,;) already exists.
If so, the algorithm simply adds cx,j, the value of column
j for configuration cy, to the set S(i,j,ck:). Otherwise,
S(%,J,cr,i) is initialized with a set containing cg ;. Then,
a new binary implication is created and added to the set
BI. At the end of the inner loop, BI contains all the binary
implications of all pairs of columns (i, 7).

5.3 Defining the Hierarchy

The hierarchy H of an AFD is a rooted tree of features
such that V(f1, f2) € E, f1 = [, i.e., each feature implies its
parent. As a result, the candidate hierarchies, whose parent-
child relationships violate this property, can be eliminated
upfront. To guide the selection of a legal hierarchy for the
AFD, we rely on the Binary Implication Graph (BIG) of a
configuration matrix:

Definition 9 (Binary Implication Graph (BIG)). A binary
implication graph of a configuration matrix C is a directed
graph (Veia, Erg) where Verg = F and Epia = {(fi, f;) |
‘fi = fj € BI(C)}.

The BIG aims to represent all the binary implications,
thus representing every possible parent-child relationships
in a legal hierarchy. We compute the BIG as follows: for
each constraint in BI (see Algorithm 2) involving two fea-
tures we add an edge in the BIG. Hierarchy H of the AFD is
a rooted tree inside the BIG. In general, it is possible to find
many such trees in a BIG. As part of the tool (see Figure 6),
users can specify domain knowledge to select a tree. The
BIG is exploited to interactively assist users in the selec-
tion of the AFD’s hierarchy. In case the domain knowledge
is incomplete, a branching of the graph (the counterpart
of a spanning tree for undirected graphs) is randomly com-
puted [5].

After choosing the hierarchy of features, we focus on the
placement of attributes. An attribute a can be placed in a
feature f if =f = (a = 04). As a result, the candidate fea-
tures verifying this property are considered as legal positions
for the attribute. We promote, according to the domain
knowledge, one of the legal positions of each attribute.

Ezxzample. In Figure 2, the attribute Language has a
domain d with “~” as its null value, i.e., 04 = “~”. This null
value restricts the place of the attribute. The property —f =
(a = 04) of Definition 2 holds for the attribute Language and
the feature LanguageSupport. However, the configuration
WT7 forbids the attribute to be placed in feature WYSIWYG.
The value of Language is not equal to its null value when
WYSIWYG is not selected.

5.4 Computing the Variability Information

As the hierarchy of an AFD is made of features only,
attributes do not impact the computation of the variabil-
ity information (optional/mandatory features and feature
groups). Therefore, we can rely on algorithms that have
been developed for Boolean FMs [5, 26, 27].

First, for the computation of mandatory features, we rely
on the BIG as it represents every possible implication be-
tween two features. For each edge (c,p) in the hierarchy,
we check that the inverted edge (p, ¢) exists in the BIG. In
that case, we add this edge to Eas.

For feature groups, we reuse algorithms from the synthesis
of Boolean FMs [5,26,27]. For the sake of self-containedness,
we briefly describe the computation of each type of group.

For mutex-groups (Gymrx), we compute a so-called mutex
graph that contains an edge whenever two features are mu-
tually exclusive. The maximum cliques of this mutex graph
are the mutex-groups [26,27].

For or-groups (Gor), we translate the input matrix to a
binary integer programming problem [27]. Finding all solu-
tions to this problem results in the list of or-groups.

For xor-groups (Gxor), we consider mutex-groups since
a xor-group is a mutex-group with an additional constraint
stating that at least one feature of the group should be se-
lected. We check, for each mutex-group, that its parent
implies the disjunction of the features of the group. For
that, we iterate over the binary implications (BI) until we
find that the property is inconsistent. To ensure the max-
imality of the resulting AFM, we discard any or-group or
mutex-group that is also an xor-group.

Finally, the features that are not involved in a mandatory

relation or a feature group are considered optional.

5.5 Computing Cross Tree Constraints

The final step of the AFD synthesis algorithm is to com-
pute cross tree constraints (RC). We generate three kinds
of constraints: requires, excludes and relational constraints.

