
Doctoral Dissertation

Processing Multimedia Workloads
on Heterogeneous Multicore

Architectures

Håkon Kvale Stensland

February 2015

Submitted to the Faculty of Mathematics and Natural Sciences at
the University of Oslo in partial fulfilment of the requirements for

the degree of Philosophiae Doctor

© Håkon Kvale Stensland, 2015

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1601

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Printed in Norway: AIT Oslo AS.

Produced in co-operation with Akademika Publishing.
The thesis is produced by Akademika Publishing merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Abstract

Processor architectures have been evolving quickly since the introduction of the central
processing unit. For a very long time, one of the important means of increasing per-
formance was to increase the clock frequency. However, in the last decade, processor
manufacturers have hit the so-called power wall, with high heat dissipation. To overcome
this problem, processors were designed with reduced clock frequencies but with multiple
cores and, later, heterogeneous processing elements. This shift introduced a new challenge
for programmers: Legacy applications, written without parallelization in mind, gain no
benefits from moving to multicore and heterogeneous architectures. Another challenge for
the programmers is that heterogeneous architecture designs are very different with respect
to caches, memory types, execution unit organization, and so forth and, in the worst case,
a programmer must completely rewrite the application to obtain the best performance on
the new architecture.

Multimedia workloads, such as video encoding, are often time sensitive and interac-
tive. These workloads differ from traditional batch processing workloads with no real-time
requirements. This work investigates how to use modern heterogeneous architectures ef-
ficiently to process multimedia workloads. To do so, we investigate both simple and
complex workloads on multiple architectures to learn about the properties of these archi-
tectures. When programing multimedia workloads, it is very important to know how the
algorithms perform on the target architecture. In addition, achieving high performance
on heterogeneous architectures is not a trivial task, often requiring detailed knowledge
about the architecture. We therefore evaluate several optimizations so we can learn how
best to write programs for these architectures and avoid potential pitfalls. We later use
the knowledge gained to propose a framework design and language called Parallel Pro-
cessing Graph (P2G). The P2G framework is designed for multimedia workloads and
supports heterogeneous architectures. To demonstrate the feasibility of the framework,
we construct a proof-of-concept implementation. Two simple workloads show that we can
express multimedia workloads in the system. We also demonstrate the scalability of the
designed solution.

iii

iv

Acknowledgements

Working with the PhD has been a long journey, at times, it has been both frustrating
and stressful, but it has mostly been lots of fun. I would like to thank my supervisors,
Professor Carsten Griwodz and Professor P̊al Halvorsen for interesting discussions, their
deep insights and valuable feedback over the years.

I would also like to thank my colleagues H̊avard Espeland and Paul Beskow who I
have shared office with for good collaboration and inspiring discussions on the topic of
processing multimedia workloads. During the work with this thesis I have supervised
several master students. I would like to thank all of them, the discussions have been very
inspiring, and have helped me with this thesis.

The work environment at Simula Research Laboratory and the Media-department has
also been excellent. Here, I would like to thank Andreas Petlund, Kristian Evensen,
Ragnhild Eg, Preben Olsen and Vamsidhar Gaddam for making Simula a great place to
be.

Finally I would like to thank my family, friends and especially my wife Marianne, for
being patient and always supporting me no matter what I decide to do.

v

vi

Contents

I Overview 1

1 Introduction 3
1.1 Background and Motivation . 3

1.1.1 Heterogeneous Architectures . 4
1.1.2 Multimedia Workloads . 5

1.2 Problem Statement . 6
1.3 Limitations . 7
1.4 Research Method . 7
1.5 Main Contributions . 8
1.6 Outline . 10

2 Heterogeneous Computing 11
2.1 Hardware Architectures . 11

2.1.1 Intel x86 Processor Architecture . 11
2.1.2 Intel IXP Network Processor . 16
2.1.3 Nvidia Graphics Processing Units 18
2.1.4 STI Cell Broadband Engine . 22
2.1.5 Other Hardware Architectures . 24
2.1.6 Summary . 26

2.2 Hardware Abstractions and Programming Models 27
2.2.1 SMT . 27
2.2.2 SIMD . 28
2.2.3 SIMT . 29
2.2.4 Summary . 30

2.3 Summary . 30

3 Using Heterogeneous Architectures for Simple Tasks 33
3.1 Intel IXP Network Processor . 33

3.1.1 Case Study: Network Protocol Translation 34
3.1.2 Implications . 38

3.2 x86 Processor Architecture . 39
3.2.1 Case study: Motion JPEG Encoding 39
3.2.2 Case Study: Multi-Rate Video Encoding with VP8 42
3.2.3 Case Study: Parallel Execution of a Game Server 46
3.2.4 Implications . 52

3.3 Graphics Processing Units . 53

vii

3.3.1 Case Study: GPU Memory Spaces and Access Patterns 53
3.3.2 Case Study: Host–Device Communication Optimization 56
3.3.3 Case Study: Cheat Detection . 58
3.3.4 Case Study: MJPEG Encoding . 64
3.3.5 Implications . 68

3.4 Cell Broadband Engine . 69
3.4.1 Case Study: MJPEG Encoding . 69
3.4.2 Implications . 73

3.5 Architecture Comparison . 74
3.6 Summary . 75

4 Using Heterogeneous Architectures for Complex Workloads 77
4.1 Bagadus Sports Analysis System . 77

4.1.1 Bagadus: The Basic Idea . 78
4.1.2 Video Subsystem . 80

4.2 The Real-Time Bagadus Video Pipeline . 83
4.2.1 Performance Analysis . 90
4.2.2 Discussion . 92

4.3 Summary . 94

5 The P2G Framework and the Future 97
5.1 Summary of Challenges . 97
5.2 Design Ideas for a New Processing Framework 98
5.3 Existing Processing Frameworks . 98
5.4 The P2G Framework . 99

5.4.1 Architecture . 102
5.4.2 Programming Model . 103
5.4.3 Prototype . 108
5.4.4 Workloads . 109
5.4.5 Evaluation . 110
5.4.6 Summary . 113

5.5 The Future . 113

6 Papers and Author’s Contributions 115
6.1 Overview of Research Papers . 115
6.2 Paper I: Transparent Protocol Translation for Streaming 115
6.3 Paper II: Evaluation of Multi-Core Scheduling Mechanisms for Heteroge-

neous Processing Architectures . 116
6.4 Paper III: Tips, Tricks and Troubles: Optimizing for Cell and GPU 117
6.5 Paper IV: Cheat Detection Processing: A GPU versus CPU Comparison . 118
6.6 Paper V: Reducing Processing Demands for Multi-Rate Video Encoding:

Implementation and Evaluation . 119
6.7 Paper VI: LEARS: A Lockless, Relaxed-Atomicity State Model for Parallel

Execution of a Game Server Partition . 120
6.8 Paper VII: P2G: A Framework for Distributed Real-Time Processing of

Multimedia Data . 120
6.9 Paper VIII: Bagadus: An Integrated Real-Time System for Soccer Analytics122

viii

6.10 Paper IX: Processing Panorama Video in Real-Time 122
6.11 Supervised Master’s Students . 123
6.12 Other Publications . 127

7 Conclusion 129
7.1 Summary . 129
7.2 Concluding Remarks . 130
7.3 Future Work . 131

II Research Papers 145

Paper I: Transparent Protocol Translation for Streaming 147

Paper II: Evaluation of Multi-Core Scheduling Mechanisms for Hetero-
geneous Processing Architectures 153

Paper III: Tips, Tricks and Troubles: Optimizing for Cell and GPU 161

Paper IV: Cheat Detection Processing: A GPU versus CPU Compari-
son 169

Paper V: Reducing Processing Demands for Multi-Rate Video Encod-
ing: Implementation and Evaluation 177

Paper VI: LEARS: A Lockless, Relaxed-Atomicity State Model for Par-
allel Execution of a Game Server Partition 199

Paper VII: P2G: A Framework for Distributed Real-Time Processing of
Multimedia Data 209

Paper VIII: Bagadus: An Integrated Real-Time System for Soccer An-
alytics 223

Paper IX: Processing Panorama Video in Real-Time 247

Posters and live demonstrations 269

Other research papers 273

A BNF Grammar of the P2G Kernel Language 277

ix

x

List of Figures

1.1 The real-time panorama video stitching pipeline in the Bagadus soccer
analysis system [114]. 6

2.1 Comparison of SMP architectures. 13

2.2 Intel Haswell architecture diagram. 14

2.3 Intel Xeon Phi MIC architecture. 16

2.4 Intel IXP2400 architecture diagram. 17

2.5 Comparison of transistor usage on a CPU and on a GPU. 18

2.6 A pre-DirectX 10 graphics pipeline [43], with a programmable vertex pro-
cessor and fragment processor. 19

2.7 Nvidia GK110 SMX architecture [90], slightly modified. 21

2.8 The Kepler memory hierarchy. 22

2.9 CBE architecture. 23

2.10 Overview of an SPE. 24

2.11 A superscalar processor design with and without SMT. 28

2.12 SIMD programming model. 28

2.13 Nvidia CUDA programming model. 29

3.1 Overview of the streaming scenario. 35

3.2 Packet flow on the Intel IXP2400. 36

3.3 Achieved bandwidth, varying drop rate and link latency with 1% server–
proxy loss. 37

3.4 Overview of the MJPEG encoding process. 40

3.5 MJPEG encoding time on a single-thread x86. 41

3.6 Scalar and SIMD versions with a 2D-plain arrangement on an x86. 41

3.7 Profile of the main parts of the reference VP8 encoder. 44

3.8 Basic flow for the multi-rate VP8 encoder. 45

3.9 CPU time in an HD streaming scenario (blue sky). 46

3.10 Design of a game server. 49

3.11 CPU load and response time for 620 concurrent clients on a multi-threaded
server. 51

3.12 Response time for 700 concurrent clients, using various numbers of threads.
The shaded area indicates the fifth to 95th percentiles. 51

3.13 Global memory access patterns. 54

3.14 Optimization of GPU memory access. 55

3.15 Total time spent on transfers to GPU on three different 1080p sample videos. 57

xi

3.16 Illustration of a game object with bow thrusters in the front and the main
thruster in the back. 60

3.17 Sample reading and execution thread pattern. 61
3.18 Nvidia GF100 compute architecture. 62
3.19 Execution time (in seconds) of the cheat detection mechanism on the GPU

and the CPU. 63
3.20 Percentage of time spent on cheat detection processing on a host, using the

GPU and the CPU. 63
3.21 Runtime for MJPEG implementations on a GPU (GTX 280). 65
3.22 Nvidia GT200 architecture. 65
3.23 DCT performance on a GPU. 66
3.24 Effect of offloading VLC to the GPU. 67
3.25 Runtime for MJPEG implementations on the Cell on a PlayStation 3 (six

SPEs). 70
3.26 Encoding performance on the Cell with different implementations of the

AAN algorithm and VLC placement. 71
3.27 SPE utilization using scalar or vector DCT. 71

4.1 Overall sports analysis system architecture. 79
4.2 Camera setup at Alfheim stadium. 81
4.3 The stitching process. Each image from the four different frames is warped

and combined into a panorama. 82
4.4 The non–real-time Bagadus stitching pipeline. 82
4.5 Frame processing time in the non–real-time Bagadus stitching pipeline. . . 83
4.6 The real-time panoramic video stitching pipeline. 84
4.7 Execution time of alternative algorithms for the BackgroundSubtractor

module (single camera stream). 86
4.8 Background subtraction comparison. 86
4.9 Execution time of color correction. 87
4.10 Stitcher comparison, improving the visual quality with dynamic seams and

color correction. 88
4.11 Execution time for dynamic stitching. 89
4.12 Execution time for conversion from RGBA to YUV 4:2:0. 89
4.13 Improved real-time pipeline performance: module overview with default

setup. 90
4.14 Inter-departure times of frames when running the entire pipeline. In a real-

time scenario, the output rate should follow the input rate (given here by
the trigger box) of 30 fps (33 ms). 91

4.15 Core count scalability. 92
4.16 CPU frequency scalability. 93
4.17 GPU comparison. 93

5.1 Overview of the architecture in the P2G system. 102
5.2 Dependency graphs in the P2G system. 103
5.3 Initial C++ version of a mul/sum example. 104
5.4 Dynamically created directed acyclic dependency graph (DC-DAG). 105
5.5 Kernel and field definitions. 106

xii

5.6 Overview of the K -means clustering algorithm. 109
5.7 Overview of the MJPEG encoding process 110
5.8 Workload execution time for K -means. 111
5.9 Workload execution times for MJPEG. 112

xiii

xiv

List of Tables

2.1 Roadmap of Intel processors used in our experiments. 13
2.2 Roadmap of Nvidia GPUs used in our experiments. 20
2.3 Comparison of the four heterogeneous architectures. 26

5.1 Micro-benchmarks of K-means in P2G. 112
5.2 Micro-benchmarks of MJPEG encoding in P2G. 113

xv

xvi

Part I

Overview

Chapter 1

Introduction

1.1 Background and Motivation

Multimedia applications are one class of applications that typically follow the trend of
increasing processing demands to continuously increase quality and perceived experience.
For example, live interactive multimedia services are steadily growing in volume. In this
respect, Internet users uploaded over 100 hours of video to YouTube every minute in
2014 [139]. In the future, consumers will demand features such as interactively refined
video search, dynamic participation in video conferencing systems, and user-controlled
views in live media content. To support these features, we must be able to process
compute-intensive workloads such as those required in extracting video features to identify
objects, in the calculation of three-dimensional depth information from camera arrays, or
in generating Freeview video from multiple camera sources in real time. This adds further
magnitudes of processing requirements to already computationally intensive tasks such as
the traditional video encoding of high-definition videos.

Over the last decade, we have witnessed two paradigm shifts within modern processor
architectures. The first shift was when single-core processors reached their power and fre-
quency limits, forcing chip designers to start focusing on on-chip parallelism. This started
with the introduction of IBM’s POWER4 dual-core processor [118] and was followed by
the introduction of Hyper-Threading Technology [60] on Intel’s Pentium 4 processors.
Today, dual- and quad-core processors from Intel and AMD are a commodity in desktop
and laptop computers. Mobile devices have followed the same trend and several processor
designs, such as Nvidia’s Tegra 4 mobile system on a chip (SoC) [91], have a quad-core
general-purpose processor.

The other paradigm shift was the introduction of heterogeneous processing architec-
tures, such as the Cell Broadband Engine [54] from Sony, Toshiba, and IBM (STI) and
the graphics processing units (GPUs) of Nvidia, AMD, and other vendors.

Heterogeneous processing architectures provide more computing power than tradi-
tional general-purpose single- and multicore systems. The processing cores have different
instruction sets, use several different types of memory, and provide different programming
abstractions compared to traditional desktop processors. Heterogeneous processing cores
are often designed very differently from general-purpose cores, being more specialized to-
ward solving specific tasks. Because of this, the cores in a heterogeneous architecture can
utilize more of the die space on the chip for arithmetic and logic units (ALUs) and use

3

4 Chapter 1. Introduction

less space for caches and control logics. We are also witnessing the trend of heteroge-
neous processing in mobile devices, where all SoCs have dedicated processors for audio,
video, and imaging. Even the latest generation of Intel x86 processors has a dedicated
coprocessor called Quick Sync [61] for video encoding, decoding, and transcoding.

Today, programmers who want to utilize these heterogeneous processing architectures
face several challenges. They must write their applications with a very detailed knowl-
edge about the target architecture and, when the target architecture is changed or even
upgraded to a new generation by the hardware vendors, applications optimized for one
architecture will in some cases require a complete rewrite for utilization or at least effi-
cient execution on the new architecture. We therefore need abstractions and programming
concepts that will ease the development of applications for heterogeneous processing ar-
chitectures. This thesis is meant as a step toward this goal.

1.1.1 Heterogeneous Architectures

Processor architectures have been evolving quickly since the introduction of the central
processing unit (CPU) and vendors often release either a new architecture or an updated
architecture every year. For a very long time, one of the important means of increasing
performance was to increase the clock frequency of the processors. However, in the be-
ginning of the 2000s, this approach started to become problematic [79]. As processors
evolved, the chips also shrank, with the manufacturing process packing more and more
transistors onto smaller areas. With the introduction of the 90nm process in 2004, several
vendors hit the so-called power wall: The transistors, working at very high frequencies,
leaked power and, to make them run stably, the voltage had to be increased, resulting in
higher heat dissipation.

The CPU vendor’s first solution to this challenge was to place multiple cores onto
a single chip and AMD was the first to introduce such a processor for consumers, with
the Athlon 64 X2 in 2004 [3]. Multi-core processors were nothing new and had previ-
ously been provided by multiple vendors, but only in high-end systems, with multiple
processor sockets connected to the buses. The introduction of multicore systems was a
paradigm shift for the average developer, who now had to parallelize applications to scale
performance.

A different approach to continuously scale performance is to add simple cores or more
specialized cores that can carry out certain tasks more quickly and more efficiently—hence
the term heterogeneous architectures. Heterogeneous architectures in a simple form have
been around for a long time. One example is from 1985, when Intel’s 80386 processor had
the option of adding an x87 floating-point coprocessor. This coprocessor was later inte-
grated into the main processor core as an independent pipeline when the 80486 processor
was launched in 1989. In Chapter 2, we examine the x86 core in more detail and see that
what seems to be a single core is in fact built up of several heterogeneous elements.

Another example of heterogeneous architecture is the use of processor cores with dif-
ferent capabilities and instruction sets. One example of such an architecture is Intel’s
specialized network processor IXP1200, which was launched in 1999 [56]. This architec-
ture had one general-purpose core to run the operating system and execute the control
plane in the network and several specialized cores for packet processing. Another example
of such a system in the consumer market is the Sony PlayStation 3, launched in 2006 [55].

1.1. Background and Motivation 5

The PlayStation 3 featured the Cell Broadband Engine, a heterogeneous processor op-
timized for floating point operations, which are important in both computer games and
multimedia processing. Perhaps the most common heterogeneous architecture in com-
puters today, however, consists of GPUs working together with the CPU. Over the last
decade, GPUs have evolved from simple fixed-function pipelines to fully programmable
processors. With the launch of CUDA in 2007 [92], Nvidia introduced low-cost high-
performance computing to the masses.

However, programming heterogeneous architectures has proven to be a significant
challenge. Legacy applications written without parallelization gain no benefit from the
move to multicore and heterogeneous architectures. In some cases, legacy applications
may even perform worse on modern architectures, because the architectures are focused
toward adding more cores at a lower frequency instead of having fewer cores at a high
frequency. Another challenge with heterogeneous architectures (e.g., GPUs) is that they
can be very different in design in regard to caches, types of memory, execution unit
organization, and so forth, and, in the worst case, the programmer must completely rewrite
the application to obtain the best performance from a new architecture. Chapters 3
and 4 present our experience with developing multimedia workloads for some of these
heterogeneous architectures.

1.1.2 Multimedia Workloads

A multimedia workload is often characterized as being time sensitive and iterative. Video
processing is an example that involves a multimedia workload and it is explored later in
this thesis. Encoding and decoding video are very computationally intensive operations,
where calculations have to be done for all the pixels in a frame. Video encoding is
a common operation in video processing; raw data from the imaging sensor are often
compressed according to bandwidth or storage requirements defined by the scenario. The
most common standard for video coding today is H.264 [131], which was defined by the
International Telecommunication Union (ITU) and the International Organization for
Standardization (ISO) as a video codec for everything from streaming video to mobile
devices to TV broadcasting and high-definition videos stored on Blu-ray disks.

Since H.264 is currently the de facto standard for video coding in the industry, a great
deal of research has been performed on how to optimize its encoding and decoding. Most
of the devices available have dedicated hardware to either assist the processor or carry out
the decoding. The same trend appears for encoding. Dedicated hardware implementations
are fast and have low energy requirements. However, they lack the flexibility of software
implementation, they are complex and expensive to manufacture, and, when parameters
(e.g., the resolution or the frame rate) are changed, the hardware must also be changed in
most cases. Multimedia workloads developed in software are more flexible and are easier
to update and replace compared to hardware implementations, where the entire chip has
to be changed for a different implementation. This thesis therefore focuses on software
implementations of multimedia workloads.

The software multimedia workloads investigated in this thesis are independent fil-
ters and operations on video data organized in pipelines, often with real-time processing
requirements. One example of such a multimedia workload is the real-time panorama
stitching pipeline in the Bagadus soccer analysis system [114], which is investigated fur-

6 Chapter 1. Introduction

ther in Chapter 4.

Figure 1.1: The real-time panorama video stitching pipeline in the Bagadus soccer analysis
system [114].

Figure 1.1 provides an overview of the Bagadus pipeline. In the Bagadus pipeline, raw
video data from multiple video cameras is read over the network in real time. The pipeline
comprises several independent steps for converting the data between different formats,
optimizing the videos, and finally stitching them together into a panoramic video. Most
of the steps in the pipeline have dependencies that have to be satisfied before they can
start processing and each step also has different degrees of parallelization potential. To
fulfill the system’s real-time requirements of 30 frames per second, the pipeline has to
deliver an encoded panoramic video frame every 33 milliseconds. Another challenge of
the Bagadus pipeline is the scalability of the video data, where adding more cameras,
increasing the resolution of existing cameras, or increasing the system’s frame rate will
increase its computational demands. The addition of more and other more complex
steps such as high dynamic range (HDR) rendering in the pipeline will also increase the
complexity of the system.

1.2 Problem Statement

When used efficiently, modern heterogeneous architectures provide the processing power
required by resource-hungry multimedia workloads. However, the diversity of resources to
which developers are exposed makes it very hard to develop programs that are portable
and scalable on multiple architectures. Even with new languages such as OpenCL, which
are supposed to be a “recompile-only” solution, the applications must be tuned and in
many cases hand optimized for the different heterogeneous architectures. In examining
this area of computing, we proceeded according to the following problem statement:

How can programmers efficiently develop multimedia workloads for
modern heterogeneous multicore architectures?

The problem stated in this thesis focuses on how to use modern heterogeneous archi-
tectures to efficiently process multimedia workloads. We want to learn how programmers

1.3. Limitations 7

need to think when writing their applications for these architectures. Many details about
the architectures are also undocumented, so we need to learn how the architectures behave
when processing multimedia workloads. We approached the problem statement in three
steps, presented in Chapters 3, 4, and 5 and briefly formulated as follows:

• Learn about the behavior of heterogeneous architectures by implementing and eval-
uating prototypes where simple multimedia workloads run on a single heterogeneous
architecture.

• Learn how to use multiple heterogeneous architectures to process a complex pipeline
with several multimedia workloads running in real time.

• Propose new ways of designing and developing multimedia workloads with a frame-
work for processing multimedia workloads on heterogeneous architectures.

1.3 Limitations

To reduce the scope of this thesis, we limited the number of heterogeneous architectures
investigated. We also examine GPUs from only one vendor, Nvidia. The main reason for
focusing on only one vendor is the availability of programming tools and documentation
when the project started. The multimedia workloads we consider are data intensive and
have good parallelization potential.

We focus only on processing multimedia workloads on the constrained resources of a
single machine, not those of large-scale distributed systems. Many small devices today—
such as smartphones, tablets, laptops, and desktop PCs—can process multimedia work-
loads, which is also expected by the users of such devices. Our main focus is therefore
the efficient utilization of resources on these platforms.

1.4 Research Method

As defined by the Association for Computing Machinery (ACM) Education Board [25] in
1989, the discipline of computer science is divided into three major paradigms. Each of
these paradigms has its roots in different areas of science and all can be applied to com-
puting and computer science. The ACM Education Board states that the paradigms are
intertwined and that it is irrational to say that any one of the paradigms is fundamental.
These three computer science paradigms are as follows.

• Theory : This paradigm has its roots in mathematics. It defines objects of study and
hypothesizes their interrelations; it then determines whether these relations are true
and interprets the results. This paradigm is concerned with the ability to describe
and prove relationships among the objects of study.

• Abstraction: This paradigm is from the experimental research field and consists of
four stages. A scientist forms a hypothesis, constructs a model, makes a prediction
before designing an experiment, and collects data. This paradigm is concerned with
the ability to use predictions that can be compared with real-world situations.

8 Chapter 1. Introduction

• Design: This paradigm is from the field of engineering and involves building a
device or system to solve the given problem. The scientist states the requirements
and specifications of a design and the system’s implementation. The system is then
tested and the previous steps can be repeated if the system does not meet the
requirements. This paradigm is concerned with the ability to implement specific
instances and use them to perform useful actions.

All three of these paradigms are applied in our field of multimedia systems research,
the one to use depending on the problem to be solved. In our case, in which we want to
investigate how to use heterogeneous multicore architectures for processing multimedia
workloads, we first determined if the theory paradigm could be applied. The theory
paradigm requires a precise definition and modeling of the multimedia software and the
heterogeneous multicore hardware we want to use. This is particularly challenging with
hardware, since many of the details about the low-level behavior of schedulers and the
execution pipeline are known only to the hardware vendors. We therefore rejected this
paradigm for this thesis. The next paradigm is the abstraction paradigm. This paradigm
is often used, typically in combination with simulators. One can model the behavior of
both the software and the hardware architecture in a simulator to try to capture the
system’s behavior. We used this paradigm in one of the initial investigations on using
heterogeneous architectures for multimedia workloads. However, the challenge is that
simulators are no better than the models used and, as mentioned previously, because of
the black boxes in the hardware, many of the details about the architectures are unknown.
It is therefore impossible to know how good the simulated behavior is without conducting
experiments on real systems and we rejected this theory as well. The last paradigm is the
design paradigm. With this paradigm, we specified the requirements and built prototype
systems. These prototypes were evaluated on real-world systems and, based on the data
gathered, the prototype improved over multiple iterations. One of the challenges with this
paradigm is that it can take significant effort to implement these prototypes, which in
itself is not necessarily scientific work. The fact that many of the details of the hardware
are not published by their vendors is a challenge in our investigation of how to program
multimedia workloads for modern heterogeneous multicore architectures. We therefore
have to make many assumptions and simplifications if we want to simulate exactly how
the hardware works. We therefore decided to use the design paradigm in this thesis. It
requires more engineering work, but we were not limited by inaccurate models as a basis
for the simulations.

1.5 Main Contributions

The main research question in Section 1.2 states the challenge on how to efficiently use
modern heterogeneous multicore architectures to process multimedia workloads. This
problem statement is addressed from both a low-level standpoint, where we carry out
experiments with simple multimedia workloads on different heterogeneous multicore ar-
chitectures, and a more high-level one, where we present, implement, and evaluate a
programming model to support the real-time processing of multimedia data. The pa-
pers that are part of the contribution of this thesis have been published in a number of
peer-reviewed conference proceedings and international journals and are included in full

1.5. Main Contributions 9

in Chapter 6. Several other papers related to processing multimedia workloads were not
included in the thesis to limit its scope. A summary of the main contributions included
is as follows.

• We learned about the behavior of heterogeneous architectures with simple multime-
dia workloads. The first architecture we experimented with was Intel’s IXP network
processor. This architecture was used for experiments involving network protocol
translation [32]. The next architecture was the x86 processor architecture. Here,
the first case study involved the efficient implementation of Motion JPEG (MJPEG)
encoding [112]. We also conducted case studies on using multiple x86 cores for multi-
rate video encoding [34] and running a multi-threaded game server prototype [102].
For the GPU architecture, we conducted case studies on its memory [94], opti-
mization of host-to-device communication [13], and cheat detection [117]. We also
revisited the MJPEG workload with both the GPU [112] and Cell architectures.
The IXP architecture provided experience in working with a state-of-the-art (at the
time) heterogeneous architecture with several special features. With the MJPEG
workload on the x86 architecture, we learned the importance of selecting algorithms
optimized for the target architecture and the benefits of using the vector unit avail-
able on all modern processors. The shared memory model on the x86 revealed the
importance of reusing parts of computationally heavy multimedia workloads and of
using the optimal number of threads for the number of cores available. On the GPU
architecture, we learned about the importance of using the memory architecture
correctly and optimizing transfers between the host CPU and the GPU with asym-
metrical transfers. We also observed that when offloading multimedia workloads to
a GPU, they have to be large enough to compensate for the added latency of data
transfers and launching kernels on the GPU. With the MJPEG workload, as on the
x86, we learned the importance of optimizing algorithms for the target architecture.
On the Cell architecture, we also learned the same lessons as on the x86 and GPUs:
It is important to select an algorithm suited for the target architecture and always
vectorize your workload when possible. Our MJPEG experiments also suggested
that programmers prefer programming models exposed by the GPU compared to
models exposed by the vector unit on x86 and the Cell.

• The knowledge obtained from investigating simple multimedia workloads was used
to investigate a more complex multimedia workload, that is, part of the Bagadus
soccer analysis system, which has three components: a tracker subsystem, an ana-
lytics subsystem, and a video subsystem [114]. The complex workload used in these
experiments was that of a video subsystem that involved the real-time capture,
pre-processing, stitching, and encoding of a panoramic video stream from a soccer
stadium [113]. Here, we had to optimize the workload for multiple heterogeneous
architectures to run the workload in real time. By implementing the subsystem as
a pipeline and optimizing for both the x86 architecture and GPUs, we were able to
capture the five 720p streams and stitch them into a panoramic video on a single
commodity gaming PC.

• We used our knowledge from processing both simple and complex multimedia work-
loads on heterogeneous systems and from our evaluation of multicore scheduling

10 Chapter 1. Introduction

mechanisms [115] as follows. We proposed a programming language and frame-
work that exposes the parallelization opportunities of a multimedia workload for a
runtime that allows for the efficient execution of a workload on the available het-
erogeneous hardware [31]. We also developed a prototype of this system running on
a single machine with support for multicore x86 processors, together with several
simple multimedia workloads running on the system. In addition, we conducted
experiments demonstrating the system’s usability for multimedia workloads.

There are many opportunities for further work within this field; however, we aim to
show the essential challenges of using heterogeneous multicore architectures for processing
multimedia workloads and the essential considerations that programmers must make when
choosing both the architectures and the algorithms.

1.6 Outline

This thesis is written as a collection of paper and it is therefore organized in two parts.
Part I provides an introduction and places the research papers in context and Part II
includes the selected full papers.

The first part is organized as follows: In Chapter 2, we introduce the heterogeneous ar-
chitectures used in our research. We also look at the low-level programming abstractions
that are used when programming the different heterogeneous architectures. In Chapter 3,
we research several simple multimedia workloads on the heterogeneous architectures and
we discuss how to use the architectures for the different multimedia workloads and how
to structure the workloads to obtain the best performance from the architectures. This is
followed up in Chapter 4 with an investigation of a more complex pipeline, with several
components running on different heterogeneous architectures. Based on our results in
Chapters 3 and 4, we introduce in Chapter 5 the P2G framework for running multimedia
workloads on heterogeneous architectures. We benchmark and evaluate a set of multime-
dia workloads within the P2G framework. Chapter 6 gives an overview of the research
papers and, finally, Chapter 7 provides a conclusion.

Chapter 2

Heterogeneous Computing

In this chapter, we introduce the heterogeneous hardware architectures used for experi-
ments in this thesis. This introduction provides insight into the history of the different
architectures; it gives a basic introduction to the architecture by looking at the state-of-
the-market products available in each of the architectures.

The architectures we have chosen are very different with respect to the amount of avail-
able computational resources—floating point units, arithmetic and logic units (ALUs),
and so forth—and how these are connected in the architecture’s execution pipeline. The
memory types and layouts are also very different, some of the architectures having a
shared memory model that hides the memory management from programmers and other
architectures having an explicit memory model, which gives programmers full control over
the memory. We also examine caches, how they are organized, and whether programmers
have any control over how they are used. Next, we look at the buses that connect the re-
sources within the processors and as well as the processors with each other and resources
in the machine. Finally, we look at what these heterogeneous architectures expose to
programmers. We investigate three examples of what the architectures expose to pro-
grammers and how the programming model is used to hide some of the architecture’s
complexity.

2.1 Hardware Architectures

In this section, we take a more detailed look at some heterogeneous architectures. First,
we look at the family of x86 processors, specifically those produced by Intel. Next,
we introduce the Intel IXP2400 network processing unit (NPU) with a heterogeneous
architecture before looking into the Cell Broadband Engine (CBE). Finally, we take a
look at Nvidia graphics processing units (GPUs) used for general-purpose programming.

2.1.1 Intel x86 Processor Architecture

The x86 processor architecture has a long history, dating back to Intel’s 8086 central
processing unit (CPU) released in 1978 as a fully 16-bit processor. One of the reasons
this instruction set succeeded in becoming the dominant instruction set in the mainstream
computer market was the fact that IBM selected the 8086 for the original IBM PC. Over
the years, the x86 instruction set has undergone many extensions (32 bit in 1985 and

11

12 Chapter 2. Heterogeneous Computing

64 bit in 2003) and additions. However, the instruction set has always been backward
compatible with previous versions. A modern x86 processor from 2014 is still able to
execute 16-bit code compiled for the original 8086. Over the years, several vendors have
also been designing and manufacturing CPUs compatible with the x86 instruction set
(e.g., Intel, AMD, VIA, and Cyrix). However, today only two remain and, of those, Intel
is the dominant vendor.

Originally, x86 was a little-endian, variable instruction length complex instruction set
computer (CISC) design. However, over the years, the processors executing the instruction
set changed greatly. The introduction of superscalar pipelines, where a CPU with a
single instruction stream can dynamically check data dependencies and process multiple
instructions per clock cycle, made it possible for the x86 processors to execute more
operations in parallel in a single clock cycle (i.e., fetch, decode, execute, memory, and
write back). Modern x86 architectures are able to decode x86 instructions into smaller
operations called micro-operations (µops). The processors then use out-of-order execution
to reorder those µops. This approach combined with a superscalar pipeline enables modern
processors to extract parallelism out of the code stream for improved performance. A great
deal of responsibility is left to the instruction decoders. It is the decoder’s job to make
the execution as efficient as possible, as well as all the instructions and µops analyzed by
branch predictors. If branches are detected, the processors will use speculative execution
to try to prevent miss predicted branches stalling the pipeline. In the same way, a great
deal of effort is also put into prefetching data from memory into the different caches, so
that as much data as possible is ready in the caches for execution.

A technique called symmetric multiprocessing (SMP) is used to implement multiple
processor cores in a x86 system. Here, two or more identical processors, all of which
have full access to the I/O devices, connect to a single shared main memory and are all
controlled by a single operating system. Even though the architectures of x86 processors
have evolved over the years, the principles behind SMP are still the same, leading to several
challenges when trying to scale the numbers of processing cores in an SMP system. One
of the challenges is memory. In early SMP systems, all cores shared the same memory
controller, but with integration of the memory controller onto the die of processors, the
access times to the different parts of memory are not the same. Another challenge is
cache coherency. Since all processor cores have the same access to the main memory,
all the caches on the processors must be kept up-to-date. If one core changes data,
this change must be broadcasted to all the other cores that work with the same data.
The first x86 implementations with multiple cores had one processor core per socket
and multiple sockets on a motherboard. The first attempts at processing more than
one thread simultaneously on a single die used simultaneous multithreading (SMT) on
Intel’s Pentium 4 processors. Because of the very long pipeline on Pentium 4 processors,
several parts of the pipeline were often idle. To use more resources, Intel implemented
Hyper-Threading Technology [60], it’s version of hardware multithreading. Intel’s first
true multicore processor, with two separate independent cores on a single die, was the
Pentium D, introduced in 2005. Today, most commodity desktop machines and laptops
have two or four processor cores on a single die. In the server and workstation space, up
to 18 cores are fitted onto a single die.

During work on this thesis, several generations of processor architectures were released
by Intel, a list of which can be found in Table 2.1. The processor roadmap used by Intel

2.1. Hardware Architectures 13

Architecture Codename Fabrication process Released

Core
Merom 65 nm 2006
Perryn 45 nm 2007

Nehalem
Nehalem 45 nm 2008
Westmere 32 nm 2010

Sandy Bridge
Sandy Bridge 32 nm 2011
Ivy Bridge 22 nm 2012

Haswell
Haswell 22 nm 2013
Broadwell 14 nm 2014

Table 2.1: Roadmap of Intel processors used in our experiments.

today was introduced in 2007 and is called the Tick Tock CPU roadmap [58]. The
idea of this roadmap is to follow every new architecture, referred to as a “tock,” with a
shrink in fabrication processes referred to as a “tick.” One of the advantages with this
strategy is the reduction of risk when moving to a completely new fabrication process,
since the architecture is already known, and vice versa when developing a new processor
architecture.

North Bridge

Main
Memoy

Hub
Interface

Processor

Cache

Processor 1

Processor

Cache

Processor n

System Bus

(a) Traditional system bus

Processor

Cache

Processor n
Processor

n+1

Cache

Processor

Cache

Processor 1 Processor 2

Cache

Main
Memoy

Main
Memoy

Hub
Interface

Hub
Interface

QPI

QPI

(b) Point-to-point links

Figure 2.1: Comparison of SMP architectures.

Over the period of this thesis, the architecture connecting multiple processors and
external devices has also changed and an overview of the two different architectures can be
seen in Figure 2.1. During the 1990s and the 2000s, until the Nehalem architecture, Intel
used a simple bus called the front-side bus (FSB) to connect multiple CPUs and to connect
these to the so-called north bridge (Figure 2.1(a)). The north bridge is also referred to
as the memory controller hub. This is where the memory controller is located and also
where you would connect external devices that require fast access to main memory. These

14 Chapter 2. Heterogeneous Computing

devices are often connected by a PCI, AGP, and, later, PCI Express bus. Such I/O devices
as network and hardware are connected on the “south bridge” via the hub interface, also
referred to as the DMI. One of the challenges with the FSB was that it is a shared bus and
was quickly becoming a bandwidth bottleneck when multiple CPUs were connected. With
the Nehalem architecture, the FSB was replaced by several point-to-point interconnects,
called QuickPath Interconnect (QPI) [59] (Figure 2.1(b)), and the memory controller was
integrated onto the same die as the processor cores were. To better share the memory
controller between multiple cores on the die, a level 3 cache was added. Furthermore, the
PCI Express bus used to connect external devices was also added to the same die, thus
eliminating the need for a north bridge. With the Sandy Bridge architecture, a GPU was
also integrated into the same die as the processor cores were. This GPU also shares the
memory controller with the processor cores and uses the same level 3 cache to connect to
the memory.

EgB

geInstructions

Oeµops Eeµop Eeµop Eeµop

Oeµops
Oeµops

R9B

Ported PorteE PorteX Porteg Porte9 PorteR PorteO Portem

9xR9B

R9B

gOB

LEeDTLB R9KBeLEeDMCacheeGQewayUL9eTLB

9XgKBeL9eCacheeGQewayU

gOMbit
AGU

gOMbit
AGU

Store
AGU

Store
Data

ALU
Branch

Shift

9XgMbit
VMUL
VShift

9XgMbit
FMA

FBlend

ALU
LEA
MUL

ALU
FasteLEA

9XgMbit
FMA

FADD

9XgMbit
VALU

VBlend

9XgMbit
VALU

VShuffle

9XgMbit
FShuffle
FBlend

ALU
Branch

Shift

gdeEntryeUnifiedeScheduler

E.9eEntryeReordereBuffereGROBU

O9eEntry
StoreeBuffer

m9eEntry
LoadeBuffer

OQeEntryeBranch
OrdereBuffer

EgQeAVX
Registers

EgQeInteger
Registers

Complex
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

µcode

XgeµopeDecodeeQueueEFXKeµopeCacheeGQMwayU

Branch
Predictors

LEeITLB R9KBeLEeIMCacheeGQewayU

Instruction
FetcheUnit

EgBePrecodeeFetcheBuffer

9x9deInstructioneQueue

Memory
Units

Execution
Units

FrontMend

OutMofMOrder
Scheduler

Figure 2.2: Intel Haswell architecture diagram.

2.1. Hardware Architectures 15

The Haswell Architecture

The latest x86 architecture from Intel is called Haswell [104]. It was released in 2013 and,
according to the Intel CPU roadmap [58], it was a tock, that is, a new architecture. A
detailed overview of a single Haswell core is shown in Figure 2.2.

The first part of the Haswell processor architecture, orange and purple in Figure 2.2,
is called the front end. This part of the processor is perhaps one of the most complex
parts of a modern x86 CPU. The instruction cache is kept coherent with the data cache.
Haswell has four decoders to decode the x86 instructions, including three simple decoders
that are able to decode one fused µop and one complex decoder that is capable of decoding
four fused µops. With µops fusion, the decoders are able to combine x86 instructions that
can be executed in parallel (i.e., jump and compare). The front end also includes other
important features, such as the branch predictor; however, details of the branch prediction
unit are not published by Intel. The next part of the pipeline, in yellow in Figure 2.2, is
the out-of-order scheduler. Haswell has a 192-instruction out-of-order window. The first
part of out-of-order execution is renaming. Here, the renaming allocates resources and
maps the source and destination x86 registers onto the underlying physical register files.
The idea of out-of-order execution is to optimally reorder the instructions for execution,
making sure that as many dependencies as possible are met before the instruction is
executed, and, after reordering, to place the µops in a unified scheduler queue ready for
execution. Execution is split into two parts: Execution units, in blue, and memory units, in
green in Figure 2.2. In total, the Haswell architecture has eight execution ports, meaning
that each cycle the oldest eight non-conflicting µops that are ready for execution are
taken out of the unified scheduler and dispatched to the execution ports. Computational
µops are sent to port 0, 1, 5, and 6. Three of the four computational execution ports are
also capable of executing 256-bit single instruction multiple data (SIMD) instructions.
Memory operation µops are sent to ports 2, 3, 4, and 7. The memory hierarchy on the
Haswell core is similar to that of earlier Intel processors. For each core, there is a 32-kB
level 1 data cache and a 256-kB unified level 2 cache, both private for the core. The level
3 cache, however, is shared with the other cores on the die and with the on-die GPU.

A single Haswell x86 core can therefore have up to two hardware threads that execute
up to eight instructions in parallel. This is carried out with techniques such as superscalar
pipelines, multithreading, and out-of-order-execution.

Intel Many Integrated Core (Intel MIC) Architecture

Intel MIC is a multicore architecture developed by Intel incorporating work from the now
defunct Larrabee GPU architecture [109] and the Single-chip Cloud Computer research
project [78]. The first commercial product released in the MIC family had the codename
Knights Corner and was later branded Intel Xeon Phi [21].

The Xeon Phi architecture consists of up to 61 simple x86 cores and a basic overview of
the architecture is shown in Figure 2.3. The processor architecture used is the P54C [21]
architecture, originally used in the Pentium processor from 1993. The cores have been
modified with support for the 64-bit x86 instruction set and support for four-way SMT.
The process still keeps its original in-order execution pipeline design and the coherent
level 2 cache has been extended to 512 kB per core. The main change in the architecture
from the original P54C cores lies in the floating-point pipeline. The P54C has a simple

16 Chapter 2. Heterogeneous Computing

Core

TD

L2

PCIe

DRAM

Controller

TD

TD

TD TD

TD TD

TD

DRAM DRAM

DRAM

Core Core Core

Core Core Core Core

L2 L2 L2

L2 L2 L2 L2

Figure 2.3: Intel Xeon Phi MIC architecture.

x87 floating point unit [21] and the Xeon Phi has a 512-bit SIMD unit in addition to the
x87 pipeline. This SIMD unit is able to process 16 independent 32-bit values and eight
independent 64-bit values. Additionally, fused multiply and add operations are supported.
However, the unit is not compatible with existing MMX/SSE code; so, even though the
Xeon Phi cards use x86 cores, they are not backward compatible with the x86 instruction
set. All the cores are connected by a 512-bit ring bus and the card has up to 16 GB
of on-board GDDR5 memory. The Xeon Phi cards are connected to the host computer
through a PCI Express 2.0 interface.

To control the processor, a customized version of Linux is booted on the card when
initialized from the host computer. The Xeon Phi supports the offloading of parts of
programs from the host processor and, since the card has its own operating system, it can
also work as a stand-alone system.

