
Generating Failing Test Suites for
Quantum Programs with Search?

Xinyi Wang1[0000−0001−5621−6140], Paolo Arcaini2[0000−0002−6253−4062], Tao
Yue1,3[0000−0003−3262−5577], and Shaukat Ali3[0000−0002−9979−3519]

1 Nanjing University of Aeronautics and Astronautics, Nanjing, China
2 National Institute of Informatics, Tokyo, Japan
3 Simula Research Laboratory, Fornebu, Norway

Abstract. Testing quantum programs requires systematic, automated, and intel-
ligent methods due to their inherent complexity, such as their superposition and
entanglement. To this end, we present a search-based approach, called Quan-
tum Search-Based Testing (QuSBT), for automatically generating test suites of
a given size depending on available testing budget, with the aim of maximizing
the number of failing test cases in the test suite. QuSBT consists of definitions of
the problem encoding, failure types, test assessment with statistical tests, fitness
function, and test case generation with a Genetic Algorithm (GA). To empirically
evaluate QuSBT, we compared it with Random Search (RS) by testing six quan-
tum programs. We assessed the effectiveness of QuSBT and RS with 30 carefully
designed faulty versions of the six quantum programs. Results show that QuSBT
provides a viable solution for testing quantum programs, and achieved a signif-
icant improvement over RS in 87% of the faulty programs, and no significant
difference in the rest of 13% of the faulty programs.

Keywords: Quantum Programs · Software Testing · Genetic Algorithms

1 Introduction

Testing quantum programs is essential for developing correct and reliable quantum
applications. However, testing quantum programs is challenging due to their unique
characteristics, as compared to classical programs, such as superposition and entangle-
ment [11]. Thus, there is a need for the development of systematic, automated, and
intelligent methods to find failures in quantum programs [11]. Such testing works have
started to emerge, focusing on, e.g., coverage criteria [2], property-based testing [7],
fuzz testing [12], and runtime assertions (e.g., Proq [9]). In contrast to existing works,
we propose an approach to automatically generate test suites of given sizes with search
algorithms, which are dependent on available testing budgets, with the aim of maxi-
mizing the number of failing test cases in a test suite. We call our approach Quantum
Search-Based Testing (QuSBT), where the generation of test suites is encoded as a
? QuSBT is supported by the National Natural Science Foundation of China under Grant No.

61872182 and Qu-Test (Project#299827) funded by Research Council of Norway. Paolo Ar-
caini is supported by ERATO HASUO Metamathematics for Systems Design Project (No.
JPMJER1603), JST. Funding Reference number: 10.13039/501100009024 ERATO.

2 Wang et al.

search problem. We also identify two types of failures, devise statistical test-based test
assessment criteria, and define the number of repetitions that are considered sufficient
for test executions, by considering the inherent uncertainty of quantum programs.

QuSBT employs a Genetic Algorithm (GA) as its search strategy. To assess the cost-
effectiveness of QuSBT, we compared it with Random Search (RS), the comparison
baseline. We selected six quantum programs as the subject systems of the evaluation,
and created 30 faulty versions of the programs (i.e., 30 benchmarks) to assess the cost-
effectiveness of GA and RS in terms of finding test suites of given sizes and maximizing
the number of failing tests. Results show that QuSBT performed significantly better than
RS for testing 87% of the faulty programs, and there were no significant differences for
the rest of 13% of the faulty programs.
Paper structure. Sect. 2 reviews the related work. Sect. 3 presents the background.
Sect. 4 introduces definitions necessary for formalizing the QuSBT approach, which is
discussed in detail in Sect. 5. Sects. 6-7 present our empirical evaluation. Then, Sect. 8
identifies threats that may affect the validity of QuSBT, and Sect. 9 concludes the paper.

2 Related Work

Ali et al. [2] proposed Quito – consisting of three coverage criteria defined on inputs
and outputs of quantum programs, and two types of test oracles. Passing and failing
of test suites were judged with one-sample Wilcoxon signed rank test, and mutation
analysis was used to assess the effectiveness of coverage criteria. Results indicate that
the least expensive coverage criterion, i.e., the input coverage, can manage to achieve
high mutation scores, and the input-output coverage criterion (the most expensive one)
could not increase mutation scores for most cases. As also acknowledged by the authors,
the coverage criteria do not scale when handling quantum programs with more qubits,
thus requiring the development of efficient quantum testing approaches such as QuSBT.

Huang and Martonosi [8] proposed a statistical assertion approach for finding bugs.
They identified six bug types and their corresponding assertions. The chi-square test
was used to test the hypothesis on the distributions of measurements, and determine
a contingency coefficient with the confidence level of 95%. The approach tested three
quantum programs followed by identifying bugs and their types in the programs.