A requires constraint represents an implication between
two features. All the implications contained in the BIG
(i.e., edges) that are not represented in the hierarchy or
mandatory features, are promoted as requires constraints.
An example of this is the implication Commercial = Java
in Figure 3.

Excludes constraints represent the mutual exclusion of
two features. Such constraints are contained in the mu-
tex graph. As the previously computed mutex-groups may
not represent all the edges of the mutex graph, we pro-
mote the remaining edges of the mutex graph as excludes
constraints. For example, the features NoLimit and Lan-
guageSupport, in Figure 3, are mutually exclusive. This re-
lation is included in RC' as an excludes constraint: NoLimit
= = LanguageSupport.

Finally, relational constraints are all the constraints fol-
lowing the grammar described in Figure 4 and involving at
least one attribute. Admittedly there is a huge number of
possible constraints that respect the grammar of RC'. Our
algorithm relies on some domain knowledge (see Figure 6)
to restrict the domain values of attributes considered for
the computation of constraints. Formally, the knowledge
provides the information required for merging binary im-
plications as (a;, k) pairs, where a; is an attribute, and k
belongs to D;. In case the knowledge is incomplete (e.g.,
users do not specify a bound for an attribute), we randomly
choose a value among the domain of an attribute.

Then the algorithm proceeds as follows. First, we trans-
form each constraint referring to one feature and one at-
tribute to a constraint that respects the grammar of RC.
Then, we focus on constraints in BI that involve two at-
tributes and we merge them according to the domain knowl-
edge. Using the pairs (a;, k) of the domain knowledge, we
partition the set of all binary implications with a; = u on
the left hand side of the implication into three categories:
those with u < k, those with u = k, and those with u > k.
Let bj,1,bj,2,...,bj,, be all such binary implications, belong-
ing to the same category, and involving a; (i.e., each b, , is
of the form (a; = ur = a; € S;)). We merge these binary
implications into a single one: (a; € {u1,u2,...,up} = a; €
S1US2U...US,) whenever the conformance of the grammar
of RC holds.

FEzample. From the configuration matrix of Figure 2,
we can extract the following binary implication: GPL =
LicensePrice € {0,10}. We also note that the domain of
LicensePrice is {0,10,20}. Therefore, the right side of the
binary implication can be rewriten as LicensePrice <= 10.
As this constraint can be expressed by the grammar of RC,
we add GPL = LicensePrice <= 10 to RC (see Figure 3).

6. EVALUATION

We developed a tool® that implements Algorithm 1. The
tool is mainly implemented in Scala programming language.
For instance, Algorihtm 2 is written in pure Scala and use

3The complete source code can be found in https://
github.com/gbecan/FOReverSE-AFMSynthesis

appropriate data structures (e.g., HashMap and HashSet)
to improve its scalability. For the computation of or-groups,
we rely on the SAT4j solver.

TODO (Guillaume): TO VALIDATE : Algorithm 2,
Scala, ILP (or-groups), etc.

To provide an insight of the scalability of our procedure,
we experimentally evaluate the runtime complexity of our
AFD synthesis procedure. For this purpose, we have devel-
oped a random matrix generator, which takes as input three
parameters:

e number of variables (features and attributes)

e number of configurations

e maximum domain size (i.e., maximum number of dis-
tinct values in a column)

The type of each variable (feature or attribute) is ran-
domly selected according to a uniform distribution. An im-
portant property is that our generator does not ensure that
the number of configurations and the maximum domain size
are reached at the end of the generation. Any duplicated
configuration or missing value of a domain is not corrected.
Therefore, the parameters entered for our experiments may
not reflect the real properties of the generated matrices. To
avoid any misinterpretation or bias, we present the concrete
numbers in the following results.

Moreover, to reduce fluctuations caused by the random
generator, we perform the experiments at least 100 times
for each triplet of parameters. In order to get the results
in a reasonable time, we used a cluster of computers. Each
node in the cluster is composed of two Intel Xeon X5570 at
2.93 Ghz with 24GB of RAM.

6.1 Initial Experiments with Or-groups

We first perform some initial experiments on random ma-
trices. We quickly notice that computation of the or-groups
posed a scalability problem. It is not surprising since this
part of the synthesis algorithm is NP-hard, leading to some
timeouts even for Boolean FMs (e.g., see [27]).