2.1.2 Intel IXP Network Processor

The Intel Internet eXchange Processor (IXP) Architecture [57] is an NPU. An NPU is a
specialized processor designed and optimized for efficient packet handling and through-
put. A typical NPU features several small processing elements optimized for pipelining
and executing data plane tasks and a general-purpose processing core to execute con-
trol plane workloads, thus making this a heterogeneous multicore architecture. Intel’s
first generation of NPUs was called the IXP1200 [56]. This processor features a 32-
bit StrongARM general-purpose core and six special-purpose cores called micro engines
(µEngines). The NPU used in our research is a second-generation processor from Intel
called the IXP2400 [57]. The IXP2400 cards were chosen because it was one of the easiest
architectures to program. Intel continued developing their NPUs with a third generation

2.1. Hardware Architectures 17

of processors called IXP28XX and, in 2007, sold the entire product line to Netronome.

DDRAM

MEvOKm MEvOKO

MEvOKGMEvOKU

MEvOKp MEvOKg

MEvOK|MEvOK,
QDRKSRAMm QDRKSRAMO

Rbuf
gGK@KmO|B

Tbuf
gGK@KmO|B

Hash

gGwG|wmO|

Scratch

mgKB

PCI
egGbl

ggKMHz

Intel
XScale
Core

UOKKIC
UOKKDC

CSRs
FKFast_wr
FKTimers
FKBootROMwSlowKPort

FKUART
FKGPIO

StripewbiteKalign

EwDKQ EwDKQ

G
A
S
K
E
T

ut
op

ia
Km

wO
wU

-KS
P

|U
Ko

rK
C

S
IX

,O

gGb

m|

UOb

UOb

m| m| m|

Figure 2.4: Intel IXP2400 architecture diagram.

The Intel IXP2400 architecture overview is shown in Figure 2.4. The basic elements on
the chip include a 600 MHz XScale processor. The XScale is a general-purpose processor
using the ARMv5 instruction set and the general-purpose processor also runs a Linux
or VxWorks operating system to control the card. Additionally, the IXP2400 has eight
specialized packet µEngines also running at 600 MHz. The µEngine uses a proprietary
instruction set that is not compatible with the ARMv5 instruction set on the XScale. Each
µEngine is capable of running four threads in hardware and the µEngines are optimized
for general packet processing in the data plane (fast path). The XScale is used for the
control plane (slow path). The µEngines are grouped in clusters of four cores and, within
each cluster, the cores can communicate with neighbor cores via specialized registers.
In normal configurations, two µEngines are reserved for low-level network receive and
transmit functions using open-source software, leaving only six µEngines available for
application usage.

Moreover, the IXP2400 has three kinds of memory, with different bandwidths and
access times. The 256 MB of SDRAM is used for the operating system and packet store,
the 8 MB of SRAM is used for metadata (e.g., packet headers), and the 16 kB of on-
chip scratchpad is used for interprocess communication and synchronization between the
cores. The IXP2400 is connected to the host computer and supports direct memory access
(DMA) transfers with a 64-bit PCI connector and the card has three physical mini-GBIC

18 Chapter 2. Heterogeneous Computing

connector for gigabit Ethernet.
The software development kit for the IXP2400 cards includes a specialized compiler

to program the µEngines. The compiler is a C compiler for the MicroC language. The
IXP2400 allows data to be processed at wire speeds with very low latency. The cards can
process packets with a very limited protocol stack. This allows the programmer to both
update and extract information with very low processing overhead. This makes these
NPUs ideal for applications such as deep packet inspection and statistics collection.

2.1.3 Nvidia Graphics Processing Units

A GPU is a specialized and dedicated hardware originally designed to render graphics
on a screen. A GPU can be integrated as part of the computer’s chipset, as a discrete
expansion card, or integrated on the die of the main processor. Originally, the GPU was
designed to render three-dimensional (3D) scenes onto a two-dimensional frame of pixels.
The first generations of GPUs had a fixed rendering pipeline with very limited flexibility
and programmability. Compared to a normal general-purpose processor such as the x86
architecture from Intel, GPUs have a very different architecture. On the CPU, as seen in
Figure 2.5, much of the die space is used for control logics, such as out-of-order execution,
cache, and branch prediction [69]. A GPU has much less control logic and more ALUs.
The GPU is designed to perform the same calculations over a large number of values,
which is very similar to vector processors; for example, when rendering a 1080p (Full HD)
frame, about 2 million independent pixels are processed in parallel.

Control

Cache

DRAM

ALU

ALU

ALU

ALU

(a) CPU

Control
Cache

DRAM

Control
Cache

Control
Cache

Control
Cache

Control
Cache ALU ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU ALU

(b) GPU

Figure 2.5: Comparison of transistor usage on a CPU and on a GPU.

The term GPU was defined in 1999, when Nvidia launched their GeForce 256 graphics
adapter [133]. This was not the first 3D graphics card, but it was the first card to support
hardware transform and lightning, meaning that the entire graphics pipeline now ran on
the graphics adapter.

The progression of GPUs was mainly driven by the gaming industry in the beginning
and the development of graphics cards was closely tied to the development of Microsoft’s
DirectX application programming interface (API). A new version of the API brought new
generations of GPUs. In DirectX 8, programmable vertex shaders were added, which
allowed the programmer to control how each vertex in the 3D scene was converted to
discrete pixels in the output. DirectX 9 also added support for programmable fragment

2.1. Hardware Architectures 19

Application (CPU)

Vertex processor

Rasterizer

Fragment processor

Frame buffer

GPU

Figure 2.6: A pre-DirectX 10 graphics pipeline [43], with a programmable vertex processor
and fragment processor.

shaders. An example of a DirectX 9 pipeline is shown in Figure 2.6. The fragment shaders
gave the programmers direct control over pixel lightning, highlighting, translucency, and
shadows. It was also possible to use these fragment and vertex shaders for general-
purpose computations, given that one’s problem could be mapped as a frame. To do so,
data had to be stored as textures on the GPU and shader programs were executed on
the data; the results had to be stored either in texture memory or in the frame buffer.
With DirectX 10, the traditional 3D pipeline was replaced with a unified processing
architecture [12]. Gaming was still the main driver for the GPUs, but changes in the
GPU architecture made it much more suitable for general-purpose stream processing.
It was also with the first DirectX 10 GPUs in 2007 that Nvidia launched CUDA, which
made it possible to program GPUs with extensions to the C language [84]. Since the initial
release of CUDA, both the underlying hardware and software stack have undergone both
minor and major revisions, referred to as compute capability. During work on this thesis,
we used three different generations of GPUs from Nvidia, an overview of which is shown
in Table 2.2. During the last phase writing of this thesis, Nvidia also released a new-
generation GPU called Maxwell; however, we take a more detailed look into how the
third generation of CUDA-capable GPUs, codename Kepler, from Nvidia are designed
and how their memory architecture works compared to that of a normal CPU.

20 Chapter 2. Heterogeneous Computing

Architecture Codename Compute Released

Tesla
G80 1.0 2006
GT200 1.3 2008

Fermi
GF100 2.0 2010
GF110 2.1 2010

Kepler
GK104 3.0 2012
GK110 3.5 2013

Maxwell GM107 5.0 2014

Table 2.2: Roadmap of Nvidia GPUs used in our experiments.

The Kepler GK110 Architecture

The Kepler architecture consists of a number of processing cores clustered together in what
is called a streaming multiprocessor (SMX), a shared level 2 cache, memory controllers,
and a PCI Express interface to the host machine. The GPU used in the latest revision of
the Kepler architecture is called GK110 [90] and this high-end chip has up to 15 active
SMX clusters.

The SMX shown in Figure 2.7 on the GK110 GPU contains 256 separate cores. Of
these cores, 192 cores have single-precision integer and floating point ALUs and 64 support
double precision. The SMX also includes registers, instruction cache, and 64 kB of shared
memory and level 1 cache, shared by all the cores on a single SMX that can be partitioned
by the programmer. Each SMX also contains 32 load and store units to provide groups
of threads access to DRAM in parallel. Finally, the SMX has 16 special function units
(SFUs), used to calculate complex mathematical instructions such as cosines and square
roots.

Scheduling on the GPU is done at two levels: High-level scheduling on the entire chip
is handled by what Nvidia calls a GigaThread engine. In the documentation, it is also
referred to as the Grid Management Unit [90]. This unit controls all the groups of threads
executing on the GPU and can manage both CPU- and GPU-generated workloads. Low-
level scheduling at the SMX level is carried out by a quad warp scheduler. An SMX
schedules threads in groups of 32 parallel threads called warps. The scheduler is capable
of selecting four warps in parallel and each warp can dispatch two independent instructions
per cycle. All the threads in a warp have to execute the same instruction and branching
is not supported. If branching should occur in the code, each of the branches must be
evaluated for all the running threads.

The memory hierarchy on GPUs is different from that on CPUs. There are different
types of memory with different properties and the memory is explicitly managed by the
programmer; thus memory usage will often have an impact on performance. Figure 2.8
shows an overview of the memory hierarchy on the Kepler architecture. The first level in
the hierarchy is at the thread level. All the cores on the SMX share a total of 65,536 32-bit
registers. Registers are the fastest memory type on the GPU, with access times of one clock
cycle. The challenge with the registers is that their number is limited and if the threads
use up all the registers, the overflow data will be stored in what is called local memory.
Local memory is private to each thread and resides in the DRAM, which is described later.
The second level in the memory hierarchy involves shared memory, level 1 cache, and a

2.1. Hardware Architectures 21

Core Core

Core Core

Core Core

Core Core

DPpUnit

DPpUnit

DPpUnit

DPpUnit

T
ex

tu
re

Core Core

Core Core

Core Core

Core Core

DPpUnit

DPpUnit

DPpUnit

DPpUnit

T
ex

tu
re

Core Core

Core Core

Core Core

Core Core

DPpUnit

DPpUnit

DPpUnit

DPpUnit

T
ex

tu
re

Core Core

Core Core

Core Core

Core Core

DPpUnit

DPpUnit

DPpUnit

DPpUnit

T
ex

tu
re

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

T
ex

tu
re

DPpUnit

DPpUnit

DPpUnit

DPpUnit

Core Core

Core Core

Core Core

Core Core

T
ex

tu
re

DPpUnit

DPpUnit

DPpUnit

DPpUnit

Core Core

Core Core

Core Core

Core Core

T
ex

tu
re

DPpUnit

DPpUnit

DPpUnit

DPpUnit

Core Core

Core Core

Core Core

Core Core

T
ex

tu
re

DPpUnit

DPpUnit

DPpUnit

DPpUnit

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

DPpUnit

DPpUnit

DPpUnit

DPpUnit

T
ex

tu
re

Core Core

Core Core

Core Core

Core Core

DPpUnit

DPpUnit

DPpUnit

DPpUnit

T
ex

tu
re

Core Core

Core Core

Core Core

Core Core

DPpUnit

DPpUnit

DPpUnit

DPpUnit
T

ex
tu

re

Core Core

Core Core

Core Core

Core Core

DPpUnit

DPpUnit

DPpUnit

DPpUnit

T
ex

tu
re

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

T
ex

tu
re

DPpUnit

DPpUnit

DPpUnit

DPpUnit

Core Core

Core Core

Core Core

Core Core

T
ex

tu
re

DPpUnit

DPpUnit

DPpUnit

DPpUnit

Core Core

Core Core

Core Core

Core Core

T
ex

tu
re

DPpUnit

DPpUnit

DPpUnit

DPpUnit

Core Core

Core Core

Core Core

Core Core

T
ex

tu
re

DPpUnit

DPpUnit

DPpUnit

DPpUnit

Core Core

Core Core

Core Core

Core Core

12pKB
TexpCache
DatapRead

12pKB
TexpCache
DatapRead

12pKB
TexpCache
DatapRead

12pKB
TexpCache
DatapRead

Loadp/pStore

64-KB-Shared-Memory-/-L1-Cache

PolyMorph-Engine-2.0

InstructionpBuffer

WarppScheduler

RegisterpFile
16.384pxp32-bit

Operandpcollectors

Dispatch Dispatch

InstructionpCache

InstructionpBuffer

WarppScheduler

RegisterpFile
16.384pxp32-bit

Operandpcollectors

Dispatch Dispatch

InstructionpBuffer

WarppScheduler

RegisterpFile
16.384pxp32-bit

Operandpcollectors

Dispatch Dispatch

InstructionpBuffer

WarppScheduler

RegisterpFile
16.384pxp32-bit

Operandpcollectors

Dispatch Dispatch

SMX---GK110
Graphics Processing

Figure 2.7: Nvidia GK110 SMX architecture [90], slightly modified.

read-only data cache. This level is also on chip within each SMX. The on-chip memory in
the SMX can be dynamically partitioned by the programmer between level 1 cache and
shared memory. The access time is also a single clock cycle and the memory is accessible
by all threads running on the same SMX. Shared memory provides the programmer fast
memory for sharing data and reducing the need for slow off-chip memory access. However,
the shared memory is uniformly divided into banks and the throughput is dependent on
the data layout. The Kepler architecture also introduced a 48-kB read-only data cache,
which in previous GPU generations were only accessible by the texture units. This data
cache does not have the same bank structure as the shared memory and can support
full-speed unaligned memory access patterns. At the third level, the Kepler architecture
has 1536 kB of level 2 cache. This cache is shared among all SMX units on the GPU
and services all load, store, and texture requests to DRAM, enabling more efficient data
sharing across the GPU. Programmers are not allowed to explicitly control the level 1
or level 2 cache. The last level in the memory hierarchy is the DRAM. The DRAM is
built up of three different memory spaces: global memory, texture memory, and constant
memory. With Kepler, the DRAM is off chip and is significantly larger and much slower

22 Chapter 2. Heterogeneous Computing

Thread

Shared
Memory

L1
Cache

Read-Only
Data Cache

L2
Cache

DRAM
Global and Local Memory

Figure 2.8: The Kepler memory hierarchy.

compared to the higher levels in the hierarchy. The DRAM is often referred to as global
memory. Global memory can be accessed by all SMX units and can be accessed with 32 ,
64-, or 128-byte transactions, given that the access address is aligned with the transaction
size. The memory controller on the GPU tries to combine multiple operations into fewer
and larger transactions, which is known as memory coalescing. In early GPU generations,
memory coalescing was very important; however, with more advanced memory controllers
that are not only optimized for graphical workloads, the demands on memory operations
have been relaxed.

The two other memory spaces in DRAM are constant and texture memory. Both are
read only by the GPU, meaning that they have to be allocated and written to by the host
CPU. Both these memory spaces are cached and, depending on the access patterns, this
can reduce access time to the data. Constant memory is limited to 64 kB in total and
texture memory is limited to 48 kB per SMX unit. If the data accessed in both constant
and texture memory are not in the cache, the GPU must fetch the data from DRAM with
the same access time as regular global memory.

The GK110 chip is used in two different product lines: as a dedicated compute copro-
cessor for general-purpose GPU workloads (Nvidia Tesla) and as a graphics card (Nvidia
GeForce and Quadro) for playing computer games and running other 3D applications.
The chip itself is comprised of 7.1 billion transistors and has up to 2880 cores and up
to 12 GB of on-board DRAM. With a typical power consumption of 250 watts, it can
deliver up to 5121 tera floating point operations per second (TFLOPS) of single-precision
processing power and 1707 TFLOPS of double-precision processing power.

2.1.4 STI Cell Broadband Engine

The CBE [54] is a heterogeneous multicore processor developed in cooperation by Sony,
Toshiba, and IBM. The project was started by Sony in 2000 when they requested a CPU

2.1. Hardware Architectures 23

for the new PlayStation 3 game console. The design goal of the CBE was a processor
1000 times faster than the Emotion Engine from the PlayStation 2 game console [7].
Development of the CBE started in 2001 and the first product to utilize the processor
was Sony’s PlayStation 3 game console. The CBE was later also used in high-performance
computing, when IBM launched several blade servers featuring multiple Cell processors.
The chip was also used by Toshiba in laptops and HDTVs as an accelerator for offloading
media processing, such as in decoding, upscaling, and post-processing.

SPE SPE SPE SPE

SPE SPE SPE SPE

EIBPPE

I/O

DRAM

LS LS LS LS

LS LS LS LS

Figure 2.9: CBE architecture.

The CBE consists of several main components: a power processing element (PPE)
for general-purpose processing, up to eight synergistic processing elements (SPEs) for
high-throughput computations, a FlexIO interface for connecting multiple processors and
devices such as network and disk controllers, and, finally, a memory controller. All the
components on the chip are connected by the element interconnect bus. An overview of
the CBE architecture is shown in Figure 2.9.

The general-purpose processor on the CBE, called the PPE, is based on a standard
IBM PowerPC 970 [54]. This processor is from the POWER4 family and implements
both the 32- and 64-bit PowerPC instruction set and is capable of executing two threads
in parallel. The PPE has two levels of cache (32-kB level 1 data cache, 32-kB level 1
instruction cache, and 512-kB level 2 cache), has a simple branch prediction unit, supports
virtual memory, and has a vector unit called the VMX. The vector unit on the PPE is
a standard IBM AltiVec SIMD unit and it is capable of processing a 128-bit vector with
either four independent 32-bit words, eight 16-bit shorts, or 16 eight-bit bytes. The VMX
supports both floating point and integer values.

The specialized computational cores in the CBE are called SPEs and an overview
of an SPE is shown in Figure 2.10. A single SPE contains a synergistic processor unit
(SPU). The SPU has a large 128-entry 128-bit register for vector processing. The SPU is
able to execute two hardware threads in parallel; even though its vector unit has much in
common with the VMX unit in the PPE, they do not share the same AltiVec instruction
set. The SPE also only supports a 32-bit instruction set. The SPU supports both single-
and double-precision floating point values. However they are not fully compatible with the
IEEE 754 standard for double precision [54]. Support for “not a number” and infinity have
been removed to extend the range and numbers are truncated downward, toward zero.
The memory flow controller in the SPE cannot directly access data in the main system
memory; it can only access data in a small, 256-kB local storage. The local storage is

24 Chapter 2. Heterogeneous Computing

SPU

Local
Storage

DMA
Controller

MFC

MMIO

SPE

Figure 2.10: Overview of an SPE.

non-coherent and is basically a user-controlled cache, which stores both the code and
data that the SPU will process. To copy data between other SPEs, the PPE, or the main
memory, the SPEs must use DMA transfers. These transfers can be requested both by
the PPE and the SPEs and must be set up explicitly when programming the CBE. The
architecture includes hardware support for primitives such as signals, message passing,
and atomic updates. There are message queues for communication between the SPEs,
PPE, or internally among the SPEs and the queues can be used by either an interrupt
handler or polling.

The CBEs used in our research are from the Sony PlayStation 3 game console. The
CBE in a PlayStation 3 is clocked at 3.2GHz. One of the SPEs is disabled to improve the
yield in the manufacturing process and a second SPE is reserved for a hypervisor, which
leaves six SPEs for the user. The system has 256 MB of main memory, where about 40
MB of memory is reserved for the hypervisor. The hypervisor also blocks access to certain
parts of the hardware, including the GPU and certain hardware debugging features in the
CBE. Early versions of the console also supported booting Linux. In Linux, the CBE can
be programmed using the standard GNU Compiler Collection to generate code for both
the PPE and SPE.

2.1.5 Other Hardware Architectures

There are also several other interesting hardware architectures from a heterogeneous
standpoint. In this section, we mention a couple of other architectures that we have
not been able to investigate during work on this thesis and we take a brief look at their
main features.

2.1. Hardware Architectures 25

Field-Programmable Gate Array (FPGA)

A FPGA is an integrated circuit that is designed to be configured by users. To configure an
FPGA, hardware description language is used. The process is similar to that used when
making dedicated application-specific integrated circuits for specific applications. The
FPGA contains programmable logic blocks and a reconfigurable interconnect to connect
the blocks. After a schematic hardware description language design is completed, an
electronic design tool must be used to generate a netlist, which describes how the logic
blocks are supposed to behave and how they are connected. Finally, the design must be
validated with respect to the placement and timing of the chip.

From a technical standpoint, an FPGA can be used to solve any problem that is
computable. One of the challenges with FPGAs is that the programmer has to break
down the problems to the logical gate level. Since all the logic gates on an FPGA work
in parallel, programmers must also take into account synchronization issues. For complex
workloads, another challenge is that only a limited number of logic blocks are available
on an FPGA and the blocks cannot be efficiently reconfigured during execution. [73]

Modern FPGAs such as the Xilinx Zynq [135] series have started to combine traditional
design with logic blocks and interconnects with an embedded ARM microprocessor. This
design is often referred to as a system on a programmable chip. It makes it easier to
reconfigure the chip during runtime and programmers can use the programmable part of
the chip for parallel parts of their applications. We have not looked into FPGAs. The
programming model is very different from that of traditional multicore systems and we
do not have any experience with hardware design.

Very Long Instruction Word (VLIW) Architectures

A VLIW architecture is a type of processor architecture that is designed to take advantage
of the instruction-level parallelism available in program code. The idea behind VLIW is
to enable programs and compilers to explicitly specify which instructions can execute in
parallel. The idea is not new, as described in Section 2.1.1. For example, x86 processors
use their superscalar architecture to execute independent instructions in different parts of
the processor and out-of-order execution reorders instructions to improve efficiency. The
drawbacks with both these approaches is that they make the hardware more complex,
resulting in larger circuits and higher power consumption. With VLIW, the processor
executes operations in parallel based on a fixed schedule generated when the program is
compiled. For even better efficiency, hints can be given to the compiler.

The VLIW concept was first invented in the early 1980s [36]. The first implementation
of VLIW was Intel’s first 64-bit processor, called the i860, released in 1989 [71]. The only
VLIW processor architecture produced today is the Itanium architecture from Intel and
it is used only in enterprise-class server systems. We have therefore not investigated this
architecture further. Graphics processors from AMD also used VLIW [51]; however, these
have since been replaced by a RISC SIMD architecture called Graphics Core Next.

NEC SX Vector Supercomputer Architecture

The SX series architecture from NEC involves a dedicated vector processor. The latest
iterations of the processor are the SX-ACE and SX-9 processors [142]. Each core contains

26 Chapter 2. Heterogeneous Computing

four vector processing units. Each of the vector processing units has a 16-stage pipeline
and 16 vector registers that can store 256 64-bit words. Many of the details about how
the cores operate are not public. The theoretical performance of a chip with four cores is
256 GFLOPS and multiple chips can be connected in multinode systems with SMP.

The architecture is highly optimized toward vector processing and, as a result, scalar
programs do not scale well on this architecture. The systems are shipped with SUPER-
UX, with is a custom UNIX operating system maintained by NEC. One of the main
applications for the SX architecture is to run simulations of complex climate models for
meteorological use [107]. The SX architecture is not considered in this thesis, since it is
only used in high-end enterprise-class servers.

2.1.6 Summary

In this section, we introduced the four heterogeneous architectures that we are going
to use for our experiments in this thesis. The architectures are very different but they
share some properties. Table 2.3 compares the state-of-the-market products in each of
the heterogeneous architectures.

Feature IXP x86 Cell GPU
General-purpose cores 1 1–16 1 0 †

Vector instruction set No 256-bit
AVX2

128-bit
AltiVec

No]

Specialized cores 8 0 8 192–2880
Instruction set ARMv5/

µC
x86 PowerPC PTX

SMT (multithreading) No Yes Yes No
Memory model Shared Shared Exclusive Exclusive
Cache coherency Yes Yes No ‡ No
On-chip memory Yes No Yes Yes
Off-chip memory Yes Yes Yes Yes
Memory types SRAM/

DRAM
DRAM DRAM DRAM

Branch prediction Limited Yes Limited Limited
Cache hierarchy L1 L1–L2–L3 L1–L2 L1–L2

User-controlled cache No No Yes Yes [

Active development Yes Yes No Yes
† The GPU needs a host CPU to operate, but there is no CPU on the card.
] Not exposed outside the driver.
‡ Coherence between multiple Cell processors, but not with SPEs.
[Shared memory is a cache; architecture also has caches not controlled by the programmer.

Table 2.3: Comparison of the four heterogeneous architectures.

The very different properties of the architectures makes their utilization challenging
for programmers. Architectures such as the x86 use a shared memory model, where the
memory management unit on the processor takes care of all the data transport between
the cores and caches. However, on architectures such as the Cell and GPUs, which have

2.2. Hardware Abstractions and Programming Models 27

an exclusive memory model, programmers need to carefully consider the data flow of
the program. Even GPUs and the IXP have multiple memory spaces available that are
more suited for some operations. The properties of these memory types on the GPU are
investigated further in Section 3.3.1. The number of cores in these architectures is also
very different. On x86 processors and on the Cell, programmers typically need tens of
threads for optimal performance, whereas on a GPU programmer need thousands and
perhaps tens of thousands of threads to obtain optimal performance. Finally, all the
architectures have different instruction sets, so there will be very little portability of code
between the architectures. This is further explored in Chapter 3.

2.2 Hardware Abstractions and Programming Models

In Section 2.1, we described several modern heterogeneous processing architectures used
in our research on processing multimedia workloads. If we look at the processing cores,
memory, caches, and buses that connect them, these architectures are very different.
However, the hardware abstractions and programming model used to expose the hardware
to programmers do not change that often.

One example where a hardware abstraction is used to expose the hardware differently
to the programmer and to the operating system is SMT. SMT is used both in x86 cores
and on the PPE in the CBE. The basic idea behind SMT is that a single processing core
is exposed as two or more separate cores to programmers and to the operating system.
Another example in which hardware abstractions are hiding the underlying hardware is
the GPUs from Nvidia described in Section 2.1.3. The last-generation Kepler GK110
GPU uses the programming model called single instruction, multiple threads (SIMT),
which was already used by the first programmable Tesla G80 GPU released in 2006. The
underlying hardware between these two GPUs has, however, changed considerably.

2.2.1 SMT

SMT is a technique used to improve the throughput of a superscalar CPU pipeline. When
a single thread is running and stalls due to a cache miss or any other high-latency instruc-
tion, it leaves parts of the processor idle. With SMT, a single processor core is exposed
to the operating system as two or more cores and the hardware tries to efficiently utilize
all the resources in the superscalar pipeline, as shown in Figure 2.11.

Intel calls this Hyper-Threading Technology. It was first used in 2002 in the Pentium 4
architecture to expose a single CPU core as two virtual cores. The same technology is
also used in the Intel Xeon Phi many-core architecture, whereas a single processor core is
exposed as four virtual cores on the Phi. In addition to Intel, IBM is using SMT on the
PPE PowerPC processing core in the CBE. SMT does not always improve performance.
There are several cases in which it can actually reduce performance for both threads
running on the processor core. The basic aim of a general-purpose CPU design is to
run a single thread as quickly as possible. The cores are often designed with techniques
such as out-of-order execution, superscalar pipelines, branch prediction, and prefetching.
SMT is often considered the last resort in filling the pipeline to prevent stalls. When
two threads compete for resources, they often take more time to finish than if they did
not have to share any resources. On the other hand, in on some architectures, such as

28 Chapter 2. Heterogeneous Computing

With
SMT

Without
SMT

Time (Processing cycles)

Figure 2.11: A superscalar processor design with and without SMT.

the Xeon Phi many-core architecture, many cores share the memory controller, resulting
in greater memory latency. With SMT, the cores are better able to hide some of this
memory latency.

2.2.2 SIMD

SIMD, described in Flynn’s taxonomy [38] and shown in Figure 2.12, is a technique
where multiple processing elements perform the same operation on multiple data points
in parallel. SIMD is also often referred to as vector processing, since the multiple data
points are often stored in a data vector. The first mainstream use of SIMD was Intel’s
Pentium processors with MMX extensions, launched in 1996.MMX supports 64-bit long
vectors. After Intel released MMX, Motorola and IBM quickly introduced their AltiVec
vector extensions for the PowerPC and POWER systems. Since its release, Intel has also
improved and extended MMX, first to 128 bits with several versions of Streaming SIMD
Extensions and, finally, to 256 bits with two versions of the Advanced Vector Extensions.

D
at

a
P

oo
l

Instruction cache

PU

PU

PU

PU

Figure 2.12: SIMD programming model.

2.2. Hardware Abstractions and Programming Models 29

Multimedia workloads frequently perform identical operations on large data sets, which
is one of the reasons why SIMD was brought to desktop and mobile processors. In the
CBE, SIMD is an essential part of the architecture. The PPE has an AltiVec SIMD unit
and the SPEs work on a 128-bit vector. Although SIMD instructions became mainstream
with the Pentium processor in 1996 and the adoption of the PowerPC for MacOS, their
use has been and still is an art. On the Cell, SIMD instructions are used explicitly
through vector extensions to C/C++, which allows basic arithmetic operations on vector
data types of intrinsic values. This means that the programmer can apply a sequential
programming model but needs to adapt the memory layout and algorithms to the use of
SIMD vectors and operations. On the x86, programmers also have to explicitly use the
SIMD instructions and, even though the compilers are able to auto-vectorize some simple
data patterns, these operations generally have to be made manually.

2.2.3 SIMT

The abstraction used when programming GPUs from Nvidia is called SIMT. Nvidia first
introduced this model with the CUDA processing framework, released together with the
Tesla G80 GPU in 2006. CUDA uses a two-tiered threading model that maps to the
architecture. Threads are bundled into groups, which are organized in a grid, as illustrated
in Figure 2.13.

The global scheduler on the GPU distributes the groups to available SMXs and all the
threads in a group execute on the same SMX. The program that is executed on the GPU

Host4(CPU) Device4(GPU)

Kernel Block
(0,40)

Block
(1,40)

Block
(2,40)

Block
(0,41)

Block
(1,41)

Block
(2,41)

Block
(0,42)

Block
(1,42)

Block
(2,42)

Thread
(0,40)

Thread
(1,40)

Thread
(2,40)

Thread
(3,40)

Thread
(4,40)

Thread
(5,40)

Thread
(6,40)

Thread
(0,42)

Thread
(1,42)

Thread
(2,42)

Thread
(3,43)

Thread
(4,42)

Thread
(5,42)

Thread
(6,42)

Thread
(0,41)

Thread
(1,41)

Thread
(2,41)

Thread
(3,41)

Thread
(4,41)

Thread
(5,41)

Thread
(6,41)

Thread
(0,43)

Thread
(1,43)

Thread
(2,43)

Thread
(3,43)

Thread
(4,43)

Thread
(5,43)

Thread
(6,43)

Grid41

Block4(1,42)

Thread
(7,40)

Thread
(7,42)

Thread
(7,41)

Thread
(7,43)

Figure 2.13: Nvidia CUDA programming model.

30 Chapter 2. Heterogeneous Computing

is called a kernel. It is up to the programmer to choose how the threads are organized.
The optimal number of blocks and number of threads per block vary depending on the
GPU generation used. The optimal size of these parameters also varies depending on
the register space each thread in a block requires. If the register space on an SMX is
exhausted, the GPU will use local memory,1 which is located off chip, resulting in a
massive increase in access time. SIMT enables code that uses only well-known intrinsic
types that can be massively threaded. Low-level operating system functions schedule
these threads in groups called warps (the size of a warp can be hardware specific).The
control flow of the threads can diverge as in an arbitrary program. However, this will
essentially serialize all the threads in the block, which will impact performance. If none
of the threads in the warp diverge, all the threads will execute the same operation. The
operation is then performed as a vector operation containing the data of all the threads
in the block.

2.2.4 Summary

In this section, we briefly introduced the different programming models used by the archi-
tectures in this chapter. SMT is typically used by the architectures with more complex
general-purpose cores (i.e., Cell and x86), to try using the execution pipelines more effi-
ciently. For programmers and operating systems, the use of SMT is transparent, which
can be challenging, since some applications have shown reduced performance when they
have to share resources on the same processor cores.

Both the Cell and x86 architectures use explicit SIMD instructions. This means that
the programmer can apply a sequential programming model but needs to adapt (if possi-
ble) the algorithms and memory layout to use SIMD vectors and operations. The GPUs
from Nvidia use an abstraction called SIMT. Such abstractions enable programmers to
write code that uses well-known intrinsic types but which are massively threaded. It is
the runtime of the GPU that schedules the threads. In this model, it is possible for the
threads to diverge, as in arbitrary programming, even though this will have negative ef-
fects on performance. The functionalities provided by SIMD and SIMT are very similar.
In SIMD programming, vectors are used explicitly by the programmer, many of whom
think in terms of sequential operations on very large operands. In SIMT programming,
the programmer can think in terms of threaded operations on intrinsic data types. The
SIMT concept has an interesting property: If SIMD is used, the vector width must be
known to the programmer. SIMT hides this and the code can be optimized for several
vector widths. Even though the functionality is similar, programmers still need to think
differently when using these architectures, as demonstrated in our case studies on the
different architectures in Chapters 3 and 4.

2.3 Summary

In this chapter, we introduced the heterogeneous hardware architectures and the pro-
gramming models used to program them. The architectures have very different proper-
ties, which makes their utilization challenging for programmers. In the next chapter, we

1Local memory in OpenCL is the same as shared memory in CUDA.

2.3. Summary 31

look at case studies with simple multimedia workloads running on the different heteroge-
neous architectures presented in this chapter. These case studies are used to learn how
to efficiently use the different architectures.

32 Chapter 2. Heterogeneous Computing

Chapter 3

Using Heterogeneous Architectures
for Simple Tasks

Heterogeneous systems have recently received a lot of attention. They provide more
computing power than traditional single-core systems, but their efficient use of avail-
able resources is a challenge. On some architectures, the processing cores have different
strengths and weaknesses compared to desktop processors. Several different types and
sizes of memory are exposed to the developer and limited architectural resources require
considerations of data and code granularity.

To learn more about the properties of our heterogeneous architectures, we performed
different experiments on the architectures with simple tasks related to multimedia to gain
experience. By simple tasks we mean small operations, simple steps, or small parts of
a larger complex pipeline. In most of the cases, only the part of the workload running
on the heterogeneous architecture was optimized for performance, since we wanted to
isolate only this part of the workload. The simple tasks in our investigations ranged from
experiments on how to use the different memory spaces on an Nvidia graphics processing
unit (GPU) most efficiently to protocol translation on the Intel IXP network processor
and offloading parts of Motion JPEG (MJPEG) video encoding pipeline to the single
instruction multiple data (SIMD) unit on an x86 processor, the synergistic processing
element (SPE) unit on the Cell, or the cores of an Nvidia GPU.

This chapter is organized by the heterogeneous architectures. First, we take a look at
the Intel IXP network processor. We then experiment with the Sony–Toshiba–IBM Cell
Broadband Engine before we run tests on the x86 processor architectures. Finally, we
evaluate the performance of different workloads on GPUs. In all these sections, we take a
closer look at each architecture, with one or more case studies. We use these case studies
to gain experience on how to efficiently use these architectures for parallel processing.
However, not all the workloads have been tested on all architectures.

3.1 Intel IXP Network Processor

The Intel IXP network processor was used in the early stages of this thesis as an architec-
ture that could explore the limits of integrated layer processing [24]. To do this, we used a
protocol translation prototype. The IXP card provided early insight into how to program
an asymmetric shared memory architecture and experience with video streaming.

33

34 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

In Section 3.1.1, we take a closer look at a case study based on our work with network
protocol translation [32,33]. We use an Intel IXP2400 network processor to transparently
translate RTP/UDP video streams, which was the popular way of streaming video a
decade ago, to HTTP/TCP, which is the de facto solution today.

3.1.1 Case Study: Network Protocol Translation

In this section, we describe our implementation of a dynamic transport protocol transla-
tor on an Intel IXP2400 network processor. The IXP architecture was used in the early
stages of the research work to gain experience with a heterogeneous architecture. Stream-
ing services are available almost everywhere today. Major newspapers and TV stations
provide on-demand and live video content. Video on-demand services are common and
even personal media are frequently streamed using services such as YouTube.

Setting

The debate about the best protocols for streaming has been going on for years. Initially,
streaming services on the Internet used UDP for data transfer because multimedia appli-
cations often have demands for bandwidth, reliability, and jitter that could not be offered
by TCP. Today, this approach is hampered by the filters of Internet service providers
(ISPs) and by firewalls in access networks and in end systems. ISPs reject UDP because
it is not fair to accept it over TCP traffic and many firewalls reject UDP because it is
connectionless and requires too much processing power and memory to ensure security. It
is therefore fairly common to use HTTP streaming, which delivers streaming media over
TCP. The disadvantage is that the end user can experience playback hiccups and quality
reduction because of the probing behavior of TCP congestion management, leading to
oscillating throughput and slow packet rate recovery. A sender who uses UDP would, in
contrast, be able to maintain a constant desired sending rate. Servers are also expected to
scale more easily when sending smooth UDP streams and avoid dealing with TCP-related
processing.

To explore the benefits of both TCP and UDP, we experiment with a proxy that
carries out a transparent protocol translation. This is similar to the proxy caching ISPs
employ to reduce their bandwidth and we do, in fact, aim at a combined solution. There
are, however, too many different sources of adaptive streaming media for end users to
apply proxy caching for all of them. Instead, we aim at live protocol translation in a
TCP-friendly manner that achieves high perceived quality for end users. Our prototype
proxy is implemented on the Intel IXP2400 network processor and enables the server to
use UDP on the server side and TCP on the client side.

Preliminary tests comparing HTTP/TCP video streaming from a web server and RT-
SP/RTP/UDP streaming from a Komssys video server [45] show that, in case of loss, our
solution using a UDP server and a proxy later translating to TCP delivers a smoother
stream at the playout rate while the TCP stream oscillates heavily.

Workload: Translating Proxy

An overview of our protocol translating proxy is shown in Figure 3.1. The client sends a
GET request, which is translated to RTSP by the proxy. The proxy then generates the

3.1. Intel IXP Network Processor 35

Figure 3.1: Overview of the streaming scenario.

pipeline and starts to push data. The TCP connection between the proxy and client is
assumed to be fast enough. If not, the proxy will drop packages before the TCP sequence
numbers have arrived. Note that both peers are unaware of each other. The server
assumes the client uses UPD and vice versa.

The steps and phases of a streaming session are as follows. The client sets up a HTTP
streaming session by initiating a TCP connection to the server; all packets are intercepted
by the proxy and modified before being passed on to the streaming server. The proxy
also forwards the TCP three-way handshake between the client and server, updating the
packet with the server’s port. When established, the proxy splits the TCP connection
into two separate connections that allow for the individual updating of sequence numbers.
The client sends a GET request for a video file. The proxy translates this into a SETUP
request and sends it to the streaming server using the TCP port of the client as its
proposed RTP/UDP port. If the setup is unsuccessful, the proxy will inform the client
and close the connection. Otherwise, the server’s response contains the confirmed RTP
and RTCP ports assigned to a streaming session. The proxy sends a response with an
unknown content length to the client and issues a PLAY command to the server. When
received, the server starts streaming the video file, using RTP/UDP. The UDP packets
are translated by the proxy as part of the HTTP response, using the source port and
address matching the HTTP connection. Because the RTP and UDP headers combined
are longer than a standard TCP header, the proxy can avoid the penalty of moving the
video data in memory, thus permitting reuse of the same packet by padding the TCP
options field with NOPs. When the connection is closed by the client during or after
playback, the proxy issues a TEARDOWN request to the server to avoid flooding the
network with excess RTP packets.

Implementation

Our prototype is implemented on a programmable network processor using the IXP2400
chipset [57]. The chipset is Intel’s second-generation, highly programmable network pro-
cessor and is designed to handle a wide range of access, edge, and core network applica-
tions. A more detailed overview of the architecture is given in Section 2.1.2.

The transport protocol translation operation is shown in Figure 3.2. The protocol
translation proxy uses the XScale core and one micro engine (µEngine) application block.
In addition, we use two µEngines for the receiving (RX) and the sending (TX) blocks.
Incoming packets are classified by the µEngine based on the header. The RTSP and
HTTP packets are queued for processing on the XScale core (control path), while the

36 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

RX Core TX

Microengines

XScale

HTTP RTSP

RTP HTTP

RTSP HTTP

Client

Server Client

Server

Figure 3.2: Packet flow on the Intel IXP2400.

RTP packets are handled on the µEngine (fast path). TCP acknowledgments with a zero
payload size are processed on the µEngine for performance reasons.

The main task of the XScale is to set up and maintain streaming sessions, but after
initialization, all video data are processed (translated and forwarded) by the µEngines.
The proxy supports partial TCP/IP implementation, covering basic features. This is
done, to save both time and resources on the proxy.

Experiments

We investigated the performance of our protocol translation proxy compared to plain
HTTP streaming in two different settings. In the experiment shown in Figure 3.3, we
induced unreliable network behavior between the streaming server and the proxy, while
in the second experiment, the unreliable network connected the proxy and the client.
We performed several experiments where we examined both the bandwidth and the de-
lay while changing both the link delays (0–200 ms) and the packet drop rate (0–1%).
We used a web server and an RTSP video server using RTP streaming, running on a
standard Linux machine. Packets belonging to end-to-end HTTP connections made to
port 8080 were forwarded by the proxy, whereas packets belonging to sessions initiated
by connections made to port 80 were translated. The bandwidth was measured on the
client by monitoring the packet stream with tcpdump [121]. We include only the server–
proxy loss experiments in this thesis. For more details about the TCP congestion control
implementation and the full evaluation, see paper I [32].

The results from the test where we introduced loss and delay between the server and
the proxy are shown in Figure 3.3. The plot shows that our proxy that transparently
translates from RTP/UDP to TCP achieves a mostly constant rate for the delivered
stream. Sending the HTTP stream from the server, on the other hand, shows large
performance drops when the loss rate and the link delay increase.

3.1. Intel IXP Network Processor 37

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 50 100 150 200

Av
er

ag
e

th
ro

ug
hp

ut
 (K

bp
s)

RTT (ms)

Std. Dev. as errorbars

(a) HTTP streaming

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 50 100 150 200

Av
er

ag
e

th
ro

ug
hp

ut
 (K

bp
s)

RTT (ms)

Std. Dev. as errorbars

(b) Protocol translation

Figure 3.3: Achieved bandwidth, varying drop rate and link latency with 1% server–proxy
loss.

Discussion

Even though our proxy seems to provide better, more stable bandwidths, there is a trade-
off, because instead of retransmitting lost packets (and thus old data if the client does
not buffer), the proxy fills the new packet with new, updated data from the server. This
means that the client in our prototype does not receive all the data and artifacts may be
displayed. On the other hand, in case of live and interactive streaming scenarios, delays
due to retransmission may introduce dropped frames and delayed playout. This can cause
video artifacts, depending on the codec used. However, this problem can be easily reduced
by adding a limited buffer per stream sufficient for one retransmission on the proxy.

One issue in the context of proxies is where and how the proxy should be implemented.
For this study, we chose the IXP2400 platform, since we explored the offloading capabilities
of such programmable network processors earlier. With such an architecture, the network
processor is suited for many similar operations and the host computer could manage the
caching and persistent storage of highly popular data served by the proxy itself. However,
the idea itself could also be implemented as a user-level proxy application or integrated
into the kernel of an intermediate node performing packet forwarding packets at the cost
of limited scalability and potentially greater latency.

Both TCP and UDP have their strengths and weaknesses. In this case study, we used
a proxy that carried out transparent protocol translation to utilize the strengths of both
protocols in a streaming scenario. It enabled the server to use UDP on the server side
and TCP on the client side. The server gained scalability by not having to deal with TCP
processing. On the client side, the TCP stream was not discarded and passed through
firewalls. The experimental results show that our protocol transparent proxy achieved
translation and delivers smoother streaming than HTTP streaming.

Summary

For the context of this thesis, we learned that the IXP is a complicated architecture to
work with. Writing the network translation proxy requires detailed knowledge about the
platform. Another observation is that, when working with a cutting-edge architecture,

38 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

the quality of the documentation and compilers can be a challenge.

3.1.2 Implications

The IXP2400 is an asymmetric multicore architecture and has processing elements with
different capabilities. The XScale core is a general-purpose ARM11 core and the µEngines
are specialized cores built for packet processing. This architecture is a shared memory
architecture, meaning that all the cores (both XScale and µEngines) have access to the
same memory. This is very convenient for the programmer when developing applications,
since inter-process communication is very simple. However, there are challenges with
shared memory architectures and you might end up with unnecessary transfers to prefetch
local caches as a result. In addition, cache coherency protocols can consume resources
on the interconnects between the processing elements, preventing efficient performance
scaling.