Zhou and Byrd [10] proposed to enable runtime assertions, inspired by the quantum
error correction, by introducing additional qubits to obtain information of qubits under
test, without disrupting the execution of the program under test. The proposed approach
was verified on a quantum simulator. Along the same lines, Li et. al. [9] proposed Proq,
a projection-based runtime assertion scheme for testing and debugging quantum soft-
ware. Proq only needs to check the satisfaction of a projection (i.e., a closed subspace
of the state space) on a small number of projection measurements, instead of repeated
program executions. Proq defines several assertion transformation techniques to en-
sure the feasibility of executing assertions on quantum computers. Proq was compared
with other two assertion mechanisms [8,10] and it showed stronger expressive power,
more flexible assertion location, fewer executions, and lower implementation overhead.
When comparing with QuSBT, 1) Proq is a white-box, whereas QuSBT is black-box;
2) Proq requires the definition of projections and implements them as assertions, which

Generating Failing Test Suites for Quantum Programs with Search 3

requires expertise and effort, while QuSBT does not need to change the quantum pro-
gram under test to include assertions; thereby reducing cost; and 3) Same as QuSBT,
Proq also requires repeatedly executing assertions for a sufficiently large number of
times in order to achieve the confidence level of 95%.

QSharpCheck [7] tests Q# programs. The paper presents a test property specifica-
tion language for defining the number of tests to generate, statistical confidence level,
the number of measurements, and experiments for obtaining data to perform statistical
tests. Moreover, QSharpCheck defines property-based test case generation, execution
and analysis, and five types of assertions. It was evaluated with two quantum programs,
via mutation analysis. In comparison, we focus on finding the maximum number of
failing test cases in test suites with a GA based on two types of failures.

QuanFuzz [12] focuses on increasing the branch coverage with a GA. It outper-
formed a random generator in terms of the effectiveness of triggering sensitive branches,
and achieved a higher branch coverage than the traditional test input generation method.
We, instead, focus on finding failing test suites based on two types of test oracles,
whereas QuanFuzz focuses on searching inputs to cover branches. Thus, the search
problems of QuanFuzz are different.

3 Background

Quantum programs operate on quantum bits (qubits). Similarly as in classical comput-
ers, a qubit can take value 0 or 1. However, in addition, a state of a qubit is described
with its amplitude (α), which is a complex number and defines two elements: a magni-
tude and a phase. The magnitude indicates the probability of a quantum program being
in a particular state, while the phase shows the angle of this complex number in polar
form (it ranges from 0 to 2π radians). Taking a three-qubits quantum program as an
example, we can represent all the possible states of the program in the Dirac notation:

α0 |000〉+ α1 |001〉+ α2 |010〉+ α3 |011〉+ α4 |100〉+ α5 |101〉+ α6 |110〉+ α7 |111〉

α0, . . . , α7 are the amplitudes associated to the eight program states. Note that each
state is simply a permutation of the three qubits. The magnitude of a state, representing
the probability of the program being in the state, is the square of the absolute value
of its amplitude (α) (e.g., for |100〉, its magnitude is |α4|2). Note that the sum of the
magnitudes of all the states is equal to 1, i.e.,

∑7
i=0 |αi|2 = 1.

Fig. 1 shows a three-qubits program (Swap Test [6]) in the Qiskit framework [13] in
Python. Its equivalent circuit is shown in Fig. 2, which also shows which line number of
the code matches to which part of the circuit. It compares two qubits: input1 and input2.
If they are equal in terms of their states, then the value of the measure qubit (i.e., output)
becomes 1 (as it is initialized as 0 by default) with the 100% probability; otherwise, the
probability decreases when the two inputs are increasingly different. Lines 2 and 3
initialize the two input qubits (i.e., input1 and input2) that are to be compared. Line
4 initializes one output qubit (output) which is the condition qubit for controlling the
swap gate. Line 5 initializes a classical register (outputc1) that stores the result of the
comparison. Finally, Line 6 creates the quantum circuit. After the initialization (Lines
2-6), the state of the program will be 000 with amplitude of 1 (i.e., probability of 100%).

4 Wang et al.

Fig. 1: Swap Test – Qiskit Code Fig. 2: Swap Test – Circuit diagram

In this execution of the program, we will compare input1 initialized as 0 (by default)
and input2 initialized as 0 (by default). Line 9 applies the HAD gate [6] on output to
put it in superposition. As a result, the state of the program will be 000 and 100 with
amplitudes 0.707 (the 50% probability). Note that the output qubit is both 0 and 1 in this
state of the program, whereas the other two qubits remain the same as initialized. Line
10 applies the CSWAP gate to swap the two input qubits (i.e., input1 and input2). The
swap only happens if the control qubit (i.e., output) has a value 1. Line 11 applies the
second HAD gate on the output qubit. Due to the reversibility of the gates in quantum
computing, another application of the HAD gate leads the program to its original state,
i.e., 000. Line 12 applies the NOT gate to the output qubit. As a result, the state in which
the output qubit was 0 will become 1. Line 13 reads the output qubit and stores it in a
classical register outputc1. The final state of the program is 1.

4 Definitions

Definition 1 (Inputs and outputs). Let Q be the set of qubits of the quantum program
QP. A subset of qubits I ⊆ Q defines the input, and a subset O ⊆ Q identifies the
output.4 We define DI = B|I| as the input values, and DO = B|O| as the output values.

In the following, we will consider input and output values in their decimal rep-
resentation. Note that input and output values are non-negative integers, i.e., DI =
{0, . . . , 2|I| − 1}, and DO = {0, . . . , 2|O| − 1}.

Definition 2 (Quantum program). A quantum program QP can then be defined as a
function QP : DI → 2DO .

Def. 2 shows that a quantum program, given the same input value, can return differ-
ent output values. For each input, the possible output values occur by following a certain
probability distribution. The program specification specifies the expected probabilities
of occurrence of the output values.