Specifically, we measured the time needed to compute the
or-groups from a matrix with 1000 configurations, a maxi-
mum domain size of 10 and a number of variables ranging
from 5 to 70. To keep a reasonable time for the execution
of the experiment, we set a timeout at 30 minutes. Results
are presented in Figure 7. The red dots indicate average
values in each case. The results confirm that the computa-
tion of or-groups quickly becomes time consuming. The 30
minutes timeout is reached with matrices containing only 30
variables. With at least 60 variables, the timeout is system-
atically reached. Therefore, we deactivated the computation
of or-groups in the following experiments.

6.2 Scalability w.r.t the number of variables

To evaluate the scalability with respect to the number of
variables, we perform the synthesis of random matrices with
1000 configurations, a maximum domain size of 10 and a
number of variables ranging from 5 to 2000. In Figure 8,
we present the square root of the time needed for the whole
synthesis compared to the number of variables. As shown by
the linear regression line, the square root of the time grows
linearly with the number of variables, with a correlation co-
efficient of 0.997.

30| . . .
25 :
20 Lo
£ +
E 15/ :
[J]
£
i~ 101 .
. 1
5- Pl
oo
+ H S
14 i l 3
h & th © h © n & S))
- ~ N N ™M m < n [} ~

Number of variables

Figure 7: Scalability of or-groups computation w.r.t
the number of variables

o
=N !
—
N
S
»n ™|
£
S o
—
o i
o
o
o
o 3
e '
©
S
O
2]
o4
T T T T
n oo o o o
S o S S S
— N n o 2

—
Number of variables

Figure 8: Scalability w.r.t the number of variables

890

Time (s)
400 600

2(|)0

le+03+
le+04-
2e+04-
e+04-
e+05-
2e+05+

n —
Number of configurations

Figure 9: Scalability w.r.t the number of configura-
tions

0 50 60

40

30

2\0 L

10

Square root of time (5(1/2))

0

5

T T T T T
o O o o o
oo o o o
NN O o o

— o~ n

Maximum domain size

Figure 10: Scalability w.r.t the maximum domain
size

mBinary implications
DORelational constraints

@Other steps
I T T T T T T T T T 1
= et N « = 0 © ™~ @ @ <
o o o o o o o o o o -~

Figure 11: Time complexity distribution for all ex-
periments without or-groups computation

6.3 Scalability w.r.t the number of configura-
tions

To evaluate the scalability with respect to the number of
configurations, we perform the synthesis of random matrices
with 100 variables, a maximum domain size of 10 and a
number of configurations ranging from 5 to 200,000. With
100 variables, and 10 as the maximum domain size, we can
generate 10*% distinct configurations. This number is big
enough to ensure that our generator can randomly generate
5 to 200,000 distinct configurations.

Figure 9 reports the synthesis time in each case. As shown
in this figure, the time grows linearly with the number of
configurations, and the correlation coefficient is 0.997.

6.4 Scalability w.r.t the maximum domain size

To evaluate the scalability with respect to the maximum
domain size, we perform the synthesis of random matrices
with 10 variables, 10,000 configurations and a maximum do-
main size ranging from 5 to 10,000%.

TODO (Guillaume): TO VALIDATE : footnote for ex-
plaining the 5000 / 10000 diff

Figure 10 presents the square root of the synthesis time.
We notice that for each value of the domain size, the points
are distributed in small groups. For instance, we can see
nine groups of points for a maximum domain size of 2000.
Each group represents the execution of our algorithm with

4The random matrix generator cannot ensure that the max-
imum domain sizes are always reached. For instance, with
a target domain size of 5000 (resp. 10,000), the genera-
tor produces configuration matrices with domains contain-
ing approximately 4,385 values (resp. 6,416). However, this
difference does not impact the validity of the experiment.

matrices that have the same number of attributes. However,
we see that the number of attributes does not significantly
affect the maximum domain size (the maximum domain size
is approximately the same for all groups of results).