The asymmetric nature of the IXP2400 chip can also be a disadvantage. The special-
ized cores often require special compilers, application programming interfaces (APIs), and
tools to write applications. This was an issue with the IXP2400 chip when we conducted
experiments on the platform, where lack of documentation and subpar, buggy compilers
can create problems for a programmer.

Writing an application for the IXP2400 also requires the programmer’s detailed knowl-
edge about the architecture. One of the main advantages with this architecture is the
ability to analyze and manipulate network packets at full line speed (1 Gbps) while adding
as little latency as possible to the stream. To achieve this, programmers need to know
the different memory types on the board and how to use them. The architecture also has
many special features, such as a hardware thread context switch that waits until after
memory fetch/store completion. A disadvantage is that one loses almost all portability
with an application written for an architecture such as this. When moving to the next
generation of hardware, an application might require a complete rewrite.

Revisiting with State-of-the-Market Hardware

When these experiments were conducted in 2006 and 2007, it was not possible to write
a protocol translation proxy that could run on a standard Linux desktop PC at the full
line speed of 1 Gbps. With recent general-purpose hardware such as the Intel Haswell
architecture, it is possible to do this with software executing on the central processing
unit (CPU). On the other hand, network processors have also evolved. Netronome, the
company that bought the IXP technology from Intel, has continued developing both
hardware and software. Their adapters are now capable of processing two 100-Gbps fiber
links at line speed [82]. This is not possible on a desktop PC today.

Another possibility would be to use another heterogeneous architecture to process the
network traffic. Han et al. [47] have shown that a software router implemented on an
Nvidia Fermi GPU can forward data at a rate of 39 Gbps, outperforming a CPU-based
software router by a factor of four. A GK110 Kepler GPU, which is the latest GPU
generation, would do this even faster. However, a GPU implementation will have some of
the same challenges as our IXP2400 implementation. Heterogeneous architectures provide
great flexibility and performance, but often at the cost of portability.

3.2. x86 Processor Architecture 39

3.2 x86 Processor Architecture

The x86 processors in modern computers are a symmetric multicore CPU with a shared
memory model. In the symmetric multicore processing (SMP) model, the cores should
theoretically be identical. However, many architectural details, such as the underlying
hardware architecture, are hidden from programmers. We therefore want to learn more
about the architecture.

The x86 architecture can have a different degree of connectivity to the other cores.
Cores can be on the same chip, in the same package, in different sockets on the same
machine, and in some cases even distributed over multiple machines with interconnects
such as Numascale [86]. The system memory can also be segmented in such a way that
access to other parts of system memory may have to traverse through other cores via
the processor interconnect. In our experiments, x86 processors are also often a part of
a heterogeneous architecture, with one or more GPUs connected over PCI Express as a
coprocessor.

In this section, we take a closer look at three case studies. The first case study pre-
sented in Section 3.2.1 is based on our article “Tips, Tricks and Troubles: Optimizing for
Cell and GPU” [112]. Even though that research paper was mainly focused on the Cell and
GPUs, we also conducted experiments on the efficiency of discrete cosine transformation
(DCT) algorithms and the effect of using SIMD on the x86. The second study presented
in Section 3.2.2 is based on our work on multi-rate encoding with the VP8 codec [34,35].
In these experiments, we use the shared memory model of the x86 architecture to reuse
parts of the computational heavy analysis stage of the video encoder. In the final study in
Section 3.2.3, we investigate the parallel execution of a game server [102], using a thread
pool to execute lightweight game server -related tasks running on a multi-socket x86 SMP
system.

3.2.1 Case study: Motion JPEG Encoding

We want to learn how to think when the multicore system at our disposal is a Cell, x86,
or GPU. We aim to understand how to use the resources efficiently and point out tips,
tricks, and problems as a small step toward a programming framework and a scheduler
that parallelizes the same code efficiently on several architectures. Specifically, we look at
effective programming for the workload-intensive yet relatively straightforward MJPEG
video encoding. This task consumes many CPU cycles in the sequential DCT, quantiza-
tion, and compression stages. On single-core systems, it is almost impossible to process
a 1080p high-definition (HD) video in real time, so it is reasonable to apply multicore
computing in this scenario.

Workload: MJPEG

The MJPEG format is widely used by webcams and other embedded systems. It is
similar to video codecs such as Apple ProRes and VC-3, used for video editing and
post-processing due to their flexibility and speed— hence the lack of inter-prediction
between frames. As shown in Figure 3.4, the encoding process of MJPEG comprises
the splitting of video frames into 8x8 macroblocks, each of which must be individually
transformed to the frequency domain by forward DCT and quantized before the output

40 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

ReadhYUV
hFrames

DCThand
hQuantize

8x8hBlocks

Variable
Length
Coding

Write
Bitstream

Figure 3.4: Overview of the MJPEG encoding process.

is entropy coded using variable-length coding (VLC). JPEG supports both arithmetic
coding and Huffman compression for VLC and our encoder uses predefined Huffman
tables for the compression of the DCT coefficients of each macroblock. The VLC step
is not context adaptive and macroblocks can thus be independently compressed. The
length of the resulting bitstream, however, is probably not a multiple of eight and most
such macroblocks must be completely bit-shifted when the final bitstream is created.

The MJPEG format provides many layers of parallelism; starting with the many inde-
pendent operations in calculating DCTs, the macroblocks can be transformed and quan-
tized in arbitrary order and frames and color components can be encoded separately. In
addition, every frame is entropy coded separately. Thus, many frames can be encoded in
parallel before the resulting frame output bitstreams are merged. This provides a very
fine level of granularity for parallel tasks, providing great flexibility in implementing the
encoder.

The forward two-dimensional (2D) DCT function for a macroblock is defined in the
JPEG standard for image component sy,x to output DCT coefficients Sv,u as

Sv,u =
1

4
CuCv

7∑

x=0

7∑

y=0

sy,xcos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16

where Cu, Cv = 1√
2

for u, v = 0 and Cu, Cv = 1 otherwise. The equation can be directly
implemented in an MJPEG encoder and is referred to as 2D plain. The algorithm can be
sped up considerably by removing redundant calculations. One improved version that we
label one dimensional (1D) plain uses two consecutive 1D transformations with a transpo-
sition operation in between and after. This avoids symmetries and the 1D transformation
can be optimized further. One optimization uses fast DCT, the Arai–Agui–Nakajima [5],
or AAN, further refined by Kovac and Ranganathan [72]. Another uses a precomputed
8x8 transformation matrix that is multiplied with the block together with the transposed
transformation matrix. The matrix includes the post-scale operation and the full DCT
operation can therefore be completed with just two matrix multiplications, as explained
by Kabeen and Gent [15]. More algorithms for calculating DCT exist, but they were not
covered in our experiments.

x86 Experiments

The first x86 experiments investigated the efficiency of choosing the correct algorithm for
the platform. We implemented the different DCT algorithms as scalar single-threaded
versions on an Intel Core i5-750 based on the Nehalem microarchitecture. The perfor-
mance details for encoding HD video were captured using Oprofile and can be seen in
Figure 3.5.

3.2. x86 Processor Architecture 41

2D-Plain 2D-Matrix 1D-Plain 1D-AAN
0

200

400

600

800

1000

1200

1400

1600
Av

er
ag

e
fr

am
e

en
co

de
 t

im
e

(m
s) Other

Quantize
VLC
DCT

Figure 3.5: MJPEG encoding time on a single-thread x86.

The plot shows that the 1D AAN algorithm using two transposition operations was the
fastest in this scenario, with the 2D matrix version second fastest. The average encoding
time for a single frame using a 2D-plain arrangement is more than nine times slower than
a frame encoded using 1D AAN. For all algorithms, the DCT step consumed the most
CPU cycles.

Using a scalar version of the DCT is not the most efficient use of the execution pipeline
on a x86 processor. We therefore took the simple DCT algorithm (2D plain) and optimized
it with Streaming SIMD Extension (SSE) vector instructions. The experiments were
conducted on an Intel Core i7-3720QM processor and the optimized version of the DCT
algorithm used the 128-bit SSE 4.2 instruction set. In this experiment, we use the 1080p
standard test sequence “tractor” to benchmark the implementation.

0 500 1000 1500 2000 2500 3000 3500

Average encode time (ms)

2D-Plain-Scalar

2D-Plain-SIMD

Figure 3.6: Scalar and SIMD versions with a 2D-plain arrangement on an x86.

The results are shown in Figure 3.6. The scalar version of the code that is a straight-
forward implementation of the 2D-plain algorithm uses around 3500 ms per HD frame.
The SIMD optimized version uses only 222 ms. This implementation uses 128-bit SIMD
vectors, meaning that we can process four DCT values in parallel, while the scalar version

42 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

only processes one value at a time.

Summary

These results show that even on the x86 processor architecture, it is important to both
choose the right algorithm and optimize the selected algorithm for the platform. However,
writing an SIMD version of the x86 code is, as we see later with Cell, a tedious process.
Everything must be done by hand and, since not all x86 processors support the same
SIMD instructions, you might need multiple versions of the optimization if you want code
portability.

3.2.2 Case Study: Multi-Rate Video Encoding with VP8

To learn more about the importance of sharing data between multiple threads and pro-
cesses when parallelizing multimedia workloads, we investigate how to use the x86 archi-
tecture for multi-rate video encoding with the VP8 codec. We use the shared memory
architecture of the x86 processors to reuse the computationally expensive analysis step
between multiple instances of the VP8 encoder running in different threads.

Setting

The amount of video data available on the Internet is exploding and the number of video
streaming services, both live and on demand, is quickly increasing. For example, consider
the rapid deployment of publicly available Internet video archives providing a wide range
of content such as newscasts, movies, and educational videos. Internet users uploaded 100
hours of video to YouTube every minute in October 2014 [139]. Furthermore, all major
(sports) events, such as European soccer leagues, NFL hockey, NBA basketball, and NFL
football, are streamed live with only a few seconds’ delay to millions of concurrent users
over the Internet, supporting a wide range of devices, from mobile phones to HD displays.
The number of videos streamed from such services is on the order of tens of billions
per month [37, 139] and leading industry experts conjecture that traffic on mobile phone
networks will soon be dominated by video content [23].

Adaptive HTTP streaming is frequently used on the Internet and is currently the
de facto video delivery solution. For example, Move Networks [81] was one of the first
providers of segmented adaptive HTTP streaming, later followed by major actors such as
Microsoft [141], DASH [110], Apple [96], and Adobe [2]. In these systems, the bitrate (and
thus video quality) can be changed dynamically to match varying bandwidths and CPU
resources, providing a large advantage over non-adaptive systems, which are frequently
interrupted due to buffer underruns or data loss. The video is thus encoded in multiple
bitrates matching different devices and different network conditions.

Today, H.264 is the most frequently used codec. However, an emerging alternative
is the simpler VP8, which is very similar to H.264’s baseline profile and supposedly well
suited for web streaming, with native support in major browsers, royalty-free use, and
similar video quality as H.264 [95, 108]. Nevertheless, for both codecs, the challenge in
the multi-rate scenario is that each version of the video requires a separate processing
instance of the encoding software. This may be a challenge in live scenarios, where all the
rates must be delivered in real time, and, in YouTube’s case, will require an enormous

3.2. x86 Processor Architecture 43

data center to maintain the upload rate. Thus, the process of encoding videos at multiple
levels of quality and data rates consumes both time and resources.

Workload: The VP8 Codec

The VP8 codec [9] was originally developed by On2 Technologies as a successor to VP7
and is a modern codec for storing progressive video. After acquiring On2 Technologies
in 2010, Google released VP8 as an open-source WebM project, a royalty-free alternative
to H.264. The WebM format was later added as a supported format in the upcoming
HTML5 standard.

Many of the features in the VP8 codec are heavily influenced by H.264. The VP8
codec has similar functionality as the H.264 baseline profile. One of the differences is that
VP8 has an adaptive binary arithmetic coder instead of context-adaptive VLC (CAVLC).
However, VP8 is not designed to be an all-purpose codec and it primarily targets web and
mobile applications. This is why VP8 has omitted features such as interlacing, scalable
coding, slices, and color spaces other than YUV 4:2:0. This reduces encoder and decoder
complexity while retaining video quality for the most common use case, that is, making
VP8 a good choice for lightweight devices with limited resources.

A VP8 frame is either of the intra-frame or the inter-frame type, corresponding to I-
and P-frames in H.264, but it has no equivalent to B-frames. In addition, VP8 introduces
the concept of tagging a frame as altref and golden frames, which are stored for reference
in the decoder. When predicting, blocks may use regions from the immediately previous
frame, from the last golden frame, or from the last altref frame.

The encoding loop of VP8 is very similar to that of H.264. The process consists of an
analysis stage, which decides if intra- or inter-prediction will be used, DCT, quantization,
dequantization, and inverse DCT (iDCT), followed by an in-loop deblocking filter. The
result of the quantization step is entropy coded using a context-adaptive Boolean entropy
coder and stored as the output bitstream. The output bitrate of the resulting video is
dependent on the prediction parameters in the bitstream and quantization parameters.

Multi-Rate Encoding

The multi-rate encoder is based on the reference VP8 encoder, released as part of the
WebM project [9]. Figure 3.7 shows a simplified call graph of the VP8 reference encoder.
In this call graph, we can see the flow of the program, how many times a function has
been called, and the percentage of execution time spent in different parts of the code.
The basic flow of the entire encoder is illustrated in the upper part of Figure 3.8, with an
analysis and the encoding part of the pipeline.

The analysis part consists of macroblock mode decision and intra/inter-prediction,
which corresponds to vp8 rd pick inter mode in Figure 3.7. The encode part refers to
transformation, quantization, dequantization, and inverse transformation, corresponding
to the functions vp8 encode inter* and vp8 encode intra* for the various block modes
chosen. The Output involves entropy coding and writing the output bitstream to a file.
This part of the encoder is not shown in the call graph. Profiling of the VP8 encoding
process shows that during encoding of the foreman test sequence, over 80% of the execu-
tion time is spent in the analysis part of the code; that is, if this part can be reused for
encoding operations for other rates, resource consumption can be greatly reduced. This

44 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

vp8e_encode

vp8_get_compressed_data

encode_frame_to_data_rate

vp8_encode_frame

encode_mb_row

99.99l%

99.97l%

99.97l%

99.61l%

99.61l%

101lx

50lx

59lx

4l012lx

vp8cx_encode_intra_macro_block vp8cx_encode_inter_macroblock

24l480lx 456l960lx

90.93l%5.48l%

vp8_encode_inter16x16vp8_rd_pick_inter_mode

6.47l%

394l343lx456l960lx

82.82l%

Figure 3.7: Profile of the main parts of the reference VP8 encoder.

can be done because the outputs have identical characteristics except for the bitrate and
the main difference between them involves the quantization parameters. Regardless of
the target bitrate, the analysis step that includes searching for motion vectors and other
prediction parameters can be carried out without considering the target bitrate, trading
this for prediction accuracy.

To evaluate this approach, we implemented a VP8 encoder with support for multi-
ple outputs. We reused a single analysis step for several instances of the encoding part,
as seen in Figure 3.8. This mitigates the requirements for re-doing the computationally
heavy analysis step and at the same time allows the encoding instances to emit different
output bitrates by varying the quantization parameters in the encoder step. The encoder
starts one thread for each specified bitrate, where each thread corresponds to a separate
encoding instance. The instances have identical encoding parameters, such as key frame
interval and subpixel accuracy, except for the target bitrate. Since the bitrate varies,
each instance must maintain its own state and reconstruction buffers. The threads are
synchronized on a frame-by-frame basis, where the main encoding instance analyzes the
frame before the analysis computations are made available to the other threads. This pro-
cess involves macroblock mode decision and intra- and inter-prediction. The non-main
encoding instances reuse these computations directly without carrying out the computa-
tionally intensive analysis steps. Most notably, vp8 rd pick inter mode (Figure 3.7) is
only performed by the main encoding instance. Since the VP8 encoder is not written with
the intention of running multiple encoding instances in parallel, the encoder goes through

3.2. x86 Processor Architecture 45

Input 1000
setRate

Analysis Encode Output

Encode Output

Encode Output

Encode Output

750
setRate

500
setRate

250
setRate

Figure 3.8: Basic flow for the multi-rate VP8 encoder.

significant changes to adapt itself to run multiple instances in parallel.

Experiments

For this case study, we include only one of the experiments that investigated encoding
performance at HD resolution. We do not include quality assessment tests, prediction
bitrate selection, and the analysis of encoding behavior for different content. These tests
are considered out of the scope of this thesis and can be found in paper V [34].

In the HD streaming scenario, we performed experiments using the 1080p resolution
test sequence blue sky encoded at 1500 kbps, 2000 kbps, 2500 kbps, and 3000 kbps. To
measure performance, we used time to measure the CPU time consumed. All experiments
were run on a four-core Intel Core i5-750 processor based on the Nehalem microarchitec-
ture. This processor does not support SMT.

Figure 3.9 shows the results for the four different output rates. To see if there is a
difference for the different prediction bitrates chosen when using the multi-rate encoder,
we included one test for each prediction bitrate. These results are compared to the
combined CPU time used when encoding the videos for the same rates using the reference
encoder with both a single thread and multiple threads. The CPU time used in the
multi-rate approach needs only 40.5% of the time it takes to encode four sequences using
the reference encoder. The multi-rate approach scales further if the number of encoded
streams is increased. In addition, the time spent in kernel space is far less in the multi-rate
approach compared to the reference encoder and we believe this is a result of reading the
source video from disk only once.

Summary

To demonstrate our idea, we implemented a prototype that reuses the most expensive
operations based on a performance profile of the encoding pipeline. In particular, our
multi-rate encoder reuses the analysis part consisting of macroblock mode decision and
intra/inter-prediction. The experimental results indicate that we can encode the different
videos at the same rates with approximately the same levels of quality compared to the
VP8 reference encoder, while significantly reducing the encoding time.

46 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

M
ul

ti
 r
at

e
-
15

00

M
ul

ti
 r
at

e
-
20

00

M
ul

ti
 r
at

e
-
25

00

M
ul

ti
 r
at

e
-
30

00

Re
f.

Se
ri
al

Re
f.

C
on

cu
rr
en

t

0

200

400

600

800

1000

C
P
U

 t
im

e
 i
n
 S

e
c
o
n
d
s
 (

s
)

Kernel

User

Figure 3.9: CPU time in an HD streaming scenario (blue sky).

We analyzed and performed experiments with Google’s VP8 encoder, encoding differ-
ent types of video at multiple rates for various scenarios. Our main contribution is that we
propose a way of reusing decisions from intra- and inter-prediction in the video encoder
to avoid computationally expensive steps that are redundant when encoding for multiple
target bitrates of the same video object. The method can be used in any video codec,
comprising an analysis and encoding step with similar structure as for H.264 and VP8.
Furthermore, the method was implemented in the VP8 reference encoder as a case study
and the experimental results show that the computational demands are significantly re-
duced at the same rates and approximately the same quality levels compared to the VP8
reference implementation; that is, for a negligible loss in quality in terms of PSNR, the
processing costs can be greatly reduced.

We also learned that the shared memory architecture on the x86 is suited for sharing
the data from the computationally expensive steps in the VP8 encoder. Our experiments
also show that if we use multiple instances of the reference encoder, the performance is
actually better if the workload is executed sequentially instead of concurrently. This is
due to greater contention in both the operating system scheduler and on buses, caches,
and execution resources on the CPU.

3.2.3 Case Study: Parallel Execution of a Game Server

Many multimedia workloads are massively parallel and, when such workloads are opti-
mized on the x86 architecture, the number of threads used is an important parameter.
Too many threads will result in decreased performance due to the context switching over-
head in the operating system. With our game server workload, we want to investigate
this threshold on the x86 architecture.

3.2. x86 Processor Architecture 47

Setting

Over the last decade, online multiplayer gaming has experienced amazing growth. Providers
of the popular online games must deliver reliable service to thousands of concurrent play-
ers, meeting strict processing deadlines for the players to have an acceptable quality of
experience.

One major goal for large game providers is to support as many concurrent players in a
game world as possible while preserving strict latency requirements for the players to have
an acceptable quality of experience. The load distribution in these systems is typically
achieved by partitioning game worlds into areas of interest to minimize message passing
between players and allow the game world to be divided between servers. Load balancing
is usually completely static, where each area has dedicated hardware. This approach is,
however, limited by the distribution of players in the game world and the problem is that
the distribution of players is heavily skewed, with about 30% of players in 1% of the game
area [20]. To handle the most popular areas of the game world without reducing the
maximum interaction distance for players, individual spatial partitions cannot be serial.
The most CPU-intensive loads for a massively multiplayer online game (MMOG) server
are in situations in which the players experience the most “action.” Hence, the worst-case
scenario for a server is when a large proportion of the players gather in a small area for
high-intensity gameplay.

The traditional design of MMOG servers relies on sharding for further load distribution
when too many players visit the same place simultaneously. Sharding involves making a
new copy of an area of a game, where players in different copies are unable to interact.
This approach eliminates most requirements for communication between the processes
running individual shards. An example of such a design can be found in Chu et al. [22].

The industry is now experimenting with implementations that allow for greater lev-
els of parallelization. One example is Eve Online [30], which avoids sharding and allows
all players to potentially interact. Large-scale interactions in Eve Online are handled
through an optimized database. At the local scale, however, the servers are not paral-
lel and performance is extremely limited when too many players congregate in one area.
With a lockless, relaxed atomicity state (LEARS), we take this approach even further
and focus on how many players can be handled in a single game world segment. We
present a model that allows for better resource utilization of multiprocessor game server
systems that should not replace spatial partitioning techniques for work distribution but,
rather, complement them to improve on their limitations. Furthermore, a real prototype
game is used for evaluation, where captured traces are used to generate server loads. We
compare multithreaded and single-threaded implementations to measure the overhead of
parallelizing the implementation and to demonstrate the experienced benefits of paral-
lelization. The change in responsiveness of different implementations with increased loads
on the server is studied and we discuss how generic elements of this game design impact
performance on our chosen implementation platform.

Workload: LEARS Model Game Server

Traditionally, game servers have been implemented much like game clients: based around
a main loop that updates every active element in the game. These elements include, for
example, player characters, non-player characters, and projectiles. The simulated world

48 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

has a list of all the active elements in the game and typically calls an update for each
element. The simulated time is kept constant throughout each iteration of the loop, so
that all the elements obtain updates at the same points in simulated time. Such a point
in time is referred to as a tick. Using this method, the active element performs all its
actions during the tick. Since only one element updates at a time, all actions can be
performed directly. The character reads input from the network, performs updates on
itself according to the input, and updates other elements with the results of its actions.

LEARS is a game server model with support for lockless, relaxed atomicity state
parallel execution. The main concept is to split the game server executable into lightweight
threads at the finest possible granularity. Each update of every player character, AI
opponent, and projectile runs as an independent work unit.

White et al. [130] describe a model they call a state-effect pattern. Based on the
observation that changes in a large actor-based simulation are happening simultaneously,
the model separates read and write operations. Read operations work on a consistent
previous state and all write operations are batched and executed to produce the state
for the next tick. This means that the ordering of events scheduled to execute in a tick
does not need to be considered or enforced. For this design, we additionally remove the
requirement of batching write operations, allowing these to happen at any time during the
tick. The rationale for this relaxation is found in the way traditional game servers work.
In the traditional single-threaded main loop approach, every update is allowed to change
any part of the simulation state at any time. In such a scenario, the state at a given time
is a combination of values from two different points in time, current and previous, exactly
the same situation as in the design presented here.

The second relaxation relates to the atomicity of game state updates. The fine granu-
larity creates a need for significant communication between threads to avoid problematic
lock contention. Systems where elements can only update their own state and read any
state without locking [1] obviously do not work in all cases. However, game servers are
not accurate simulators and, again, depending on the game design, some (internal) errors
are acceptable without violating game state consistency.

The end result of our proposed design philosophy is that there is no synchronization in
the server under normal running conditions. Since there are cases in which transactions
are required, they can be implemented outside the LEARS event handler, running as
transactions requiring locking.

Design and Implementation

In our experimental prototype implementation of the LEARS concept, the parallel ap-
proach is realized using thread pools and blocking queues. The creation and deletion of
threads incur large overheads and context switching is an expensive operation. These
overheads constrain a system’s design, that is, threads should be kept as long as possible,
and the number of threads should not grow unbounded. We use a thread pool pattern to
work around these constraints and a thread pool executor (the Java ThreadPoolExecutor

class) to maintain the pool of threads and a queue of tasks. When a thread is available,
the executor picks a task from the queue and executes it. The thread pool system itself is
not preemptive, so the thread runs each task until it is done. This means that, in contrast
to normal threading, each task should be as small as possible, that is, larger units of work

3.2. x86 Processor Architecture 49

Position
Update

Cone
Attack

Projectile
Attack

Character
Update

Execute
Workload

Network
Worker

Network
Selector

Thread Pool

Dispatch

C
P

U
 1

C
P

U
 2

C
P

U
 3

C
P

U
 4

C
P

U
 5

C
P

U
 6

C
P

U
 7

C
P

U
 8

Figure 3.10: Design of a game server.

should be split up into several sub-tasks.

The thread pool is a good way to balance the number of threads when the work is
split into extremely small units. When an active element is created in the virtual world,
it is scheduled for execution by the thread pool executor and the active element updates
its state exactly as in the single-threaded case. Furthermore, our thread pool supports
the concept of delayed execution. This means that tasks can be put into the work queue
for execution at a specified time in the future. When the task is finished for one time slot,
it can reschedule itself for the next slot, delayed by a specified time. This allows active
elements to have any lifetime, from one-shot executions to the duration of the program.
It also allows different elements to be updated at different rates, depending on the game
developer’s requirements.

All work is executed by the same thread pool, including the slower input/output (I/O)
operations. This is a consistent and clear approach, but it does mean that game updates
could be stuck waiting for I/O if not enough threads are available.

The thread pool executor used as described above does not restrict which tasks are
executed in parallel. All systems elements must therefore allow any of the other elements
to execute concurrently.

To enable fast communication between threads with shared memory (and caches), we
use blocking queues, using the Java BlockingQueue class, which implements queues that
are synchronized separately at each end. This means that elements can be removed from
and added to the queue simultaneously and, since each of these operations is extremely
fast, the probability of blocking is low. Thus, these queues allow information to be passed
between active objects. Each active object that can be influenced by others has a blocking
queue of messages. During its update, it reads and processes the pending messages from
its queue. Messages are processed in the order they were put in the queue. Other active
elements put messages in the queue to be processed when they need to change the state
of other elements in the game.

Messages in the queues can only contain relative information and not absolute values.
This restriction ensures that the change is always based on updated data. For example,

50 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

if a projectile needs to tell a player character that it took damage, it should only inform
the player character about the amount of damage, not the new health total. Since all
changes are put in the queue and the entire queue is processed by the same work unit, all
updates are based on up-to-date data.

To demonstrate LEARS, we implemented a prototype game containing all the basic
elements of a full MMOG, with the exception of persistent states. The system was imple-
mented in Java. This programming language has strong support for multithreading and
has well-tested implementations of all the required components. The basic architecture
of the game server is described in Figure 3.10. The thread pool size can be configured
and will execute the different workloads on the CPU cores. The workloads include the
processing of network messages, moving computer-controlled elements (only projectiles in
this prototype), checking for collisions and hits, and sending outgoing network messages.

Experiments

In this case study, we only include the resource consumption and thread pool size ex-
periments. We also conducted experiments on client latency. These tests are considered
beyond the scope of this thesis, but the experiments can be found in paper VI [102].

To simulate realistic game client behavior, the game was run with five people playing
the game with a game update frequency of 10 Hz. The network input to the server
from this session was recorded with a timestamp for each message. The recorded game
interactions were then played back multiple times in parallel to simulate a large number
of clients. To ensure that client performance was not a bottleneck, the simulated clients
were distributed among multiple physical machines. Furthermore, since an average client
generates 2.6 kbps of network traffic, the 1 Gbps local network interface that was used
for the experiments did not limit the performance. The game server was run on a server
machine containing four dual-core AMD Opteron 8218 processors with a total of 16 GB
of RAM (4 GB of RAM per socket).

We investigated resource consumption when players connected to the game server as
shown in Figure 3.11. We present the results for 620 players, since this is the highest num-
ber of simultaneous players that the server could handle before a significant degradation
in performance. The server was able to keep the update rate smooth, without signifi-
cant spikes; CPU utilization grew while the clients were logging on and then stabilized at
almost full CPU utilization for the rest of the run.

To investigate the effects of the number of threads in the thread pool, we performed
an experiment where we kept the number of clients constant while varying the number
of threads in the pool. A total of 700 clients were chosen, since this number slightly
overloads the server. The number of threads in the pool was increased in increments of
two, from two to 256. Figure 3.12 clearly shows that the system utilizes more than four
cores efficiently, since the four-thread version shows significantly higher response times.
At one thread per core or more, the numbers are relatively stable, with a tendency toward
consistently lower response times with more available threads, up to about 40 threads.
This could mean that threads are occasionally waiting for I/O operations. Since thread
pools are not preemptive, such situations would lead to one core going idle if there were
no other available threads. Too many threads, on the other hand, could lead to excessive
context switch overhead. The results show that the average slowly increases after about

3.2. x86 Processor Architecture 51

20
0

40
0

60
0

80
0

C
PU

 lo
ad

 (%
)

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Seconds since start of test

R
es

po
ns

e
tim

e
(s

)

Figure 3.11: CPU load and response time for 620 concurrent clients on a multi-threaded
server.

0 50 100 150 200 250

0
50

0
10

00
15

00
20

00
25

00

Number of threads in threadpool

D
el

ay
 p

er
 s

ch
ed

ul
ed

 ru
n

(m
s)

Figure 3.12: Response time for 700 concurrent clients, using various numbers of threads.
The shaded area indicates the fifth to 95th percentiles.

52 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

50 threads, though the 95th percentile is still decreasing with an increasing number of
threads, up to about 100. From then on, the best case worsens again, most likely due to
context switching overhead.

Summary

In terms of programming techniques, we have shown that we can improve resource utiliza-
tion by distributing the load across multiple CPUs in a unified memory multiprocessor
system. This distribution is made possible by relaxing constraints on the ordering and
atomicity of events. The system scales well, even in the case in which all players must
be aware of all other players and their actions. The thread pool system balances load
well between the cores and its queue-based nature means that no task is starved unless
the entire system lacks resources. Message passing through the blocking queue allows
objects to communicate intensively without blocking each other. Running our prototype
game, we show that the eight-core server can handle a factor of two more clients before
the response time becomes unacceptable.

Our results indicate that it is possible to design an “embarrassingly parallel” game
server. We also observe that the implementation is able to handle a quadratic increase
in in-server communication when many players interact in a game world hotspot. The
experiments also show that if too many threads are added to the thread pool, performance
will decrease. This is mainly due to greater contention in the operating system scheduler.
We also saw the importance of balancing the number of threads with the number of CPU
cores available in the system. If the size of the thread pool is too large, the delays on the
game server will increase.

3.2.4 Implications

The x86 architecture is very straightforward for application development. The architec-
ture uses a shared memory model, which means that all the processors available to an
operating system are able share the memory and the processor manufacturers have im-
plemented cache coherency protocols to make sure that the data in all the caches are
updated. However, this comes at a cost. The traffic generated by these protocols can
end up starving the bandwidth on the inter-core communication buses that are used for
sharing data and accessing memory.

On asymmetric architectures such as the Cell, IXP, and GPUs, on often has specialized
cores that are fast for specific operations. On the x86, all the cores are general purpose.
However, they often have specialized functions, such as SSE/AVX units, to carry out fast
vector operations, but this requires the applications to be optimized by hand.

Another challenge with the x86 when running an application with many threads is
that the threads on the platform are not as lightweight as on the Cell or on GPUs and
too many threads executing on too few cores will result, as we saw in Section 3.2.3, in loss
of performance due to the context switching overhead. We also saw the same trends with
the VP8 encoder in Section 3.2.2. Running Google’s reference encoder serially provided
better performance than running it concurrently.

The x86 hides a great deal of the architectural details from programmers. This makes
the architecture very easy to use, but comes at the cost of performance.

3.3. Graphics Processing Units 53

Revisiting with State-of-the-Market Hardware

If we were to revisit these experiments with the latest generation of Haswell x86 processors,
we would probably obtain better performance. The advantage for end users with the x86
is its backward compatibility. This means that we can just run the programs, even
without recompiling them. This is not an optimal solution for hardware manufacturers.
Compatibility with old instructions makes these processors’ designs more complex, which
increases their power consumption. However, if we want to utilize the more advanced
vector instructions and other extensions (i.e., transactional memory support) that are
added in new generations of processors, we still have to rewire the applications for support.

3.3 Graphics Processing Units

A GPU is an asymmetric coprocessor that is often connected to the CPU with a PCI
Express bus. In some cases, it can also be integrated onto the CPU die. The GPU is a
highly parallel architecture and, where an x86 processor would require tens of threads to
achieve peak performance, a GPU would typically require thousands of threads. A GPU,
like the Cell, has an exclusive memory model. The GPU has multiple off-chip and on-chip
memory types that a programmers must use correctly to achieve the best performance.
The main focus for our experiments on the GPU was first to learn how they performed in
different scenarios and, later, how we could offload parallel parts of multimedia workloads.

In the following section, we take a closer look at four case studies. First, in Sec-
tion 3.3.1, we look at how to use the memory correctly and the implications of not choos-
ing the right memory space. Next, in Section 3.3.2, we look at communication patterns
between the host CPU and the GPU, using a multimedia workload. In Section 3.3.3, we
use the GPU to detect cheating in a multiplayer game and, finally, in Section 3.3.4, we
look at the MJPEG workload that we also touched upon in the Cell and x86 portions of
this chapter.

3.3.1 Case Study: GPU Memory Spaces and Access Patterns

To obtain the best possible performance when using a GPU, programmers need to be
careful when it comes to resource usage. Registers per thread, occupancy on the GPU,
memory placement, and access patterns are properties of a GPU kernel that are impor-
tant for achieving optimal performance. As part of a master’s thesis [94], we conducted
experiments with the memory architecture on GPUs released in 2006 and 2008 based on
the Nvidia Tesla architecture.

To gain a better understanding of how to optimize memory access, the programmer
needs to be aware of how memory instructions are executed by the memory controller on
the GPU. This is especially important in the case of global memory, since it is used by
every thread and it is the memory space with the highest latency. The threads on an
Nvidia GPU are scheduled in groups of 32 threads called warps. To make the scheduling
more flexible, the memory transactions from a warp are executed on a half-warp basis.
This is due to the design of the shared memory and to ease the handling of memory
transactions from threads in a divergent warp. Divergence within a warp means that

54 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

threads execute different instructions, which can be due to branching in the code or idle
threads.

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 9

Thread 10

Thread 11

Thread 12

Thread 13

Thread 14

Thread 15

Address 0

Address 4

Address 8

Address 12

Address 16

Address 20

Address 24

Address 28

Address 32

Address 36

Address 40

Address 44

Address 48

Address 52

Address 56

Address 60

64 byte
segment

(a) Coalesced access pattern

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 9

Thread 10

Thread 11

Thread 12

Thread 13

Thread 14

Thread 15

Address 0

Address 256

Address 512

Address 768

Address 1024

Address 1280

Address 1536

Address 1792

Address 2048

Address 2304

Address 2560

Address 2816

Address 3072

Address 3328

Address 3584

Address 3840

(b) Uncoalesced access pattern

Figure 3.13: Global memory access patterns.

The half-warps executing on the GPU are most efficient when memory access from
simultaneously running threads can be combined into a single memory transaction to
global memory. This is known as a coalesced memory transaction. The half-warp must
meet certain requirements to coalesce the memory transaction and these requirements
are determined by the GPU’s compute capability. The compute capability also affects
how the transactions are issued. If the requirements are not met, this is referred to as a
uncoalesced memory transaction.

An example of a coalesced and an uncoalesced access pattern is illustrated in Figures
3.13(a) and 3.13(b). In this example, coalesced access is achieved by having each thread
access a 32-bit word in sequence within a 64-byte segment. The uncoalesced access reads
values from different segments, making it impossible for the memory controller to coalesce
such access.

Global Memory

Global memory is used most efficiently when all the threads of a half-warp can issue a
coalesced memory transaction. The size of a memory transaction that can be executed
depends on the compute capability supported by the GPU. A 64- and a 128-byte trans-
action can be performed on a compute capability of 1.0 and 1.1 GPU, while a compute
capability of 1.2 and greater also added support for 32-byte transactions. The transaction

3.3. Graphics Processing Units 55

size is important, since global memory is considered to be partitioned into segments of 32
bytes, 64 bytes, or 128 bytes.

Constant and Texture Memory

The constant and texture memory spaces are designed for read-only data structures that
have elements that reside close in memory. The memory spaces are limited in size, are read
only, and are therefore not always suitable for certain applications. Both memory spaces
use a caching mechanism in which an 8-kB cache is available for both texture and constant
memory on each SM/SMX. If there is a cache miss, a read costs the same as a fetch from
global memory, since both memory spaces are subsets of global memory. An advantage
of using these read-only memory spaces is that the requirements for optimal performance
are not as strict as in global memory. Threads of a warp that read texture addresses that
are close together will achieve the best performance; so, mapping the read-only data to
fit this alignment is considered a good optimization.

The texture and constant caches differ in the kind of locality for which they are
optimized. The constant cache is as fast as reading a register, as long as all the threads in
a half-warp read from the same address (data element), and the cost scales linearly with
the number of different addresses that are read. The texture cache is a more flexible cache,
since it does not require each thread to read the same address for full speed. However,
having threads read addresses that are close to each other is recommended, since the
cache is optimized for 2D spatial locality used in imaging. Texture memory is normally
used for the storage of texture data used for rendering images.

Experiments and Summary

Coalesced memory access can have a large performance impact. However, few quantified
results exist and the efficient usage of memory types, alignment, and access patterns
remains an art. Weimer et al. [129] experimented with bank conflicts in shared memory
but, to shed light on the penalties of inefficient memory type usage, further investigation
is needed. We therefore performed experiments that read and wrote data to and from
memory with both uncoalesced and coalesced access patterns [94] and used the Nvidia
CUDA Visual Profiler to isolate the GPU times for the different kernels.

0 10 20 30 40

Time (ms)

Global coalesced

Constant caching

Texture coalesced

Global uncoalesced

Constant uncoalesced

Texture uncoalesced

Figure 3.14: Optimization of GPU memory access.

56 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

Figure 3.14 shows that an uncoalesced access pattern increases the latency of the data
transfer on the order of four times due to the increased number of memory transactions.
Constant memory and texture memory are cached and the performance of their unco-
alesced access is improved compared to global memory, but there is still a three-time
penalty. Furthermore, the cached memory types support only read-only operations and
are restricted in size. When used correctly, the performance of global memory is equal
to the performance of the cached memory types. The experiment also shows that correct
memory usage is imperative, even when cached memory types are used. It is also im-
portant to ensure that the memory access follows the specifications of particular GPUs
because the optimal access patterns vary between GPU generations [94].

3.3.2 Case Study: Host–Device Communication Optimization

A very important aspect of using a GPU is moving the data from the host CPU into
the GPU as quickly as possible. While doing this, it is also important to always have
workloads ready for the GPU and not leave any cores idle. As part of a master’s thesis [13],
we performed experiments on a CUDA-based H.264 encoder from the National University
of Defense Technology, China. The encoder is called cuve264b and is a port of their
streaming HD H.264 encoder [134] to the CUDA architecture. In this thesis, we investigate
the effects of optimizing communications between the host CPU and the GPU. For details
about the H.264 video compression standard and for a full evaluation, the reader should
consult the master’s thesis mentioned [13].

The cuve264b encoder uses slices to help parallelize the encoding process. By dividing
each frame into multiple slices, the encoder can encode each slice independently. In a
snapshot of the encoder on which we conducted our experiments, the number of slices
was hard-coded to 34. This version also only supports the 1080p resolution. However,
720p resolution was added later. All the tests in this experiment were conducted on a
GeForce GTX 480 GPU based on the Fermi compute architecture. The CPU used in
the experiments was an Intel Core i7-860 based on the Nehalem microarchitecture, with
Hyper-Threading Technology (SMT) enabled.

To ensure that video frames from the host CPU are always available to the GPU,
readahead was been implemented on the CPU side and makes sure that the encoder has
finished reading the frames of uncompressed videos into main memory before the frame
is requested by the GPU. This is one of the optimizations implemented to make sure that
the cores in the GPU are never idle. By optimizing the code with readahead on the host
CPU side, we were able to reduce the encoding time by around 20% [13].

CUDA Streams

Readahead was implemented by using multiple threads on the host CPU to asynchronously
perform the IO operations. However, multiple threads on the host cannot perform con-
current operations on the GPU. To enable this, CUDA provides an asynchronous API
called CUDA Streams [92]. This API allows us to copy data directly into the GPU’s
global memory and queue up multiple operations on the GPU. These operations are per-
formed asynchronously to the host threads and the GPU is able to perform some of the
operations concurrently. In early-generation GPUs from the Tesla architecture, it was

3.3. Graphics Processing Units 57

only the transfer of data between the host and device and the computations that could
be overlapped. With the next generation of GPUs from the Fermi architecture, the GPU
could concurrently execute up to 16 kernels while transferring a single stream. To en-
able asynchronous memory transfers, pinned memory must be used on the host. This
enables the direct memory access (DMA) engine on the GPU to transfer the data without
involving the CPU.

Experiments and Summary

To measure the effects, we implemented asynchronous transfers in the cuve264b encoder.
We also implemented support for reusing memory, since pinned memory is a limited
resource and slow to allocate. As we can see from Figure 3.15, the asynchronous transfers
are about 10 times faster than the synchronous version. The results depend on the number
of frames that have to be encoded, so, since our test sequences are of limited length, the
difference would be greater for long videos, such as feature films and television shows.

Tractor Pedestrian Area Blue Sky
0

5

10

15

20

25

30

35

40

Ti
m

e
us

ed
 f

or
 t

ra
ns

fe
rs

 (
m

s)

Synchronous
Streams

Figure 3.15: Total time spent on transfers to GPU on three different 1080p sample videos.

Our experiments show that using asynchronous transfers such as CUDA Streams to
overlap the transfers with computations for large workloads such as H.264 reduces the
GPU idle time and consequently also the encoding time. With newer computing devices
from the Fermi architecture, the GPU is also able to schedule and execute other kinds
of processing tasks concurrently, not only overlap computations from a single kernel and
memory transfers.

58 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

3.3.3 Case Study: Cheat Detection

When offloading parts of a processing pipeline to a GPU, the data transfer from the host
CPU will add latency to the execution. It is therefore important to make sure that the
offloaded workload is large enough to overcome this transfer latency. In this section, we
use a cheat detection workload to test this effect on a GPU.

Setting

On-line multiplayer gaming has experienced amazing growth over the last decade and
has been accompanied by cheating as the most prominent type malicious game player
behavior [137]. It is in the best interest of game service providers to eradicate cheating.
However, the demand for stable service for resource-intensive games restricts the amount
of resources that can be dedicated to cheat detection mechanisms.

Many on-line multiplayer games suffer from excessive cheating in one form or another.
However, in many cases, cheating is hard to prove [99]. The only part of a distributed
system that a game service provider can trust is the part of the system running on
hardware under their control. Any other part of the system can and will most likely be
exploited by a cheater.

In-game physics, aimed to increase game realism, has experienced increased popularity
in many kinds of games. Most games that have implemented in-game physics use it as
a major part of the gameplay experience, some even basing the entire gameplay around
physics alone. In-game physics is therefore a very likely part of a game to be exploited.
To address this problem, central servers or other trusted entities must ensure consistency
in the movements of all the clients in the game. With our approach, the physics engine
can be implemented on the server together with the cheat detection mechanisms. This
solution frees resources on the game clients; however, it requires more hardware on the
server side.