4 Note that I and O do not need to be disjoint, i.e., an input qubit can also be an output qubit.
Moreover, there could also be qubits that are neither inputs nor outputs, i.e., I ∪O ⊆ Q.

Generating Failing Test Suites for Quantum Programs with Search 5

Definition 3 (Program specification). Given a quantum program QP : DI → 2DO , we
identify with PS the program specification, i.e., the expected behavior of the program.
For a given input assignment i ∈ DI , the program specification states the expected
probabilities of occurrence of all the output values o ∈ DO, i.e.,:

PS(i) = [p0, . . . , p|DO|−1]

where ph is the expected probability (with 0 ≤ ph ≤ 1) that, given the input value i,
the value h is returned as output. It holds

∑|DO|−1
h=0 ph = 1. We introduce the following

notation for selecting probabilities that are different from 0, i.e., those of the outputs
that can occur according to the program specification:

PSNZ (i) = [p ∈ PS(i) | p 6= 0] = [pj1 , . . . , pjk] with j1, . . . , jk ∈ DO

We further write PS(i, h) = ph to specify the expected probability of occurrence of
output value h for input value i.

Note that, for some programs, the specifications of the expected outputs may not
exist, and thus our approach would not be applicable.

5 Quantum Search-Based Testing (QuSBT)

We first give definitions of failure, test, and test assessment for quantum programs in
Sect. 5.1, and then propose a test generation approach in Sect. 5.2.

5.1 Failures types, test, and test assessment

Any testing approach (also for classical programs) tries to trigger failures of the pro-
gram under test, to reveal the presence of faults. Therefore, we need to define what a
failure is in a quantum program. In this work, we target two types of failures:

– Unexpected Output Failure (uof): the program, for a given input i, returns an output
o that is not expected according to the program specification PS, i.e., PS(i, o) = 0;

– Wrong Output Distribution Failure (wodf): the program, for multiple executions of
a given input i, returns output values that follow a probability distribution signifi-
cantly deviating from the one specified by the program specification.
We propose definitions of test and test assessment to reveal these types of failures.

Moreover, the non-deterministic nature of quantum programs requires that a given input
is executed multiple times. Therefore, we define a test input as follows.

Definition 4 (Test input). A test input is a pair 〈i, n〉, being i an assignment to qubits
(i.e., i ∈ DI), and n the number of times that program QP must be executed with i.

Definition 5 (Test execution and test result). Given a test input 〈i, n〉 for a quantum
program QP, the test execution consists in running QP n times with input i. We identify
with res(〈i, n〉,QP) = [QP(i), . . . ,QP(i)] = [o1, . . . , on] the test result, where oj is
the output value of the jth execution of the program.

6 Wang et al.

Test assessment To check whether a test passes or fails, we need to check whether at
least one of the two types of failures (i.e., uof or wodf) occurred.

To check uof , it is enough to check if some produced output is unexpected, i.e.,

failuof := (∃oj ∈ res(〈i, n〉,QP) : PS(i, oj) = 0)

If a failure of type uof is detected (i.e., failuof is true), the assessment for wodf is not
performed5, because we can already assess that the test is not passing. Otherwise, it is
performed as described in the following.

Checking wodf requires to check if the frequency distribution of the measured out-
put values follows the expected distribution. We check this by doing a goodness of
fit test with the Pearson’s chi-square test [1]. The test checks whether the observed fre-
quencies of the values of the categorical variable follow the expected distribution. In our
setting, the categorical values are the possible output values of the quantum program QP
for a given input i, i.e., those having their expected probabilities being non-zero, and
the expected distribution is given by the program specification (i.e., PSNZ (i) in Def. 3).
Concretely, given a test input 〈i, n〉 and its test result res(〈i, n〉,QP) = [o1, . . . , on],
we apply the chi-square test as follows:

– from the program specification, we retrieve the expected probabilities of the outputs
that can occur given the input i, i.e., PSNZ (i) = [pj1 , . . . , pjk], with j1, . . . , jk ∈
DO (see Def. 3); j1, . . . , jk are the categorical values of the test;

– then, from the test result, we collect, in [cj1 , . . . , cjk], the number of occurrences
of each possible output j1, . . . , jk, where cjh = |{o ∈ res(〈i, n〉,QP) | o = jh}|.6
This is the one-dimensional contingency table of the chi-square test; and

– finally, we apply the chi-square test, that takes in input the contingency table [cj1 ,
. . . , cjk] and the expected occurrence probabilities [pj1 , . . . , pjk], and checks
whether the recorded occurrences follow the expected probability distribution.
The null hypothesis is that there is no statistical significant difference. If the p-value

is less than a given significance level α (α = 0.01 in our experiments), we can reject
the null hypothesis and claim that there is a statistical significant difference. In our
case, this means that a wrong output distribution failure wodf occurred, which can be
detected with the following predicate:

failwodf := (p-value < α) (1)

Note that the chi-square test requires to have at least two categories. Therefore, the
assessment for wodf cannot be done when there is only one possible output for a given
input (i.e., |PSNZ (i)| = 1).7 However, in this case, checking uof is enough. Indeed, if
the program QP is not faulty for uof , it means that it always produces the unique output
expected from the program specification and, so, also wodf is satisfied.