A linear regression line fits the average square root of the
time, with a correlation coefficient of 0.932. This implies
that the synthesis time grows quadratically with the maxi-
mum domain size.

6.5 Time Complexity Distribution

To further understand the overall time complexity, we an-
alyze its distribution over different steps of the algorithm.
TODO (Guillaume): TO VALIDATE : theoretical com-
plexity

According to our theoretical analysis (see [6] for details),
the two hard parts of the synthesis algorithm are the com-
putation of mutex-groups (exponential complexity) and or-
groups (NP-complete). The rest of the algorihtm has a com-
plexity of O(v*.d4+v?.d* +v*.c.d). We note that 93.8% of the
configuration matrices in our dataset produce mutex graphs
that contain absolutely no edges. In such cases, computing
mutex-groups is trivial. Therefore, our experiments confirm
the polynomial complexity of the rest of the algorihtm.

In Figure 11, we depict the average distribution for all
previous experiments that do not contain the computation
of or-groups. The results clearly show that the major part of
the algorithm is spent on the computation of binary impli-
cations, and relational constraints for RC. The rest of the
synthesis represents less than 10% of the total duration. Op-
timizing these two main steps would significantly decrease
the time necessary for synthesizing an AFM.

7. EVALUATION ON REALISTIC DATA
(TODO (Guillaume): Find a title J

To provide an insight of the scalability of our approach on
realistic configuration matrices, we executed our algorithm
on configuration matrices extracted from Best Buy website.
Best Buy is a well known American company that sells con-
sumer electronics.

On their website, the description of each product is com-
pleted with a matrix that describes technical information.
Each matrix is formed of two columns in order to associate
a feature or an attribute of a product to its value. For in-
stance, the matrix describing a particular laptop may have
a line that associates the caracteristics Operating System to
its value Windows 8.1. The website offers a way to com-
pare products that consists in merging the matrices to form
a single configuration matrix which is similar to the one in
Figure 2.

7.1 Experimental settings

We developed an automated technique to extract config-
uration matrices from Best Buy website. The procedure is
composed of 3 steps. First, it selects a set of products whose
matrices have a significant amount of feature and attributes
in common. Then, it merges the matrices of each selected
product to obtain a configuration matrix. The resulting con-
figuration matrix may contain empty cells. Such cells have
no meaningful information from a variability point of view.
The last step of the procedure consists in giving an interpre-
tation to these cells. If a feature or an attribute contain only
integers, the empty cells are interpreted as ”"0”. Otherwise,

Table 1: Statistics on the Best Buy dataset.
Min | Median | Mean | Max

Variables 24 56.5 56.6 91
Configurations 11 27.0 47.1 203
Max domain size 11 27.0 47.1 203

Empty cells before interpretation [4.1% [24.7% [20.9% | 25.0%

Binary implicatigns
Or

Complex constraints
Other steps

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0
0.1

Figure 12: Time complexity distribution of Algo-
rithm 1 on the Best Buy dataset

the empty cells are interpreted as "No” which means that
the feature or attribute is not present.

With this procedure, we extracted 22 configurations ma-
trices from the website that form our dataset for the ex-
periment. The matrices contained at most X% of empty
cells before interpretation. Table 1 reports statistics on the
dataset about the number of variables, configurations, the
maximum domain size and the number of empty cells before
interpretation.

7.2 Scalability on realistic configuration ma-
trices

To evaluate the scalability of our synthesis algorithm on
the Best Buy dataset, we measured the execution time of
Algorithm 1 with the computation of or-groups activated.
To have comparable results with previous experiments on
random matrices, we executed the algorithm on the same
cluster of computers.

On the Best Buy dataset, the execution time of Algo-
rithm 1 is 1.8s in average with a median of 0.6s. The most
challenging configuration matrix has 73 variables and 203
configurations. The synthesis of the associated AFM takes
25.4s. Figure 12 reports the average distribution for the
dataset. It shows that the computation of binary implica-
tions, or-groups and the relational constraints are the most
time consuming tasks. It confirms the results of the exper-
iments on random matrices. However, we note that on the
Best Buy dataset, the computation of or-groups is executed
in a reasonable time.