Adding more hardware to a system can increase its performance, but this is only a
temporary solution. The hardware used in commercial game server clusters is expensive
and the performance gained might only be sufficient for a short period. Because of the
physical limitations halting the increase in single-threaded performance in normal CPUs,
further performance increase is accomplished by adding more identical processing cores.
The modern GPU is a relatively inexpensive example of such a parallel architecture.
The process of adding new and faster hardware is now slowly substituted by migrating
systems to parallel processors. For this change to be beneficial, serial algorithms must be
parallelized.

Our goal in this case study is to use an example cheat detection workload to learn
about the overhead of moving the data to the GPU. If we offload too small of a workload
to a GPU, the overhead of the data transfer will be greater than the time it takes to
perform the calculations on the CPU.

Workload: Cheat Detection

To show the benefits of using a GPU for cheat detection, we created a simple space race
game simulation where the spacecrafts must visit virtual positions, also referred to as
targets. The clients are placed randomly in the virtual world, giving some clients an

3.3. Graphics Processing Units 59

advantage, since they might be placed closer to a target. When a target is reached, the
clients continue to the next target.

The simulation follows a client–server-based game architecture where all clients send
their position updates to the server. This approach is chosen for the same reasons as in
consumer market game development: ease of development, total control of client commu-
nication, and a centralized control point. Discrete clients are created within the simulation
and communication follows the same flow that would be normal in a networked multi-
player game. Furthermore, because we wanted to design our simulation independent of
wall-clock time, we used an artificial timeline based on game ticks. A tick is a theoretical
time duration specified in the system’s configuration.

To allow for reproducible tests, the simulation uses two different modes of operation,
named the generation mode and the playback mode. The generation mode uses the
principles of the game to determine the random placement of a given number of clients
in a virtual environment. From these positions, the clients try to reach the closest target.
After reaching a target, they continue to the next target, using a thruster to propel
themselves. External forces, such as gravity, affect the clients. While this is happening,
the server writes each client’s location in the virtual environment to several files. These
files are used in playback mode. Generation mode also generates movement for cheaters.
The numbers of cheaters can be adjusted in generation mode. A cheater behaves in the
same manner as an honest client but regularly performs unrealistic motions. Playback
mode initializes the clients. The client state information is read from the files generated
in generation mode and the states are reported to the server. The server samples the
state information updates from every client, placing the samples in a sample buffer. The
buffer is read by the cheat detection thread when full.

Because all clients in the game were controlled by the computer, rules were needed
to determine their behavior in trying to reach a target. To reach their targets, the
clients required motion planning. We did not implement any advanced motion planning
algorithms. The clients knew the targets that they reached. After a target was reached,
the clients continued to the closest unaccomplished target. Client movement was restricted
by the physical model. Honest clients did not break the rules of the model, while cheating
clients did.

In our simulation, the objects experienced both linear and angular acceleration. There
was a constant gravitational pull affecting the objects, much like the gravity on Earth. All
the other forces were generated by the objects themselves, using thrusters. Figure 3.16
shows an outline of a game object, with a main rear thruster and bow thrusters. Objects
moved forward with the rear thruster and rotated using the bow thrusters. The size and
thruster power could be modified by parameters.

The physics engine is one of the main parts of the simulation. The engine is responsible
for calculating the sum of all physical forces acting on all objects and updates their
positions accordingly. The physics engine is controlled by configuration parameters that
allow one to change physical properties quickly, even during runtime. Game objects are
registered with the physics engine, so it maintains a pool of objects to manage. Updates
of the parameters of an object, such as throttle, are handled by the individual clients.
Integration of the time steps from one game tick to the next is carried out by the engine.
The physics engine does this by updating every game object in the object pool. The main
implementation of the physics engine runs on the CPU and is only used in generation

60 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

Bow thrusters

Main thruster

Figure 3.16: Illustration of a game object with bow thrusters in the front and the main
thruster in the back.

mode. During playback mode, the cheat detection mechanisms act as a reverse physics
engine; they try to determine if the position updates are valid within the current physical
model.

The physical model used in this example is a simple model, with only a couple of
physical effects. The most basic of these effects is linear motion. Basic linear motion is
implemented using Newton’s second law of motion:

∑
F = ma (3.1)

This law states that the sum of all forces acting on an object is the product of the
object’s mass and its acceleration. The acceleration is measured by observing the change
in speed over a known distance. In our game, two linear forces act on an object. The first is
the acceleration applied by the game object’s main thruster, as illustrated in Figure 3.16.
The second is the vertical gravity, which is constant throughout the entire model. The
total linear force is represented by the sum of these two vectors.

The second physical effect is angular motion. To allow object rotation in all dimen-
sions, the properties of the objects in the game must be extended. Similar to the linear
motion properties of distance, velocity, and acceleration, we have angular motion proper-
ties. The equations

Ω =
dω

dt
(3.2)

ω =
dα

dt
(3.3)

where Ω is the angular displacement of an object in radians, ω is its angular velocity in
radians per second, and α is its angular acceleration in radians per second squared, show
these relations.

Angular motion is applied to the game objects when the bow thrusters illustrated
in Figure 3.16 are used to change the course of an object. Support for collisions is

3.3. Graphics Processing Units 61

implemented in the model. However, due to lack of time, it was not implemented in the
cheat detection mechanisms. It was only present in generation mode.

There are different ways to cheat in the simulation. Clients cheat by either temporarily
modifying the power of their thrusters or modifying the values of their current state: their
position, velocity, and rotation. If a cheating client temporarily increases the capabilities
of one of its thrusters, it is able to accelerate faster, perform quicker turns. Cheaters
who change their state can position themselves closer to a target or change their rotation
to point toward a target. They might also increase or decrease the magnitude of their
velocity vector when either dashing for a target or slowing down to avoid passing a target.

Implementation

We implemented two versions of the cheat detection mechanism. One was written for the
host CPU, while the other was a CUDA version, written for the GPU device. The cheat
detection mechanism on the GPU was implemented with threads. The CPU implementa-
tion was not threaded and used a basic looping structure to simulate the same behavior
as the CUDA version.

The behavior of the mechanisms is illustrated in Figure 3.17. A single thread works
on three consecutive game state samples for a client: Thread one (th1) works on samples
s0, s1, and s2, while thread two (th2) works on samples s1, s2, and s3, and so forth. A
sample is the state of the client after a tick in the artificial timeline.

...s0 s1 s2 s3 s4 s5 s6 s7Samples

th1

th2

th3

th4

th5 th7

th6

Figure 3.17: Sample reading and execution thread pattern.

A sample contains the movement of each client and a positional vector with three
values, x, y, and z, as three-dimensional axes. With three samples, the threads can
determine the client’s acceleration as a three-dimensional vector. All external forces added
by the physical model can now be subtracted by applying the calculations of the physical
engine in reverse. The resulting acceleration is the result of the forces the client applied to
the game object. If the thrust applied by the client is greater than the maximum thrust
allowed by the game, the client is most likely a cheater.

There are two main node types in our simulation: the server and the clients. They
exchange data as in real networked games. A packet is either generated by the generation
mode or read from a file in playback mode by the clients once for each game tick.

The server reads all incoming data from the clients. When a cheater reports erroneous
positional data, the cheat detection mechanisms indicate that the player’s movement does
not follow the rules and restrictions of the game’s physical parameters.

Clients act differently depending on the execution mode. During the generation of
movement files, clients write their locations and other appropriate data to file. In playback

62 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

GPC

GraphicsxProcessingxCluster

SM

SMSM

StreamingxMultiprocessor

Core

SharedxMemoryx/xLevelx1xCache

DRAM

TexturexCache

DRAM

TexturexCache

DRAM

TexturexCache
ConstantxCache

DRAM

TexturexCache

PCI
Express

ConstantxCacheConstantxCacheConstantxCache

Levelx2xCache

GPC

GPC GPC

SM Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Figure 3.18: Nvidia GF100 compute architecture.

mode, clients read from the generated files and report the data written in generation mode
back to the server. In this way, the system allows for reproducible tests as the test data
is the same for each test run.

Experiments

In this study, we investigated both the total execution time of the cheat detection system
and the total execution time spent on the cheat detection mechanisms. All tests were run
on data generated in generation mode over 100 seconds of “game time.” The number of
clients used in the benchmarks ranges from 10 to 6000. The part of the mechanisms that
runs on the GPU in these benchmarks is the reverse physics engine.

The cheat detection mechanism we tested was implemented on the following hardware:
The CPU used in the benchmarks was an Intel Core i5-750 processor with 4.0 GB of
RAM. The GPU was an Nvidia GeForce GTX 480 with 480 processing cores and 1.5 GB
of memory. The chip used in the GeForce GTX 480 is the GF100 GPU, illustrated in
Figure 3.18. This GPU is based on the Fermi compute architecture.

Figure 3.19 shows the results of the first benchmark and the total execution time
of the cheat detection system. We can observe that, with a low number of clients, the
CPU is faster than the GPU, due to the added latency of moving data and code to the
GPU. With more than 100 clients in the game, the execution time for the CPU exceeds
that of the GPU and the performance gap steadily increases up to 6000 clients, which
is the maximum number of tested clients. This is due to the size of the memory on our
test machines. When the number of clients increases, the cheat detection processing on
the GPU scales much better than on the CPU. When the cheat detection mechanism
is processed on the GPU, the CPU is relieved of these tasks and can work on other
game-relevant computation.

To determine the offloading effect the GPU has on the CPU, we measured how much
of the total execution time was spent on processing cheat detection mechanisms. Fig-
ure 3.20 reports the results of the second benchmark. These show that, for a small
number of clients, the penalty for transferring data over the PCI Express bus to the GPU
is significant, making the CPU more effective for a small number of clients. With more
than 50 clients, the GPU implementation spends less time on cheat detection than the
CPU implementation does. As the number of clients increases, the time spent on cheat

3.3. Graphics Processing Units 63

101 102 103 104

Clients

0

1

2

3

4

5

6

7

8

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

gpu
cpu

Figure 3.19: Execution time (in seconds) of the cheat detection mechanism on the GPU
and the CPU.

101 102 103

Clients

10

20

30

40

50

60

M
e
ch

a
n
is

m
 e

x
e
cu

ti
o
n
 t

im
e
 %

 o
f

to
ta

l
e
x
e
cu

ti
o
n
 t

im
e gpu

cpu

Figure 3.20: Percentage of time spent on cheat detection processing on a host, using the
GPU and the CPU.

detection continues to drop to below 15% for the GPU implementation. The CPU version
stabilizes around 50%. To improve the performance of the GPU implementation for a low
number of clients, it is possible to buffer more samples before executing the mechanisms
on the GPU.

64 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

Discussion

We have seen how the CPU and GPU implementations of our cheat detection mechanism
perform differently when we increase the numbers of clients in the game. The difference
between the two is smallest when the number of checks performed on the GPU is small.
However, as the number of clients increases, the increase in the execution time of the CPU
implementation is much steeper compared to the increase in the GPU implementation.
This indicates that the GPU implementation is the more scalable of the two. This is
primarily due to the GPU’s highly parallel architecture. Physics operations for large
numbers of clients are independent of each other. They constitute an embarrassingly
parallel workload that maps well to the GPU’s multithreaded architecture. Both the
CPU and GPU implementations could be further optimized in further work. The CPU
implementation could be extended with threading and SIMD operations and the GPU
version could be extended with asynchronous transfers, optimized global memory access
and the elimination of branching in the compute kernels.

The cheat detection mechanism we implemented for our system is easy to parallelize
because the physics computations for clients are independent of each other. Similar sys-
tems with workloads that contain operations that can be performed simultaneously by a
large number of threads can benefit from using a GPU to offload the processing. When
offloading operations to a GPU, it is important to remember that the GPU is most effi-
cient if it has enough data to process. It is also important that the offloaded tasks map
well to the GPU’s multithreaded architecture.

Summary

Our results show that even a simple physical model can benefit from executing the work-
load on a GPU. The experiments also clearly show that we need a large workload or a
computationally heavy workload to benefit from a GPU. When we benchmarked our cheat
detection mechanisms with too few clients, the CPU implementation was faster, because
the computational load did not compensate for the latency involved with transferring the
data to the GPU. Another advantage of GPU implementation is the offloading effect:
While the GPU handles the cheat detection workload, the CPU can perform other tasks.

3.3.4 Case Study: MJPEG Encoding

In our MJPEG case study, we performed several experiments on the GPU architecture
and a more detailed overview of the MJPEG workload can be found in Section 3.2.1. As
described later for the Cell, several layouts are available for GPUs. However, because of
the large number of small cores, it is not feasible to assign one frame to each core. The
most time-consuming parts of the MJPEG encoding process, the DCT and quantization
steps, are well suited for GPU acceleration. In addition, the VLC step can also be partly
adapted.

Our experiments compared 14 different GPU implementations of the MJPEG encoder.
This gives a good indication that the architectures are complex to use and that achieving
high performance is not trivial. Derived from a sequential codebase, these implementa-
tions differ in terms of algorithms used, resource utilization, and coding efficiency. Fig-
ure 3.21 shows the performance results of encoding the 1080p tractor video clip in YUV

3.3. Graphics Processing Units 65

368

Figure 3.21: Runtime for MJPEG implementations on a GPU (GTX 280).

4:2:0. The difference between the fastest and slowest solutions is 362 ms per frame and
the fastest solutions are disk I/O bound. To gain experience in what works and what does
not, we examined these solutions. We did not consider coding style, but revisited algorith-
mic choices, inter-core data communication (memory transfers), and architecture-specific
capabilities.

GPU Experiments

A GPU is a dedicated graphics rendering device and modern GPUs have a parallel struc-
ture, making them effective for carrying out general-purpose processing. Previously,
shaders were used for programming, but specialized languages are now available. In
this context, Nvidia released the CUDA framework with a programming language similar
to ANSI C. In CUDA, the single instruction, multiple threads (SIMT) abstraction is used
to handle thousands of threads.

TPC

TPC

TPC

TPC

Stream Processing Array
Texture Processing Cluster

Texture
Unit

SM

SM

SM

Streaming Multiprocessor

SP

SP

SP

SP

SP

SP

SP

SP

Shared Memory

DRAM

Texture Cache

DRAM

Texture Cache

DRAM

Texture Cache
Constant Cache

DRAM

Texture Cache

PCI
Express

Constant CacheConstant CacheConstant Cache

Figure 3.22: Nvidia GT200 architecture.

This case study was carried out with the first generation of programmable GPUs from

66 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

0 2 4 6 8 10

Average DCT GPU time per frame (ms)

2D-Plain

2D-Plain Opimized

1D-AAN

2D-Matrix

Figure 3.23: DCT performance on a GPU.

Nvidia called Tesla. The chip has the codename GT200, which is the second generation
of GPUs in the Tesla architecture, released in 2008. A more detailed overview of the
architecture is shown in Figure 3.22. The GT200 chip presents as a highly parallel,
multithreaded, multicore processor, connected to the host computer by a PCI Express
bus. The GT200 architecture contains 10 texture processing clusters with three streaming
multiprocessors (SMs). A single SM contains eight stream processors (called cores in newer
GPUs), which are the basic arithmetic and logic units for calculations.

To find out how memory access and other optimizations affect programs such as an
MJPEG encoder, we experimented with the same DCT implementations that we used
on the x86 architecture in Section 3.2.1. Our baseline DCT algorithm is the 2D-plain
algorithm. The only optimization in this implementation is that the input frames are
read into cached texture memory and that the quantization tables are read into cached
constant memory. Cached memory spaces improve performance compared to global mem-
ory, especially when memory access is uncoalesced. The second implementation, referred
to as 2D-plain optimized, is tuned to run efficiently using principles from the CUDA Best
Practices Guide [87]. These optimizations include the use of shared memory as a buffer
for pixel values when processing a macroblock, branch avoidance by using Boolean arith-
metic, and manual loop unrolling. Our third implementation, the 1D AAN algorithm,
is based on the scalar implementation used on the x86. Every macroblock is processed
with eight threads, that is, one thread per row of eight pixels. The input image is stored
in cached texture memory and shared memory is used to temporarily store data during
processing. Finally, the 2D matrix DCT uses matrix multiplication, where each matrix
element is computed by a thread. The input image is stored in cached texture memory
and shared memory is used to store data during calculations.

We know from existing work that to achieve high instruction throughput, branch
prevention and the correct use of flow control instructions are important. If threads
on the same SM diverge, the paths are serialized, which decreases performance. Loop
unrolling is beneficial on GPU kernels and can be done automatically by the compiler
using pragma directives. To optimize frame exchange, asynchronous transfers between
the host and GPU are used. Transferring data over the PCI Express bus is expensive
and asynchronous transfers help us reuse the kernels and hide some of the PCI Express
latency by transferring data in the background.

To isolate DCT performance, we used the CUDA Visual Profiler. The profiling results

3.3. Graphics Processing Units 67

0 5 10 15 20 25

Average frame encode time (ms)

VLC GPU

VLC CPU

Figure 3.24: Effect of offloading VLC to the GPU.

of the different implementations are shown in Figure 3.23 and we note that the 2D-plain
optimized algorithm is faster than the AAN algorithm. The 2D-plain algorithm requires
significantly more computations than the others but, by optimizing it to the architecture,
we obtain almost as good performance as with the 2D matrix. The AAN algorithm,
which does the least number of computations, suffers from the low number of threads per
macroblock. A low number of threads per SM can result in stalling, where all the threads
are waiting for data from memory, which should be avoided.

This experiment shows that, for architectures with vast computational capabilities,
writing a good implementation of an algorithm adapted for the underlying hardware can
be as important as the algorithm’s theoretical complexity.

The last GPU experiment considers entropy coding on the GPU. VLC can be offloaded
to the GPU by assigning a thread to each macroblock in a frame to compress the coeffi-
cients and then store the bitstream of each macroblock and its length in global memory.
The output of each macroblock’s bitstream can then be merged either on the host or by
using atomic OR on the GPU. For these experiments, we chose the former, since the host
is responsible for the I/O and must traverse the bitstream anyway. Figure 3.24 shows the
results of an experiment that compares MJPEG with AAN DCT, with VLC performed
on the host and on the GPU, respectively. We doubled the encoding performance when
running VLC on the GPU. In this particular case, offloading VLC was faster than running
on the host. It is worth noting that by running VLC on the GPU, the entropy coding
scales together with the rest of the encoder with the resources available on the GPU. This
means than if the encoder runs on a machine with a slower host CPU or a faster GPU, it
will still scale.

Discussion

The GPU architecture is different from the x86 architecture used for MJPEG in Sec-
tion 3.2.1. Some algorithms may be more suited than others. This can clearly be seen
in our experiments with DCT, where the AAN algorithm performed best on the x86, but
did not achieve the highest throughput on the GPU. This was because of the relatively
low number of threads per macroblock for the AAN algorithm, which must perform the
1D DCT operation (one row of pixels within a macroblock) as a single thread. This is
only one example of achieving a shorter computation time through increased parallelity
at the price of a higher, sub-optimal total number of operations.

Porting the encoder to the GPU in a straightforward manner without significant opti-
mizations for the architecture yields very good offloading performance compared to native
x86. This indicates that the GPU is easy to use but, to reap the full potential of the ar-

68 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

chitecture, one must have a deep level of understanding.

Summary

We see that heterogeneous multicore architectures provide the resources required for real-
time multimedia processing. However, achieving high performance is not trivial. In
general, there are similarities between the architectures, but the way of thinking must
be substantially different. The different architectures have different capabilities that
must be taken into account, both when choosing a specific algorithm and when mak-
ing implementation-specific decisions. A great deal of trust is put into the compilers of
development frameworks and new languages such as OpenCL, which are supposed to be
a “recompile-only” solution. However, to tune performance, the application must still be
hand optimized for different versions of the GPUs and x86.

3.3.5 Implications

Working with a GPU is different from working with a x86. Compared to the SIMD model,
the SIMT model seems easier for programmers to grasp. With SIMT, programmers have
to think in terms of threaded operations on intrinsic data. However, programming a
GPU has some challenges, as we saw in the case studies. First, as seen in the memory
tests, the GPU has an exclusive memory model and it is important for the programmer
to fully understand the access pattern of the GPU kernel to use the correct memory
layout and memory space. If the data pattern generates too many uncoalesced memory
accesses, it might be an idea to see if it is possible to use one of the cached memory
types. In the host–device optimization experiments, we learned that transfers from the
host CPU to the GPU over the PCI Express bus can be a slow process and it is very
important to try to overlap transfers with computations by using one of the asynchronous
APIs available to the programmers. The cheat detection studies show that computational
workloads such as physics calculations scale very well on a GPU. However, with too few
calculations, the overhead of transferring data from the CPU to the GPU is too large—
hence, the importance of efficient transfers between the host CPU and the GPU. Finally,
the MJPEG experiments on the GPU show that algorithms that are efficient on a CPU,
such as the AAN fast DCT algorithm, might not yield the best performance on a GPU. On
the GPU, the naive 2D DCT algorithm with optimizations for the architecture (with both
branching and shared memory bank conflicts removed and the correct memory layout)
performed better that the AAN fast DCT.

Revisiting with State-of-the-Market Hardware

If we were to revisit these experiments with a state-of-the-market GPU from the Kepler
family, all the experiments would have been able to run; however, to obtain optimal
performance, we would have to revisit some of the optimizations. The memory controllers
on modern GPUs such as the Kepler are more advanced and they will now detect more
access patterns, facilitating coalesced memory accesses. Nevertheless, the selection of
the different memory spaces, such as shared memory and texture memory, still has to
be done by the programmer. Later versions of CUDA also open up the possibility of
what they call managed memory [92] between the host CPU and GPU, that is, page

3.4. Cell Broadband Engine 69

faults are used to trigger transfers. The most optimal solution is still to manually use the
asynchronous API to transfer the data. Modern GPUs now also have larger caches that,
as on the x86 architecture, cannot be managed by the programmer. In many cases, this
can also speed up the computations. Another challenge of the Kepler architecture is that,
since the number of processors per SMX has been increased, compensating for decreasing
the clock frequency requires more active threads to obtain the same performance. The
numbers of registers per SMX has not been increased, meaning that each thread has less
register space, thus making it easier to run out of space. This is not a fatal problem
for the applications, since the threads have a private memory space in global memory.
However, it will have negative effects on performance. Using the latest generation of
GPUs will therefore, in most cases, provide better performance, since the number of cores
has increased many times. However, in some cases, performance can decrease and, in
many cases, the applications would have the same efficiency as on the older architectures.

3.4 Cell Broadband Engine

The Cell Broadband Engine is one of the asymmetric architectures we used for experiments
with an exclusive memory model. The primary application for the Cell was as the main
processor in Sony’s PlayStation 3 gaming console, so the processor was designed with
multimedia workloads in mind. The focus of the Cell experiments was to try to learn how
programmers need to think to efficiently utilize the platform.

In the following section, we take a closer look at a case study based on our paper
”Tips, Tricks and Troubles: Optimizing for Cell and GPU” [112]. Our analysis of 14 dif-
ferent MJPEG implementations indicates that there exists great potential for optimizing
performance with the Cell architecture, but there are also many pitfalls to avoid.

The Cell Broadband Engine was developed by Sony Computer Entertainment, Toshiba,
and IBM. The central components in the Cell are a power processing element (PPE) con-
taining a general-purpose 64-bit PowerPC RISC core and eight specialized synergistic
processing elements (SPEs). A more detailed overview of the architecture can be found
in Section 2.1.4.

3.4.1 Case Study: MJPEG Encoding

In our MJPEG case study, we conducted several experiments on the Cell architecture. A
more detailed overview of the MJPEG workload can be found in Section 3.2.1. As for the
GPU, several layouts are available for the Cell. However, because of the small number
of more capable cores (SPEs), it is feasible to assign one frame to each core. The most
time-consuming parts of the MJPEG encoding process, the DCT and quantization steps,
are well suited for Cell acceleration. In addition, the VLC step can be adapted.

We also compared 14 different implementations on the Cell. The results indicate that
the Cell is also a complex architecture to use and that achieving high performance is
not trivial. Figure 3.25 shows performance results for encoding the 1080p tractor video
clip in YUV 4:2:0. The difference between the fastest and slowest solution is 1869 ms
and the fastest solutions were disk I/O bound. To gain experience of what works and
what does not, we examined these solutions using the same criteria as with the GPU
implementations. In general, we found that the Cell architecture has great potential, but

70 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

1949

Figure 3.25: Runtime for MJPEG implementations on the Cell on a PlayStation 3 (six
SPEs).

also many possible pitfalls, both when choosing specific algorithms and in implementation-
specific decisions.

Cell Broadband Engine Experiments

By learning from the design choices of the implementations in Figure 3.25, we designed
experiments to investigate how performance improvements are achieved on the Cell. All
the experiments encoded HD video (1920x1080, 4:2:0) from raw YUV frames found in the
tractor video test sequence. However, we used only the first frame of the sequence and
encoded it 1000 times in each experiment to overcome the disk I/O limit. This became
apparent at the highest level of encoding performance, since we did not have a high-
bandwidth video source available. All programs were compiled with the highest level of
compiler optimizations using GCC for Cell. The Cell experiments were tested on a QS22
blade server (with eight SPEs; the results in Figure 3.25 were for a PlayStation 3 with
six SPEs)

Considering the embarrassingly parallel parts of MJPEG video encoding, a number of
different layouts are available to map the different steps of the encoding process to the
Cell. Because of the amount of work, the DCT and quantization steps should be executed
on SPEs, but the entropy coding step can also run in parallel between complete frames.
Thus, given that a few frames of encoding delay are acceptable, the approach we consider
best is to process full frames on each SPE, with every SPE running DCT and quantization
of a full frame. This minimizes synchronization between cores and allows us to perform
VLC on the SPEs.

Regardless of the placement of the encoding steps, it is important to avoid idle cores.
We resolve this situation by adding a frame queue between the frame reader and the DCT
step and another queue between the DCT and VLC steps. Since a frame is processed in
full by a single Cell processor, the AAN algorithm is well suited. It can be implemented
in a straightforward manner to run on SPEs, with VLC coding on the PPE. We tested the
same algorithm optimized with SPE intrinsics for vector processing (SIMD), resulting in

3.4. Cell Broadband Engine 71

0 10 20 30 40 50 60 70

Average frame encode time (ms)

AAN Vector/SPE

AAN Scalar/SPE

AAN Vector/PPE

AAN Scalar/PPE

Figure 3.26: Encoding performance on the Cell with different implementations of the
AAN algorithm and VLC placement.

0% 20% 40% 60% 80% 100%

AAN Scalar

AAN Vector

Other VLC Vector-packing DCT/Quant

Figure 3.27: SPE utilization using scalar or vector DCT.

double encoding throughput, which can be seen in Figure 3.26 (scalar and vector PPE).
Another experiment involved moving the VLC step to the SPEs, offloading the PPE. This
approach left the PPE with only the task of reading and writing files to disk, in addition
to dispatching jobs to SPEs. To do so, the luma and chroma blocks of the frames had to
be transformed and quantized in interleaved order, that is, two rows of luma and a single
row of both chroma channels. The results show that the previous encoding speed was
limited by the VLC, as shown in Figure 3.26 (scalar and vector SPEs).

To gain some insight into SPE utilization, we collected a trace (using PDTR, part
of the IBM software development kit for Cell) showing how much time is spent on the
encoding parts. Figure 3.27 shows the SPE utilization when encoding HD frames for
the scalar and vector SPEs from Figure 3.26. This distinction is necessary because the
compiler does not generate SIMD code, requiring the programmer to hand-code SIMD
intrinsics to achieve high throughput. The scalar version uses about four times more SPE
time to perform the DCT and quantization steps for a frame than the vector version does
and an additional 30% of the total SPE time to pack and unpack scalar data into vectors
for SIMD operations. Our vectorized AAN implementation is nearly eight times faster
than the scalar version.

With the vector version of DCT and quantization, the VLC coding uses about 80%
of each SPE. This can possibly be optimized further, but we did not find time to pursue
this.

The Cell experiments demonstrate the necessary level of fine-grained tuning to obtain
high performance on this architecture. In particular, correctly implementing an algo-

72 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

rithm using vector intrinsics is imperative. Of the 14 implementations for the Cell in
Figure 3.25, only one offloaded VLC to the SPEs, but this was the second fastest im-
plementation. The fastest implementation vectorized the DCT and quantization and the
vector/SPE implementation in Figure 3.26 is a combination of the two. One reason why
only one implementation offloaded the VLC may be that it is unintuitive. An additional
communication and shift step is required in parallelizing VLC because the lack of arbi-
trary bit shifting of large fields on the Cell as well as the GPU prevents a direct port from
the sequential codes. Another reason may stem from the dominance of the DCT step
in early profiles and the awkward process of later gathering profiling data on multicore
systems. The hard part is to know what is best in advance, especially because moving an
optimized piece of code from one system to another can be significant work and may even
require rewriting the program entirely. It is therefore good practice to structure programs
in such a way that parts are loosely coupled. In that way, they can be both replaced and
moved to other processors with minimal effort.

When comparing the 14 Cell implementations of the encoder shown in Figure 3.25
to find out what differentiates the fastest from the medium-speed implementations, we
found some distinguishing features, the most prominent one being not exploiting the SPE’s
SIMD capabilities, but also in the areas of memory transfer and job distribution. Uneven
workload distribution and lack of proper frame queuing resulted in idle cores. Additionally,
some implementations suffered from small, often unconcealed DMA operations that left
SPEs in a stalled state, waiting for the memory transfer to complete. It is evident that
many pitfalls need to be avoided when writing programs for the Cell architecture and
we have only touched upon a few of them. Some of these are obvious, but not all and
achieving acceptable performance from a program running on the Cell architecture may
require multiple iterations, restructuring, and even rewrites.

Discussion

Heterogeneous architectures such as the Cell provide large amounts of processing power,
with encoding throughputs of 480 MB/s on the 1080p tractor video clip. Thus, real-time
MJPEG HD encoding may be no problem. However, an analysis of the many implemen-
tations of MJPEG available and our additional testing show that it is important to use
the right concepts and abstractions and that there may be large differences in the way a
programmer must think.

Deciding efficiently the granularity at which data should be partitioned is very hard
a priori. One approach is to try to design the programs in such a way that the cores
are seldom idle or stall. In practice, however, multiple iterations may be necessary to
determine the best approach.

Similar to data partitioning, efficient code partitioning is hard to carry out in ad-
vance. A rule of thumb is to write modular code to allow the parts to be moved to other
cores. In addition, fine granularity is beneficial, since small modules can be merged again
and also be executed repeatedly with low overhead. Offloading is by itself advantageous,
since resources on the main processor become available for other tasks. It also improves
the scalability of the program with new generations of hardware. In our MJPEG im-
plementation on the Cell, we found that offloading DCT/quantization and VLC coding
was advantageous in terms of performance, but offloading may not always provide higher

3.4. Cell Broadband Engine 73

throughput.

Summary

The programming models used on the Cell and the GPU require two different ways of
thinking in parallel. The approach of the Cell is very similar to multithreaded program-
ming on the x86, with the exception of shared memory. The SPEs are used as regular
cores with explicit caches and the vector units on the SPEs require careful data structure
consideration to achieve peak performance. The GPU model of programming is much
more rigid, with a static grid used for blocks of threads and synchronization only through
barriers. This hides the architecture complexity and provides a simpler concept to grasp
for programmers. This notion is also strengthened by the better average GPU throughput
of the implementations in Figures 3.21 and 3.25. However, to achieve the highest pos-
sible performance, the programmer must also understand the nitty-gritty details of the
architecture to avoid pitfalls such as warp divergence and uncoalesced memory access.

Heterogeneous multicore architectures such as the Cell and GPUs may provide the
resources required for real-time multimedia processing. However, achieving high perfor-
mance is not trivial and to learn how to think and use resources efficiently, we experi-
mentally evaluated several issues to discover tricks and problems. Generally, there are
similarities, but the way of thinking must be substantially different, not only compared to
an x86 architecture but also between the Cell and the GPUs. The different architectures
have different capabilities that must be taken into account when both choosing a specific
algorithm and making implementation-specific decisions.

The encoding throughput achieved on the two architectures was surprisingly similar.
Although, the engineering effort to accomplish this throughput was much greater on the
Cell, this was mainly due to the tedious process of writing an SIMD version of the encoder.

3.4.2 Implications

We learned that when working with an architecture such as the Cell, which has multiple
vector processors (SIMD), it is imperative to vectorize the application, even though this
can be a very tedious process. Our experiments have shown that the code on SPEs has
to go through vector packing if it is not vectorized. The exclusive memory architecture
of the Cell also provides very good performance, but at the cost of complexity.

With the Cell, it is also very important to choose the correct granularity for the
architecture. The SPEs have only 256 kB of local storage, for both code and data, and
multiple attempts are often required to find an optimal solution. Our MJPEG workload
also showed the importance of finding an algorithm that is optimal for the architecture.

It is very important to consider data movement on the chip itself. Since the Cell
has an exclusive memory model, the programmer has to consider the DMA transfers to
move data between main memory and the local storage on the SPEs. To obtain optimal
performance, often one has to implement double-buffering schemes to make sure that one
can overlap memory transfers and computations.

74 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

Revisiting with State-of-the-Market Hardware

Unfortunately, IBM discontinued development of the Cell architecture and the CPU in
the PlayStation 4 uses x86 cores together with a GPU.

It is possible to use multicore x86 processors instead of the Cell. These architectures
use a shared memory model instead of exclusive memory, so it is simpler for the program-
mer. The x86 cores also have SIMD units. The closest x86 core compared to the Cell is
the Intel Xeon Phi many-core processor, with up to 61 simple x86 cores with a shared
memory model and 512-bit vector units per core. The shared memory model makes the
programmer’s life simpler; however, the SIMD version still has to be written mainly by
hand and the AltiVec SIMD code from the Cell is not portable, so a new version must be
written for the Xeon Phi. Several of these considerations for the Cell are valid for GPUs;
however, the architectures are very different, and both the granularity and numbers of
threads need to be different.

3.5 Architecture Comparison

In this chapter, we saw multiple case studies on four heterogeneous multicore architectures.
These platforms are in many ways very different; however, they all have heterogeneous
processing resources. Our experiments have revealed that, in all these architectures, code
placement, code partitioning, and data locality have a huge effect on performance.

The Intel IXP was used at the very start of our investigations. It is a shared memory
platform (i.e., all the cores can share memory), with cores with different capabilities.
As on the GPUs, the IXP has multiple memory types with different properties, such as
SRAM for storing packet headers and DRAM for storing packet payloads. However, the
IXP differs greatly from the other three architectures. Since the IXP was built to process
network traffic, it has very limited floating point support and is limited to manipulating
network traffic. The IXP lives on today as a dedicated network flow processing fast fiber
links at line speed for applications such as deep packet inspection. Programming the IXP
was also challenging, since compilers and documentation were somewhat lacking; however,
when these experiments were conducted in 2007, their performance was impressive and
most state-of-the-art desktop computers in 2007 were not able to process multiple 1-Gbps
network streams at line speed.

The three remaining architectures—the Cell, x86, and GPUs—are more suited for pro-
cessing multimedia workloads. They all have optimizations for carrying out fast floating
point operations. The GPU and Cell are built for floating point operations and the x86
architecture has been constantly extended with better floating point support since the
x87 floating point coprocessor was integrated in the 80486 CPUs and since the first vector
unit, called MMX, was added to the Pentium CPUs. One property that differentiates the
Cell and GPUs with the x86 architecture is support for a shared memory architecture
on the x86. This makes parallel programming much easier for the developer. However,
it has also proven to be a challenge when scaling the number of threads that share the
memory space: With more cores and threads, more traffic is also required on the CPU
interconnect to make sure that no parts of the cache are dirty. Another advantage and
challenge with x86 cores compared to the Cell and GPUs is that the cores on the x86 are
considered fat cores, meaning that they have many features, such as branch prediction,

3.6. Summary 75

prefetching from both caches and memory, and multithreading support. This takes up
many transistors, making the CPU designs very complex, which is a challenge with regard
to power consumption in systems.

The Cell and GPUs have several things in common: They both have an exclusive
memory model, where the programmer is responsible for all the allocations. The SIMD
programming model on the Cell is the most extreme in this respect, where the programmer
must manage the transfer of code and data between main memory and local storage on
the SPEs with DMA operations. The local storage is like a user-managed cache and, since
each SPE has only 256 kB, it is a very limited resource. On modern GPU architectures,
the caches cannot be managed by the programmer. However, the GPU has multiple
memory types—on chip, off chip, and cached—which can be used for different parts of the
processing. Selecting the correct memory space can sometimes be challenging. Another
important factor for both the Cell and the GPU is the efficient transfer of data from main
memory on the general-purpose core (the PPE on the Cell and the CPU on the GPU)
and into the processing cores. To do this efficiently, asynchronous APIs such as CUDA
Streams and double buffering should be used. One important detail of how the Cell and
the GPU differ is in the programming model, as we saw in our MJPEG experiments
(Sections 3.4.1 and 3.3.4). On the Cell, we use an SIMD model, where the programmer
must use vector extensions and adapt the memory layout and algorithms to the use of
SIMD vectors and operations. Nvidia uses an abstraction called SIMT on their GPUs.
SIMT allows for code that uses only well-known intrinsic types but that can be massively
threaded. The functionalities provided by SIMD and SIMT are very similar. However, our
experience is that it is much more straightforward to port the program to the GPU and,
even without significant optimizations, the GPU architecture yielded very good offloading
performance compared to the native x86 architecture. To reap the full potential of the
GPU architecture, one must still have a thorough understanding of the architecture, just
as with the Cell. The “nail in the coffin” for the Cell architecture is, however, the fact
that Sony, Toshiba, and IBM have decided not to continue its development. IBM will
instead use GPUs for massively parallel workloads.

With our experiments on simple workloads, we learned that, of the four architectures
we experimented with, the GPU and x86 architectures are the most promising. The
GPU currently also needs a CPU as a host to run the operating system and manage the
data flow. The combination of a x86 processor and a GPU is also a true heterogeneous
multicore architecture; that is, the CPU has a few fat cores that are fast with operations
that are not very well suited for parallelization and the GPU has many “simple cores”
that are very fast at carrying out simple massively parallel operations.

3.6 Summary

In this chapter, we investigated several simple multimedia workloads running on four
different heterogeneous architectures. Of the four architectures we evaluated, we are
moving forward with the GPU and x86 multicore. The Cell has been discontinued and
the IXP network processor is limited to network processing. In the next chapter, we
take a closer look at a more complex multimedia workload, with a pipeline with different
workloads, executing on a single system in real time, where we have to optimize for both
the CPU and the GPU.

76 Chapter 3. Using Heterogeneous Architectures for Simple Tasks

Chapter 4

Using Heterogeneous Architectures
for Complex Workloads

The previous chapter described our experiments with offloading simple workloads to a
heterogeneous architecture. In these experiments, we mainly carried out our optimizations
on just the target architecture. Our experiments also showed that good architectural
knowledge about the target architecture is essential when optimizing programs. For the
x86 architecture, it is important to use threading and to adjust the number of threads to
the number of cores available, that is, too many threads will result in reduced performance,
and it is also important to use single instruction multiple data (SIMD) units on processors
where possible. On graphic processor units (GPUs), we have seen that it is important to
use a memory space that is optimized for one’s access pattern, as well as to make sure
to transfer the data as efficiently as possible to the GPUs and, finally, to try to prevent
branching in any code running on the GPU. We decided to focus on x86 processors and
GPUs, since the Cell has been discontinued and the IXP network processor is better suited
for video processing.

In this chapter, we investigate a more complex workload based on our research on
systems for real-time sports analysis [114]. The complex workload is defined in this thesis
as a video stitching pipeline, optimized for multiple heterogeneous architectures, which
in our case is an x86 processor and a GPU. The workload also has real-time demands,
meaning that the pipeline needs to deliver a new video frame every 33 ms to produce
video at 30 frames per second (fps).

This chapter is organized as follows: First, in Section 4.1, we introduce our scenario
and the non–real-time prototype we implemented. Then, in Section 4.2, we take a closer
look at the enhancements and optimizations to make it run in real time on a single
machine. The system presented is a large system with many contributors and we focus
on architectural optimizations carried out to run the system in real time. We also test
how different parameters and heterogeneous architectures affect the performance of the
prototype system.

4.1 Bagadus Sports Analysis System

Sports analysis has become a huge industry and a large number of (elite) sports clubs
study their athletes’ performance, spending great amounts of money. This analysis is

77

78 Chapter 4. Using Heterogeneous Architectures for Complex Workloads

conducted either manually or using one of many analytics tools. In soccer, several sys-
tems enable trainers and coaches to analyze the gameplay to improve performance. For
instance, at Interplay-sports [62], videostreams are manually analyzed and annotated us-
ing a soccer ontology classification scheme. ProZone [100] automates some of the manual
annotation process with video analysis software. In particular, it quantifies player move-
ment patterns and characteristics such as athlete speed, velocity, and position and has
been successfully used, for example, at Old Trafford in Manchester and Reebok Stadium
in Bolton [106] in the United Kingdom. Similarly, STATS’ SportVU tracking technol-
ogy [111] uses videocameras to collect the players’ positioning data within the playing
field in real time. This information is further compiled into player statistics and per-
formance. Camargus [17] provides a very nice video technology infrastructure but lacks
other analytics tools. As an alternative to video analysis, which is often inaccurate and
resource hungry, both Cairo’s VIS.TRACK [16] and ZXY Sport Tracking [146] systems
use global positioning and radio-based systems to capture the performance measurements
of athletes. Thus, these systems can present player statistics, including speed profiles, ac-
cumulated distances, fatigue, fitness graphs, and coverage maps, in many different ways,
such as with charts, three-dimensional graphics, and animations.

To improve game analytics, video that replays real-game events has become increas-
ingly important. However, the integration of player statistics systems and video systems
still requires a large amount of manual labor. For example, events tagged by coaches or
other human expert annotators must be manually extracted from the videos, often requir-
ing hours of work in front of the computer. Furthermore, connecting the player statistics
to the video also requires manual work. One recent example is the Muithu system [67],
which integrates coach annotations with related video sequences, but the video must be
manually transferred and mapped to the game timeline.

As the above examples show, several tools for soccer analysis exist. However, to the
best of our knowledge, no system exists that fully integrates all the features stated above.
In this respect, earlier we presented [46] and demonstrated [105] a system called Bagadus.
This system integrates a camera array video capture system with the ZXY Sport Tracking
system for player statistics and a system for human expert annotation. Bagadus allows
the game analytics to automatically play back a tagged game event or extract a video of
events from the statistical player data, for example, all sprints at a given speed. Using the
exact player positions provided by sensors, a trainer can also follow individuals or groups
of players, with the videos presented either by using a stitched panorama view or by
switching cameras. Our earlier work [46,105] demonstrated the integrated concept but did
not address all operations, such as the generation of the panoramic video, in real time. We
now present enhancements providing live, real-time analysis and video playback by using
algorithms to enhance image quality, parallel processing, and offloading to heterogeneous
architectures units such as GPUs. Our prototype was deployed at Alfheim Stadium
(Tromsø IL, Norway) and we use a dataset captured at a Norwegian premier league game
for our experiments.

4.1.1 Bagadus: The Basic Idea

Interest in sports analysis systems has increased greatly recently and sports analytics are
predicted to be a real game changer, that is, “statistics keep changing the way sports are

4.1. Bagadus Sports Analysis System 79

October 2011 University of Oslo

Second Alfheim Setup

stadium camera array

sensors

expert
annotations antenna

antenna

antenna

antenna

video processing

video
system

analytics system

sensor system

user interaction
& retrieval

1000s of users
in the stadium

1.000.000s of
users at home

few expert users

Figure 4.1: Overall sports analysis system architecture.

played—and changing minds in the industry” [29]. As described above, several systems
exist, some already providing game statistics, player movements, video highlights, and
so forth, since a long time. However, to a large degree, the existing systems are offline
systems and require a great deal of manual work to integrate information from various
computer systems and expert sport analytics. In this respect, Bagadus is a prototype
that aims to fully integrate existing systems and enable the real-time presentation of
sport events. Our system was built in cooperation with the Tromsø IL soccer club and
the ZXY Sport Tracking company. A brief overview of the architecture and interaction
of the different components is given in Figure 4.1. The Bagadus system is divided into
three different subsystems, all of which are integrated in our soccer analysis application.