5 In this case, we directly set failwodf (see Eq. 1 later) to false.
6 Note that the assessment for wodf is done only if the assessment for uof did not reveal any fail-

ure. If this is the case, it is guaranteed that the program returned outputs only from j1, . . . , jk,
i.e., those having their expected probabilities being non-zero. Therefore, it is guaranteed that
each returned output is considered in one of the counts cj1 , . . . , cjk .

7 Note that a quantum program can still be deterministic for some given inputs.

Generating Failing Test Suites for Quantum Programs with Search 7

To conclude, the test is considered failed if one of the two failures is observed. So,
we introduce a predicate recording the result of the test assessment as follows:

fail := failuof ∨ failwodf

Remark 1. Note that the absence of a failure for an input i does not guarantee that the
program behaves correctly for i. For uof , it could be that other additional executions
would show a wrong output. For wodf , instead, the significance level of the test specifies
the confidence on the absence of the fault. The argument is a little bit different for the
case that the test fails. If failuof = true , we are sure that the program is faulty, because
an output that should be never returned has been returned. Instead, if failwodf = true ,
it could still be that, with more executions, the observed frequencies of the output values
would better align with the expected probability distribution specified in the program
specification. In this case, the lower the p-value, the higher the confidence on the result.

Definition of the number of repetitions Defs. 4 and 5 say that a test must specify the
number of times n that the input i must be executed for its assessment. It is well recog-
nized that selecting such a number is difficult [9], and most approaches do not specify
it nor provide a rationale for the selection of a particular number (e.g., [8]). Intuitively,
the higher the number of repetitions, the better, as this gives a higher confidence on
the result of the test assessment. However, a too high number of repetitions makes the
assessment of tests infeasible, in particular when multiple tests must be assessed (as,
for example, in a test generation approach as the one proposed in this paper).

In QuSBT, we select a number of repetitions that is sufficient to have a reasonable
confidence on the result of the test assessment, but also makes the test assessment fea-
sible to compute. We start observing that not all the inputs need the same number of
repetitions: inputs for which a program specification specifies few possible output val-
ues, require fewer repetitions than those having a lot of possible outputs. Consider the
case in which input i1 has two possible outputs, while input i2 has four possible out-
puts. Then, more repetitions are needed for input i2 than for i1, as we need to provide
comparable evidence for each of the possible outputs. On the basis of this intuition, we
define a function that, given an input i, specifies the required number of repetitions:

numRepetitions(i) = |PSNZ (i)| × 100

So, the number of repetitions n of the test input i is proportional to the number of
possible output values that, according to the program specification, can be obtained by
executing the program with i (see Def. 3).

5.2 Test case generation

For a given program QP, QuSBT generates a test suite of M tests, being M an ap-
proach’s parameter. It uses a GA, where search variables x = [x1, . . . , xM] are integer
variables, each one representing an input for QP taken from DI . QuSBT finds an as-
signment v = [v1, . . . , vM] for the M tests, such that as many of them as possible fail
the program. Fitness is computed as follows. For each test assignment vj of the jth test:

8 Wang et al.

– We identify the required number of repetitions nj , as described in Sect. 5.1;
– We execute QP nj times with the input vj , obtaining the result res(〈vj , nj〉, QP);
– The result is assessed (see Sect. 5.1). We identify with failj the assessment result.

Let ta = [fail1, . . . , failM] be the assessments of all the M tests. The fitness
function that we want to maximize is given by the number of failed tests, i.e.,

f(v) = |{failj ∈ ta | faili = true}| (2)

Selection of the number of tests QuSBT requires to select the number of testsM to be
added in each searched test suite. Users can specifyM , e.g., based on available budgets.
However, selecting a value M without considering the program under test might not be
a good practice. So, we propose to select M as the percentage β of the number of
possible inputs DI of the quantum program, i.e., M = dβ · |DI |e. The user must then
select the percentage β, rather than the absolute number M .

6 Experimental Design

We describe the experimental design to evaluate QuSBT in terms of research questions,
benchmark programs, experimental settings, evaluation metrics, and statistical tests em-
ployed to answer the research questions. The used benchmarks and all the experimental
results are available online8.

Research Questions (RQs) We evaluate QuSBT using the following RQs:
– RQ1: Does QuSBT (which is GA-based) perform better than Random Search (RS)?

RQ1 assesses whether GA can identify test inputs that contribute to failures, as
compared to RS.

– RQ2: How does QuSBT perform on the benchmark programs? RQ2 assesses the
variability on the final results, and how fast the GA converges to better solutions.

Benchmarks Programs We selected six programs with different characteristics (see
Table 1): (i) cryptography programs: Bernstein-Vazirani (BV) and Simon (SM) algo-
rithms; (ii) QRAM (QR) implements an algorithm to access and manipulate quantum
random access memory, and invQFT (IQ) implements inverse quantum Fourier trans-
form; (iii) mathematical operations in superposition, i.e., Add Squared (AS); (iv) condi-
tional execution in superposition, i.e., Conditional Execution (CE).

Considering that there are no common known metrics available in the literature for
characterizing quantum programs, we here propose to use the number of input qubits,
the number of gates, and the circuit depth as the characterization metrics. The number
of input qubits (i.e., |I|) intuitively characterizes the dimension of the input space (as
in classical programs). Since we want to evaluate our approach with relatively complex
programs, we selected four programs having 10 input qubits. Moreover, we selected
two programs with a lower number of input qubits (i.e., QR and SM) to check whether
the proposed approach is also advantageous on less complex programs.