To further compare with previous experiments, we per-
formed the same experiment but with the computation of
or-groups deactivated. In these conditions, the execution
time of Algorithm 1 is 0.6s in average with a median of 0.5s.
This time, the synthesis of an AFM from the most challeng-
ing configuration matrix takes only 2.0s. The experiment

further confirms that the computation of or-groups is the
computationally hardest part of the algorithm. It also shows
that the algorithm scales on realistic configuration matrices
with similar execution time as with random matrices.

8. THREATS TO VALIDITY
(TODO (Mathien): Modify)

An external threat is that the evaluation of Section 6 is
based on the generation of random matrices. Using such
matrices may not reflect the practical complexity of our al-
gorithm. To mitigate this threat we complement with a
realistic data set.

Evaluating the scalability on a cluster of computers in-
stead of a single one may impact the scalability results and
is an internal threat to validity. We limited this threat to va-
lidity by using a cluster composed of identical nodes. Even
if the nodes do not represent a standard computer, we only
modify the absolute values of the experiments. The practical
complexity of the algorithm is not influenced by this gain of
processing power. Moreover, all the necessary data for the
experiments are present in the local disks of the nodes thus
avoiding any network related issue. Finally, we performed
100 runs for each set of parameters in order to reduce any
variation of performance.

Another threat to internal validity is related to our im-
plementation of the algorithm. To check the correctness of
the implementation, we have manually reviewed some re-
sulting AFMs. We also tested the algorithm against a set of
manually designed configuration matrices. Each matrix rep-
resents a minimal example of a construct of an AFM (e.g.,
one of the matrices represents an AFM composed of a sin-
gle xor-group). The test suite covers all the concepts in an
AFM. None of these experiments revealed any anomalies in
our implementation.

9. CONCLUSION

We presented the foundations for synthesizing attributed
feature models (AFMs) from product descriptions. We in-
troduced the formalism of configuration matriz for docu-
menting a set of products along different Boolean and nu-
merical values. We then sought to understand the relation-
ship between configuration matrices and AFMs. The key
contributions of the paper can be summarized as follows:

e We described formal properties of AFMs (over—approximation[,

equivalence) and established semantic correspondences
with the formalism of configuration matrices (Section 4);

e We designed and implemented a tool-supported, para-
meterizable synthesis algorithm (Section 5);

e We empirically evaluated the scalability of the synthe-
sis algorithm (Section 6).

The synthesis techniques presented in this paper open av-
enues for investigating novel reverse engineering scenarios
involving attributes. Numerous approaches for mining and
extracting features or constraints [1, 3,16, 18,24-26] can be
used to process different types of artefacts and eventually
fed our synthesis algorithm — this time with the support of
attributes.

As future work, we also plan to further study some prop-
erties of the synthesis — like scalability (performance), read-

10

ability and usefulness of computed constraints, and the over-
approximation effect. We are currently investigating the use
of AFM synthesis in practical settings.

Acknowledgements

The second author is funded by the Research Council of
Norway (the ModelFusion Project - NFR 205606).

Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, being developed un-
der the INRIA ALADDIN development action with support
from CNRS, RENATER and several Universities as well as
other funding bodies (see https://www.grid5000.1r).