The video subsystem consists of multiple small shutter-synchronized cameras that
record high-resolution video of the soccer field. They cover the full field with sufficient
overlap to identify common features necessary for camera calibration and image stitch-
ing. Furthermore, the video subsystem supports two different playback options. The
first allows playback of video that switches between streams from the different cameras,
either by manually selecting a camera or automatically following players based on sensor
information. The second option plays back a panorama video stitched from the different
camera feeds. The cameras are calibrated in their fixed positions and the captured video
is all processed and stored using a capture–debarrel–rotate–stitch–encode–store pipeline.
In the offline mode, Bagadus allows a user to zoom in on and mark a player(s) in the

80 Chapter 4. Using Heterogeneous Architectures for Complex Workloads

retrieved video on the fly, but this feature is not yet supported in the live mode used
during the game.

To identify and follow players on the field, we use a tracking (sensor) subsystem.
Tracking people through camera arrays has been an active research topic since several
years. The accuracy of such systems has improved greatly, but there are still errors.
Therefore, for stadium sports, an interesting approach is to use sensors on players to
capture their exact positions. ZXY Sport Tracking [146] employs such a sensor-based
solution to provide player position information. Bagadus uses this position information
to track players or groups of players in single camera views, stitched views, or zoomed-in
modes.

The third component of Bagadus is an analytics subsystem. Coaches have long an-
alyzed games to improve their own team’s gameplay and to understand that of their
opponents. Traditionally, this was done by taking notes using pen and paper, either dur-
ing the game or while watching hours of video. Some clubs even hire one person per
player to describe the player’s performance. To reduce the manual labor, we implemented
a subsystem that equips team members with a tablet (or even a mobile phone) with which
they could register predefined events quickly with the press of a button or provide textual
annotation. In Bagadus, the registered events are stored in an analytics database and can
later be extracted automatically and shown along with a video of the event.

The tracking and analytics subsystem does not have the same processing require-
ments as the video subsystem does and these are therefore not presented in this thesis.
More details about the tracking and analytics subsystem in Bagadus can be found in
paper VIII [114].

4.1.2 Video Subsystem

To record high-resolution video of the entire soccer field, we installed a camera array
using small industry cameras that together cover the entire field. The video subsystem
then extracts, processes, and delivers video events based on given time intervals, player
positions, and so forth.

There are two versions of the video subsystem: one non–real-time system, which is
presented in this section, and one live real-time system optimized with heterogeneous
architectures. This system is presented in Section 4.2.

Both video subsystems support two different playback modes. The first mode allows
the user to play video from the individual cameras by manually selecting a camera or by
automatically following players. The second mode plays back a panoramic video stitched
from the four camera feeds. The non–real-time system plays back recorded video stored on
disk and, because of the processing times, the video will not be available before the match
is finished. The live system, on the other hand, supports playing back video directly from
the cameras and the events are available in real time.

Camera Setup

To record high-resolution video of the entire soccer field, we installed a camera array
consisting of four Basler industry cameras with a 1/3-inch image sensor supporting 30
fps and a resolution of 1280×960. The cameras were synchronized by an external trigger

4.1. Bagadus Sports Analysis System 81

signal to enable a video stitching process that produces a panoramic video picture. For
a minimal installation, the cameras are mounted close to the middle line under the roof
covering the spectator area, that is, approximately 10 meters from the side line and 10
meters above the ground. With a 3.5 mm wide-angle lens, each camera covered a field
of view of about 68 degrees; that is, all four cameras covered the full field with sufficient
overlap to identify common features necessary for camera calibration and stitching (see
Figure 4.2).

Figure 4.2: Camera setup at Alfheim stadium.

The cameras were managed using our own library, called Northlight, developed for the
Verdione project [126], to manage frame synchronization, storage, encoding, and so on.
We ran the system on a single computer with an Intel Core i7-3930K at 3.2 GHz, with
16 GB of memory. Northlight integrates the software development kit provided by Basler
for the cameras, video encoding using x264, and color space conversion using FFmpeg.

Stitching

Tracking game events over multiple cameras is a nice feature, but in many situations
a complete view of the field is desirable. In addition to camera selection functionality,
we therefore generated a panoramic picture by combining images from multiple trigger-
synchronized cameras. The cameras were calibrated in their fixed positions using a clas-
sical chessboard pattern [143], and the stitching operation required a more complex pro-
cessing pipeline. We used alternative implementations with respect to what to store and
process offline, but generally we had to 1) correct the images for lens distortion in the
outer parts of the frame due to the fish-eye lens effect, 2) rotate and morph the images
into panoramic perspective due to different positions covering different areas of the field,
3) correct the image brightness due to light differences, and 4) stitch the video images
into a panoramic image. Figure 4.3 shows the process of combining four warped camera
images into a single large panoramic image. The highlighted areas in the figure are the
regions of camera overlap.

After the initial steps, the overlapping areas between the frames were used to stitch the
four videos into a panoramic picture before storing it to disk. We first tried the open-source
solutions given by the computer vision library OpenCV, which are based on the automatic
panoramic image stitcher of Brown et al. [14]; that is, we used the auto-stitcher functions
using planar, cylindrical, and spherical projections. Our analysis shows that none of the
OpenCV implementations are perfect, due to large execution times and varying image
quality and resolutions [46]. The fastest algorithm is the spherical projection, but it

82 Chapter 4. Using Heterogeneous Architectures for Complex Workloads

Figure 4.3: The stitching process. Each image from the four different frames is warped
and combined into a panorama.

has severe barreling effects and the execution time is 1746 ms per frame, far above our
real-time goal. Therefore, a different approach, homography stitching [48], was selected.

Non–Real-Time Processing-Loop Implementation

As a first proof-of-concept prototype [46], we implemented the stitching operation as a
single-threaded sequential processing loop, as shown in Figure 4.4, that is, processing one
frame per loop iteration.

Figure 4.4: The non–real-time Bagadus stitching pipeline.

As seen in the figure, the process consists of four main parts: one pre-processing part,
which reads video frames from either disk or the cameras; one part that converts the
video from YUV to RGB, which is used by the rest of the pipeline; debarreling, to remove
any barrel distortion from the cameras; and primary stitching. This system version used
the OpenCV debarreling functions and the primary stitching part used the homography-
based stitching algorithm to stitch the four individual camera frames into a 7000×960
panoramic frame. As we can see from Figure 4.5, this last part is the most resource-
demanding aspect of the system. After the stitching, post-processing is responsible for
converting the video back from RGB to YUV due to the x264 video encoder’s lack of
support for RGB. The reason for using the RGB color space is that we use OpenCV
components, which are written for RGB. The single-threaded loop means that all the

4.2. The Real-Time Bagadus Video Pipeline 83

steps are performed sequentially for one set of frames before the next set of frames is
processed.

0 100 200 300 400 500 600 700 800 900 1000

Mean time (ms)

YUV to RGB

Debarreling

Warping & Stitching

RGB to YUV

Encoding

Figure 4.5: Frame processing time in the non–real-time Bagadus stitching pipeline.

The system’s performance is presented in Figure 4.5 and the total execution time
per panoramic frame exceeds 1100 ms, on average. To meet our 30-fps requirement, our
next approach, optimized for heterogeneous architectures and presented in Section 4.2,
improves performance by parallelizing and offloading several steps onto a GPU.

4.2 The Real-Time Bagadus Video Pipeline

In this section, we investigate the optimized real-time pipeline shown in Figure 4.6. We
analyze the different modules in the pipeline and perform simple benchmark tests to
compare the central processing unit (CPU) and GPU performance on the main modules
(background subtraction, color correction, stitching, and conversion) running on the GPU.
There are two main parts to the real-time pipeline: one part running on the CPU and the
other running on a GPU using the CUDA framework. To implement the pipeline’s real-
time properties, we have to benchmark and load-balance the components with components
running on the CPU and others on the GPU. We have to optimize the transfers between
the CPU and GPU and try to eliminate any unnecessary transfers.

The experiments in this section were performed on an Intel Core i7-3930K six-core
processor with Hyper-Threading enabled, based on the Sandy Bridge-E architecture. The
machine had 32 GB of RAM and an Nvidia GeForce GTX 680 GPU based on the Kepler
GK104 architecture.

The Controller Module

The single-threaded controller runs on the CPU and is responsible for initializing the
pipeline, synchronizing the different modules, handling global errors and dropped frames,
and transferring data between the different modules. After initialization, it waits for
and receives the next set of frames from the camera reader (CamReader) module (see
below). Next, it controls the transfer of data from the output buffers of module N to the
input buffers of module N + 1. This is done primarily through pointer swapping to avoid

84 Chapter 4. Using Heterogeneous Architectures for Complex Workloads

Figure 4.6: The real-time panoramic video stitching pipeline.

unnecessary memory transfers, but with memory copies as an alternative. It then signals
all modules to process the new input and waits for them to finish processing. Next, the
controller continues looping by waiting for the next set of frames from the reader. Another
important task of the controller is to check the execution speed. If an earlier step in the
pipeline runs too slowly and one or more frames from the cameras has been lost, the
controller will tell the modules in the pipeline to skip the delayed or dropped frame and
reuse the previous frame.

The CamReader Module

The CamReader module is responsible for retrieving frames from the Ethernet cameras.
It runs on the CPU and consists of one dedicated reader thread per camera. Each of the
threads waits for the next frame and then writes the retrieved frame to an output buffer,
overwriting the previous frame. The cameras provide a single frame in YUV 4:2:2 format
and the CamReader’s frame retrieval rate determines the real-time threshold for the rest
of the pipeline. As described in Section 4.1.2, camera shutter synchronization is controlled
by an external trigger box and, in our current configuration, the cameras deliver a frame
rate of 30 fps; that is, the real-time threshold and CamReader processing time are thus
33 ms.

The Converter Module

The CamReader module outputs frames in YUV 4:2:2 format. However, the stitching
pipeline requires RGBA internally for processing and the system therefore converts frames
from YUV 4:2:2 to RGBA. This process is handled by the Converter module, using FFm-
peg and swscale. The processing time for these conversions on the CPU, as seen later in
Figure 4.13, is well below the real-time requirement, so this operation can run as a single
thread. Conversion is an embarrassingly parallel operation that can also be carried out
efficiently on a GPU; however, the transfer of data to and from the GPU for a single
operation would add too much latency to the system.

4.2. The Real-Time Bagadus Video Pipeline 85

The Debarreler Module

Due to the wide-angle lenses used in our cameras to capture the entire field, the images
delivered suffer from barrel distortion, which needs to be corrected. We found the perfor-
mance of the existing debarreling implementation in the old stitching pipeline to perform
fast enough. The Debarreler module is therefore still based on OpenCV’s debarreling
function, which is optimized for execution on CPUs with SIMD, using nearest-neighbor
interpolation, and executes as a dedicated thread per camera.

The SingleCamWriter Module

In addition to storing the stitched panoramic video, we also want to store the video
from the separate cameras. This storage operation is carried out by the SingleCamWriter
module, which runs as a dedicated thread per camera. As noted by Halvorsen et al. [46],
storing the videos as raw data proves impractical due to the size of the uncompressed
raw data. The different CamWriter modules (here SingleCamWriter) therefore encode
and compress frames into three-second H.264 files, which has proven to be very efficient.
Due to the use of H.264, every SingleCamWriter thread starts by converting from RGBA
to YUV 4:2:0, which is the input format required by the x264 encoder. The threads
then encode the frames and write the results to disk. There are not many efficient H.264
encoders that can run on GPUs without dedicated hardware encoding blocks; therefore,
we did not consider moving this step to the GPU.

The Uploader Module

Due to the great potential of parallelizing the panoramic workload and the high computing
power of modern GPUs, large parts of our pipeline run on a GPU. We therefore need to
transfer data from the CPU to the GPU, a task performed by the Uploader module.
In addition, the Uploader module is also responsible for executing the CPU part of the
BackgroundSubtractor module (see Section 4.2). The Uploader module consists of a single
CPU thread that first runs the player pixel lookup creation needed by the background
subtractor. Next, it transfers the current RGBA frames and the corresponding player
pixel maps from the CPU to the GPU. This is done by the use of double buffering and
asynchronous transfers (CUDA Streams). We use one stream for each camera and a
stream for the pixel maps for the background subtractor.

The BackgroundSubtractor Module

Background subtraction is the process of determining which pixels of a video belong to
the foreground and which belong to the background. The BackgroundSubtractor module,
running on the GPU, generates a foreground mask (for moving objects such as play-
ers) that is later used in the Stitcher module to avoid seams through the players. Our
background subtractor can run like traditional systems searching the entire image for
foreground objects. However, we can also exploit information gained by the tight inte-
gration with the player sensor system. Through the sensor system, we know the player
coordinates that can be used to improve both the performance and precision of the mod-
ule. By first retrieving player coordinates for a frame, we can then create a player pixel
lookup map, where we set only the players’ pixels, including a safety margin, to one. The

86 Chapter 4. Using Heterogeneous Architectures for Complex Workloads

creation of these lookup maps is executed on the CPU as part of the Uploader module.
The background subtractor on the GPU then uses this lookup map to process only pixels
close to a player, which reduces the GPU kernel processing times from 811,793 ms to
327,576 ms, on average, on a GeForce GTX 680. When run in a pipelined fashion, the
processing delay caused by the lookup map creation is also eliminated. The sensor system
coordinates are retrieved by a dedicated slave thread that continuously polls the sensor
system database for new samples.

0 10 20 30 40 50 60 70 80 90 100 110

Execution time (ms)

KaewTraKulPong - CPU - unmodified

Zivkovich - CPU - unmodified

Zivkovich - CPU - coordinate modification

Zivkovich - GPU - coordinate modification

Figure 4.7: Execution time of alternative algorithms for the BackgroundSubtractor mod-
ule (single camera stream).

Even though we enhanced the background subtraction with sensor data input, there
are several implementation alternatives. When determining which algorithm to imple-
ment, we evaluated two alternatives: Zivkovic’s [144,145] and Kaewtrakulpong and Bow-
den’s [68]. Even though the CPU implementation was slower (see Figure 4.7), Zivkovic’s
method provided the best visual results and was therefore selected for further modifica-
tion. Furthermore, the Zivkovic algorithm proved to be fast enough when modified with
input from the sensor system data. The GPU implementation, based on Zivkovic’s [98],
proved to be even faster and the final performance numbers for a single camera stream are
shown in Figure 4.7. A visual comparison of the unmodified Zivkovic implementation and
the sensor system-modified version is shown in Figure 4.8, where the sensor coordinate
modification reduces noise, as seen in the upper parts of the figures.

(a) Unmodified Zivkovic approach. (b) Player sensor data modification of Zivkovic’s ap-
proach.

Figure 4.8: Background subtraction comparison.

4.2. The Real-Time Bagadus Video Pipeline 87

The Warper Module

The Warper module is responsible for warping the camera frames to fit the stitched
panorama image. By warping we mean twisting, rotating, and skewing the images to
fit the common panoramic plane. As we saw from the old pipeline, this is necessary
because the stitcher assumes that its input images are perfectly warped and aligned to
be stitched to a large panorama. Executing on the GPU, the Warper also warps the
foreground masks provided by the BackgroundSubtractor module. This is because the
Stitcher module will later use the masks and therefore expects them to fit perfectly to the
corresponding warped camera frames. Here, we use the Nvidia Performance Primitives
(NPP) library [89] for optimized implementation.

The Color-Corrector Module

When recording frames from several different cameras pointing in different directions, it
is nearly impossible to calibrate the cameras to output the exact same colors due to the
different lighting conditions. This means that, to generate the best panoramic videos,
we need to correct the colors of all the frames to remove disparities. In our panorama
pipeline, this is done by the Color corrector module running on the GPU.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Execution time (ms)

CPU (Intel Core i7-2600)

GPU (Nvidia GeForce GTX 680)

Figure 4.9: Execution time of color correction.

We choose to carry out the color correction after warping the images. The reason for
this is that locating the overlapping regions is easier with aligned images and the overlap
is also needed when stitching the images together. This algorithm is executed on the
GPU, enabling fast color correction within our pipeline. The implementation is based
on the algorithm presented by Xiong and Pulli [136], but with minor modifications to
optimize for the GPU. We calculate the color differences between the images for every
single set of frames delivered from the cameras. We color-corrected each image in sequence,
meaning that each image was corrected according to the overlapping frame to the left.
The algorithm implemented is easy to parallelize and does not use pixel-to-pixel mapping,
which makes it well suited for our scenario. Figure 4.9 compares running the algorithm
on the CPU and on a GPU. The CPU version could be further optimized with SIMD;
however, the GPU implementation would still be much faster.

The Stitcher Module

As in the old non–real-time pipeline, we use a homography-based stitcher where we simply
create seams between the overlapping camera frames and then copy pixels from the images
based on these seams. These frames need to follow the same homography, which is why
they have to be warped two steps back in the pipeline. In our old pipeline, we used static
cuts for seams, which meant that a fixed rectangular area from each frame was copied

88 Chapter 4. Using Heterogeneous Architectures for Complex Workloads

directly to the output frame. Static cut panoramas are faster but can introduce graphical
errors in the seam area, especially when there is movement in the scene, as illustrated in
Figure 4.10(a).

(a) The original fixed cut stitching with a straight
vertical seam.

(b) The new dynamic stitching with color correction.

(c) Dynamic stitching with no color correction.
The left image shows the seam search area between
the red lines and the seam in yellow. The right im-
age clearly shows the seam going outside the player,
but there are still color differences.

(d) Dynamic stitching with color correction. The
left image shows the seam search area between the
red lines and the seam in yellow. The right image
has no visible seam and no color differences.

Figure 4.10: Stitcher comparison, improving the visual quality with dynamic seams and
color correction.

To make a seam with a better visual result, we therefore introduced a dynamic cut
stitcher instead of the old static cut. The dynamic cut stitcher creates seams by first
creating a rectangle of adjustable width over the static seam area. Then, it treats all
pixels within the seam area as graph nodes. The graph is directed from the bottom
to the top in such a way that each pixel points to the three adjacent pixels above (the
left- and right-most pixels only point to the two pixels available). These edges’ weights
are calculated by using a custom function that compares the absolute color differences
between the corresponding pixels in each of the two frames we are trying to stitch. The
weight function also checks the foreground masks from the BGS module to see if any
player is in the pixel and, if so, it adds a large weight to the node. In effect, both these

4.2. The Real-Time Bagadus Video Pipeline 89

steps create edges between nodes where the colors differ and the players present have much
larger weights. We then run the Dijkstra graph algorithm [28] on the graph to create a
minimal cost route from the start of the offset at the bottom of the image to the end at
the top. Since our path is directed upward, we can only move up or diagonally from each
node and we only obtain one node per horizontal position. By looping through the path,
we therefore obtain our new cut offsets by adding the node’s horizontal position to the
base offset. An illustration of how the final seam looks is shown in Figure 4.10(b), where
the seams without and with color correction are shown in Figures 4.10(c) and 4.10(d).

0 5 10 15 20 25
Execution time (ms)

CPU (Intel Core i7-2600)

GPU (Nvidia GeForce GTX 680)

Figure 4.11: Execution time for dynamic stitching.

The timings for the dynamic stitching module are shown in Figure 4.11. The CPU
version is currently slightly faster than our GPU version, since this algorithm is more
serial than the other image processing algorithms. Searches and branches are also more
efficient on traditional CPUs, but further optimization of the CUDA code could improve
this GPU performance; however, this is not needed, since we are well within the real-time
requirements. The performance difference between the GPU and CPU versions is also
not large enough to justify moving the module to the CPU, which would also add delay
by transferring the data over the PCI Express bus.

The YuvConverter Module

Before storing the stitched panoramic frames, we need to convert back from RGBA to
YUV 4:2:0 for the H.264 encoder, just as in the SingleCamWriter module. However,
due to the size of the output panorama, this conversion is not fast enough on the CPU,
even with the highly optimized swscale library that uses SIMD. This module is therefore
implemented on the GPU. For the GPU version, we based the module on a function
from Nvidia’s NPP [89]. The NPP contains several conversion primitives, but no direct
conversion from RGBA to YUV 4:2:0. The GPU-based version therefore first uses the
NPP to convert from RGBA to YUV 4:4:4 and we wrote a small CUDA kernel to carry
out the final conversion from YUV 4:4:4 to YUV 4:2:0.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Execution time (ms)

CPU (Intel Core i7-2600)

GPU (Nvidia GeForce GTX 680)

Figure 4.12: Execution time for conversion from RGBA to YUV 4:2:0.

Figure 4.12 compares the performance of the CPU-based implementation with that of
the optimized GPU-based version. These results show that the GPU version, even with
a two-step conversion, is over twice as fast as the CPU version.

90 Chapter 4. Using Heterogeneous Architectures for Complex Workloads

Figure 4.13: Improved real-time pipeline performance: module overview with default
setup.

The Downloader Module

Before we can write the stitched panorama frames to disk, we need to transfer them back
to the CPU, which is carried out by the Downloader module. It runs as a single CPU
thread that synchronously copies a frame to the CPU. We could have implemented the
Downloader module as an asynchronous transfer with double buffering, like the Uploader,
but since the performance, as shown in Figure 4.13, is very good, this is left as a further
optimization.

The PanoramaWriter Module

The last module, executing on the CPU, is the Writer module, which writes the panoramic
frames to disk. The conversion from RGBA to YUV was already done on the GPU, so
the only steps the PanoramaWriter needs to follow are to first encode the input frame to
H.264 and then write the result to disk as three-second H.264 video files.

4.2.1 Performance Analysis

To evaluate the performance of our pipeline, we used an off-the-shelf PC with an Intel
Core i7-3930K processor and an Nvidia GeForce GTX 680 GPU. We benchmarked each
individual component and the pipeline as a whole, capturing, processing, and storing 1000
frames from the cameras.

In the non–real-time pipeline [46], the main bottleneck was panorama creation (warp-
ing and stitching). This operation alone used 974 ms per frame. As shown by the perfor-
mance breakdown into individual components in Figure 4.13, the new pipeline was greatly
improved. Note that all the individual components run concurrently in real time on the
same set of hardware. All of these, however, add up to times far longer than 33 ms. The
reason why the pipeline still runs in real time is because several frames are processed in
parallel. Note that all CUDA kernels are executed at the same time on a single GPU,
so the performance of the GPU modules is affected by that of the other GPU modules.
On earlier GPUs from the Tesla architecture (e.g., the GTX 280), where different CUDA

4.2. The Real-Time Bagadus Video Pipeline 91

200 400 600 800 1000
Frame number

0

10

20

30

40

50

60

70

W
rit

e
di

ff
er

en
ce

 b
et

w
ee

n
fr

am
es

 (
m

s)

SingleCamWriter PanoramaWriter Realtime

(a) Pipeline write differences (showing the times for 1000 frames).

Reader
30

31

32

33

34

35

M
e
a
n
 t

im
e
 (

m
s)

4 cores 6 cores 8 cores 10 cores 12 cores
14 cores 16 cores

(b) Core count scalability.

Reader
30

31

32

33

34

35

M
e
a
n
 t

im
e
 (

m
s)

3.2 Ghz 3.5 Ghz 4.0 Ghz 4.4 Ghz

(c) Core frequency scalability.

Figure 4.14: Inter-departure times of frames when running the entire pipeline. In a real-
time scenario, the output rate should follow the input rate (given here by the trigger box)
of 30 fps (33 ms).

kernels were serialized, this was not possible. However, the Fermi architecture (GTX 480
and above) introduced concurrent CUDA kernel execution [88]. Thus, since the Controller
module schedules the other modules according to an input rate of 30 fps, the resources
are sufficient for real-time execution.

For the pipeline to function in real time, the output rate should follow the input rate,
that is, deliver all output frames (both for four single cameras and for one panorama) at
30 fps. Thus, to give an idea of how often a frame is written to file, Figure 4.14 shows
individual and average frame inter-departure rates. The figures show the time differences
between consecutive writes for the generated panorama, as well as for the individual
camera streams. Operating system calls, interrupts, and disk accesses most likely cause
small spikes in the write times (as seen in the scatter plot in Figure 4.14(a), but as long as
the average times are equal to the real-time threshold, the pipeline can be considered to
run in real time. As shown in Figures 4.14(b) and 4.14(c), the average frame inter-arrival
time (Reader) is equal to the average frame inter-departure time (both SingleCamWriter
and PanoramaWriter). This is also the case when testing other CPU frequencies and
numbers of available cores. Thus, the pipeline runs in real time.

As stated above and seen in Figure 4.14(a), there is a small latency in the panorama

92 Chapter 4. Using Heterogeneous Architectures for Complex Workloads

pipeline compared to writing the single cameras immediately. The 33 ms are due to the
camera frame rate of 30 fps, meaning that even though a module may finish before the
threshold time, the Controller module will make it wait until the next set of frames arrives
before signaling it to re-execute.

We added a five-second input buffer to the pipeline, because the sensor system has
a latency of at least three seconds before the data are ready for use, and we added a
two-second buffer for safety and GPU processing. This means that the end-to-end time
from when a picture is recorded by the camera until it is stored on disk is 5.33 seconds
per frame, on average.

4.2.2 Discussion

The first non–real-time prototype aimed at full integration at the system level, rather
than optimization for performance. However, the challenge with the real-time pipeline
has been increased by aiming at running the system in real time on low-cost, off-the-shelf
hardware.

The new real-time capability also enables future enhancements with respect to func-
tionality. For example, several systems have already demonstrated their ability to serve
available panoramic video to the masses [53, 83] and, by generating the panoramic video
live, enables the audience to mark and follow particular players and events. We can
also use this information to create video playlists [66] automatically, providing a video
summary of extracted events.

Controller Converter Debarreler Uploader SingleCamWriter PanoramaWriter
0

10

20

30

40

M
e
a
n
 t

im
e
 (

m
s) 4 cores

6 cores
8 cores
10 cores
12 cores
14 cores
16 cores
Real-time

Figure 4.15: Core count scalability.

Due to limited availability of resources during these experiments, we were not able
to test our system with more cameras or with higher-resolution cameras. However, to
still obtain an impression of the scalability capabilities of our pipeline, we performed
several benchmark tests, changing the number of available cores and, the processor clock
frequency, and experimented with GPUs from different architectures and with different
computing resources.

Figure 4.151 shows the results changing the number of available cores that can process
the many concurrent threads in the CPU part of the pipeline (Figure 4.14(b) shows that
the pipeline is still in real time). As we can observe from the figure, every component

1Note that this experiment was run on a machine with more available cores (16), each at a lower clock
frequency (2.0 GHz), compared to the machine installed at the stadium, which was used for all the other
tests.

4.2. The Real-Time Bagadus Video Pipeline 93

runs in real time, using more than four cores and the pipeline as a whole using eight or
more cores. Furthermore, the CPU pipeline contains a large but configurable number of
threads (86 in the current setup) and, due to the many threads of the embarrassingly
parallel workload, the pipeline seems to scale well with the number of available cores.

Controller Converter Debarreler Uploader SingleCamWriter PanoramaWriter
0

10

20

30

M
e
a
n
 t

im
e
 (

m
s)

3.2 Ghz
3.5 Ghz
4.0 Ghz
4.4 Ghz
Real-time

Figure 4.16: CPU frequency scalability.

Similar conclusions can be drawn from Figure 4.16, where the processing time is re-
duced with a higher processor clock frequency; that is, the pipeline already runs in real
time at 3.2 GHz and scaling is almost linear with CPU frequency (Figure 4.14(c) shows
that the pipeline is still in real time). The H.264 encoder scales especially well when
scaling the CPU frequency.

Uploader BGS Warper Color-corr. Stitcher YUVConv. Downloader
0

20

40

60

80

M
e
a
n
 t

im
e
 (

m
s)

GTX 280
GTX 480
GTX 580
GTX 680
Real-time

Figure 4.17: GPU comparison.

With respect to the GPU part of the pipeline, Figure 4.17 plots the processing times
using different GPUs. The high-end GPUs GTX 480 and above (based on the Fermi
architecture) all achieve real-time performance in the current setup. The GTX 280, based
on the Tesla architecture, does not support the concurrent CUDA kernel execution intro-
duced with the Fermi architecture [88] and performance is therefore lower than in real
time, since the kernels executing on the GPU must be serialized. As expected, more pow-
erful GPUs reduce the processing time. This is shown for the GTX 580 results. The GTX
580 is based on the same Fermi architecture as the GTX 480; however, it has 512 cores
versus 480 cores and the cores clocked at a higher frequency. We can also see that the
GTX 680 GPU, which is based on the newer Kepler architecture, performs better than
the GTX 580 in some cases and has slightly lower performance in other cases. This is due
to the fact that we developed and optimized this pipeline for the Fermi architecture, not
the Kepler architecture.

Looking at the bandwidth used on the PCI Express bus between the CPU and GPU,
we only use a small portion of the pipeline. Our Uploader module takes 737 MB/s and the
downloader takes 291 MB/s. The theoretical bandwidth of a 16-lane PCI Express 3.0 link

94 Chapter 4. Using Heterogeneous Architectures for Complex Workloads

is 16 GB/s. For now, one GPU fulfills our real-time requirement. We did therefore not
experiment with multiple GPUs, but the GPU processing power can easily be increased
by adding multiple cards. Profiling of the modules running on the GPU showed that the
pipeline uses seven kernels running concurrently on the GPU. These seven kernels have an
average compute utilization of 14.8% on the latest-generation GPU based on the Kepler
GK110 architecture. Thus, based on these results, we believe that our pipeline can be
scaled up to both higher numbers of cameras and higher-resolution cameras.

4.3 Summary

Where people earlier used a huge amount of time to analyze games manually, Bagadus
is an integrated system that automatically manages the required operations and video
synchronization. For example, in online mode, Bagadus receives expert-annotated events
from the analytics team and enables immediate playback during a game or a practice
session. To enable this feature, we distributed the workload of the video subsystem on
both the CPU and GPU. Our experiments show that the pipeline can run in real time on
a low-cost six-core machine with a commodity GPU. To achieve this, each component in
the pipeline was optimized for the target architecture, both as a standalone component
and as a part of a pipeline. We had to carefully consider which of the components we
wanted to run on the GPU and the CPU. Some of the components needed input from the
network, some needed to write to storage, and some components needed input from other
parts of the system, such as the tracking subsystem. This meant that modules such as
the camera readers and writers had to run on the CPU.

An important step in the optimizations was the benchmarking of all the separate
modules together as a complete pipeline. One of the lessons we learned was that, even
though the standalone module is faster on the CPU, we had to keep this part of the
pipeline on the GPU, since the next module in the pipeline had to be executed on the
GPU. The CPU version of this module could not meet our real-time requirements. Moving
only the dynamic stitcher module to the CPU for processing would also add extra latency
to the system because of the extra transfer over the PCI Express bus. The same lesson
also goes the other way: In some cases (i.e., with the Debarreling module) the workload
might be very well suited for offloading to the GPU; however, the next step in the pipeline
would require processing on the CPU.

Another lesson learned during our experiments was that the real-time pipeline uses
seven kernels running concurrently on the GPU and all seven kernels combined had a
average compute utilization of just 14.8% on the GPU. This means that we could po-
tentially share the GPU with other workloads. When programming a complex workload
such as the video subsystem of the Bagadus system, we had to have detailed knowledge
about both the GPU and CPU architectures in our target system. Several iterations of
optimizations are often required to make a complex workload such as the Bagadus video
pipeline run in real time. This process involves much trial and error. If we were to change
the hardware used for our system, which components to run on the GPU and on the CPU
might have to be redetermined.

To make this process easier, we therefore need a framework that is aware of an ap-
plication’s real-time requirements so that, with the help of instrumented runs of the
application, the framework can move resources between the GPU and CPU for optimal

4.3. Summary 95

execution. Ideally, we would just want the programmer to express the maximum level of
parallelism in the program code and have the framework generate multiple versions for
any heterogeneous architectures that are supported. The framework would also be able
to dynamically adapt the pipeline when the hardware resources changed. A processing
framework would also be able to utilize the resources on the GPU more efficiently. Our
experiments show that the average compute utilization of the GPU when executing all our
seven kernels was 14.8%. If the real-time requirements were met, the framework would
be able to schedule a greater workload on the GPU.

The Bagadus prototype presented here supports four 1K cameras and runs on a
single computer. The next-generation camera setup use five 2K cameras. To support
this setup, the Bagadus video pipeline was extended to run on multiple machines. This
was implemented after the completion of this thesis. The latest version of the Bagadus
pipeline [40,80,97] runs in real time on multiple machines connected with a PCI Express-
based interconnect.

In the next chapter, we introduce a programming language and framework designed for
the real-time processing of multimedia workloads on heterogeneous architectures. This
system is designed to enable complex workloads such as Bagadus to run in real time
on distributed systems with heterogeneous architectures without manually tweaking the
system.

96 Chapter 4. Using Heterogeneous Architectures for Complex Workloads

Chapter 5

The P2G Framework and the Future

In the previous chapter, we saw that complex multimedia workloads with real-time con-
straints are well suited for heterogeneous architectures. However, we observed that many
optimizations were required to make sure that the processing time of all the components
was less than the real-time threshold and that the workloads were executed on the optimal
architecture for the particular workload or task.

In this chapter, we take a take a closer look at a framework called P2G that we designed
for the real-time processing of multimedia workloads on heterogeneous architectures. The
goal of this framework is to automate the parallelization of the program code and provide
programmers a unified programming abstraction for writing multimedia workloads for
heterogeneous architectures. This framework is a work in progress. At the conclusion of
this thesis, a simple prototype was running on a single multicore machine with a shared
memory architecture. We used two simple multimedia workloads to test the feasibility of
our system.

This chapter is organized as follows: First, in Section 5.1, we summarize some of the
challenges we observed in previous chapters. In Section 5.2, we present ideas for design-
ing the framework and take a closer look at other frameworks for distributed processing.
In Section 5.3, we present related work on other processing frameworks. Next, in Sec-
tion 5.4, we present the architecture and programming model of our P2G framework and
evaluate two simple multimedia workloads with the prototype implementation. Finally,
in Section 5.5, we discuss the future vision of our framework.

5.1 Summary of Challenges

In Chapters 3 and 4, we experimented with heterogeneous architectures for simple and
complex multimedia workloads. We observed that the architectures can efficiently process
the workloads. However, challenges remain, especially for the programmer.

We saw that many of our simple workloads had to be optimized for the architectures
to run efficiently. On the x86 and the Cell, single instruction multiple data (SIMD) pro-
gramming is recommended to process more data per cycle. We also saw the importance,
on the x86 architecture, of adapting the number of threads used by the workload to the
number of cores in the system. If too many threads are used, performance suffers because
of scheduling overhead. If the workload easily scales too many threads, another possibility
is to use a graphics processing unit (GPU). When using a GPU, the programmer has to

97

98 Chapter 5. The P2G Framework and the Future

be aware that it takes time to transfer data to and from the GPU, so the workload has to
be large enough to compensate for the transfer overhead. There are also several potential
pitfalls of not using the memory on the GPU correctly and not optimizing the transfers
from the host central processing unit (CPU) to the GPU.

Finally, when programmers want to process more complex multimedia workloads with
real-time constraints that execute on multiple heterogeneous architectures, a great deal of
profiling, tweaking, and optimization is required to make sure that the right components
run on the right architecture.

5.2 Design Ideas for a New Processing Framework

Our work with both simple and complex multimedia workloads led to several observations
and challenges with optimizing parts of programs and entire pipelines for different hetero-
geneous architectures. We want to use some of these ideas when designing our framework
for processing multimedia workloads on heterogeneous architectures.

One of the first observations when working with the x86, Cell, and GPUs was that
programmers tend to prefer the single instruction, multiple threads (SIMT) abstraction
used on GPUs when they have small kernels that execute on the same data over the more
rigid SIMD abstraction found on the x86 and the Cell. The main advantage with SIMT
is that the programmer can think in terms of scalar code when writing programs. All the
architectures we worked with use a C-like programming language, so we want to keep C
as the programming language when designing the framework.

Furthermore, moving data between the different architectures is a challenge for many
programmers. It is therefore important to design the framework in such a way that it
takes care of data transfers. We also want to present the data as arrays to programmers,
because this is a familiar data representation when working with multimedia workloads.
For scheduling multimedia workloads, we want to use the two-level scheduling that we ex-
perimented with on a very simple scheduling simulator [115]. Here, a high-level scheduler
(HLS) has global control of all the resources available and a low-level scheduler executes
the workloads and time slicing on the different processing cores.

It is important for the framework to track data dependencies in the pipelines. If the
dependency tracker is efficient and fine grained, the framework will be able to expose both
task parallelism and pipeline parallelism in the programs execution. Dependency tracking
is also important for the framework when moving data between different processing cores.
To efficiently carry out fine-grained dependency tracking, programmers must write their
applications in such way that they express as much parallelism as possible.

5.3 Existing Processing Frameworks

A great deal of research aims at solving challenges with parallel and distributed processing
of large quantities of data. Two of the most popular frameworks for distributed processing
are Google’s MapReduce [27] and Microsoft’s Dryad [63]. In addition, we have System S
from IBM [41], PigLatin from Yahoo [93], Cosmos [85], Scope [18], and DryadLINQ [140].

MapReduce uses a data-parallel model and is based on keys and values. There are sev-
eral implementations of MapReduce for multicore processors [103], clusters [4], GPUs [49],

5.4. The P2G Framework 99

and even the Cell Broadband Engine [26]. To process data relations among heterogeneous
data more efficiently, which is not supported by the original MapReduce model, Map–
Reduce–Merge [138] was introduced. The Oivos project [124] addresses the same issues
but, in addition, the system provides a more expressive, declarative programming model.
Reducing the layering overhead of the software running on the top of MapReduce is
the goal of Cogset [125], where the architecture of the processing is changed to increase
performance.

The Dryad, Cosmos, and System S frameworks have several properties in common.
All three use directed graphs to model communication between the processing stages and
execute them on a cluster. System S also supports cycles in the graphs. However, since
all of these systems are closed source, many details are unknown. Compared to the data-
parallel MapReduce, which is one of the most cited paradigms for expressing parallel
workloads, both Dryad and System S use a task-parallel model.

A limitation of MapReduce, Dryad, and Cosmos is their inability to model interac-
tive algorithms. The rigid semantics of MapReduce does not map well to all types of
problems and workloads [138], which in many cases may lead to decreased performance
and unnaturally expressed solutions [127]. An alternative frameworks to MapReduce is
the Khan process network (KPN). KPNs support arbitrary communication graphs with
cycles and are deterministic. However, not many general-purpose KPN implementations
exist. Some known implementations include the Sesame project [123], YAPI [70], and
the Nornir framework [128]. These frameworks have several benefits, but for applica-
tion developers the KPN model has challenges. One of the main challenges is that the
communication channels between the processes must be specified manually and, in an
environment without a shared memory model, distributed deadlock detection must be
implemented.

An alternative is a framework based on a process network paradigm, such as StreamIt [44].
Here, we have a language and runtime for the implementation of streaming programs that
are described by a graph with computational blocks, called filters, that has a single input
and output. The filters can be combined in loops and fork/join patterns but must provide
bounds on the number of messages produced and consumed, making a StreamIt graph a
synchronous data flow process network [74]. The framework supports multiple machines
and processors. However, this must be specified at compilation time.

Processing and developing distributed multimedia applications is more complex than
for traditional sequential applications. Multimedia workloads often have strict require-
ments and deadlines. Iterative processing is also essential for live multimedia workloads,
such as Bagadus. Thus, all existing frameworks have shortcomings that are hard to
address and the traditional batch processing frameworks simply come up short in our
multimedia scenario. In the next section, we describe the design ideas and a basic imple-
mentation of our new framework for real-time multimedia processing.

5.4 The P2G Framework

The basic idea behind the P2G framework comes from the observation that most of the
frameworks for distributed processing lack support for real-time multimedia workloads.
The frameworks often also sacrifice task and data parallelism. With data parallelism,

100 Chapter 5. The P2G Framework and the Future

multiple processing cores perform the same operation over multiple disjoint data chunks.
Task parallelism uses multiple processing cores to perform different operations in parallel.

Many of the existing processing frameworks optimize for either task or data parallelism,
but not both. This means that they can potentially limit the ability to express the
parallelism of a given workload. For example, MapReduce and its related approaches
provide considerable support for parallelization but restrict runtime processing to data
parallelism [39]. Functional languages such as Haskell [52], Erlang [6], and the event-
based Specification and Description Language [65], map well to task parallelism. In
these languages, programs are expressed as communicating processes either through event
distribution or message passing. This makes it challenging to express data parallelism
without specifying a fixed number of communication channels.

For multimedia workloads, the Nornir framework improves on some of the shortcom-
ings of the traditional batch processing frameworks, such as Dryad and MapReduce. KPNs
are deterministic; each execution of a process network produces the same output given the
same input. KPNs also support arbitrary communication graphs (with cycles/iterations),
while MapReduce and Dryad restrict application developers to a parallel pipeline struc-
ture and directed acyclic graphs (DAGs). However, Nornir is only task parallel and data
parallelism must be explicitly added by the programmer. Furthermore, as a framework
for heterogeneous multicore architectures, Nornir still has challenges. For example, the
message-passing communication channels, with exactly one sender and one receiver, are
modeled as infinite first in, first out queues. In real-life heterogeneous architectures, how-
ever, queue length is limited by available memory. A heterogeneous and distributed Nornir
implementation would therefore require a distributed deadlock detection algorithm. An-
other issue is the complex programming model. The KPN model requires the application
developer to specify the communication channels between the processes manually.

P2G builds on some of the knowledge gained from Nornir and we address the require-
ments from multimedia workloads, with inherent support for deadlines. A particularly
desirable feature of processing multimedia workloads is the automatic combination of task
and data parallelism. Intra-frame prediction in H.264 or VP8, for example, introduces
many dependencies between the sub-blocks of a frame and, together with other overlap-
ping processing stages, these operations have great potential to benefit from both types
of parallelism. Multimedia algorithms are iterative and exhibit many pipeline parallel
opportunities. It is hard to exploit them, because an intrinsic knowledge of fine-grained
dependencies is required and it is difficult to structure programs in such a way that
pipeline parallelism can be used. Thies et al. [122] wrote an analysis tool for finding
parallel pipeline opportunities by evaluating memory accesses, assuming stable behavior.
They evaluated their system on multimedia algorithms and significantly increased paral-
lelism by utilizing the complex dependencies found. In the P2G framework, application
developers model data and task dependencies explicitly, which enables the runtime sys-
tem to automatically detect and take full advantage of all parallel opportunities without
manual intervention.

The main source of non-determinism in the other languages and frameworks lies in
the arbitrary order of read and write operations from and to memory. This source of non-
deterministic behavior can be removed by using a strict write-once semantics for writing
to memory [8]. Several languages take advantage of the concept of single assignment,
including Haskell [52] and Erlang [6]. This enables the schedulers to determine when

5.4. The P2G Framework 101

code depending on a memory cell is runnable. This is a key concept that we adopted for
P2G. While write-once semantics are well suited for a scheduler’s dependency analysis,
it is not straightforward to think about multimedia algorithms in the functional terms of
Erlang and Haskell. Multimedia algorithms tend to be formulated in terms of iterations
of sequential transformation steps. They act on multidimensional data arrays (e.g., the
pixels in a picture) and frequently provide very intuitive data partitioning opportunities
(e.g., 8*8 pixel macroblocks in a picture). Prominent examples are the computation-heavy
MPEG-4 Advanced Video Coding encoding [64] and scale-invariant feature transform [75]
pipelines. Both are also examples of algorithms whose subsequent steps provide data
decomposition opportunities at different granularities and along different dimensions of
input data. Consequently, P2G should allow programmers to think in terms of fields
without losing write-once semantics. In this proof-of-concept implementation of P2G, we
use multidimensional arrays to implement fields.

The ability to carry out flexible partitioning requires the processing of clearly distinct
data units without side effects. The idea in P2G is to use kernels as in stream pro-
cessing [44, 92]. This is the same paradigm used by GPUs and, when we experimented
with simple workloads in Chapter 3, the preferred paradigm of programmers. A kernel
describes the transformation of multidimensional fields of data. When such a transforma-
tion is formulated as a loop of equal steps, the field should instead be partitioned and the
kernel instantiated to achieve data-parallel execution. Each of these data partitions and
tasks can then be scheduled independently by the schedulers, which analyze dependencies
and guarantee a fully deterministic output, independent of order, due to the write-once
semantics of fields.