The other two metrics, i.e., the number of gates and circuit depth, instead, to a
certain extent, characterize the complexity of the program logic. The number of gates is

8 https://github.com/Simula-COMPLEX/qusbt/

https://github.com/Simula-COMPLEX/qusbt/

Generating Failing Test Suites for Quantum Programs with Search 9

Table 1: Benchmark programs (Legend. AI: right after the inputs, MP: middle of the
program, BR: right before reading the output)
Program |I| # gates depth Faulty versions (benchmarks)

AS 10 41 38
AS1:AI, CNOT added; AS2:AI, SWAP added; AS3:BR, CNOT added; AS4:BR, CSWAP
added; AS5:MP, CNOT added

BV 10 30 3
BV1:AI, CNOT added; BV2:AI, SWAP added; BV3:AI, CCNOT added; BV4:BR, CNOT
added; BV5:BR, CSWAP added

CE 10 25 20
CE1:AI, CNOT added; CE2:AI, SWAP added; CE3:AI, CSWAP added; CE4:BR, NOT
added; CE5:BR, HAD added

IQ 10 60 56
IQ1:AI, CHAD added; IQ2:MP, CHAD added; IQ3:MP, replace H as CHAD; IQ4:AI,
CHAD added; IQ5:MP, CHAD added

QR 9 15 12
QR1:MP, CCPhase added; QR2:MP, CHAD added; QR3:MP, CNOT added; QR4:AI,
SWAP added; QR5:BR, CSWAP added

SM 7 56 5
SM1:AI, SWAP added; SM2:AI, CCNOT added; SM3:BR, CNOT added; SM4:BR, CSWAP
added; SM5:BR, HAD added

the number of individual operators (e.g., HAD, NOT), while the circuit depth is given
by the length of the longest sequence of quantum gates (the output of a gate used as the
input of another gate determines a unit of the length). As shown in Table 1, IQ has the
largest number of gates, BV has the least circuit depth, and AS has the longest circuit
depth. We are aware that these metrics are coarse-grained, and in the future we plan to
define and employ more fine-grained metrics.

For our selected programs, we derived the program specification (see Def. 3) to
assess the passing or failing of tests. For each correct program, we produced five faulty
versions of it by introducing different types of faults at different locations of the circuit.
These 30 faulty programs are the benchmarks that we test in our experiments, which
are described in details in Table 1. The benchmark name (e.g., AS1) recalls the original
correct program acting as the program specification (e.g., AS). The table also reports
the location where a fault has been injected (i.e., right after the inputs, middle of the
program, or right before reading the output). A short description is also provided for
each benchmark program to tell which kind of gates were added. For instance, a CNOT
gate is added right after the input to the original program to produce AS1.

Experimental Settings We use Qiskit 0.23.2 [13] to write quantum programs in Python.
It also provides a simulator for executing quantum programs, which we used for each
evaluation of a given input i (i.e., QP(i)).

We adopted GA from the jMetalPy 1.5.5 framework [5], and used the default set-
tings of jMetalPy: the binary tournament selection of parents, the integer SBX crossover
(the crossover rate = 0.9), the polynomial mutation operation being equal to the recip-
rocal of the number of variables. The population size is set as 10, and the termination
condition is the maximum number of generations which is set as 50. As the baseline
comparison, we also implemented a Random Search (RS) version of the approach from
jMetalPy. RS has been given the same number of fitness evaluations as GA, i.e., 500.
Note that there is no existing baseline with which we can compare QuSBT.

10 Wang et al.

Search variables x = [x1, . . . , xM] (see Sect. 5.2) of QuSBT represent the input
values of the tests (i.e., the values i of tests; see Def. 4) of the searched test suite. So,
the search interval of each variable is given by the set of possible input valuesDI of the
program; since inputs of a quantum program are non-negative integers (see Sect. 4), the
search space is defined as xk ∈ [0, |DI | − 1] for k = 1, . . . ,M .

QuSBT requires to select, as parameter, the number of tests M of each generated
test suite. This can be selected as percentage β of the size of the input domain of the
program (see Sect. 5.2). We here use β=5%; this results in having M=50 for programs
with 10 qubits (and so 1024 input values), M=26 for the program with 9 qubits (and so
512 input values), and M=7 for the program with 7 qubits (and so 128 input values).9

For the fitness evaluation, assessing whether a test passes or fails requires to perform
the Pearson Chi-square test for checking failures of type wodf (see Sect. 5.1). To this
aim, we adopt rpy2 3.4.2, a Python interface to the R framework. We use α = 0.01 as
the significance level in the Chi-square test (see Eq. 1). Notice that correct inputs may
still provide distributions slightly different from the expected ones (due to the limited
number of repetitions); therefore, to be more confident on the failure of an input, we
use the value 0.01 for the Chi-square test, instead of 0.05 or a higher confidence level.

Experiments have been executed on the Amazon Elastic Compute Cloud, using in-
stances with a 2.9 GHz Intel Xeon CPU and 3.75GB of RAM. To consider the random-
ness in search algorithms, each experiment (i.e., the execution of QuSBT for a given
benchmark using either GA or RS) has been executed 30 times, as suggested by guide-
lines to conduct experiments with randomized algorithms [3].