10. REFERENCES

[1] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and
P. Lahire. Extraction and evolution of architectural
variability models in plugin-based systems. SoSyM, 2013.
S. Apel, D. Batory, C. Késtner, and G. Saake.
Feature-Oriented Software Product Lines: Concepts and
Implementation. Springer-Verlag, 2013.
E. Bagheri, F. Ensan, and D. Gasevic. Decision support for
the software product line domain engineering lifecycle.
Automated Software Engineering, 19(3):335-377, 2012.
K. Bak, K. Czarnecki, and A. Wasowski. Feature and
meta-models in clafer: mixed, specialized, and coupled. In
SLE’10, pages 102-122. Springer, 2011.
G. Bécan, M. Acher, B. Baudry, and S. Ben Nasr.
Breathing ontological knowledge into feature model
synthesis: an empirical study. Empirical Software
FEngineering, 2015.
G. Bécan, R. Behjati, A. Gotlieb, and M. Acher. Synthesis
of attributed feature models from product descriptions:
Foundations. arXiv preprint arXiv:1502.04645, 2015.
G. Bécan, N. Sannier, M. Acher, O. Barais, A. Blouin, and
B. Baudry. Automating the formalization of product
comparison matrices. In Proceedings of the 29th
ACM/IEEE international conference on Automated
software engineering, pages 433—444. ACM, 2014.
D. Benavides, S. Segura, and A. Ruiz-Cortes. Automated
analysis of feature models 20 years later: a literature
review. Information Systems, 35(6), 2010.
D. Benavides, S. Segura, P. Trinidad, and A. R. Cortés.
Fama: Tooling a framework for the automated analysis of
feature models. VaMoS, 2007:01, 2007.
T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki,
and A. Wasowski. Three cases of feature-based variability
modeling in industry. In MODELS, pages 302-319, 2014.
11] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,
K. Czarnecki, and A. Wasowski. A survey of variability
modeling in industrial practice. In VaMoS’13. ACM, 2013.
A. Classen, Q. Boucher, and P. Heymans. A text-based
approach to feature modelling: Syntax and semantics of
TVL. Sci. Comput. Program., 76(12), 2011.
M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay.
Beyond boolean product-line model checking: dealing with
feature attributes and multi-features. In ICSE’13, pages
472-481, 2013.
K. Czarnecki, C. H. P. Kim, and K. T. Kalleberg. Feature
models are views on ontologies. In SPLC 06, 2006.
K. Czarnecki, S. She, and A. Wasowski. Sample spaces and
feature models: There and back again. In SPLC’08, pages
22-31, 2008.
J.-M. Davril, E. Delfosse, N. Hariri, M. Acher,
J. Cleland-Huang, and P. Heymans. Feature model
extraction from large collections of informal product
descriptions. In ESEC/FSE’18, 2013.
H. Eichelberger and K. Schmid. Mapping the design-space
of textual variability modeling languages: a refined

2]

3]

(4]

[6]

[7]

(8]

[9]

(10]

(12]

(13]

14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

(23]

[24]

(25]

[26]

27]

(28]

analysis. International Journal on Software Tools for
Technology Transfer, pages 1-26, 2014.

A. Ferrari, G. O. Spagnolo, and F. dell’Orletta. Mining
commonalities and variabilities from natural language
documents. In SPLC, 2013.

J. Guo, E. Zulkoski, R. Olaechea, D. Rayside,

K. Czarnecki, S. Apel, and J. M. Atlee. Scaling exact
multi-objective combinatorial optimization by
parallelization. In ASE ’1/, pages 409-420, 2014.

E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed. On
extracting feature models from sets of valid feature
combinations. In FASE’13, 2013.

A. Hubaux, T. T. Tun, and P. Heymans. Separation of
concerns in feature diagram languages: A systematic
survey. ACM Computing Surveys, 2013.

M. Janota, V. Kuzina, and A. Wasowski. Model
construction with external constraints: An interactive
journey from semantics to syntax. In MODELS’08, 2008.
R. E. Lopez-Herrejon, L. Linsbauer, J. A. Galindo, J. A.
Parejo, D. Benavides, S. Segura, and A. Egyed. An
assessment of search-based techniques for reverse
engineering feature models. Journal of Systems and
Software, 2014.

S. Nadi, T. Berger, C. Késtner, and K. Czarnecki. Mining
configuration constraints: Static analyses and empirical
results. In ICSE, 2014.

U. Ryssel, J. Ploennigs, and K. Kabitzsch. Extraction of
feature models from formal contexts. In FOSD’11, 2011.
S. She, R. Lotufo, T. Berger, A. Wasowski, and

K. Czarnecki. Reverse engineering feature models. In
ICSE’11, pages 461-470. ACM, 2011.

S. She, U. Ryssel, N. Andersen, A. Wasowski, and

K. Czarnecki. Efficient synthesis of feature models.
Information and Software Technology, 56(9), 2014.

T. Thiim, S. Apel, C. Késtner, I. Schaefer, and G. Saake. A

classification and survey of analysis strategies for software
product lines. ACM Computing Surveys, 2014.

11