Together these observations determine four basic ideas for the design of P2G:

• The use of multidimensional fields as the central concept for storing data in P2G
to achieve straightforward implementations of simple and complex multimedia al-
gorithms.

• The use of kernels that process slices of fields to achieve data decomposition.

• The use of write-once semantics to such fields to achieve deterministic behavior.

• The use of dependency analysis at runtime at a granularity finer than entire fields
to achieve task decomposition along with data decomposition.

The P2G framework is designed to be language independent; however, for this pro-
totype, we defined a C-like language that captures many of P2G’s central concepts. As
such, the P2G language was inspired by several other languages. Cray’s Chapel [19]
language antedates many of P2G’s features in a more complete manner. However, P2G
adds write-once semantics and support for multimedia workloads. Furthermore, P2G
programs consist of interchangeable language elements where the programmer formulates
data dependencies with fetch and store statements between implicitly instantiated ker-
nels, (currently) written in C and C++. The biggest deviation from most other modern
language designs is that the P2G kernel language makes both message passing and par-
allelism implicit and allows users to think in terms of sequential data transformations.
Furthermore, the P2G concept supports deadlines, which allows for scheduling decisions

102 Chapter 5. The P2G Framework and the Future

such as termination, branching, and the use of alternative code paths based on runtime
observations.

P2G allows programmers to focus on data transformations in a sequential manner
while simultaneously providing enough information to dynamically adapt the data and
task parallelization. The fields in P2G look mostly like global multidimensional arrays in
C, although their representation in memory may differ. They do not have to be placed
contiguously in the memory of a single node; the fields can even be distributed across
multiple execution nodes.

5.4.1 Architecture

Master node

Communication
Manager

Instrumentation
Manager

High level scheduler

Execution node

Communication
Manager

Instrumentation
Daemon

Execution node

Communication
Manager

Instrumentation
Daemon

Low level scheduler S
to

ra
g
e

M
a
n
a
g
e
r

S
to

ra
g
e

M
a
n
a
g
e
r

Network

Low level scheduler

Figure 5.1: Overview of the architecture in the P2G system.

The basic architecture of the P2G framework can be seen in Figure 5.1. The P2G
architecture consists of a master node and an arbitrary number of execution nodes. Each
of the execution nodes reports its local topology (a graph of multicore and single-core
CPUs and GPUs, connected by various kinds of buses and other networks) to the master
node, which combines this information into a global topology of available resources. This
global topology can be updated during runtime, as execution nodes are dynamically added
and removed to accommodate for changes in the global load.

To maximize throughput, P2G uses the two-level scheduling approach we investigated
in 2008 [115]. On the master node, we have an HLS and, on the execution node(s),
we use a low-level scheduler (LLS). The HLS can analyze a workload’s store and fetch
statements, from which it can generate an intermediate implicit static dependency graph.
An example of such a graph is shown in Figure 5.2(a), where the edges connecting two
kernels through a field can be merged, circumventing the need for a vertex representing
the field, which is shown in Figure 5.2(b). From the intermediate graph, the HLS can
then derive the final implicit static dependency graph shown in Figure 5.2(b). The HLS
will then use a graph partitioning [50] or search-based [42] algorithm to partition the
workload into a suitable number of components that can be distributed to and run on
the resources available in the topology. Using instrumentation data collected from the
nodes executing the workload, we can weight the final graph with this profiling data
during runtime. The weighted final graph can then be repartitioned, with the intent of

5.4. The P2G Framework 103

init

print

store m_data

fetch p_data

store p_data

fetch m_data

mul2 plus5

m_data p_data

store m_data

fetch p_data

fetch m_data

store

fetch

KernelField

(a) Intermediate implicit static dependency graph

mul2init

Partition A

plus5

print

Partition B

(b) Final implicit static dependency graph

Figure 5.2: Dependency graphs in the P2G system.

improving system throughput, accommodating for changes in the global load or adapting
to changes in available resources.

Given a partial workload such as partition A in Figure 5.2(b), an LLS at an execution
node is responsible for local scheduling decisions. Figure 5.4 shows how the LLS can
combine tasks and data to minimize overhead introduced by P2G and take advantage of
specialized hardware, such as GPUs and other coprocessors.

The distribution of data, reporting, and other communication patterns in P2G is
carried out through an event-based, distributed publish–subscribe model. Dependencies
between components in a multimedia workload are deterministically derived from the
code and the HLSs’ partitioning decisions, resulting in direct communication. As such,
the P2G framework relies on a combination of HLS and LLS instrumentation data and
the global topology to make the best use of the performance of several heterogeneous
processing architectures in a distributed system.

5.4.2 Programming Model

The programming model used in the P2G framework has two main concepts: the implicit
static dependency graph shown in Figures 5.2(a) and 5.2(b) and the dynamically created
directed acyclic dependency graph (DC-DAG) illustrated in Figure 5.4. A kernel language
was also implemented to make it easier for programmers to develop workloads using P2G.
An example workload written in the P2G kernel language is shown in Figure 5.5). The
initial C++ version of the workload is shown in Figure 5.3.

The P2G version consists of two primary kernels: mul2 and plus5. These two kernels
form a pipeline where mul2 first multiplies a value by two and stores the data, which
plus5 then fetches and increases by five; mul2 then fetches the data stored by plus5 ; and
so on. The print kernel runs orthogonally to these two kernels and fetches and writes the
data they produced to cout. In combination, these three kernels form a cycle. The kernel
init runs only once and writes initial data for mul2 to consume. The kernels operate on
two one-dimensional, five-element fields. The print kernel writes {10, 11, 12, 13, 14},
{20, 22, 24, 26, 28} for the first age and {25, 27, 29, 31, 33}, {50, 54, 58, 62, 66} for
the second. Since there is no termination condition, this program runs indefinitely.

104 Chapter 5. The P2G Framework and the Future

void print(int *in , int number)

{

for(int i = 0; i < number; ++i) {

std::cout << in[i] << " ";

}

std::cout << std::endl;

}

void mul2(int *in , int *out , int number)

{

for (int i = 0; i < number; ++i)

out[i] = in[i] * 2;

}

void plus5(int *in , int *out , int number)

{

for (int i = 0; i < number; ++i)

out[i] = in[i] + 5;

}

int main()

{

int m_data [5] = { 10, 11, 12, 13, 14 };

int p_data [5];

int number = sizeof(m_data) / sizeof(m_data [0]);

while(true)

{

mul2(m_data , p_data , number);

print(m_data , number);

print(p_data , number);

plus5(p_data , m_data , number);

}

return 0;

}

Figure 5.3: Initial C++ version of a mul/sum example.

5.4. The P2G Framework 105

K
e
rn

e
l in

sta
n

ce
s

Fie
ld

 d
a
ta

Age=0

x=0

x=1

x=2

x=3

x=4

plus5

x=0

x=1

x=2

x=3

x=4

mul2

init print

20

22

24

26

28

p_data

10

11

12

13

14

m_data

Age=1

x=0

x=1

x=2

x=3

x=4

plus5

x=0

x=1

x=2

x=3

x=4

mul2

print

50

54

58

62

66

p_data

25

27

29

31

33

m_data

Age=2

x=0

x=1

x=2

x=3

x=4

plus5

print

110

118

126

134

142

p_data

55

59

63

67

71

m_data

Age=3

print
x=0

x=1

x=2

x=3

x=4
mul2
plus5

p_data

230

246

262

278

294

115

123

131

139

147

m_data

mul2

Decrease data parallelization Decrease task parallelization

Age=4

mul2
plus5

print

p_data

470

502

534

566

598

235

251

267

283

299

m_data

...

Age=n
Decrease data and task parallelizationFull data and task parallelizationInitialization, with full data and task parallelization

= Kernel Instance = Field = Fetch operation(s) = Store operation(s)

Figure 5.4: Dynamically created directed acyclic dependency graph (DC-DAG).

Dependency Graphs

The intermediate implicit static dependency graph can be seen in Figure 5.2(a) and is
extracted from the fetch and store statements in a kernel. These statements are used
by kernels to interact with fields. This intermediate graph can be further refined by
merging the edges of kernels linked through a field vertex, resulting in a final implicit
static dependency graph, as depicted in Figure 5.2(b). This final graph can serve as input
to the HLS, which can use it to determine how best to partition the workload given a
global topology. In this proof-of-concept implementation of P2G, dependency analysis is
only carried out during runtime.

The graph can be further weighted using instrumentation data during runtime to
serve as input for repartitioning. These weighted graphs can also serve as input in static
offline analysis. For example, it could be used as input to a simulator to best determine
how to initially configure a workload. During runtime, the intermediate implicit static
dependency graph is expanded to form a dynamically created directed acyclic dependency
graph, as shown in Figure 5.4. This expansion from a cyclic graph to a DAG occurs as
a result of our write-once semantics. As such, we can see how P2G is designed to unroll
loops without introducing implicit barriers between iterations. We call each such unrolled
loop an Age. In Figure 5.4, we see how the LLS can then use the DC-DAG to combine
both tasks and data to reduce overhead introduced by the P2G framework.

When moving from Age=1 to Age=2, we can see that the LLS made a decision to
reduce data parallelity. In P2G, kernels fetch slices of data and, initially, mul2 was
defined to work on each single field entry in parallel, but in Age=2 the LLS decreased
the granularity of the fetch statement to encompass the entire field. The LLS could also
split the field in two, leading to two kernel instances of mul2, working on disparate sets
of the field. Moving from Age=2 to Age=3, we see that the LLS made the decision
to decrease task parallelity. This is possible because mul2 and plus5 effectively form a
pipeline, information that is available from the static graphs. By combining these two
tasks, the individual store operations of the tasks are deferred until the data have been
fully processed by each task. If the print kernel is not present, storage to the intermediate
field m data could be circumvented in entirety. In the final step, moving from Age=3 to
Age=4, we can see that a decision to decrease both task and data parallelity was made.
This effectively renders this single kernel instance into a classical for loop, working on
each data element of the field, with each task (mul2, plus5) performed sequentially on the

106 Chapter 5. The P2G Framework and the Future

Kernel definitions:
0
1
2
3
4
5
6
7
8
9

10
11
12
13

init:
 local int32[] values;

 %{
 int i = 0;
 for(;i < 5; ++i)
 {
 put(values, i+10, i);
 }
 %}

 store m_data(0) = values;

0
1
2
3
4
5
6
7
8
9

10
11
12
13

mul2:
 age a;
 index x;
 local int32 value;

 fetch value = m_data(a)[x];

 %{
 value *= 2;
 %}

 store p_data(a)[1] = value;

print:
 age a;
 local int32[] m, p;

 fetch m = m_data(a);
 fetch p = p_data(a);

 %{
 for(int i=0; i < extent(m, 0);)
 cout << get(m, ++i) << " ";
 cout << endl;

 for(int i=0; i < extent(p, 0);)
 cout << get(p, ++i) << " ";
 cout << endl;
%}

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

plus5:
 age a;
 index x;
 local int32 value;

 fetch value = p_data(a)[x];

 %{
 value += 5;
 %}

 store m_data(a+1)[x] = value;

Field definitions:
0
1 int32[] p_data age;

int32[] m_data age;

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure 5.5: Kernel and field definitions.

data.
The P2G framework can make these runtime adjustments to data and task parallelism

dynamically based on the resources available at the time.

Kernel Language

In the current prototype of the framework, P2G is exposed to the developer through the
kernel language (BNF grammar of the kernel language can be found in Appendix A). An
implementation of a simple workload in kernel language is outlined in Figure 5.5. The
language can be replaced easily. However, it exposes the basic functions of the design.
The most important parts are the kernel and field definitions, which describe the code
and interaction patterns in P2G.

The main purpose of a kernel definition is to describe the required interaction of a
kernel instance with an arbitrary number of fields (holding the application data) through

5.4. The P2G Framework 107

the fetch and store statements. A field in P2G serves as an interaction point for kernel
definitions, as shown in Figure 5.2(a).

An important aspect of a multimedia workload such as the Bagadus video pipeline is
the ability to express deadlines. It is unnecessary to stitch a panorama if the playback
has moved past that point in the video. We therefore implemented language support
for expressing deadlines. In principle, a deadline gives the application developer the
option of defining a global timer. This timer can then be polled and updated from within
a kernel definition. Given a condition based on a deadline, a timeout can occur and
an alternate code path can be executed. Such an alternate code path is executed by
storing to a different field then in the primary path, leading to new dependencies and
new behavior. In this proof-of-concept implementation, we did not implement support
for timers; however, we are currently reevaluating the concept of timers.

Fields in P2G have several properties, including a type and a dimensionality. An
important property mentioned earlier is aging. Aging allows kernels to be iterative while
maintaining write-once semantics in such cyclic execution. Aging enables unique storage
to the same position in a field several times, as long as the age increases for each store
operation, as shown in Figure 5.4). In essence, this adds an extra dimension to the field
and makes it possible to accommodate iterative algorithms. It is also important to note
that a field is not connected to a single execution node; it can be distributed across
multiple execution nodes, as shown in Figure 5.1).

When defining the interaction between kernels and fields, the programmer is encour-
aged to express the finest possible granularity of kernel definition and, likewise, the most
precise slices possible for the kernel within the field. The reason is because it provides
the LLS more control over the granularity of task and data decomposition. With in-
strumentation data, the framework can reduce scheduling overhead by combining several
instances of a kernel that process different data or several instances of different kernels
that process data in sequence, as shown in Figure 5.4). The scheduler in P2G makes its
decisions based on instrumentation data and the implicit static dependency graph.

Runtime

We can now extrapolate the concept of kernel definitions to kernel instances. A kernel
instance is the unit of code that is executed during runtime and the number of kernel
instances executed in parallel for a given kernel definition will depend on the fetch state-
ments.

A kernel instance works on an arbitrary number of slices of fields, depending on the
number of fetch statements in the kernel definition. If we look at the example in Figures
5.4 and 5.5, we can see how the mul2 kernel, given its fetch statement on m data with
age=a and index=x, fetches only a single element of the data. Thus, since the m data
field consists of five data elements, this means that P2G can execute a maximum of x
kernel instances simultaneously per age, yielding a*x mul2 kernel instances.

P2G also supports the automatic resizing of fields. This is shown in the kernel defi-
nition of the print kernel in Figure 5.5. Initially, the extents of m data and p data are
not defined. With each iteration of the for loop in init, the local field values is resized
locally. This leads to a resizing of the global field m data when values is stored to it.
These extents are then propagated to the respective fields impacted by this resizing, such

108 Chapter 5. The P2G Framework and the Future

as p data.
It is important to note that a kernel instance is only dispatched when all its depen-

dencies are fulfilled, that is, all the data it fetches have been stored to the respective fields
and elements. Figures 5.4 and 5.5 also show that mul2 stores its result to p data with
age=a and index=x. This means that once mul2 has stored its results to p data with
index=2 and age=0, the kernel instance of plus5 with the fetch statement fetch(0)[2] can
be dispatched. With our write-one semantics, each kernel instance is only dispatched
once.

5.4.3 Prototype

A prototype implementation of the basic concepts of the P2G framework was imple-
mented. The prototype consisted of a compiler for the kernel language and a runtime
that could execute P2G programs on the x86 multicore architecture with a shared mem-
ory model running a Linux operating system.

Compiler

Programs written for the P2G framework are designed to be platform independent and
have native blocks of code written in C or C++. Heterogeneous systems are specifically
targeted; however, many of these require a custom compiler for the native blocks, such as
Nvidia’s NVCC compiler for GPUs with CUDA. For the prototype, instead of generating
binaries directly, we decided to compile P2G programs into C++ files, which can be
further compiled and linked with native code blocks. This approach provides us with less
control of the resulting object code, but we gain both the flexibility and optimizations of
the native compilers, resulting in a lightweight P2G compiler.

Runtime

Our prototype implementation of P2G features a basic execution node, with support
for multidimensional fields, instrumentation, the implicit resizing of fields, and parallel
execution of kernel instances on a single machine, using the implicit dependency graph
formed by kernel definitions. Support for deadline expressions was not implemented.

The target architecture for this prototype is a single machine with a shared memory
multicore x86 architecture. The system was designed as a push-based system using event
subscriptions on field operations. Kernel instances are executed in parallel and produce
events on store statements, which could require resizing operations. A kernel subscribes
to events related to the fields that it depends on, that is, fields referenced by the kernel’s
fetch statements. When such a storage event is detected, the runtime finds all new valid
combinations of age and index variables that can be processed as a result of the store
statement and places these in a per-kernel ready queue. This means that the ready
queues always contain the maximum number of parallel instances that can be executed
at any time, limited only by unfulfilled data dependencies.

The prototype uses a simple LLS that consists of a dependency analyzer and kernel
instance dispatcher. The dependency analyzer uses the implicit dependency graph to
add new kernel instances to a ready queue, which can later be executed by the worker
threads. Dependencies are analyzed in a dedicated thread that handles events emitted

5.4. The P2G Framework 109

from running kernel instances that notifies upon store and resize operations performed
on fields.

When executed, kernel instances are dispatched from the ready queue. They are
scheduled in an order that prefers the execution of kernel instances with a lower age value
(older kernel instances). This ensures that no runnable kernel instance is starved by others
that have no fetch statements.

5.4.4 Workloads

To test the initial idea and the prototype, we developed a few simple workloads commonly
used in multimedia processing. The P2G kernel language is able to expose both the data
and task parallelism of the workloads to the P2G system, so that the runtime is able to
adapt the execution of the programs to suit the target architecture.

K-Means Clustering

assigninit refine

Datapoints Centroids Clusters
K
e
rn

e
l in

sta
n

ce
s

Fie
ld

 d
a
ta

= Single kernel instance

= Multiple kernel instances

= Aged field

= Field

= Fetch operation(s)

= Store operation(s)

Figure 5.6: Overview of the K -means clustering algorithm.

K-Means clustering is an iterative algorithm for cluster analysis that aims to partition
n data points into k clusters, where each data point belongs to the cluster with the nearest
mean. The basic structure of the workload is shown in Figure 5.6. Our implementation
in P2G consists of an init kernel, which generates n data points and stores them to the
data points field. Next, it randomly selects k of these data points as the initial means and
stores them to the centroids field. Then, the assign kernel fetches a slice of data, a single
data point per kernel instance, the last calculated centroids, and stores this data point
in the cluster of the closest centroids using a Euclidean distance calculation. Finally, the
refine kernel fetches a cluster, calculates its new mean, and stores this information in the
centroids field. The kernel definitions of assign and refine will form a loop that gradually
leads to a convergence in centroids, at which point the k-means algorithm is completed.

Motion JPEG

The Motion JPEG (MJPEG) workload is based on the same algorithms and code used to
test simple workloads on the x86 architecture, GPUs, and the Cell in Section 3.2.1. The

110 Chapter 5. The P2G Framework and the Future

MJPEG format provides many layers of parallelism and is well suited for illustrating the
potential of the framework. We focus on optimizing the discrete cosine transform (DCT)
and quantization part, as this is the most computationally intensive part of the codec.

The read + splitYUV kernel reads the input video in YUV format and stores the
data in three global fields: yInput, uInput, and vInput. In this workload, the three YUV
components can be processed independently of each other and this property is exploited by
creating three kernels: yDCT, uDCT, and vDCT. In Figure 5.7, we see that the respective
DCT kernels are dependent on one of these fields.

K
e
rn

e
l in

sta
n
ce

s
Fie

ld
 d

a
ta

= Multiple kernel instances = Aged field = Fetch operation(s) = Store operation(s)

uInput vInputyInput

uResult vResultyResult

uDCT vDCTyDCT
read

splitYUV
VLC
write

Fie
ld

 d
a
ta

Figure 5.7: Overview of the MJPEG encoding process

The MJPEG encoding process splits the video frames into 8*8 macroblocks. The CIF
resolution of 352*288 pixels per frame used in our tests will generate 1584 macroblocks of
Y (luminance) data, each with 64-pixel values. The 4:2:2 chroma sub-sampling yields 396
kernel instances from both the U and V (chroma) data. Each of these kernel instances
stores the discrete cosine transformed macroblock into the global result fields yResult,
uResult, and vResult. Finally, the VLC + write kernel stores the MJPEG bitstream to
disk.

5.4.5 Evaluation

We ran experiments with the K -means and MJPEG workloads, as described in Sec-
tion 5.4.4. Each test was run on the following x86 multicore architectures, with the
number of worker threads ranging from one to eight:

• One Intel Core i7-860 based on the Nehalem architecture running at 2.8 GHz, with
four cores and Hyper-Threading (simultaneous multithreading) enabled.

• Four AMD Opteron 8218 processors based on the K8 architecture running at 2.6
GHz, with two cores per processor, for a total of eight cores.

In addition, we performed micro-benchmark tests for both workloads. These summa-
rize the number of kernel instances dispatched per kernel definition, dispatch overhead,
and time spent in the kernel code.

5.4. The P2G Framework 111

K-Means Clustering

The K -means workload is run with K=100, using a randomly generated data set with
2000 data points. The K -means algorithm does not run until convergence and we defined
a breakpoint after 10 iterations. Without any breakpoint, the algorithm’s convergence is
undefined and, as such, we introduce this condition to ensure that we achieve relatively
stable running times.

Figure 5.8: Workload execution time for K -means.

As seen in Figure 5.8, the K -means workload scales well to four worker threads.
After this, the execution time increases with the number of worker threads. This can be
explained by the fine granularity of the assign kernel definition. This leads to the serial
dependency analyzer becoming a bottleneck in the system. As discussed in Section 5.4.2,
this condition could be alleviated by decreasing the granularity of data parallelism, in
effect leading to each kernel instance of assign working on larger slices of data. By doing
so, we would increase the ratio of time spent in kernel code compared to dispatch time
and reduce the workload of the dependency analyzer.

The two different test machines behave somewhat differently, in that the Opteron
suffers more than the Core i7 when the dependency analyzer saturates a core. The Core
i7 is able to increase the frequency of a single core to mitigate serial bottlenecks and the
memory architectures of Intel processors are generally more efficient than AMD processors.
We think this is why the Core i7 suffers less under the limitations dictated by Amdahl’s
law.

112 Chapter 5. The P2G Framework and the Future

Kernel Instances Dispatch Time Kernel Time
init 1 58.00 µs 9,829.00 µs
assign 2,024,251 4.07 µs 6.95 µs
refine 1000 3.21 µs 92.91 µs
print 11 1.09 µs 379.36 µs

Table 5.1: Micro-benchmarks of K-means in P2G.

MJPEG

The MJPEG workload is run on 50 frames of the standard Foreman test sequence encoded
in CIF resolution.

Figure 5.9: Workload execution times for MJPEG.

As we can observe in Figure 5.9, P2G is able to scale close to linearly with its available
resources. In P2G, the dependency analyzer of the LLS runs in a dedicated thread. This
affects the execution time when moving from seven to eight worker threads, where the
eighth thread shares resources with the dependency analyzer.

A native single-threaded version of the MJPEG encoder on which the P2G version is
based has a running time of 30 seconds on the Opteron machine and 19 seconds on the
Core i7 machine.

From the micro-benchmarks in Table 5.2, we can see that time spent in kernel code
is considerably greater compared to the dispatch overhead for the kernel definitions. The

5.5. The Future 113

Kernel Instances Dispatch Time Kernel Time
init 1 69.00 µs 18.00 µs
read/splityuv 51 35.50 µs 1,641.57 µs
yDCT 80,784 3.07 µs 170.30 µs
uDCT 20,196 3.14 µs 170.24 µs
vDCT 20,196 3.15 µs 170.58 µs
VLC/write 51 3.09 µs 2,160.71 µs

Table 5.2: Micro-benchmarks of MJPEG encoding in P2G.

dispatch time includes the allocation or reallocation of fields as part of the timing oper-
ation. As a result, init and read/splitYUV have considerably higher dispatch times then
the *DCT operations. We can also see that the majority of the CPU time is spent in the
kernel instances of yDCT, uDCT, and vDCT, which is the most computationally intensive
part of this workload. This indicates that decreasing the data and task granularity, as
discussed in Section 5.4.2, has little impact on system throughput. This is because the
majority of the time is already spent in kernel code.

5.4.6 Summary

With the P2G framework, we proposed a new flexible system for the automatic, parallel
real-time processing of multimedia workloads. We encourage the programmer to specify
parallelism in as fine a granularity as possible along the axes of task and data decomposi-
tion. Using our kernel language, this decomposition is expressed through kernel definitions
and fetch and store statements on fields.

Given a workload that uses our kernel language and is compiled for execution in P2G,
this workload can be partitioned by the HLS in a P2G master node, which then distributes
the partitions to the P2G execution nodes, which will execute the tasks. Execution nodes
can consist of heterogeneous resources. The LLS at the execution nodes will adapt the
workload to run optimally, using the resources available. Feedback from the instrumen-
tation module at the execution node can lead to workload repartitioning.

We implemented a prototype execution node capable of running on a shared memory
multicore architecture. The results from our experiments running on this prototype ex-
ecution node show the potential of our ideas. However, many features—such as support
for agglomeration, distribution, timers, heterogeneous architectures, and so on—have yet
to be added.

5.5 The Future

Our prototype implementation of P2G is a proof-of-concept implementation of the P2G
execution node with support for shared memory x86 multicore architecture. However,
several features have yet to be implemented in the execution node, two of these being
timers and agglomeration. Timers are important for enforcing soft deadlines in multi-
media workloads and agglomeration is important to adapt the level of parallelism to the
heterogeneous architecture we want to use. A kernel running on a GPU would require

114 Chapter 5. The P2G Framework and the Future

many more threads than a kernel running on the CPU. This issue is apparent in the
K-means workload evaluated in Section 5.4.5.

The master node has also not yet been implemented. One of the reasons for targeting
the x86 multicore architecture in our prototype of the framework is the shared memory
property. When we add more machines or heterogeneous architectures with an exclusive
memory model, we need a distributed name service to manage message passing between
machines and processing nodes.

One of the next steps for the P2G framework would be to add support for using GPUs
on the same machine as the x86 multicore architecture. This would not require any master
node, since the GPUs on a single machine are managed by the host CPU.

Chapter 6

Papers and Author’s Contributions

6.1 Overview of Research Papers

The research conducted during the PhD period focused on system support for multime-
dia. My papers addressed a large set of challenges, ranging from scheduling mechanisms
for heterogeneous architectures to the optimization of video codecs. This research was
a cooperative effort and the contribution of this thesis is its investigation of homoge-
nous and heterogeneous computing platforms and infrastructures, an understanding of
the developer’s ability to exploit their performance, and the development of improve-
ments for processing multimedia workloads. Nine of our papers were chosen to document
this research effort and are included as the main contribution of this thesis. Five of these
papers [32,34,102,112,117] look at processing simple workloads with heterogeneous archi-
tectures. Two of the papers [113, 114] investigate a complex multimedia workload. The
knowledge gained in these two Chapters is used in the previous chapter in the design of
the P2G framework [31,115].

Although the other papers [35,46,76,77,116], posters, and demonstrations [10,11,33,
101,105,120,132] we wrote are related to multimedia systems, we limited the thesis to those
nine papers that were central in forming our understanding of multicore programming and
the development of P2G from the developer’s perspective. These papers are presented
chronologically in the following.

6.2 Paper I: Transparent Protocol Translation for

Streaming

Abstract The transport of streaming media data over TCP is hindered by TCP’s prob-
ing behavior, which results in the rapid reduction and slow recovery of packet rates. On
the other hand, UDP has been criticized for being unfair to TCP connections and it is
therefore often blocked out of access networks. In this paper, we try to benefit from a
combined approach using a proxy that transparently translates the transport protocol.
We translate HTTP requests by the client transparently into RTSP requests and translate
the corresponding RTP/UDP/AVP stream into the corresponding HTTP response. This
enables the server to use UDP on the server side and TCP on the client side. This is ben-
eficial for the server side, which scales to a higher load when it does not have to deal with

115

116 Chapter 6. Papers and Author’s Contributions

TCP. On the client side, streaming over TCP has the advantage that connections can be
established from the client side and data streams can pass through firewalls. Preliminary
tests demonstrate that our protocol translation delivers a smoother stream compared to
HTTP streaming, where the TCP bandwidth oscillates heavily.

Lessons learned This paper is written as a network research paper, using the Intel IXP
network processor to translate a network protocol in real time. However, the experience
gained while working with the IXP architecture gave us experience in working with a
heterogeneous architecture with a shared memory model. The heterogeneous elements on
the IXP also have different instruction sets and compilers, which we can also find in other
heterogeneous architectures.

Author’s contributions Stensland contributed to the evaluation of the experiments.
Espeland and Lunde carried out the design and implementation of the proxy and the
experimental setup. The paper was written in collaboration with all the other authors.

Published in Proceedings of the 15th ACM International Conference on Multimedia
(MM ’07), ACM, 2007.

DOI 10.1145/1291233.1291407

6.3 Paper II: Evaluation of Multi-Core Scheduling

Mechanisms for Heterogeneous Processing Ar-

chitectures

Abstract General-purpose central processing units (CPUs) with multiple cores are es-
tablished products and new heterogeneous technology such as the Cell Broadband Engine
and general-purpose graphic processing units (GPUs) bring an even higher degree of true
multiprocessing to the market. However, the means for utilizing the processing power
are immature. Current tools typically assume that the exclusive use of these resources
is sufficient, but this assumption will soon be invalid because of interest in using their
processing power for general-purpose tasks. Among the applications that can benefit from
such technology is transcoding support for distributed media applications, where remote
participants join and leave dynamically. Transcoding consists of several clearly separated
processing operations that consume a great deal of resources, such that individual pro-
cessing units are unable to handle all the operations of a session of arbitrary size. The
individual operations can then be distributed over several processing units and data must
be moved between them according to the dependencies between operations. Many mul-
tiprocessor scheduling approaches exist but, to the best of our knowledge, the challenge
remains to find mechanisms that can schedule dynamic workloads of communicating op-
erations while taking both the processing and communication requirements into account.
For such applications, we believe that feasible scheduling can be performed at two levels,
that is, divided into the task of placing a job onto a processing unit and the task of
multitasking time slices within a single processing unit. We implemented some simple

6.4. Paper III: Tips, Tricks and Troubles: Optimizing for Cell and GPU 117

high-level scheduling mechanisms and simulated a videoconferencing scenario running on
topologies inspired by existing systems from Intel, AMD, IBM, and Nvidia. Our results
show the importance of using an efficient high-level scheduler.

Lessons learned In this paper, we designed a simple simulator that simulated the high-
level scheduling aspect of a multimedia workload on different multicore architectures. We
showed that a two-level scheduling approach, where the high level scheduler places jobs
onto a processing core and the low-level scheduler takes on the job of time slicing within
a single processing unit. Our results show the importance of using an efficient high-
level scheduler. Lessons learned from this paper were later used when designing the P2G
framework.

Author’s contributions Stensland contributed significantly to the design of the event-
driven simulator. He also designed the workloads for the simulator and performed the
experiments for the paper. Stensland also contributed to writing the paper.

Published in The 18th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV ’08), ACM, 2008.

DOI 10.1145/1496046.1496054

6.4 Paper III: Tips, Tricks and Troubles: Optimizing

for Cell and GPU

Abstract When used efficiently, modern multicore architectures, such as the Cell and
GPUs, provide the processing power required by resource-hungry multimedia workloads.
However, the diversity of resources exposed to the programmer intrinsically requires very
different mindsets to efficiently utilize these resources—not only compared to an x86 ar-
chitecture, but also between the Cell and the GPUs. In this context, our analysis of 14
different Motion JPEG (MJPEG) implementations indicate great potential for optimizing
performance, but there are also many pitfalls to avoid. By experimentally evaluating algo-
rithmic choices and inter-core data communication (memory transfers) and architecture-
specific capabilities, such as instruction sets, we present tips, tricks, and problems with
respect to the efficient utilization of available resources.

Lessons learned In the third paper, we analyze 14 different implementations of a mul-
timedia workload from a graduate level course we teach on two different heterogeneous
architectures. We learned that heterogeneous architectures such as the Cell and GPUs
are suitable for processing real-time multimedia workloads such as MJPEG video encod-
ing. However, it is not trivial for programmers to achieve high performance on either
of these architectures. There are similarities between the Cell and GPUs, but the way
programmers need to think is substantially different, not only compared to the x86 ar-
chitecture but also between the Cell and the GPU. The Cell uses a single instruction
multiple data (SIMD) programming model, which seems harder to grasp compared to the

118 Chapter 6. Papers and Author’s Contributions

SIMT abstraction used by the GPUs. All three architectures have different architectural
capabilities that must be taken into account when choosing the algorithms to use.

Author’s contributions Stensland contributed significantly to the design, implemen-
tation, and evaluation of this work. Together with Espeland, he designed the experiments
and evaluated the results. The paper was written in collaboration with the other authors.

Published in The 20th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV 2010), ACM, 2010.

DOI 10.1145/1806565.1806585

6.5 Paper IV: Cheat Detection Processing: A GPU

versus CPU Comparison

Abstract In modern online multiplayer games, game providers have been struggling to
keep up with the many different types of cheating. Cheat detection is a task that requires
great computational resources. Advances made within the field of heterogeneous comput-
ing architectures, such as in GPUs, have given developers easier access to considerably
more computational resources, enabling a new approach to resolving this issue.

In this paper, we developed a small game simulator that includes a customizable
physics engine and a cheat detection mechanism that checks the physical model used by
the game. To make sure that the mechanisms are fair to all players, they are executed
on the server side of the game system. We investigate the advantages of implementing
physics cheat detection mechanisms on a GPU using the Nvidia CUDA framework and
we compare the GPU implementation of the cheat detection mechanism with a CPU
implementation. The results obtained from the simulations show that offloading the cheat
detection mechanisms to the GPU reduces the time spent on cheat detection, enabling
the servers to support larger numbers of clients.

Lessons learned In the fourth paper, we used a cheat detection mechanism imple-
mented on a GPU to learn about the effect of offloading workload from the CPU. The
results shows that, even with a simple physical model, the GPU is able to outperform
the CPU. However, we also observed that, with a low number of clients, the CPU im-
plementation is faster that the GPU implementation. This is due to the latency cost of
transferring the workload from CPU memory to the GPU for processing.

Author’s contributions Stensland designed the experiments for the paper. He also
used a Fermi generation GPU for the paper’s experiments and analyzed their data. The
prototype was designed and implemented as part of Myrseth’s master’s thesis, for which
Stensland was the main supervisor. The paper text was mainly written by Stensland,
with contributions from the other authors.

6.6. Paper V: Reducing Processing Demands for Multi-Rate Video Encoding:
Implementation and Evaluation 119

Published in Workshop on Network and Systems Support for Games (NetGames 2010),
ACM/IEEE, 2010.

DOI 10.1109/NETGAMES.2010.5679527

6.6 Paper V: Reducing Processing Demands for Multi-

Rate Video Encoding: Implementation and Eval-

uation

Abstract Segmented adaptive HTTP streaming has become the de facto standard for
video delivery over the Internet for its ability to scale video quality to available network re-
sources. Each video is encoded at multiple levels of quality, that is, running the expensive
encoding process for each quality layer. However, these operations consume a great deal
of both time and resources and, in this paper, the authors propose a system for reusing
redundant steps in a video encoder to improve the multilayer encoding pipeline. The idea
is to have multiple outputs for each of the target bitrates and quality levels, where the
intermediate processing steps share and reuse the computationally heavy analysis. A pro-
totype has been implemented using the VP8 reference encoder and experimental results
show that, for both low- and high-resolution videos, the proposed method can significantly
reduce processing demands and time when encoding the different quality layers.

Lessons learned The fifth paper looks at the possibility of reusing the computationally
intensive analysis part of a video encoder. We learned that the shared memory architecture
in x86 multicore processors greatly facilitates the sharing of data between multiple threads.
When running the reference VP8 encoder on four videos, we can see that serial encoding
performs better that running four instances concurrently. This shows the negative effects
of running too many threads on too few cores: The scheduling overhead in the operating
system increases and contention arises between the execution resources on the CPU.

Author’s contributions The multi-rate prototype was designed and implemented as
part of Finstad’s master’s thesis, of which Stensland was the main supervisor. Espeland
contributed with the basic idea of multi-rate encoding. The experiments were evaluated
by Stensland and Espeland. The text was also mainly written by Espeland and Stensland,
with input from the other authors.

Published in International Journal of Multimedia Data Engineering and Management
(IJMDEM), Volume 3, Issue 2, IGI Global, 2012.

DOI 10.4018/JMDEM.2012040101

120 Chapter 6. Papers and Author’s Contributions

6.7 Paper VI: LEARS: A Lockless, Relaxed-Atomicity

State Model for Parallel Execution of a Game

Server Partition

Abstract Supporting thousands of interacting players in a virtual world poses huge
processing challenges. Work that addresses the challenge utilizes a variety of spatial par-
titioning algorithms to distribute the load. If, however, a large number of players need
to interact tightly across an area of the game world, spatial partitioning cannot subdi-
vide this area without incurring massive communication costs, latency, or inconsistency.
Scaling such areas to the largest number of players possible is a major challenge of game
engines. Deviating from earlier thinking, we apply parallelism on multicore architectures
to increase scalability. In this paper, we evaluate the design and implementation of our
game server architecture, called a lockless, relaxed-atomicity state, or LEARS, which
allows for lock-free parallel processing of a single spatial partition by considering every
game cycle an atomic tick. Our prototype is evaluated using traces from live game sessions
where we measure the server response time for all objects that require timely updates.
We also measure how the response time for the multithreaded implementation varies with
the number of threads used. Our results show that the challenge of scaling up a game
server can be an embarrassingly parallel problem.

Lessons learned The sixth paper describes an architecture to scale a game server
workload. We showed that resource utilization can be improved by distributing the load
over the shared memory architecture of x86 multicore CPUs. However, we learned the
importance of balancing the number of threads executing on the physical CPU. If too
many threads are executed concurrently, the performance will start to degrade because of
the increased context switching overhead. This is the opposite case from that of a GPU,
where thousands of threads are required for good performance.

Author’s contributions Stensland contributed to the discussion and evaluation of the
game server with respect to scaling on the x86 multicore architecture. He also contributed
with architectural knowledge about the evaluation system. Stensland also contributed to
writing the paper.

Published in Proceedings of the International Workshop on Scheduling and Resource
Management for Parallel and Distributed Systems (SRMPDS)—The 2012 International
Conference on Parallel Processing Workshops, IEEE, 2012.

DOI 10.1109/ICPPW.2012.55

6.8 Paper VII: P2G: A Framework for Distributed

Real-Time Processing of Multimedia Data

Abstract The computational demands of multimedia data processing are steadily in-
creasing as consumers call for progressively more complex and intelligent multimedia

6.8. Paper VII: P2G: A Framework for Distributed Real-Time Processing of
Multimedia Data 121

services. New multicore hardware architectures provide the required resources, but writ-
ing parallel, distributed applications remains a labor-intensive task compared to their
sequential counterpart. For this reason, Google and Microsoft implemented their respec-
tive processing frameworks, MapReduce and Dryad, since they allow the developer to
think sequentially yet benefit from parallel and distributed execution. An inherent limi-
tation in the design of these processing frameworks is their inability to express arbitrarily
complex workloads. The dependency graphs of the frameworks are often limited to di-
rected acyclic graphs or even predetermined stages. This is particularly problematic for
video encoding and other algorithms that depend on iterative execution. With the Nornir
runtime system for parallel programs, which is a Kahn process network implementation,
we addressed and resolved several of these limitations. However, it is more difficult to
use than other frameworks are due to its complex programming model. In this paper, we
build on the knowledge gained from Nornir and present a new framework, called P2G,
designed specifically for developing and processing distributed real-time multimedia data.
P2G supports arbitrarily complex dependency graphs with cycles, branches, and deadlines
and provides both data parallelism and task parallelism. The framework is implemented
to scale transparently with available (heterogeneous) resources, a concept familiar from
the cloud computing paradigm. We implemented a (interchangeable) P2G model to ease
development. In this paper, we present a proof-of-concept implementation of a P2G exe-
cution node and some experimental examples using complex workloads, such as MJPEG
and K-means clustering. The results show that the P2G system is a feasible approach to
multimedia processing.

Lessons learned In the seventh paper, we present a prototype and framework for
the distributed real-time processing of multimedia workloads. We also implemented and
evaluated two simple multimedia workloads to verify that multimedia workloads such as
K-means and MJPEG can be expressed in the framework. Our experiments shows that
our prototype is able to scale performance with the available resources in the system, as
long as there is a large enough workload per instance.

Author’s contributions Stensland contributed to the design and implementation of
the workloads used to benchmark the framework and to the ideas behind the P2G frame-
work. Espeland and Beskow designed, implemented, and micro-benchmarked the frame-
work. The paper and discussions were written in collaboration with all of the authors.

Published in Proceedings of the International Workshop on Scheduling and Resource
Management for Parallel and Distributed Systems (SRMPDS)—The 2011 International
Conference on Parallel Processing Workshops, IEEE, 2011.

DOI 10.1109/ICPPW.2011.22

122 Chapter 6. Papers and Author’s Contributions

6.9 Paper VIII: Bagadus: An Integrated Real-Time

System for Soccer Analytics

Abstract The importance of winning has increased the role of performance analysis in
the sports industry and underscores how statistics and technology keep changing the way
sports are played. Thus, this is a growing area of interest, both from a computer system
view, to manage the technical challenges, and from a sports performance view, to aid the
development of athletes. In this respect, Bagadus is a real-time prototype of a sports
analytics application using soccer as a case study. Bagadus integrates a sensor system, a
soccer analytics annotation system, and a video processing system using a videocamera
array. A prototype was recently installed at Alfheim Stadium in Norway and, in this
paper, we describe how the system can be used in real time to play back events. The
system supports both stitched panoramic video and camera switching modes and creates
video summaries based on queries to the sensor system. Moreover, we evaluate the system
from a systems point of view, benchmarking different approaches, algorithms, and trade-
offs, and show how the system runs in real time.

Lessons learned The eighth paper describes the integration of the three different sub-
systems in the Bagadus sports analysis system. The paper focuses on the optimization
of the video system, where we optimize the video pipeline for both an x86 multicore
and a GPU with the goal of running the system in real time on a single machine. The
experiments shows that we are able to process video from four cameras, stitch the video to
a panorama, and use video processing algorithms to enhance the quality of this panoramic
video.

Author’s contributions Stensland contributed to the design and evaluation of the
real-time video pipeline presented in this paper. He also analyzed the experimental results
from the GK110 GPU presented in this paper and provided insight into the heterogeneous
architecture used. Stensland was also a supervisor for all the master’s students involved
in this project. The paper was mainly written by Stensland, with contributions from the
other authors.

Published in ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), Volume 10, Issue 1s, ACM, 2014.

DOI 10.1145/2541011

6.10 Paper IX: Processing Panorama Video in Real-

Time

Abstract There are many scenarios in which a high-resolution, wide field of view video is
useful. Such panoramic video may be generated using camera arrays, where the feeds from
multiple cameras pointing at different parts of the captured area are stitched together.
However, processing the different steps of a panoramic video pipeline in real time is

6.11. Supervised Master’s Students 123

challenging due to the high data rates and the stringent timeliness requirements. In
our research, we use panoramic video in a sports analysis system called Bagadus. This
system was deployed at Alfheim stadium in Tromsø, Norway, and, due to live usage, the
video events had to be generated in real time. In this paper, we describe our real-time
panoramic system built using a low-cost CCD HD videocamera array. We describe how we
implemented different components and evaluated alternatives. The performance results
from experiments run on commodity hardware with and without coprocessors, such as
GPUs, demonstrate that the entire pipeline is able to run in real time.

Lessons learned The ninth paper undertakes a more detailed analysis of the video
system in the Bagadus sports analysis system. The paper focuses on how we achieved
real-time performance by optimizing the video pipeline for both CPU and GPU execution.
Finally, we evaluated the performance of the complete video pipeline on different hetero-
geneous architectures and machine setups. We learned that a system such as Bagadus,
with real-time requirements, requires a GPU that can execute workloads concurrently.
The GPU utilization for a system such as Bagadus is also fairly low and the GPU can be
shared with other workloads.