Evaluation Metrics and Statistical Tests In order to evaluate the quality of the results
of the search algorithms (GA and RS), we directly use the fitness function defined in
Eq. 2 as the evaluation metric, which counts the number of failing tests in a test suite
(i.e., an individual of the search). We call it the Number of Failed Tests metric (NFT).
The NFT of GA is given by the best individual of the last generation, while the NFT of
RS is given by the best of all the generated individuals.

To answer RQ1, we selected the Mann–Whitney U test as the statistical test and the
Vargha and Delaney’s Â12 statistics as effect size measure based on the guidelines [3].
Namely, given a benchmark program, we run the generation approach 30 times with
GA and 30 times with RS. The Mann–Whitney U test (with the significance level of
0.05) is used to compare the 30 NFT values obtained by GA and the 30 NFT values of
RS. The null hypothesis is that there is no statistical difference between GA and RS. If
the null hypothesis is not rejected, then we consider GA and RS equivalent. Otherwise,
if the null hypothesis is rejected, we apply the Â12 statistics. If Â12 is 0.5, then it means
that the results are obtained by chance. If Â12 is greater than 0.5, then GA has a higher
chance to achieve a better performance than RS, and vice versa if Â12 is less than 0.5.

9 Note that we manually approximated the value of programs with 1024 inputs values. Indeed,
the correct number of tests would be d0.05 · 1024e = 52.

Generating Failing Test Suites for Quantum Programs with Search 11

Table 2: Comparison between GA and RS (≡: there is no statistically significant differ-
ence between GA and RS. 3: GA is statistically significantly better.)
AS1 AS2 AS3 AS4 AS5 BV1 BV2 BV3 BV4 BV5 CE1 CE2 CE3 CE4 CE5 IQ1 IQ2 IQ3 IQ4 IQ5 QR1 QR2 QR3 QR4 QR5 SM1 SM2 SM3 SM4 SM5

3 3 3 ≡ 3 3 3 3 3 3 3 3 3 3 3 3 ≡ 3 3 3 3 3 3 3 3 ≡ ≡ 3 3 3

7 Results and Discussions

7.1 Results and Analyses

RQ1 To assess the usefulness of using a search algorithm, in our case GA, we compared
it with RS. For each experiment (i.e., the test generation for a benchmark program), we
executed 30 runs with GA and 30 runs with RS. We selected the Number of Failing
Tests NFT as the evaluation metric (see Sect. 6). Then, we compared 30 values of GA
and 30 values of RS, with the Mann-Whitney U test and the Â12 statistics as described
in Sect. 6. Comparison results are summarized in Table 2.

We observe that in 26 out of 30 cases, GA is significantly better than RS. This shows
that GA is able to identify failing inputs in individuals. By considering the different
types of the benchmarks, (see Table 1), we notice the differences in results. For some
programs such as BV, CE, and QR, GA consistently performed significantly better than
RS. In other programs such as AS and IQ, instead, in one out of the five cases, there are
no differences between GA and RS. Note that, even for a simple program such as SM
(for which we need to generate only 7 tests), GA is still better in three out of the five
cases. This means that the task of selecting qubit values leading to failures is a difficult
task also for programs with small numbers of input qubits such as those of SM (with 7
input qubits), and this further motivates the need for a search-based approach.

RQ2 Fig. 3 reports, for all the benchmarks, the quality of the final results in all the 30
runs, in terms of the evaluation metric NFT, which counts the number of failing tests
in the returned test suite (see Sect. 6). In almost all the cases of the four groups of
the most complex benchmarks (i.e., Figs. 3a-3d) for which we built test suites of 50
tests, the variability of the final results across the runs is high. Moreover, in these four
complex benchmarks, the search was almost always not able to find all 50 failing tests.
Similar results can be found in QR (i.e., Fig. 3e), for which we built test suites of 26
tests, the search cannot always find 26 failing tests. This could be due to the fact that
there are not so many failing tests, or the search was not given enough time.

These observations tell us that a dedicated and large-scale empirical study is needed
to investigate whether such a large variability and inability to find, e.g., 50 or 26 failing
tests, is due to the randomness of the search (which perhaps can be mitigated with
a better fitness function), is specific to fault characteristics (such as their types and
seeding locations (Table 1)) or characteristics of quantum programs under test such as
their circuit depth and numbers of gates.

For the benchmark programs of SM (Fig. 3f), instead, the required test suite size is
much smaller (i.e., 7). Among its five SM benchmarks, for two of them (i.e., SM1 and
SM5), the search found, in all 30 runs, 7 failing inputs, showing that the task is relatively

12 Wang et al.

AS1 AS2 AS3 AS4 AS5

20

30

40

50

N
F
T

(#
fa

ili
ng

te
st

s)

(a) AS

BV1 BV2 BV3 BV4 BV5

20

30

40

50

N
F
T

(#
fa

ili
ng

te
st

s)

(b) BV

CE1 CE2 CE3 CE4 CE5

20

30

40

50

N
F
T

(#
fa

ili
ng

te
st

s)

(c) CE

IQ1 IQ2 IQ3 IQ4 IQ5

20

30

40

50

N
F
T

(#
fa

ili
ng

te
st

s)

(d) IQ

QR1 QR2 QR3 QR4 QR5

10

15

20

26

N
F
T

(#
fa

ili
ng

te
st

s)

(e) QR

SM1 SM2 SM3 SM4 SM5
3

4

5

6

7

N
F
T

(#
fa

ili
ng

te
st

s)

(f) SM

Fig. 3: Final results (# of failing tests in the final test suite) of GA across the 30 runs

easy. On the other hand, for the other three SM benchmarks, the search found less than
7 failing inputs (as low as 3 failing inputs).