Author’s contributions Stensland contributed to the design and evaluation of the
real-time video pipeline presented in this paper. He also provided insight into the different
heterogeneous architectures and the machine setup used to evaluate the video pipeline.
Stensland was also a supervisor for all the master’s students involved in this project. The
paper was mainly written by Stensland, with contributions from the other authors.

Published in International Journal of Semantic Computing (IJSC), Volume 8, Issue 2,
World Scientific, 2014.

DOI 10.1142/S1793351X14400054

6.11 Supervised Master’s Students

Student: H̊avard Espeland

Title: Investigation of parallel programming on heterogeneous multiprocessors

Summary: This thesis investigates different parallelization strategies and performance
for real-world problems using two heterogeneous architectures, the Intel IXP2400
architecture and the Cell Broadband Engine. The tests show promising throughput
for some applications and the thesis proposes a scheme for offloading computation-
ally intensive parts of an application.

Student: Alexander Ottesen

124 Chapter 6. Papers and Author’s Contributions

Title: Efficient parallelization techniques for applications running on GPUs using the
CUDA framework

Summary: This thesis investigates the GPU architecture and processing capabilities
of the first generation of Nvidia GPUs with support for the CUDA framework.
We investigate how CUDA applications can share the GPU resource and see what
challenges are connected with concurrent applications executing on the GPU.

Student: Magne Eimot

Title: Offloading an encrypted user space file system on GPUs

Summary: Modern computers often have powerful GPUs and an important use of this
technology is to assist the main CPU with computationally intensive tasks. We
investigate the challenges of using GPUs to offload the encryption operations from
the main CPU.

Student: Martin Øinæs Myrseth

Title: Cheat detection in on-line multi-player games using graphics processing units

Summary: This thesis investigates the benefits of using GPUs for cheat detection mech-
anisms. We develop a framework for a game simulator that includes a simple cus-
tomizable physical engine and a cheat detection mechanism. The results shows that,
in addition to being faster, the GPU mechanism allows the CPU to perform other
game-relevant tasks while the mechanism is executing.

Student: Espen Angell Kristiansen

Title: Dynamic adaption and distribution of binaries to heterogeneous architectures

Summary: Real-time multimedia workloads require extensive processing power. Here,
we develop the foundation for network distribution in P2G and suggest a viable
solution for the execution of workloads on heterogeneous multicore architectures.

Student: Dag Haavi Finstad

Title: Multi-rate VP8 video encoding

6.11. Supervised Master’s Students 125

Summary: This thesis addresses the resource consumption issues of encoding multiple
videos by proposing a method for reusing redundant steps in a video encoder, emit-
ting multiple outputs with various bitrates and quality levels.

Student: Magnus Funder Halldal

Title: Exploring computational capabilities of GPUs using H.264 prediction algorithms

Summary: We explore the processing power of two generations of GPUs by implement-
ing H.264 prediction algorithms. We implement motion vector search and motion
vector prediction on the GPU.

Student: Kristoffer Egil Bonarjee

Title: Investigating host–device communication in a GPU-based H.264 encoder

Summary: This thesis investigates the performance pitfalls of an H.264 encoder written
for GPUs. More specifically, we look into the interaction between the host CPU
and the GPU. We do not focus on optimizing the GPU code but, rather, on how
the execution and communication are handled by the CPU. Given the large amount
of manual labor required to optimize the GPU code, it is easy to neglect the CPU
part of accelerated applications.

Student: Simen Særgrov

Title: Bagadus: Next generation sports analysis and multimedia platform using camera
array and sensor network

Summary: Bagadus, a system that integrates a sensor system, soccer analytics, and
video processing with OpenCV on a camera array, is presented. A proof-of-concept
prototype is implemented based on the system installed at Alfheim stadium in Nor-
way.

Student: Espen Oldeide Helgedagsrud

Title: Efficient implementation and processing of a real-time panorama video pipeline
with emphasis on dynamic stitching

126 Chapter 6. Papers and Author’s Contributions

Summary: In this thesis, the Bagadus system is rewritten with real-time processing of
the video as one of the main goals. This thesis focuses on the implementation of
dynamic stitching and offloading this operation to a GPU.

Student: Marius Tennøe

Title: Efficient implementation and processing of a real-time panorama video pipeline
with emphasis on background subtraction

Summary: In this thesis, the Bagadus system is rewritten with real-time processing of
the video as one of the main goals. This thesis focuses on different implementations
of background subtraction and offloading those algorithms to a GPU.

Student: Mikkel Næss

Title: Efficient implementation and processing of a real-time panorama video pipeline
with emphasis on color correction

Summary: In this thesis, the Bagadus system is rewritten with real-time processing of
the video as one of the main goals. This thesis focuses on the implementation of
the color correction module and offloading this operation to a GPU.

Student: Ragnar Langseth

Title: Implementation of a distributed real-time video panorama pipeline for creating
high quality virtual views

Summary: The Bagadus video pipeline with an updated camera array is redesigned with
distributed processing in mind. Features such as HDR and the demosaicing of raw
Bayer data from the new cameras are added to the GPU pipeline in Bagadus. A
virtual camera is also extracted from the panoramic video.

Student: Vegard Aalbu

Title: MovieCutter: A system to make personalized video summaries from archived video
content

6.12. Other Publications 127

Summary: This thesis investigates how adaptive streaming can be used to create a
montage from events in a video archive. With metadata such as subtitles and
chapters, users can search and generate customized video playlists from movies.

Student: Sigurd Ljødal

Title: Implementation of a real-time distributed video processing pipeline

Summary: The Bagadus video pipeline with an updated camera array is redesigned with
distributed processing in mind. To do so, we use a PCI Express-based interconnect
from Dolphin Interconnect Solutions and a low-level application programming in-
terface for message passing called SISCI. We also investigate different techniques of
moving data as efficiently as possible from cameras connected to a capture machine
to GPU memory on the processing machine.

Student: Martin Alexander Wilhelmsen

Title: Real-time interactive cloud applications

Summary: This thesis investigates commodity hardware H.264 encoders and uses the
NVENC hardware encoder found on modern GPUs from Nvidia to offload encoding
in the Bagadus pipeline. We also implement support for streaming in Quake III to
test the feasibility of using the hardware encoder in cloud gaming.

6.12 Other Publications

Several other papers were published in conferences during the PhD period. We did not
include all the papers to limit the scope of this thesis. Instead, we provide a short summary
of their contributions.

Disk input/output (I/O) We worked on I/O performance optimizations by improving
file tree traversal performance by scheduling in user space [76, 77]. The technique
proposed in these papers orders directory tree requests by logical block order on the
physical disk. This optimization significantly improves the performance of file tree
traversal operations; however, this is not possible in kernel space, since too few I/O
operations are issued at a time for the scheduler to react efficiently. With a dirty
file system, we were able to obtain up to four times the performance compared to
that of a normal file tree traversal. This work clearly demonstrates the advantage of
having several levels of schedulers and it can be adapted to the scheduling approach

128 Chapter 6. Papers and Author’s Contributions

used by the P2G framework, where a high-level scheduler issues the workload to the
different processing cores and low-level schedulers on the different processing cores
carry out time slicing.

Fault Tolerant Routing We implemented dynamic fault-tolerant routing in an scalable
coherent interconnect (SCI) network [116]. We implemented support for dynamic
fault tolerance in an SCI network on hardware produced by Dolphin Interconnect
Solutions. By dynamic fault tolerance, we mean that the interconnection network
reroutes affected packets around a fault in the network, while the rest of the net-
work remains fully functional. Our implementation focuses on a two-dimensional
torus topology and is compatible with the existing hardware and software stack.
The routing algorithm is tested in clusters with real hardware and our tests show
that distributed databases such as MySQL are able to run uninterrupted while the
network reacts to faults.

Chapter 7

Conclusion

Processing multimedia workloads with heterogeneous architectures is not a trivial task.
The abstractions to program these architectures can be different and programmers often
have to manually tune and optimize their applications on multiple heterogeneous archi-
tectures to achieve the desired performance. In many cases, these optimizations are not
portable; for example, if the hardware is changed, the applications have to be optimized
or even rewritten for the new architecture. Several languages and processing frameworks
exist; however, they are typically designed to support batch processing and making them
support real-time multimedia workloads is not a trivial task. Our main research ques-
tion, stated in Section 1.2, states that we want to investigate how to develop and process
multimedia workloads for modern heterogeneous multicore architectures. In this the-
sis, we addressed this issue from a low-level standpoint, learning about the behavior of
heterogeneous architectures with simple multimedia workloads and how to use multiple
heterogeneous architectures for a complex pipeline with several multimedia workloads. We
also addressed the problem statement from a high-level standpoint, where we presented
the design and evaluated the prototype of P2G, a framework for processing multimedia
workloads on heterogeneous architectures.

7.1 Summary

In this thesis, we looked at heterogeneous multicore architectures and their ability to
process multimedia workloads. First, we selected four different architectures. To learn
more about their behavior, we first conducted several case studies with simple multimedia
workloads, where we only performed optimizations for one architecture. The first archi-
tecture we experimented with was the Intel IXP network processor. This architecture was
used for experiments involving network protocol translation [32]. The next architecture
was the x86 processor architecture. The first case study was the efficient implementa-
tion of Motion JPEG (MJPEG) encoding [112]. We also conducted case studies on using
multiple x86 cores for multi-rate video encoding [34] and running a multithreaded game
server prototype [102]. For the GPU architecture, we carried out case studies on the
memory architecture of GPUs [94], optimization of host–device communication [13], and
cheat detection [117], and we also revisited the MJPEG workload with both a GPU [112]
and Cell architecture.

The knowledge obtained from investigating the simple multimedia workloads was used

129

130 Chapter 7. Conclusion

to investigate a more complex multimedia workload, namely, the video processing pipeline
of the Bagadus soccer analysis system [114]. We optimized the workload for multiple
heterogeneous architectures to achieve the real-time capture, pre-processing, stitching,
and encoding of a panoramic videostream from the soccer stadium on a single commodity
gaming computer [113].

Using the knowledge gained from processing both simple and complex multimedia
workloads on heterogeneous systems and also from our evaluation of multi-core scheduling
mechanisms [115], we proposed a programming language and framework that exposes
the parallelization opportunities of multimedia workloads for a runtime that allows for
efficient execution on the available heterogeneous hardware [31]. A running prototype of
this system, called P2G, running on a single machine with x86 multicore processors was
developed together with two simple multimedia workloads. These workloads were used
as proof of concept to show that we can express and run multimedia workloads in our
framework.

7.2 Concluding Remarks

In the beginning of this thesis, we asked how a programmer efficiently develops multimedia
workloads for modern heterogeneous multicore architectures. To answer this question, we
further decomposed the question into three steps.

To learn about the behavior of heterogeneous architectures, we selected four archi-
tectures and looked at case studies with simple multimedia workloads optimized for only
one architecture. From our evaluations, we observed that, for all the architectures, it is
important to select algorithms that are suited to the architecture. To obtain optimal per-
formance, especially on the Cell and x86, programmers must use architecture-specific vec-
tor extensions and rewrite their programs to use single instruction multiple data (SIMD)
intrinsics. On the x86, we also noted the importance of balancing the number of threads
used by the workloads to the available number of cores in the system. Too many threads
executing on too few cores results in decreased performance due to contention and context
switching overhead. On the GPU architecture, we noted the importance of using the cor-
rect memory space and also the importance of efficiently moving the data to and from the
GPU. If the workload that is offloaded to the GPU is too small, performance can decrease
compared to that of a CPU implementation. Our MJPEG experiments also suggest that
programmers prefer the single instruction, multiple threads (SIMT) programming model
exposed by the GPU compared to the SIMD model exposed by the Cell and the vector
unit on the x86.

Next, we selected the two most promising heterogeneous architectures from our eval-
uation of simple multimedia workloads and evaluated a complex multimedia workload.
One of the main requirements for this workload was for it to run in real time. We ac-
complished this by optimizing the workload for both heterogeneous architectures. The
complex workload was the video subsystem of the Bagadus sports analysis system. Here,
we learned that, in addition to making every module run separately in real time, we also
had to make sure all the modules were running together in real time, as a pipeline. This
required a great deal of manual tuning to decide which parts of the pipeline had to run
on the CPU and which parts could be offloaded to a GPU. One of our observations was
that the GPU’s overall utilization was fairly low (only 14.8%). This finding, together

7.3. Future Work 131

with the manual labor required to optimize the pipeline to run in real time, highlighted
the importance of having a processing framework supporting real-time multimedia work-
loads to fully utilize available resources and ease the development of future cross-platform
systems.

Using all the knowledge gained from our studies of simple and complex workloads, we
designed and proposed a framework for processing real-time multimedia workloads on het-
erogeneous architectures, called P2G. P2G allows the programmer to use a programming
model similar to the SIMT model used in CUDA and to express as much parallelism as
possible in the code. The framework will then use the workload’s data, task, and pipeline
parallelism to optimize the granularity of the programs, either at compilation time or at
runtime. The framework is designed to support distributed processing and uses a two-
level scheduling approach. A high-level scheduler maps the workloads to processing nodes
and a low-level scheduler manages the time slices of the available processing cores in a
node. The fundamental ideas of the P2G framework were implemented in a prototype
of the framework running on an x86 multicore architecture. To test the prototype im-
plementation, we used two simple multimedia workloads. Developing workloads in the
P2G Kernel Language is effective compared to working with low-level abstractions such
as SIMD intrinsics and threads. Kernel Language provides good abstractions and helps
developers to express both data parallelism and task parallelism.

Even though we did not implement all the concepts in the P2G framework, we showed
that we are able to express multimedia workloads in the P2G programming model and to
scale performance when more processing resources are added to the system. However, a
great deal of work remains before the processing efficiencies of multimedia workloads in the
P2G framework are anywhere near what can be achieved for workloads written natively
for the architecture. We believe we have made significant contributions in expressing
workloads and designing a framework that supports some of the different heterogeneous
architectures available today.

7.3 Future Work

Several areas have potential for further work and we highlight a few potential next steps.

• An interesting heterogeneous architecture that is not explored in this thesis is the
Intel Xeon Phi many-core processor [21]. This coprocessor uses many simple x86
cores on a shared memory architecture with a 512-bit vector unit per core. We did
not test any simple multimedia workloads on this architecture. It would therefore be
very interesting to see how it performs compared to a GPU, as well as investigate how
programmers have to think to program multimedia workloads for this architecture.

• The P2G prototype presented in this thesis runs on a single machine with x86
multicore processors and a shared memory architecture. An interesting research
opportunity could be to rewrite and extend P2G to take advantage of GPUs using
the Nvidia CUDA framework or the Intel Xeon Phi many-core architecture.

• In the current version of P2G, only the execution node is implemented. Another
potential area for further work is to extend P2G to run on multiple machines. This

132 Chapter 7. Conclusion

is crucial for working with large data sets. The distribution of the framework would
also introduce a new level of complexity in the scheduling and the design of efficient
two-level schedulers presents several interesting research opportunities.

• The video pipeline of the Bagadus sports analysis system can run on a single x86
multicore machine with a high-end Nvidia GPU. If the P2G framework is extended
with support for GPUs, it would be interesting to port parts of the Bagadus video
pipeline to P2G. The feedback-based scheduling using instrumentation in P2G and
the support for real-time workloads should be able to adapt and distribute the
Bagadus video workload automatically on the CPU and GPU and make it run in
real time, given sufficient processing resources in the system without the manual
tuning required today.

It is also possible for new hardware to be developed that will open up interesting
research topics within this field.

Bibliography

[1] A. Abdelkhalek and A. Bilas. Parallelization and performance of interactive mul-
tiplayer game servers. In Proceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium - IPDPS 2004, page 72, 2004.

[2] Adobe. HTTP Dynamic Streaming. http://www.adobe.com/mena_en/products/

hds-dynamic-streaming.html [Online. Last accessed: July 2014], 2010.

[3] Advanced Micro Devices. AMD Demonstrates Worlds First X86 Dual-Core Proces-
sor. http://www.amd.com/us/press-releases/Pages/Press_Release_89872.

aspx [Online. Last accessed: January 2014], 2004.

[4] Apache. Hadoop. http://hadoop.apache.org [Online. Last accessed: July 2010],
2010.

[5] Y. Arai, T. Agui, and M. Nakajima. A Fast DCT-SQ Scheme for Images. Transac-
tions of IEICE, 71(11):1095–1097, 1988.

[6] J. Armstrong. A history of Erlang. In Proceedings of the 3rd ACM SIGPLAN
Conference on History of Programming Languages, pages 6:1–6:26, 2007.

[7] Ars Technica. A technical overview of the Emotion Engine. http://arstechnica.
com/gadgets/2000/02/ee/ [Online. Last accessed: July 2014], 2000.

[8] R. S. N. Arvind, R. S. Nikhil, and K. Pingali. I-structures: Data structures for
parallel computing. ACM Transactions on Programming Languages and Systems
(TOPLAS), 11(4):598–632, 1989.

[9] J. Bankoski, J. Koleszar, L. Quillio, J. Salonen, P. Wilkins, and Y. Xu. VP8 Data
Format and Decoding Guide. RFC 6386 (Informational), November 2011.

[10] P. B. Beskow, H. Espeland, H. K. Stensland, P. N. Olsen, S. Kristoffersen, E. A.
Kristiansen, C. Griwodz, and P. Halvorsen. Distributed Real-Time Processing of
Multimedia Data with the P2G Framework, 2011. Poster presented at ACM Eurosys
2011.

[11] P. B. Beskow, H. K. Stensland, H. Espeland, E. A. Kristiansen, P. N. Olsen,
S. Kristoffersen, C. Griwodz, and P. Halvorsen. Processing of multimedia data using
the P2G framework. In Proceedings of the 19th ACM International Conference on
Multimedia - MM ’11, pages 819–820. ACM, 2011.

133

http://www.adobe.com/mena_en/products/hds-dynamic-streaming.html
http://www.adobe.com/mena_en/products/hds-dynamic-streaming.html
http://www.amd.com/us/press-releases/Pages/Press_Release_89872.aspx
http://www.amd.com/us/press-releases/Pages/Press_Release_89872.aspx
http://hadoop.apache.org
http://arstechnica.com/gadgets/2000/02/ee/
http://arstechnica.com/gadgets/2000/02/ee/

134 Bibliography

[12] D. Blythe. The Direct3D 10 system. ACM Transactions on Graphics, 25(3):724,
2006.

[13] K. E. Bonarjee. Investigating host-device communication in a GPU-based H.264
encoder. Master thesis, University of Oslo, 2012.

[14] M. Brown and D. G. Lowe. Automatic Panoramic Image Stitching using Invariant
Features. International Journal of Computer Vision, 74(1):59–73, August 2007.

[15] K. Cabeen and P. Gent. Image Compression and the discrete Cosine Transform. In
Math 45. College of the Redwoods, 1998.

[16] Cairos Technologies. VIS.TRACK. http://www.cairos.com/unternehmen/

vistrack.php [Online. Last accessed: October 2013], 2013.

[17] Camargus. Premium Stadium Video Technology Inrastructure. http://www.

camargus.com/ [Online. Last accessed: October 2013].

[18] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and
J. Zhou. SCOPE: easy and efficient parallel processing of massive data sets. Pro-
ceedings of the VLDB Endowment, 1(2):1265–1276, August 2008.

[19] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel Programmability and the
Chapel Language. International Journal of High Performance Computing Applica-
tions, 23(3), 2007.

[20] K. Chen and C. Lei. Network game design: hints and implications of player interac-
tion. In Proceedings of the 5th ACM SIGCOMM Workshop on Network and System
Support for Games NetGames ’06, 2006.

[21] G. Chrysos. Intel Xeon Phi coprocessor (codename Knights Corner). In Proceedings
of the 24th Hot Chips Symposium - HotChip 2012.

[22] H. S. Chu. Building a simple yet powerful MMO game architecture. http://www.

ibm.com/developerworks/architecture/library/ar-powerup1/ [Online. Last
accessed: June 2010], 2008.

[23] Cisco Systems Inc. Visual Networking Index. http://www.cisco.com/c/en/

us/solutions/service-provider/visual-networking-index-vni/index.html

[Online. Last accessed: June 2010], 2010.

[24] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new genera-
tion of protocols. ACM SIGCOMM Computer Communication Review, 20(4):200–
208, 1990.

[25] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. Young.
Computing as a discipline. Communications of the ACM, 32(1):9–23, 1989.

[26] M. de Kruijf and K. Sankaralingam. MapReduce for the Cell BE Architecture.
University of Wisconsin Computer Sciences Technical Report CS-TR-2007, 1625,
2007.

http://www.cairos.com/unternehmen/vistrack.php
http://www.cairos.com/unternehmen/vistrack.php
http://www.camargus.com/
http://www.camargus.com/
http://www.ibm.com/developerworks/architecture/library/ar-powerup1/
http://www.ibm.com/developerworks/architecture/library/ar-powerup1/
http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html

Bibliography 135

[27] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2004.

[28] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[29] P. Dizikes. Sports analytics: a real game-changer. http://web.mit.edu/

newsoffice/2013/sloan-sports-analytics-conference-2013-0304.html [On-
line. Last accessed: October 2013], 2013.

[30] B. Drain. EVE Evolved: EVE Online’s server model. http://massively.joystiq.
com/2008/09/28/eve-evolved-eve-onlines-server-model/ [Online. Last ac-
cessed: June 2010], 2008.

[31] H. Espeland, P. B. Beskow, H. K. Stensland, P. N. Olsen, S. Kristoffersen, C. Gri-
wodz, and P. Halvorsen. P2G: A Framework for Distributed Real-Time Processing
of Multimedia Data. In Proceedings of the 40th International Conference on Parallel
Processing Workshops - ICPPW 2011, pages 416–426. IEEE, 2011.

[32] H. Espeland, C. H. Lunde, H. K. Stensland, C. Griwodz, and P. Halvorsen. Trans-
parent protocol translation for streaming. In Proceedings of the 15th ACM Interna-
tional Conference on Multimedia - MM ’07, pages 771–774. ACM, 2007.

[33] H. Espeland, C. H. Lunde, H. K. Stensland, C. Griwodz, and P. Halvorsen. Trans-
parent protocol translation and load balancing on a network processor in a media
streaming scenario. In Proceedings of the 18th International Workshop on Network
and Operating Systems Support for Digital Audio and Video - NOSSDAV ’08, pages
129–130. ACM, 2008.

[34] H. Espeland, H. K. Stensland, D. H. Finstad, and P. Halvorsen. Reducing Processing
Demands for Multi-Rate Video Encoding. International Journal of Multimedia Data
Engineering and Management, 3(2):1–19, 2012.

[35] D. H. Finstad, H. K. Stensland, H. Espeland, and P. Halvorsen. Improved Multi-
Rate Video Encoding. In Proceedings of the IEEE International Symposium on
Multimedia - ISM 2011, pages 293–300, 2011.

[36] J. A. Fisher. Very Long Instruction Word architectures and the ELI-512. In Pro-
ceedings of the 10th annual International Symposium on Computer Architecture -
ISCA ’83, pages 140–150. ACM, 1983.

[37] S. L. Flosi. comScore Releases April 2010 U.S. Online Video Rankings, 2010. Press
Release.

[38] M. J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Trans-
actions on Computers, C-21(9):948–960, September 1972.

[39] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Addison-Wesley, 1995.

http://web.mit.edu/newsoffice/2013/sloan-sports-analytics-conference-2013-0304.html
http://web.mit.edu/newsoffice/2013/sloan-sports-analytics-conference-2013-0304.html
http://massively.joystiq.com/2008/09/28/eve-evolved-eve-onlines-server-model/
http://massively.joystiq.com/2008/09/28/eve-evolved-eve-onlines-server-model/

136 Bibliography

[40] V. R. Gaddam, R. Langseth, H. K. Stensland, P. Gurdjos, V. Charvillat, C. Gri-
wodz, D. Johansen, and P. Halvorsen. Be your own cameraman: real-time support
for zooming and panning into stored and live panoramic video. In Proceedings of the
5th Annual ACM Conference on Multimedia Systems - MMSys 2014, pages 168–171.
ACM, 2014.

[41] B. Gedik, H. Andrade, K. Wu, P. S. Yu, and M. Doo. SPADE: the system s declar-
ative stream processing engine. In Proceedings of the ACM SIGMOD International
Conference on Management of Data - SIGMOD 2008, pages 1123–1134. ACM, 2008.

[42] F. Glover. Tabu search Part II. ORSA journal on Computing, 2(1):4–32, 1990.

[43] N. Goodnight and G. Humphreys. Computation on Programmable Graphics Hard-
ware. IEEE Computer Graphics and Applications, 25(5):12–15, 2005.

[44] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems - ASPLOS-XII, pages 151–162. ACM, 2006.

[45] C. Griwodz and M. Zink. KOM(S) Streaming System. http://komssys.

sourceforge.net/html/index.html [Online. Last accessed: September 2014],
2001.

[46] P. Halvorsen, S. Sægrov, A. Mortensen, D. K. C. Kristensen, A. Eichhorn, M. Sten-
haug, S. Dahl, H. K. Stensland, V. R. Gaddam, C. Griwodz, and D. Johansen.
BAGADUS: An Integrated System for Arena Sports Analytics A Soccer Case Study.
In Proceedings of the 4th Annual ACM Conference on Multimedia Systems - MMSys
2013, pages 48–59, 2013.

[47] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: a gpu-accelerated software
router. ACM SIGCOMM Computer Communication Review, 41(4):195–206, 2011.

[48] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, second edition, 2004.

[49] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: a MapReduce
framework on graphics processors. In Proceedings of the 17th International Confer-
ence on Parallel Architectures and Compilation Techniques, pages 260–269. ACM,
2008.

[50] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing.
ORSA Journal on Computing, 26(12):1519–1534, 2000.

[51] M. Houston. Anatomy of AMD’s TeraScale Graphics Engine, 2008. Slides of a talk
given at SIGGRAPH 2008.

[52] P. H. J. Hughes, S. P. Jones, and P. Wadler. A history of Haskell: being lazy
with class. In Proceedings of the 3rd ACM SIGPLAN Conference on History of
Programming Languages, pages 12:1–12:55, 2007.

http://komssys.sourceforge.net/html/index.html
http://komssys.sourceforge.net/html/index.html

Bibliography 137

[53] K. Huguenin, A. Kermarrec, K. Kloudas, and F. Taiani. Content and Geographical
Locality in User-Generated Content Sharing Systems. In Proceedings of the 22nd In-
ternational Workshop on Network and Operating Systems Support for Digital Audio
and Video - NOSSDAV 2012, pages 77–82, 2012.

[54] IBM. Cell Broadband Engine Architecture. Technical report, 2007.

[55] IBM, Sony, and Toshiba. Cell Broadband Engine Programming Handbook. IBM,
2008.

[56] Intel Corporation. Intel IXP1200 Network Processor Family: Hardware Reference
Manual. Technical report, 2001.

[57] Intel Corporation. Intel IXP2400 Network Processor Family: Hardware Reference
Manual. Technical report, 2003.

[58] Intel Corporation. Tick Tock Model. http://www.intel.com/content/www/us/

en/silicon-innovations/intel-tick-tock-model-general.html [Online. Last
accessed: February 2014], 2007.

[59] Intel Corporation. An Introduction to the Intel QuickPath Interconnect. Technical
report, 2009.

[60] Intel Corporation. Intel Hyper-Threading Technology. http://www.intel.

com/content/www/us/en/architecture-and-technology/hyper-threading/

hyper-threading-technology.html [Online. Last accessed: January 2012], 2012.

[61] Intel Corporation. Intel Quick Sync Video. http://www.intel.com/

content/www/us/en/architecture-and-technology/quick-sync-video/

quick-sync-video-general.html [Online. Last accessed: January 2014], 2013.

[62] Interplay Sports. The Ultimate Video Analysis and Scouting Software. http:

//www.interplay-sports.com/ [Online. Last accessed: October 2013], 2013.

[63] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. In ACM SIGOPS Operating
Systems Review, volume 41, pages 59–72. ACM, 2007.

[64] ISO/IEC 14496-10:2003. Information Technology - Coding of audio-visual objects -
Part 10: Advanced Video Coding. ISO/IEC, 2003.

[65] ITU-T Z.100. Specification and Description Language (SDL). ITU, 2007.

[66] D. Johansen, T. Endestad, H. Riiser, C. Griwidz, P. Halvorsen, H. Johansen,
T. Aarflot, J. Hurley, Å. Kvalnes, C. Gurrin, S. Zav, B. Olstad, and E. Aaberg.
DAVVI: a prototype for the next generation multimedia entertainment platform. In
Proceedings of the 17th ACM International Conference on Multimedia - MM ’09,
pages 989–990. ACM, 2009.

http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/quick-sync-video/quick-sync-video-general.html
http://www.interplay-sports.com/
http://www.interplay-sports.com/

138 Bibliography

[67] D. Johansen, M. Stenhaug, R. B. A. Hansen, A. Christensen, and P. M. Høgmo.
Muithu: Smaller Footprint, Potentially Larger Imprint. In Proceedings of the 7th
IEEE International Conference on Digital Information Management - ICDIM 2012,
pages 205–214, 2012.

[68] P. Kaewtrakulpong and R. Bowden. An Improved Adaptive Background Mixture
Model for Realtime Tracking with Shadow Detection. In Proceedings of the 2nd
European Workshop on Advanced Video Based Surveillance Systems - AVBS ’01,
pages 135–144, 2001.

[69] D. B. Kirk and W. H. Wen-mei. Programming massively parallel processors: a
hands-on approach. Newnes, 2012.

[70] E. A. Kock, G. Essink, W. J. M. Smits, and P. Wolf. YAPI: Application modeling for
signal processing systems. In Proceeding of the 37th Design Automation Conference
- DAC’2000, pages 402–405. ACM, 2000.

[71] L. Kohn and N. Margulis. Introducing the Intel i860 64-bit microprocessor. IEEE
Micro, 9(4):15–30, 1989.

[72] M. Kovac and N. Ranganathan. JAGUAR: A Fully Pipelined VLSI Architecture
for JPEG Image Compression Standard. Proceedings of the IEEE, 83(2):247–258,
1995.

[73] I. Kuon, R. Tessier, and J. Rose. FPGA Architecture: Survey and Challenges.
Foundations and Trends in Electronic Design Automation, 2(2):135–253, 2007.

[74] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the IEEE,
83(5):773–801, 1995.

[75] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

[76] C. H. Lunde, H. Espeland, H. K. Stensland, and P. Halvorsen. Improving file tree
traversal performance by scheduling I/O operations in user space. In Proceedings
of the 28th IEEE International Performance Computing and Communications Con-
ference - IPCCC 2009, pages 145–152. IEEE, 2009.

[77] C. H. Lunde, H. Espeland, H. K. Stensland, A. Petlund, and P. Halvorsen. Improv-
ing disk I/O performance on Linux. In UpTimes - Proceedings of Linux-Kongress
and OpenSolaris Developer Conference, 2009.

[78] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming the Intel
80-core network-on-a-chip Terascale Processor. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis -
SC 2008, pages 1–11. IEEE, 2008.

[79] C. Mims. Why CPUs Aren’t Getting Any Faster. http://www.technologyreview.
com/view/421186/why-cpus-arent-getting-any-faster/ [Online. Last ac-
cessed: July 2014], 2010.

http://www.technologyreview.com/view/421186/why-cpus-arent-getting-any-faster/
http://www.technologyreview.com/view/421186/why-cpus-arent-getting-any-faster/

Bibliography 139

[80] A. Mortensen, V. R. Gaddam, H. K. Stensland, C. Griwodz, D. Johansen, and
P. Halvorsen. Automatic event extraction and video summaries from soccer games.
In Proceedings of the 5th Annual ACM Conference on Multimedia Systems - MMSys
2014, pages 176–179. ACM, 2014.

[81] Move Networks. Internet Television: Challenges and Opportunities. Technical
report, Move Networks, Inc., 2008.

[82] Netronome. FlowNICs. http://www.netronome.com/product/flownics/ [Online.
Last accessed: July 2014], 2014.

[83] O. A. Niamut, R. Kaiser, G. Kienast, A. Kochale, J. Spille, O. Schreer, J. R. Hidalgo,
J. Macq, and B. Shirley. Towards A Format-agnostic Approach for Production,
Delivery and Rendering of Immersive Media. In Proceedings of the 4th Annual
ACM Conference on Multimedia Systems - MMSys 2013, pages 249–260, 2013.

[84] J. Nickolls and W. J. Dally. The GPU Computing Era. IEEE Micro, 30(2):56–69,
2010.

[85] C. Nicolaou. An architecture for real-time multimedia communication systems.
IEEE Journal on Selected Areas in Communications, 8(3):391–400, 1990.

[86] Numascale. NumaConnect - the Technology. https://numascale.com/ [Online.
Last accessed: September 2014], 2012.

[87] Nvidia. CUDA C Best Practices Guide. http://docs.nvidia.com/pdf/CUDA_C_

Best_Practices_Guide.pdf [Online. Last accessed: September 2014], 2009.

[88] Nvidia. Nvidia’s Next Generation CUDA Compute Architecture: Fermi. Technical
report, 2010.

[89] Nvidia. NVIDIA Performance Primitives. https://developer.nvidia.com/npp

[Online. Last accessed: March 2012], 2011.

[90] Nvidia. Nvidia’s Next Generation CUDA Compute Architecture: Kepler GK110.
Technical report, 2012.

[91] Nvidia. Tegra 4 Processors. http://www.nvidia.com/object/

tegra-4-processor.html [Online. Last accessed: December 2013], 2013.

[92] Nvidia. CUDA C Programming Guide, version 6.0. http://docs.nvidia.com/pdf/
CUDA_C_Programming_Guide.pdf [Online. Last accessed: September 2014], 2014.

[93] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-
foreign language for data processing. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data - SIGMOD 2008, pages 1099–1110.
ACM, 2008.

[94] A. Ottesen. Efficient parallelisation techniques for applications running on GPUs
using the CUDA framework. Master thesis, University of Oslo, Norway, 2009.

http://www.netronome.com/product/flownics/
https://numascale.com/
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Best_Practices_Guide.pdf
https://developer.nvidia.com/npp
http://www.nvidia.com/object/tegra-4-processor.html
http://www.nvidia.com/object/tegra-4-processor.html
http://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf

140 Bibliography

[95] J. Ozer. First Look: H.264 and VP8 Compared. http://

www.streamingmedia.com/articles/editorial/featured-articles/

first-look-h.264-and-vp8-compared-67266.aspx [Online. Last accessed:
June 2010], 2010.

[96] R. Pantos, J. Batson, D. Biderman, B. May, and A. Tseng. HTTP Live Stream-
ing. http://tools.ietf.org/html/draft-pantos-http-live-streaming-04

[Online. Last accessed: October 2013], 2010.

[97] S. A. Pettersen, P. Halvorsen, D. Johansen, H. Johansen, V. Berg-Johansen, V. R.
Gaddam, A. Mortensen, R. Langseth, C. Griwodz, and H. K. Stensland. Soccer
video and player position dataset. In Proceedings of the 5th Annual ACM Conference
on Multimedia Systems - MMSys 2014, pages 18–23. ACM, 2014.

[98] V. Pham, P. Vo, and V. T. Hung. GPU implementation of extended gaussian
mixture model for background subtraction. In Proceedings of the IEEE RIVF In-
ternational Conference on Computing and Communication Technologies, Research,
Innovation, and Vision for the Future - RIVF 2010, pages 1–4. IEEE, 2010.

[99] M. Pritchard. How to Hurt the Hackers: The Scoop on Internet Cheating and How
You Can Combat It. http://www.gamasutra.com/view/feature/3149/how_to_

hurt_the_hackers_the_scoop_.php [Online. Last accessed: May 2009], 2000.

[100] Prozone. Prozone Sports – Introducing Prozone Performance Analysis Products.
http://www.prozonesports.com/subsector/football/ [Online. Last accessed:
October 2014].

[101] K. Raaen, H. Espeland, H. K. Stensland, A. Petlund, P. Halvorsen, and C. Griwodz.
A demonstration of a lockless, relaxed atomicity state parallel game server (LEARS).
In Proceedings of the 10th Annual Workshop on Network and Systems Support for
Games - NetGames 2011, pages 1–3. IEEE, 2011.

[102] K. Raaen, H. Espeland, H. K. Stensland, A. Petlund, P. Halvorsen, and C. Griwodz.
LEARS: A Lockless, Relaxed-Atomicity State Model for Parallel Execution of a
Game Server Partition. In Proceedings of the 41st International Conference on
Parallel Processing Workshops - ICPPW 2012, pages 382–389. IEEE, 2012.

[103] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evalu-
ating MapReduce for Multi-core and Multiprocessor Systems. In Proceesing of the
IEEE 13th International Symposium on High Performance Computer Architecture
- HPCA 2007, pages 13–24. IEEE, 2007.

[104] Real World Technologies. Intels Haswell CPU Microarchitecture. http://www.

realworldtech.com/haswell-cpu/ [Online. Last accessed: February 2014], 2012.

[105] S. Sægrov, A. Eichhorn, J. Emerslund, H. K. Stensland, C. Griwodz, D. Johansen,
and P. Halvorsen. BAGADUS: An Integrated System for Soccer Analysis (Demo).
In Proceedings of the ACM/IEEE International Conference on Distributed Smart
Cameras - ICDSC 2012, 2012.

http://www.streamingmedia.com/articles/editorial/featured-articles/first-look-h.264-and-vp8-compared-67266.aspx
http://www.streamingmedia.com/articles/editorial/featured-articles/first-look-h.264-and-vp8-compared-67266.aspx
http://www.streamingmedia.com/articles/editorial/featured-articles/first-look-h.264-and-vp8-compared-67266.aspx
http://tools.ietf.org/html/draft-pantos-http-live-streaming-04
http://www.gamasutra.com/view/feature/3149/how_to_hurt_the_hackers_the_scoop_.php
http://www.gamasutra.com/view/feature/3149/how_to_hurt_the_hackers_the_scoop_.php
http://www.prozonesports.com/subsector/football/
http://www.realworldtech.com/haswell-cpu/
http://www.realworldtech.com/haswell-cpu/

Bibliography 141

[106] V. D. Salvo, A. Collins, B. McNeill, and M. Cardinale. Validation of Prozone: A new
video-based performance analysis system. International Journal of Performance
Analysis in Sport (serial online), 6(1):108–119, 2006.

[107] T. Sato. The earth simulator: Roles and impacts. Nuclear Physics B - Proceedings
Supplements, 129-130:102–108, 2004.

[108] P. Seeling, F. H. P. Fitzek, G. Ertli, A. Pulipaka, and M. Reisslein. Video network
traffic and quality comparison of VP8 and H.264 SVC. In Proceedings of the 3rd
Workshop on Mobile Video Delivery - MoViD 2010, pages 33–38, 2010.

[109] L. Seiler, R. Cavin, R. Espasa, E. Grochowski, T. Juan, P. Hanrahan, D. Carmean,
E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins, A. Lake, and J. Suger-
man. Larrabee: a many-core x86 architecture for visual computing. ACM Transac-
tions on Graphics, 27(3):18:1–18:15, 2008.

[110] Iraj Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the
Internet. IEEE MultiMedia, 18(4):62–67, 2011.

[111] Stats Technology. STATS — SportVU — Football/Soccer. http://www.sportvu.
com/football.asp [Online. Last accessed: October 2013], 2013.

[112] H. K. Stensland, H. Espeland, C. Griwodz, and P. Halvorsen. Tips, tricks and
troubles: optimizing for Cell and GPU. In Proceedings of the 20th International
Workshop on Network and Operating Systems Support for Digital Audio and Video
- NOSSDAV ’10, pages 75–80. ACM, 2010.

[113] H. K. Stensland, V. R. Gaddam, M. Tennøe, E. Helgedagsrud, M. Næss, H. K.
Alstad, C. Griwodz, P. Halvorsen, and D. Johansen. Processing Panorama Video
in Real-Time. International Journal of Semantic Computing (IJSC), 8(2):209–227,
2014.

[114] H. K. Stensland, V. R. Gaddam, M. Tennøe, E. Helgedagsrud, M. Næss, H. K. Al-
stad, A. Mortensen, R. Langseth, S. Ljødal, Ø. Landsverk, C. Griwodz, P. Halvorsen,
M. Stenhaug, and D. Johansen. Bagadus: An integrated real-time system for soc-
cer analytics. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), 10(1s):1–21, 2014.

[115] H. K. Stensland, C. Griwodz, and P. Halvorsen. Evaluation of multi-core schedul-
ing mechanisms for heterogeneous processing architectures. In Proceedings of the
18th International Workshop on Network and Operating Systems Support for Digital
Audio and Video - NOSSDAV ’08, pages 33–38. ACM, 2008.

[116] H. K. Stensland, O. Lysne, R. Nordstrøm, and H. Kohmann. Making an SCI fabric
dynamically fault tolerant. In Proceedings of the IEEE International Symposium on
Parallel and Distributed Processing - IPDPS 2008, pages 1–8. IEEE, 2008.

[117] H. K. Stensland, M. Ø. Myrseth, C. Griwodz, and P. Halvorsen. Cheat detection
processing: A GPU versus CPU comparison. In Proceedings of the 9th IEEE Annual
Workshop on Network and Systems Support for Games - NetGames 2010, pages 1–6.
IEEE, 2010.

http://www.sportvu.com/football.asp
http://www.sportvu.com/football.asp

142 Bibliography

[118] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. POWER4 system
microarchitecture. IBM Journal of Research and Development, 46(1):5–25, 2002.

[119] M. Tennøe, E. O. Helgedagsrud, M. Næss, H. K. Alstad, H. K. Stensland, V. R.
Gaddam, D. Johansen, C. Griwodz, and P. Halvorsen. Efficient Implementation and
Processing of a Real-Time Panorama Video Pipeline. In Proceedings of the IEEE
International Symposium on Multimedia - ISM 2013, pages 76–83. IEEE, 2013.

[120] M. Tennøe, E. O. Helgedagsrud, M. Næss, H. K. Alstad, H. K. Stensland,
P. Halvorsen, and C. Griwidz. Realtime Panorama Video Processing Using NVIDIA
GPUs, 2013. Poster presented at Nvidia GPU Technology Conference 2013.

[121] The TCPdump and libpcap project. http://www.tcpdump.org/ [Online. Last ac-
cessed: May 2013], 2013.

[122] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A Practical Approach to Ex-
ploiting Coarse-Grained Pipeline Parallelism in C Programs. In Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
40, pages 356–369. IEEE, 2007.

[123] M. Thompson and A. Pimentel. Towards Multi-application Workload Modeling
in Sesame for System-Level Design Space Exploration. In Embedded Computer
Systems: Architectures, Modeling, and Simulation, volume 4599 of Lecture Notes in
Computer Science, pages 222–232. Springer Berlin / Heidelberg, 2007.

[124] S. V. Valv̊ag and D. Johansen. Oivos: Simple and Efficient Distributed Data Pro-
cessing. In Proceedings of the 10th IEEE International Conference on High Perfor-
mance Computing and Communications - HPCC’08, pages 113–122, 2008.

[125] S. V. Valv̊ag and D. Johansen. Cogset: A Unified Engine for Reliable Storage
and Parallel Processing. In Proceeding of the 6th IFIP International Conference on
Network and Parallel Computing - NPC’08, pages 174–181, 2009.

[126] Verdione Project. Verdione - Technology for mixed-reality stages. http://

verdione.org/ [Online. Last accessed: October 2014], 2011.

[127] Z. Vrba, P. Halvorsen, C. Griwodz, and P. B. Beskow. Kahn Process Networks
are a Flexible Alternative to MapReduce. Proceeding of the IEEE International
Conference on High Performance Computing and Communications - HPCC 2009,
pages 154–162, 2009.