We now want to assess how fast the test generation approach optimizes its objective
(i.e., the maximization of the number of failing tests in a test suite). Figs. 4a-4f show,
for each group of the benchmark programs, how the fitness (see Eq. 2) of the best indi-
vidual in the population increases over generations. The reported plots are the averages
across the 30 runs. First of all, we observe that, for all the benchmark programs, the first
generation already finds some failing inputs. The number of discovered failing inputs
in the first generation is positively correlated to the total number of failing inputs in the
input space. Moreover, the number of identified failing inputs varies across the bench-
mark programs and depends on the types of faults and their locations in the benchmark
programs (e.g., seeding a CSWAP gate right after the input or a HAD gate right before
reading the output, see Table 1). Note that sometimes finding some failing inputs in
a faulty circuit is not difficult, since RS can also do it. However, the maximization of
the number of the failing tests is not trivial, as already evidenced by the observations
reported for answering RQ1: GA is better than RS in finding more failing tests for most
of the benchmark programs.

By observing the trends, we notice that they are increasing with different degrees
of improvements. Three benchmarks of BV (i.e., BV1, BV2, and BV4, Fig. 4b) reach the
point of almost discovering all the 50 failing tests in the final generation. SM1 and SM5
even reach a plateau after around 10 generations. Instead, all the other 25 benchmarks
do not achieve high scores on detecting failing tests, possibly implying that further
improvements would be still possible with additional generations.

For benchmarks of BV (see Fig. 4b), the increment in the fitness function is faster
than the other benchmarks (those that must generate 50 tests). This does not necessarily

Generating Failing Test Suites for Quantum Programs with Search 13

0 10 20 30 40 50

20

30

40

50

Generation

N
F
T

(#
fa

ili
ng

te
st

s)

AS1 AS2 AS3 AS4 AS5

(a) AS

0 10 20 30 40 50

20

30

40

50

Generation

N
F
T

(#
fa

ili
ng

te
st

s)

BV1
BV2
BV3
BV4
BV5

(b) BV

0 10 20 30 40 50

20

30

40

50

Generation

N
F
T

(#
fa

ili
ng

te
st

s)

CE1
CE2
CE3
CE4
CE5

(c) CE

0 10 20 30 40 50

20

30

40

50

Generation

N
F
T

(#
fa

ili
ng

te
st

s)

IQ1 IQ2 IQ3 IQ4 IQ5

(d) IQ

0 10 20 30 40 50
5

10

15

20

25

Generation

N
F
T

(#
fa

ili
ng

te
st

s)

QR1 QR2 QR3 QR4 QR5

(e) QR

0 10 20 30 40 50
3

4

5

6

7

Generation

N
F
T

(#
fa

ili
ng

te
st

s)

SM1
SM2
SM3
SM4
SM5

(f) SM

Fig. 4: Results – Evolution of the fitness values over generations

mean that the problem is easy; indeed, for all the BV benchmarks, GA is better than RS
(see Table 2). Instead, we believe that each fault of the BV benchmarks can be captured
by a single well-defined pattern of input qubit values. So, once a pattern is discovered
by the search, it is successfully migrated in new failing tests. We believe that, in other
benchmarks, there is no such a single pattern of failing qubit values and, so, the search
has more problems in finding new failing tests. As future work, we plan to perform an
extensive investigation of how different types of in failing inputs, and how these failing
inputs relate to each other (i.e., if they share some failing qubit values or not).

7.2 Discussion

The faults seeded in the quantum programs used for the evaluation can have different
complexity (see Table 1). For instance, introducing a CNOT gate as a fault requires
that the CNOT gate is applied to two qubits, which is intuitively considered more com-
plex than introducing a HAD gate (operating on one qubit). However, seeding a fault
to a critical location might significantly change the logic of the circuit. For instance,
seeding a NOT gate right before reading the output might completely reverse the out-
put of a circuit, which may make the observation of failures easy and then generate a
program for which it is easy to generate failing tests. In Table 1, we classify the fault
seeding locations into three categories: right after the inputs, middle of the program,
and right before reading the output. This classification is coarse-grained, and a better
mechanism is required to characterize fault seeding locations. So, we need larger-scale
experiments, designed based on well understanding of faults characteristics, their rela-
tions to test inputs, and characteristics of quantum programs under tests. Consequently,

14 Wang et al.

more comprehensive test strategies will be proposed in the future. Nevertheless, consid-
ering that quantum software testing is an emerging area, QuSBT contributes to building
a body of knowledge in this area.

In this paper, we limit the scope of our study to identifying as many failing tests
as possible. To assess passing and failing of a test, we defined two types of failures:
uof and wodf , both of which do not consider the phase changes of qubits. Therefore,
QuSBT currently can not reveal faults that only change the phases of output qubits, but
not their occurrence probabilities.

The test input assessment requires to specify the number of repetitions (see Sect. 5.1).
Note that, to the best of our knowledge, there is no existing criterion on how such a value
should be set. So, our proposed mechanism provides a baseline for future research.

Even though our evaluation is performed on Qiskit in Python, QuSBT is general as it
can be applied to other quantum platforms and quantum programming languages. In this
paper, we performed all the experiments on the quantum computer simulator provided
with Qiskit without simulating hardware faults. Thus, QuSBT needs to be extended in
the future to deal with potential hardware faults in real quantum computers.

8 Threats to validity

External validity. We experimented only with six quantum programs and 30 (faulty)
benchmark programs; thus, our results can be generalized to only quantum programs
of similar characteristics. More experiments with varying characteristics of quantum
programs are needed to generalize the results. Another threat is related to the selection
of faults that were introduced in the quantum programs to create faulty benchmark
programs. We chose a set of arbitrary faults, which could potentially affect our results.
However, currently, there does not exist any bug repository for quantum programs that
we could use to seed realistic faults in quantum programs.
Internal validity. We choose GA’s default parameter settings. Different GA settings
may produce different results that could potentially affect our results. However, the
evidence has shown that even default settings of GA provide good results in search-
based testing of classical software [4]. To assess the passing and failing of tests with
wodf , we used the Pearson’s Chi-square test. Other tests may be relevant; however, the
Chi-square test has been used for this purpose in existing related literature [8,7].
Conclusion validity. Since GA and RS have inherent randomness, we repeated exper-
iments 30 times for each faulty program to ensure that the results weren’t obtained by
chance. Followed by this, we compared the results of GA with RS with statistical tests
according to the well-established guides in search-based software engineering [3].

9 Conclusion and Future Work

We presented a search-based approach for testing quantum programs that uses a Ge-
netic Algorithm (GA) and employs a fitness function to search for test suites of a given
size, containing as many failing tests as possible. We assessed the effectiveness of our
approach as compared with Random Search (RS) with 30 faulty benchmark quantum

Generating Failing Test Suites for Quantum Programs with Search 15

programs. The results showed that GA significantly outperformed RS for 87% of the
faulty quantum programs, whereas for the rest, there were no significant differences.

Our future work includes experimenting with more algorithms and quantum pro-
grams and running them on quantum computers (e.g., by IBM). Moreover, we will
perform analyses, e.g., studying the search space of solutions and the effect of search
operators on the effectiveness of QuSBT. Finally, we will devise systematic methods to
create realistic faulty quantum programs and publish a public repository.

References

1. Agresti, A.: An introduction to categorical data analysis. Wiley-Blackwell, 3 edn. (2019)
2. Ali, S., Arcaini, P., Wang, X., Yue, T.: Assessing the effectiveness of input and

output coverage criteria for testing quantum programs. In: 2021 14th IEEE Con-
ference on Software Testing, Verification and Validation (ICST). pp. 13–23 (2021).
https://doi.org/10.1109/ICST49551.2021.00014

3. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized al-
gorithms in software engineering. In: Proceedings of the 33rd International Conference on
Software Engineering. pp. 1–10. ICSE ’11, ACM, New York, NY, USA (2011)

4. Arcuri, A., Fraser, G.: Parameter tuning or default values? an empirical investigation in
search-based software engineering. Empirical Software Engineering 18, 594–623 (2013)

5. Benı́tez-Hidalgo, A., Nebro, A.J., Garcı́a-Nieto, J., Oregi, I., Del Ser, J.: jMetalPy: A Python
framework for multi-objective optimization with metaheuristics. Swarm and Evolutionary
Computation 51, 100598 (2019)

6. Gimeno-Segovia, M., Harrigan, N., Johnston, E.: Programming Quantum Computers: Es-
sential Algorithms and Code Samples. O’Reilly Media, Incorporated (2019)

7. Honarvar, S., Mousavi, M.R., Nagarajan, R.: Property-based testing of quantum programs
in Q#. In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engi-
neering Workshops. pp. 430–435. ICSEW’20, Association for Computing Machinery, New
York, NY, USA (2020)

8. Huang, Y., Martonosi, M.: QDB: From Quantum Algorithms Towards Correct Quantum
Programs. In: 9th Workshop on Evaluation and Usability of Programming Languages and
Tools (PLATEAU 2018). OpenAccess Series in Informatics (OASIcs), vol. 67, pp. 4:1–4:14.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019)

9. Li, G., Zhou, L., Yu, N., Ding, Y., Ying, M., Xie, Y.: Projection-based runtime assertions for
testing and debugging quantum programs. Proc. ACM Program. Lang. 4(OOPSLA) (Nov
2020)

10. Liu, J., Byrd, G.T., Zhou, H.: Quantum circuits for dynamic runtime assertions in quantum
computation. In: Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. pp. 1017–1030 (2020)

11. Miranskyy, A., Zhang, L.: On testing quantum programs. In: 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
pp. 57–60 (2019)

12. Wang, J., Ma, F., Jiang, Y.: Poster: Fuzz testing of quantum program. In: 2021 14th IEEE
Conference on Software Testing, Verification and Validation (ICST). pp. 466–469 (2021).
https://doi.org/10.1109/ICST49551.2021.00061

13. Wille, R., Van Meter, R., Naveh, Y.: IBM’s Qiskit tool chain: Working with and develop-
ing for real quantum computers. In: 2019 Design, Automation Test in Europe Conference
Exhibition (DATE). pp. 1234–1240 (2019)

https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00061

	Generating Failing Test Suites forQuantum Programs with Search