[128] Z. Vrba, P. Halvorsen, C. Griwodz, P. B. Beskow, and D. Johansen. The Nornir Run-
time System for Parallel Programs Using Kahn Process Networks. In Proceedings of
the 6th IFIP International Conference on Network and Parallel Computing - ICNPC
2009, pages 1–8. IEEE, 2009.

[129] W. Weimer, M. Boyer, and K. Skadron. Automated Dynamic Analysis of CUDA
Programs. In Proceedings of the 3rd Workshop on Software Tools for MultiCore
Systems - STMCS 2008, 2008.

http://www.tcpdump.org/
http://verdione.org/
http://verdione.org/

Bibliography 143

[130] W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan. Scaling games to
epic proportions. In Proceedings of the IEEE International Conference on Manage-
ment of Data - SIGMOD 2007, pages 31–42, 2007.

[131] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the
H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems
for Video Technology, 13(7):560–576, 2003.

[132] M. A. Wilhelmsen, H. K. Stensland, V. R. Gaddam, P. Halvorsen, and C. Griwodz.
Performance and Application of the NVIDIA NVENC H.264 Encoder, 2014. Poster
presented at Nvidia GPU Technology Conference 2014.

[133] E. Wu and Y. Liu. Emerging technology about GPGPU. In Proceedings of the IEEE
Asia Pacific Conference on Circuits and Systems - APCCAS 2008, pages 618–622.
IEEE, 2008.

[134] N. Wu, M. Wen, W. Wu, J. Ren, H. Su, C. Xun, and C. Zhang. Streaming HD H.264
encoder on programmable processors. In Proceedings of the 17th ACM International
Conference on Multimedia - MM ’09, pages 371–380. ACM, 2009.

[135] Xilinx. Zynq-7000 All Programmable SoC First Generation Architecture. Technical
report, 2013.

[136] Y. Xiong and K. Pulli. Color correction for mobile panorama imaging. In Proceedings
of the First International Conference on Internet Multimedia Computing and Service
- ICIMCS ’09, pages 219–226, 2009.

[137] J. Yan and B. Randell. A systematic classification of cheating in online games. In
Proceedings of 4th ACM SIGCOMM workshop on Network and system Support for
Games - NetGames ’05, pages 1–9, 2005.

[138] H. Yang, A. Dasdan, R. Hsiao, and D. Parker. Map-reduce-merge: simplified re-
lational data processing on large clusters. In Proceedings of the ACM SIGMOD
International Conference on Management of Data - SIGMOD 2007, pages 1029–
1040. ACM, 2007.

[139] YouTube. Statistics - YouTube. https://www.youtube.com/yt/press/

statistics.html [Online. Last accessed: October 2014], 2014.

[140] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Gunda, and J. Currey.
DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing
Using a High-Level Language, 2008.

[141] A. Zambelli. Smooth Streaming Technical Overview. http://www.iis.net/learn/
media/on-demand-smooth-streaming/smooth-streaming-technical-overview

[Online. Last accessed: October 2014], 2009.

[142] T. Zeiser, G. Hager, and G. Wellein. The world’s fastest CPU and SMP node: Some
performance results from the NEC SX-9. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium - IPDPS 2009, pages 1–8. IEEE,
2009.

https://www.youtube.com/yt/press/statistics.html
https://www.youtube.com/yt/press/statistics.html
http://www.iis.net/learn/media/on-demand-smooth-streaming/smooth-streaming-technical-overview
http://www.iis.net/learn/media/on-demand-smooth-streaming/smooth-streaming-technical-overview

144 Bibliography

[143] Z. Zhang. Flexible camera calibration by viewing a plane from unknown orienta-
tions. In Proceeding of the IEEE International Conference on Computer Vision -
ICCV 1999, pages 666–673, 1999.

[144] Z. Zivkovic. Improved adaptive Gaussian mixture model for background subtraction.
In Proceedings of the 17th IEEE International Conference on Pattern Recognition -
ICPR 2004, pages 28 – 31 Vol.2, 2004.

[145] Z. Zivkovic and F. van der Heijden. Efficient adaptive density estimation per image
pixel for the task of background subtraction. Pattern Recognition Letters, 27(7):773–
780, 2006.

[146] ZXY. ZXY Sport Tracking. http://www.zxy.no/ [Online. Last accessed: January
2014], 2013.

http://www.zxy.no/

Part II

Research Papers

Paper I: Transparent Protocol
Translation for Streaming

Title: Transparent Protocol Translation for Streaming [32].

Authors: H. Espeland, C. H. Lunde, H. K. Stensland, C. Griwodz, and P. Halvorsen.

Published: Proceedings of the 15th International Multimedia Conference (MM), ACM,
2007.

147

148 . Paper I: Transparent Protocol Translation for Streaming

Transparent Protocol Translation for Streaming

Håvard Espeland1, Carl Henrik Lunde1, Håkon Kvale Stensland1,2, Carsten Griwodz1,2,
Pål Halvorsen1,2

1IFI, University of Oslo, Norway 2Simula Research Laboratory, Norway

{haavares, chlunde, haakonks, griff, paalh}@ifi.uio.no

ABSTRACT
The transport of streaming media data over TCP is hindered
by TCP’s probing behavior that results in the rapid reduc-
tion and slow recovery of the packet rates. On the other side,
UDP has been criticized for being unfair against TCP con-
nections, and it is therefore often blocked out in the access
networks. In this paper, we try to benefit from a combined
approach using a proxy that transparently performs trans-
port protocol translation. We translate HTTP requests by
the client transparently into RTSP requests, and translate
the corresponding RTP/UDP/AVP stream into the corre-
sponding HTTP response. This enables the server to use
UDP on the server side and TCP on the client side. This is
beneficial for the server side that scales to a higher load when
it doesn’t have to deal with TCP. On the client side, stream-
ing over TCP has the advantage that connections can be es-
tablished from the client side, and data streams are passed
through firewalls. Preliminary tests demonstrate that our
protocol translation delivers a smoother stream compared
to HTTP-streaming where the TCP bandwidth oscillates
heavily.

Categories and Subject Descriptors
D.4.4 [OPERATING SYSTEMS]: Communications Man-
agement—Network communication

General Terms
Measurement, Performance

1. INTRODUCTION
Streaming services are today almost everywhere available.

Major newspapers and TV stations make on-demand and
live audio/video (A/V) content available, video-on-demand
services are becoming common and even personal media are
frequently streamed using services like pod-casting or up-
loading to streaming sites such as YouTube.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’07, September 23–28, 2007, Augsburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-701-8/07/0009 ...$5.00.

The discussion about the best protocols for streaming has
been going on for years. Initially, streaming services on the
Internet used UDP for data transfer because multimedia ap-
plications often have demands for bandwidth, reliability and
jitter than could not be offered by TCP. Today, this ap-
proach is impeded with filters in Internet service providers
(ISPs), by firewalls in access networks and on end-systems.
ISPs reject UDP because it is not fair against TCP traf-
fic, many firewalls reject UDP because it is connectionless
and requires too much processing power and memory to en-
sure security. It is therefore fairly common to use HTTP-
streaming, which delivers streaming media over TCP. The
disadvantage is that the end-user can experience playback
hiccups and quality reductions because of the probing be-
havior of TCP, leading to oscillating throughput and slow
recovery of the packet rate. A sender that uses UDP would,
in contrast to this, be able to maintain a desired constant
sending rate. Servers are also expected to scale more easily
when sending smooth UDP streams and avoid dealing with
TCP-related processing.

To explore the benefits of both TCP and UDP, we ex-
periment with a proxy that performs a transparent proto-
col translation. This is similar to the use of proxy caching
that ISPs employ to reduce their bandwidth, and we do in
fact aim at a combined solution. There are, however, too
many different sources for adaptive streaming media that
end-users can retrieve data from to apply proxy caching for
all of them. Instead, we aim at live protocol translation in a
TCP-friendly manner that achieves a high perceived quality
to end-users. Our prototype proxy is implemented on an
Intel IXP2400 network processor and enables the server to
use UDP at the server side and TCP at the client side.

We have earlier shown the benefits of combining the use
of TFRC in the backbone with the use of TCP in access net-
works [1]. In the experiments presented in that paper, we
used course-grained scalable video (scalable MPEG (SPEG)
[4]) which makes it possible to adapt to variations in the
packet rate. To follow up on this idea, we describe in this
paper our IXP2400 implementation of a dynamic transport
protocol translator. Preliminary tests comparing HTTP
video streaming from a web-server and RTSP/RTP-streaming
from the komssys video server show that, in case of some
loss, our solution using a UDP server and a proxy later trans-
lating to TCP delivers a smoother stream at play out rate
while the TCP stream oscillates heavily.

2. RELATEDWORK
Proxy servers have been used for improved delivery of

771

149

Figure 1: System overview

streaming media in numerous earlier works. Their tasks in-
clude caching, multicast, filtering, transcoding, traffic shap-
ing and prioritizing. In this paper, we want to draw atten-
tion to issues that occur when a proxy is used to translate
transport protocols in such a way that TCP-friendly trans-
ports mechanisms can be used in backbone networks and
TCP can be used in access networks to deliver streaming
video through firewalls. Krasic et al. argue that the most
natural choice for TCP-friendly traffic is using TCP itself [3].
While we agree in principle, their priority progress stream-
ing approach requires a large amount of buffering to hide
TCP throughput variations. In particular, this smoothing
buffer is required to hide the rate-halving and recovery time
in TCP’s normal approach of probing for bandwidth which
grows proportionally with the round-trip time. To avoid
this large buffering requirement at the proxy, we would pre-
fer an approach that maintains a more stable packet rate at
the original sender. The survey of [7] shows that TFRC is a
reasonably good representative of the TCP-friendly mecha-
nisms for unicast communication. Therefore, we have chosen
this mechanism for the following investigation.
With respect to the protocol translation that we describe

here, we do not know of much existing work, but the idea is
similar to the multicast-to-unicast translation [6]. We have
also seen voice-over-IP proxies translating between UDP and
TCP. In these examples, a packet is translated from one type
to another to match the various parts of the system, and we
here look at how such an operation performs in the media
streaming scenario.

3. TRANSLATING PROXY
An overview of our protocol translating proxy is shown

in figure 1. The client and server communicates by the
proxy, which transparently translates between HTTP and
RTSP/RTP. Both peers are unaware of each other.
The steps and phases of a streaming session follows. The

client tries to set up a HTTP streaming session, by initiat-
ing a TCP connection to the server. All packets are inter-
cepted by the proxy, and modified before passing it on to the
streaming server. The proxy also forwards the TCP 3-way
handshake between client and server, updating the packet
with the server’s port. When established, the proxy splits
the TCP connection into two separate connections that al-
low for individual updating of sequence numbers. The client
sends a GET request for a video file. The proxy translates
this into a SETUP request and sends it to the streaming
server using the TCP port of the client as its proposed
RTP/UDP port. If the setup is unsuccessful, the proxy will
inform the client and close the connections. Otherwise, the
server’s response contains the confirmed RTP and RTCP
ports assigned to a streaming session. The proxy sends a
response with an unknown content length to the client and
issues a PLAY command to the server. When received, the
server starts streaming the video file using RTP/UDP. The
UDP packets are translated by the proxy as part of the

Figure 2: Packet flow on the IXP2400

HTTP response, using the source port and address matching
the HTTP connection. Because the RTP and UDP headers
combined are longer than a standard TCP header, the proxy
can avoid the penalty of moving the video data in mem-
ory, thus permitting reuse of the same packet by padding
the TCP options field with NOPs. When the connection is
closed by the client during or after playback, the proxy is-
sues a TEARDOWN request to the server to avoid flooding
the network with excess RTP packets.

4. IMPLEMENTATION
Our prototype is implemented on a programmable net-

work processor using the IXP2400 chipset [5], which is de-
signed to handle a wide range of access, edge and core ap-
plications. The basic features include a 600 MHz XScale
core running Linux, eight 600 MHz special packet proces-
sors called micro-engines (μEngines), several types of mem-
ory and different controllers and busses. With respect to the
different CPUs, the XScale is typically used for the control
plane (slow path) while μEngines perform general packet
processing in the data plane (fast path).

The transport protocol translation operation1 is shown in
figure 2. The protocol translation proxy uses the XScale
core and one μEngine application block. In addition, we use
two μEngines for the receiving (RX) and the sending (TX)
blocks. Incoming packets are classified by the μEngine based
on the header. RTSP and HTTP packets are enqueued for
processing on the XScale core (control path) while the han-
dling of RTP packets is performed on the μEngine (fast
path). TCP acknowledgements with zero payload size are
processed on the μEngine for performance reasons.

The main task of the XScale is to set up and maintain
streaming sessions, but after the initialization, all video data
is processed (translated and forwarded) by the μEngine.
The proxy supports a partial TCP/IP implementation, cov-
ering only basic features. This is done to save both time and
resources on the proxy.

To be fair with competing TCP streams, we implemented
congestion control for the client loss experiment. TFRC [2]
computation is used to determine the bandwidth available
for streaming from the server. TFRC is a specification for
best effort flows competing for bandwidth, designed to be
reasonable fair to other TCP flows. The outgoing bandwidth
is limited by the following formula:

X =
s

R ∗
q

2 ∗ b ∗ p
3 + (tRTO ∗ 3 ∗

q
3 ∗ b ∗ p

8 ∗ p ∗ (1 + 32 ∗ p2))

1Our proxy also performs proxying of normal RTSP sessions
and transparent load balancing between streaming servers,
but this is outside of the scope of this paper. We also have
unused resources (μEngines) enabling more functionality.

772

150

 0
 50

 100
 150

 200

 0
 0.2

 0.4
 0.6

 0.8
 1

 750
 800
 850
 900
 950

 1000
 1050
 1100

Average throughput (Kbps) IXP
HTTP

RTT (ms)

Percentage dropped

Average throughput (Kbps)

(a) HTTP and translation results

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 50 100 150 200

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

K
bp

s)

RTT (ms)

Std. Dev. as errorbars

(b) HTTP streaming

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 50 100 150 200

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

K
bp

s)

RTT (ms)

Std. Dev. as errorbars

(c) Protocol translation

Figure 3: Achieved bandwidth varying drop rate and link latency with 1% server-proxy loss

where X is the transmit rate in bytes per second, s is the
packet size in bytes, R is the RTT in seconds, b is the number
of packets ACKed by a single TCP acknowledgment, p is the
loss event rate (0-1.0), and tRTO is the TCP retransmission
timeout. The formula is calculated on a μEngine using fixed
point arithmetic. Packets arriving at a rate exceeding the
TFRC calculated threshold are dropped.
We are aware that this kind of dropping has different ef-

fects on the user-perceived quality than sender-side adapta-
tion. We have only made preliminary investigations on the
matter and leave it for future work. In that investigation,
we will also consider the effect of buffering for at most 1
RTT.

5. EXPERIMENTS AND RESULTS
We investigated the performance of our protocol transla-

tion proxy compared to plain HTTP-streaming in two dif-
ferent settings. In the first experiment, we induced unre-
liable network behavior between the streaming server and
the proxy, while in the second experiment, the unreliable
network connected proxy and client. We performed several
experiments where we examined both the bandwidth and
the delay while changing both the link delays (0 - 200 ms)
and the packet drop rate (0 - 1 %). We used a web-server
and an RTSP video server using RTP streaming, running on
a standard Linux machine. Packets belonging to end-to-end
HTTP connections made to port 8080 were forwarded by
the proxy whereas packets belonging to sessions initiated by
connection made to port 80 were translated. The bandwidth
was measured on the client by monitoring the packet stream
with tcpdump.

5.1 Server-Proxy Losses
The results from the test where we introduced loss and

delay between server and proxy are shown in figure 3. Fig-
ure 3(a) shows a 3D plot where we look at the latency that
we achieved for the different combinations of loss and link
delays. Additionally, figures 3(b) and 3(c) show the respec-
tive results for the HTTP and protocol translation scenarios
when keeping the loss rate constant at 1% (keeping the link
delay constant gives similar results). The plots show that
our proxy that translates transparently from RTP/UDP to
TCP achieves a mostly constant rate for the delivered stream.
Sending the HTTP stream from the server, on the other
hand, shows large performance drops when the loss rate
and the link delay increase. From figures 3(b) and 3(c),

 600

 700

 800

 900

 1000

 1100

 0 50 100 150 200
A

ve
ra

ge
 th

ro
ug

hp
ut

 (
K

bp
s)

RTT (ms)

TCP Cubic 0.25% drop rate
TCP Cubic 1.00% drop rate
TCP TFRC 0.25% drop rate
TCP TFRC 1.00% drop rate

Figure 4: TCP cubic congestion vs. TFRC

we see also that the translation provides a smoother stream
whereas the bandwidth oscillates heavily using TCP end-to-
end.

5.2 Proxy-Client Losses
In the second experiment, loss and delay are introduced

between the proxy and the client, and the data rate is lim-
ited according to TFRC measuring RTT and packet loss
during the transfer. Furthermore, packets are not buffered
on the network card, meaning that the traffic exceeding the
calculated rate of TFRC are dropped and that TCP retrans-
missions contains only data with zero values.

In figure 4, we first show the average throughput of stream-
ing video from a web-server using cubic TCP congestion con-
trol compared with our TCP implementation using TFRC.
As expected, the TFRC implementation behaves similar (fair)
to normal TCP congestion control with a slightly more pes-
simistic approach. Moreover, figure 5 is a plot of the re-
ceived packets’ interarrival time. This shows that the delay
variation of normal TCP congestion control increases with
the drop rate, while TFRC is less affected. Thus, we see
again that that our proxy gives a stream without large vari-
ations whereas the bandwidth oscillates heavily using TCP
throughout the path.

6. DISCUSSION
Even though our proxy seems to give better, more stable

bandwidths, there is a trade-off, because instead of retrans-
mitting lost packet (and thus old data if the client does not
buffer), the proxy fills the new packet with new updated
data from the server. This means that the client in our pro-

773

151

 0

 10

 20

 30

 40

 50

 0 40 80 120 160 200

A
ve

ra
ge

 in
te

ra
rr

iv
al

 d
el

ay
 (

m
s)

Round-trip time (ms)

TFRC 0.0% packet loss

 0 40 80 120 160 200

Round-trip time (ms)

TCP 0.0% packet loss

(a) 0% drop rate

 0

 10

 20

 30

 40

 50

 0 40 80 120 160 200

A
ve

ra
ge

 in
te

ra
rr

iv
al

 d
el

ay
 (

m
s)

Round-trip time (ms)

TFRC 0.50% packet loss

 0 40 80 120 160 200

Round-trip time (ms)

TCP 0.50% packet loss

(b) 0.5% drop rate

 0

 10

 20

 30

 40

 50

 0 40 80 120 160 200

A
ve

ra
ge

 in
te

ra
rr

iv
al

 d
el

ay
 (

m
s)

Round-trip time (ms)

TFRC 1.00% packet loss

 0 40 80 120 160 200

Round-trip time (ms)

TCP 1.00% packet loss

(c) 1.0% drop rate

Figure 5: Average interarrival delay and variation with proxy-client loss

totype does not receive all data, and some artifacts may be
displayed. On the other hand, in case of live and interactive
streaming scenarios, delays due to retransmission may intro-
duce dropped frames and delayed play out. This can cause
video artifacts, depending on the codec used. However, this
problem can easily be reduced by adding a limited buffer
per stream sufficient for one retransmission on the proxy.
One issue in the context of proxies is where and how it

should be implemented. For this study, we have chosen the
IXP2400 platform as we earlier have explored the offload-
ing capabilities of such programmable network processors.
Using such an architecture, the network processor is suited
for many similar operations, and the host computer could
manage the caching and persistent storage of highly pop-
ular data served from the proxy itself. However, the idea
itself could also be implemented as a user-level proxy appli-
cation or integrated into the kernel of an intermediate node
performing packet forwarding.
The main advantage of the scheme proposed in this pa-

per is a lower variation in bandwidth and interarrival times
in an unreliable network compared to normal TCP. It also
combines some of the benefits of HTTP streaming (firewall
traversal, client player support) with the performance of
RTP streaming. The price of this is uncontrolled loss of
data packets that may impact the perceived video quality
more strongly than hiccups.
HTTP streaming may perform well in a scenario where

a stored multimedia object is streamed to a high capac-
ity end-system. Here, a large buffer may add a small, but
acceptable, delay to conceal losses and oscillating resource
availability. However, in the case where the receiver is a
small device like a mobile phone or a PDA with a limited
amount of resources, or in an interactive scenario like con-
ferencing applications where there is no time to buffer, our
protocol translation mechanisms could be very useful.
The server-proxy losses test can be related to a case where

the camera on a mobile phone is used for streaming. Mobile
devices are usually connected to unreliable networks with
high RTT. The proxy-client losses test can be related to a
traditional video conference scenario.
In the experiment, we compare a normal web-server stream-

ing video with a RTP server (komssys) to a client by encap-
sulating the video data in HTTP packets on a IXP network
card close to the video server. The former setup runs a
simple web-server on Linux, limiting the average bandwidth
from user-space to the video’s bit rate.
Using RTP/UDP from the server through the backbone

to a proxy is also an advantage for the resource utilization.
RTP/UDP packets reduce memory usage, CPU usage and

overhead in the network compared to TCP. This combined
with the possibility of sending a single RTP/UDP stream to
the proxy, and make the proxy do separation and adapta-
tion of the stream to each client can reduce the load in the
backbone. Therefore the proxy should be placed as close to
the clients as possible, e.g. in the ISP’s access network, or
in a mobile provider’s network.

7. CONCLUSION
Both TCP and UDP have their strengths and weaknesses.

In this paper, we use a proxy that performs transparent
protocol translation to utilize the strengths of both protocols
in a streaming scenario. It enables the server to use UDP on
the server side and TCP on the client side. The server gains
scalability by not having to deal with TCP processing. On
the client side, the TCP stream is not discarded and passes
through firewalls. The experimental results show that our
protocol transparent proxy achieves translation and delivers
smoother streaming than HTTP-streaming.

8. REFERENCES
[1] Griwodz, C., Fiksdal, S., and Halvorsen, P.

Translating scalable video streams from wide-area to
access networks. Campus Wide Information Systems
21, 5 (2004), 205–210.

[2] Handley, M., Floyd, S., Padhye, J., and Widmer,
J. TCP Friendly Rate Control (TFRC): Protocol
Specification. RFC 3448 (Proposed Standard), Jan.
2003.

[3] Krasic, B., and Walpole, J. Priority-progress
streaming for quality-adaptive multimedia. In
Proceedings of the ACM Multimedia Doctoral
Symposium (Oct. 2001).

[4] Krasic, C., Walpole, J., and Feng, W.-C.
Quality-adaptive media streaming by priority drop. In
Proceedings of the International Workshop on Network
and Operating System Support for Digital Audio and
Video (NOSSDAV) (2003), pp. 112–121.

[5] Intel Corporation. Intel IXP2400 network processor
datasheet, Feb. 2004.

[6] Parnes, P., Synnes, K., and Schefström, D.
Lightweight application level multicast tunneling using
mtunnel. Computer Communication 21, 515 (1998),
1295–1301.

[7] Widmer, J., Denda, R., and Mauve, M. A survey
on TCP-friendly congestion control. Special Issue of the
IEEE Network Magazine ”Control of Best Effort
Traffic” 15 (Feb. 2001), 28–37.

774

152

Paper II: Evaluation of Multi-Core
Scheduling Mechanisms for
Heterogeneous Processing
Architectures

Title: Evaluation of Multi-Core Scheduling Mechanisms for Heterogeneous Processing
Architectures [115].

Authors: H. K. Stensland, C. Griwodz, and P. Halvorsen.

Published: The 18th International Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video (NOSSDAV), ACM, 2008.

153

154
. Paper II: Evaluation of Multi-Core Scheduling Mechanisms for Heterogeneous

Processing Architectures

Evaluation of Multi-Core Scheduling Mechanisms for
Heterogeneous Processing Architectures

Håkon Kvale Stensland1, Carsten Griwodz1,2, Pål Halvorsen1,2

1Simula Research Laboratory, Norway
2Department of Informatics, University of Oslo, Norway

{haakonks, griff, paalh}@simula.no

ABSTRACT
General-purpose CPUs with multiple cores are established
products, and new heterogeneous technology like the Cell
broadband engine and general-purpose GPUs bring an even
higher degree of true multi-processing into the market. How-
ever, means for utilizing the processing power is immature.
Current tools typically assume that exclusive use of these
resources is sufficient, but this assumption will soon be in-
valid because the interest in using their processing power
for general-purpose tasks. Among the applications that can
benefit from such technology is transcoding support for dis-
tributed media applications, where remote participants join
and leave dynamically. Transcoding consists of several clearly
separated processing operations that consume a lot of re-
sources, such that individual processing units are unable to
handle all operations of a session of arbitrary size. The
individual operations can then be distributed over several
processing units, and data must be moved between them
according to the dependencies between operations. Many
multi-processor scheduling approaches exist, but to the best
of our knowledge, a challenge is still to find mechanisms that
can schedule dynamic workloads of communicating opera-
tions while taking both the processing and communication
requirements into account. For such applications, we believe
that feasible scheduling can be performed in two levels, i.e.,
divided into the task of placing a job onto a processing unit
and the task of multitasking time-slices within a single pro-
cessing unit. We have implemented some simple high-level
scheduling mechanisms and simulated a video conferencing
scenario running on topologies inspired by existing systems
from Intel, AMD, IBM and nVidia. Our results show the
importance of using an efficient high-level scheduler.

1. INTRODUCTION
Multi-processor and multi-core systems are quickly be-

coming mainstream computing resources. Dual-core general-
purpose CPUs are established products, but systems includ-
ing the Cell broadband engine (BE) and general-purpose

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV ’08 Braunschweig, Germany
Copyright 2008 ACM 978-1-60588-157-6/05/2008 ...$5.00.

GPUs bring an even higher degree of true multi-processing
into the market. Making use of this parallel processing ca-
pacity, however, is still in the earlier stages. Current tools
that assist in developing for many-core systems like the Cell
and GPUs assume typically that the parallel computing re-
sources can be used exclusively for a single task. We ex-
pect that this will become an invalid assumption because the
increasing commoditization of parallel processing hardware
and an increasing interest in using it for general-purpose
tasks. Among the applications that can benefit strongly
from this hardware are computing-heavy media processing
applications.

Examples of this are multi-party video conferences where
participants dynamically join and leave the session, per-
sonalized video streaming services and free-viewpoint 3D
environments. In the video conferencing scenario, multi-
ple streams have to be merged, adapted, and so on. Con-
tributors and consumers join and leave conferences at ar-
bitrary times and use heterogeneous devices. The neces-
sary media processing operations can then consume much
processing and bandwidth resources. Each individual oper-
ation can possibly be handled by an individual core with-
out missing any deadlines. However, individual processing
units are unable to handle the operations that are neces-
sary for a conference of arbitrary size. Operations must
then be distributed over several processing units, and data
must be moved between them, all while staying within the
application-defined deadlines. The media processing appli-
cations are time-dependent and cyclic depending on indi-
vidual contributors’ frame and sampling rates. Because the
increasing heterogeneity of end systems, the resource con-
sumption of media processing operations varies widely, as
does the amount of data that is needed for communication
between processing steps. The challenge is to then find a
system scheduler for such dynamically changing workloads
that fulfills the processing requirements of the application
and at the same time avoids congestion on the intercon-
nects between the processing units. Many multi-processor
scheduling approaches exist, but we are not aware of efforts
that address the dependencies of long-lived, cyclic, inter-job
dependent processing operations that require time-critical
communication with neighboring processing units. Our en-
visioned applications require that a feasible scheduler takes
both capacity of processing units and the bandwidth of in-
terconnects between them into account. We believe that fea-
sible scheduling can be performed in two levels, i.e., divided
into the task of placing a job onto a processing unit and
the task of multitasking time-slices within a single process-

33

Copyright 2008 ACM 978-1-60558-157-6/05/2008 ...$5.00.

155

ing unit. Our application provides a considerable amount of
long-term knowledge for the long time-scale that can be fed
to a high-level scheduler that can reserve resources within
each timeslice, while the low-level scheduler for processing
units and interconnects can act independently.
In this paper, we look at the interaction between intercon-

nection topology and workload patterns using simple high-
level scheduling mechanisms. The topologies are inspired
by the interconnection topologies of the Opteron, the Core
2, the Cell BE and nVIDIA’s latest GPUs. The workloads
are modeled to reflect a video conferencing scenario where
the size of each job is varied under the capacity limit of the
single cores and links. Our results show the importance of
using an efficient high-level scheduler in order to reduce the
overall resource consumption. In particular, means to clus-
ter jobs on cores in close proximity are promising because
the bandwidth consumption is usually reduced.
The rest of this paper is organized as follows. The next

section describes our example scenario. In section 3, we
look at our hierarchical scheduling approach. We describe
our simulator in section 4 and present some results in sec-
tion 5. In section 6, we present some related work before we
summarize and conclude in section 7.

2. EXAMPLE SCENARIO
Large-scale media processing applications are coming, and

we use here video conferencing systems as a motivating ex-
ample. Such conferences have multiple senders and receivers
as for example possible today using equipment from vendors
like Polycom, Tandberg or Lifesize. In this scenario, every
conference participant should be able to receive A/V con-
tent from all the other participants. Only active participants
will produce A/V data that must be processed, merged and
sent to all the others. The setup allows a large degree of
sharing in the processing graph, but requires expensive in-
dividual processing as well. Furthermore, depending on the
equipment used by each participant, each stream may have
different characteristics. Thus, we end up with a scenario
similar to the one as depicted in figure 1 where we cannot
assume equally sized jobs.

Figure 1: Example scenario: video conferencing

In the example in figure 1, the conference has three par-
ticipants. The first (A) has equipment that produce and
receive HD data. The second user (B) produce and receive
SD data whereas the last participant (C) is only following
(listening) the conference using a mobile phone displaying
only video in CIF resolution. In this situation, each stream
could be processed according to the layers in figure 1: 1)
decompression, 2) decoding, 3) branching (e.g., to filter and

adapt the data to the available resources and the receiving
devices), 4) encoding and 5) compression. In addition, the
system must handle dynamics in terms of users joining or
leaving the session, users becoming active and oscillating
resource availability in other parts of the system. Finally,
each system often manages many concurrent sessions further
complicating the task of finding available resources.

The processing resources required for handling these real-
time tasks often (at least when the conferences are large)
exceed the processing capacity provided by a single process-
ing unit. Consequently, the imposed workload must be dis-
tributed to a number of processing units for parallel exe-
cution, for example using multi-core processors, multi-chip
computers, processing clusters or distributed nodes over the
Internet. However, parallel processing of a large number of
real-time tasks introduces challenges related to orchestrating
and multiplexing the resource usage in a timely manner. We
are therefore addressing the challenge of finding feasible dy-
namic schedulers for a given set of (possibly heterogeneous)
processing units and their corresponding links (like busses
or network links).

3. TWO-LEVEL SCHEDULING
In the application scenarios that we imagine here, long-

lived dynamic sessions of media operations must be mapped
to resources of interconnected processing units. The data
flows that are processed are sent from remote machines and
are subject to packet loss and jitter. We can therefore not
assume that a fine-grained, detailed reservation mechanism
at cycle granularity is reasonable for the scheduled process-
ing units. Rather, long-term, high-level decisions must be
made to allocate resources of processing units, such that
they are available for arriving data with high likelihood. To
separate this from accurate low-level scheduling that is con-
cerned with the allocation of resource shares, we consider
two-level scheduling as a reasonable option.

First, a high-level scheduler acting on the timescale of
signaling protocols must select processing units for tasks in
such a way that each task has its required resources and that
it can communicate with those jobs from which it receives
streaming data and with those to which it forwards stream-
ing data. This scheduler must know profiling information
of processing stages and know approximately the process-
ing demands of the expected workload. It must then choose
processing units taking both remaining processing capacity
and remaining interconnect bandwidth into account. When
the jobs have been placed on a processing unit with available
capacity, a low-level algorithm working on the timescale of
operating system time slices must handle the individual jobs
on this unit in order to find a schedule where each job meets
its deadline.

3.1 Mapping media operations
The first step of the scheduler in our scenario is to perform

the mapping of media operations to the processing units.
Here, a decision is necessary for every join and leave op-
eration, i.e., every change in the workload. We approach
this as a timeless problem. At this level, we ignore the ne-
cessity to schedule units, and instead reason about capac-
ities. Future work must also take the difference between
timeslice cycle length and preemptable workload blocks into
account. For each media operation, only the resource con-
sumption is considered, resulting in a timeless flow model.

34

156

Likewise, the load that can be handled by a processing unit,
the bandwidth between processing units and the communi-
cation requirements between operations are expressed by a
single capacity value. The high level scheduler’s task is then
to find a mapping that neither violates the capacity limits
of any processing unit nor any communication channel.
Migration of media operations between processing units is

in principle possible in our scenario. However, we consider
migration highly undesirable. There is no particular need
for avoiding it in symmetric multiprocessing systems; how-
ever, most of the topologies that we investigate are either
NUMA or non-shared memory architectures that would re-
quire active movement of the operations’ state between the
processing units. This would be very costly in terms of the
interconnection bandwidth that is required for moving the
complete processing state that is stored in one processing
unit to the new processing unit. Additionally, migration
takes time and may cause disruption of streams, and in a
worst case, break the dependency if interconnection band-
width is exhausted during migration, resulting in a com-
plete rescheduling. Consequently, media operations are here
mapped and pinned to processing units by the high level
scheduler.

3.2 Managing timeslices
The scheduling of tasks at a particular processing unit

is handled by a low level scheduler. The low level sched-
uler must support the flow abstraction, and the worst case
performance and overhead must be known. This provides
the capacity value available to the high level scheduler. For
the low-level scheduler, media operations are independent
of each other. This implies, that communication between
tasks and the resources consumed for inter-task communi-
cation are not considered. Each task has a period and in
every period a certain amount of resources is consumed.
Nevertheless, at this level, old basic schedulers such as

Rate Monotonic, Earliest Deadline First, Heits, AQUA, RT
Upcalls, SMART, etc. are useful schedulers, and earlier work
(e.g., [7]) has shown that these schedulers are able to find a
schedule for each individual processing unit as long as there
in total is enough available resources (which is an admittance
check performed by the high-level scheduler). We are there-
fore currently planning for independent single-core real-time
schedulers to solve our need for low-level scheduling, but do
not consider it any further in this paper.

4. SIMULATOR
To understand the interaction between interconnection

topologies, different workload patterns and high-level schedul-
ing algorithms, we have written a simulator to evaluate the
schedulability of dynamic workloads. It allows us to look at
metrics like bandwidth consumption and scheduling failure
rates in a controlled environment, and we here introduce the
topologies, workloads and algorithms that we have used.

4.1 Topologies
Current multi-core architectures take a variety of approaches

for memory handling and interconnection between cores. We
are currently not considering memory at all, but assume
the need for data forwarding from one processing node the
next. This is an approach that is not typically used in the
current Intel architecture, but rather typical for specialized
media processors, and also applicable for NUMA architec-

tures. Interconnects come as switch, bus, or point-to-point
approaches. We model all of them as switches and point-
to-point links at this time. Furthermore, the architectures
that we use in the simulations in this paper are inspired by
the topologies of the Intel Core 2, AMD’s Opteron, the STI
Cell BE and nVIDIA’s GPUs (see figure 2). Since we in-
tend to examine the effects of topologies and not real-world
processor capabilities, we have provide all models with the
same total processing capacity. The processing capacity is
however, distributed over different numbers of processing
units (heterogeneous in case of the Cell-inspired topology).
Similarly, the bandwidth of interconnects is modeled in ab-
stract performance numbers according to their role in the
multi-core architecture that inspired each topology.

4.2 Workloads
The workload is specified as graphs of interconnected me-

dia processing operations which represent the need for pro-
cessing capacity. Bandwidth requirements between media
processing operations represent the consumed interconnect
bandwidth that is required when neighboring processing stages
in the graph are not processed by the same processing unit.
Figure 1 shows a very simple example for such a processing
graph, and where for example the initial conference mem-
bers are users (A) and (B), and the conference is later dy-
namically extended to accommodate user (C). Moreover, to
test various scenarios, we used a workload generator with
the ability to create dynamically changing media processing
demands with well-known parameters. The workload gen-
erator creates conferences with negative exponentially dis-
tributed duration, and with either Poisson-distributed inter-
arrival times or at a constant number of concurrent confer-
ences. Within each conference, uniformly distributed sets of
participants arrive and depart according to a Poisson pro-
cess, where each of the media operations claims a processing
power and bandwidth from a uniform distribution up to a
given maximum value.

4.3 Scheduling Algorithms
Developing high-level scheduling algorithms for arbitrary

inter-dependent workloads is a future goal, along with real-
world implementations. A one-for-all algorithm appear to
be out of the question, and there is no reason why a real-
world implementation should be able to adapt dynamically
to wide ranges of different hardware. In any case, this is
out of the scope of this paper. Here, we use strategies that
are inspired by packing strategies for passive operating sys-
tem resources, but extended with functionality to check link
availability. The selected results use the following strategies:
First Fit (FF): Assign every processing unit an index. For
every media operation that requires a certain amount of pro-
cessing capacity, start searching at the processing unit with
index 0 for available processing capacity. If the unit with in-
dex 0 does not have sufficient resources, use a breadth-first-
search (BFS) approach through the topological neighbors of
the unit, until a unit with sufficient capacity is found, or
until the scheduling fails.
Next Fit (NF): Similar to FF, but instead of starting at
index 0 (first processing unit) for every new job, NF starts
its search (in BFS order) from the node where the previous
media operation was successfully scheduled. If subsequent
media operations are interconnected, this can achieve a high
degree of packing and saves interconnection bandwidth.

35

157

(a) Dual Core2 (b) Dual Opteron (c) Cell BE (d) nVidia G84

Figure 2: Tested processor topologies

Random Start (RS): In contrast to NF, RS keeps sepa-
rate indices for each conference to start the search for ap-
propriate processing units for newly arriving media opera-
tions belonging to that conference. This is meant to achieve
better clustering and thus, less interconnection bandwidth
consumption than NF. For a newly starting conference, a
random processing unit is chosen.
Worst Start (WS): WS is similar to RS, but instead of
randomly finding a processing unit for a newly starting con-
ference, WS starts at the processing unit with the highest
remaining free capacity (thus the name worst fit). This is
done in the hope that the highest initial packing can be
achieved for the new session.
We have also tested several others like plain first-, best-,
worst-fit, etc., known from old memory management sys-
tems placing data elements in memory, but they do not take
bandwidth into account so we have only used these as basis
and benchmarks.

5. RESULTS
This section presents the results from our simulations in-

cluding some selected plots and our main findings. Using
the workload generator mentioned above, we have gener-
ated several workloads over the same set of parameters to
be able to extract statistics. We have varied the core and
link load and the number of concurrent conference sessions
and participants. The same workloads have been used for
all algorithms on all topologies.

5.1 Scheduling Ability
We first look at how well different means help to find a

schedule. As expected, the failure rates increase for all al-
gorithms if either of the processing or communication cost
increase (see figure 3 for a representative example). Further-
more, in figure 4, we compare the tested algorithms with re-
spect to the failure rate. If we do not use BFS but a random
ordering of the processing unit, and apply FF and NF as
they are known from memory management systems that are
not concerned with bandwidth, the performance drops sig-
nificantly. There is usually also a failure rate reduction if we
try to place related and dependent jobs in close proximity in
order to minimize communication, as done by NF in contrast
to only finding the first available as in FF. However, in our
set of algorithms, we see the largest performance gain if we
search for a suitable place (least loaded node) to start a new
session like in RS and WS. These approaches are beneficial
because they allow dynamically joining media operations to
be packed on processing units that are topologically close to

 0
 5
 10
 15
 20
 25
 30

high

low

 high

 low

 0
 5

 10
 15
 20
 25
 30

Failure rate (percent)

Processing load
per job

Bandwidth
requirement

per job

Failure rate (percent)

Figure 3: Failure rate versus processing and com-
munication costs (FF on nVidia G84)

other jobs in the same session. When resource fragmentation
grows, this saves considerable interconnect bandwidth.

5.2 Bandwidth Consumption
One other important metric in finding a good schedule is a

measure for the communication required between processing
units. Such communication both takes time and consumes
bandwidth. A good schedule for a time-dependent scenario
should often try to pack jobs on a cluster of processing cores
to minimize communication. To see the bandwidth required
for the found schedules, we monitored the communication
needs during all the simulations. Figures 5 and 6 show rep-
resentative examples where the workload is executed on Cell-
and DualOpteron-based topologies. The plots show the con-
sumed bandwidth on the time line and also a plot on which
times the algorithm failed to find a schedule for a new job.

In general, always starting a search on the same node (as
FF) effectively packs data on a small area of the topology.
This is fine as long as there is enough processing power,
but as the load increases, the system benefits from a more
distributed clustering between sessions, i.e., packing each
session on different places. A better approach is therefore to
start every new jobs where the last job in the same session
was placed (as NF). Furthermore, if the starting point is
varied for each new session the results are increased further,
where the best results are achieved by searching for the least
loaded node with WS. As a consequence of a reduced band-
width consumption, we see again that the number of failed

36

158

 0

 2

 4

 6

 8

 10

 12

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

N
um

be
r

of
 fa

ilu
re

s

Cell DualCore2 DualOpteron nVidia G84

avg. total failures
max/min-bars of total failures

(a) Core: low, Link: high

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

N
um

be
r

of
 fa

ilu
re

s

Cell DualCore2 DualOpteron nVidia G84

avg. total failures
max/min-bars of total failures

(b) Core: medium, Link: low

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

W
S

-N
F

-B
F

S

R
S

-N
F

-B
F

S

N
F

-B
F

S

F
F

-B
F

S

N
um

be
r

of
 fa

ilu
re

s

Cell DualCore2 DualOpteron nVidia G84

avg. total failures
max/min-bars of total failures

(c) Core: high, Link: high

Figure 4: Scheduling failure rate for different algorithms on different topologies when varying the load

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
on

su
m

ed
 b

an
dw

id
th

 (
pe

rc
en

t)

time

consumed bandwidth
time of failure

(a) FF

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
on

su
m

ed
 b

an
dw

id
th

 (
pe

rc
en

t)

time

consumed bandwidth
time of failure

(b) NF

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
on

su
m

ed
 b

an
dw

id
th

 (
pe

rc
en

t)

time

consumed bandwidth
time of failure

(c) RS

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
on

su
m

ed
 b

an
dw

id
th

 (
pe

rc
en

t)

time

consumed bandwidth
time of failure

(d) WS

Figure 5: Consumed bandwidth resources on a Cell topology.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
on

su
m

ed
 b

an
dw

id
th

 (
pe

rc
en

t)

time

consumed bandwidth
time of failure

(a) FF

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
on

su
m

ed
 b

an
dw

id
th

 (
pe

rc
en

t)

time

consumed bandwidth
time of failure

(b) NF

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
on

su
m

ed
 b

an
dw

id
th

 (
pe

rc
en

t)

time

consumed bandwidth
time of failure

(c) RS

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
on

su
m

ed
 b

an
dw

id
th

 (
pe

rc
en

t)

time

consumed bandwidth
time of failure

(d) WS

Figure 6: Consumed bandwidth resources on a DualOpteron topology.

schedules are reduced using RS and WS.

5.3 Discussion
There are several metrics that are important with respect

to resource scheduling. In order to scale and support as
many inter-dependent jobs (conference participants) as pos-
sible, important metrics include scheduling ability and effi-
cient resource utilization. We have here shown that there
are large differences for different kind of scheduling means,
and there are also some differences based on the topology
characteristics they are used on. In this respect, our results
show that mechanisms like performing job clustering, using
BFS and finding a high capacity place to start a new ses-
sion, are promising because the bandwidth consumption is
usually reduced. This is especially important if bandwidth
is a scarce resource or the workload is time-critical due to
added communication delay.
Other interesting approaches in terms of compacting the

workload is to analyze the workload and try to make larger
computing blocks ahead of running the scheduler and then
recursively split on the cheapest link is no schedule is found.
This is efficient as long as there are much available pro-
cessing capacity, but when the load increase and the large

blocks must be re-divided, this approach increase the prob-
ability that large blocks will be placed further from each
other, i.e., consuming bandwidth on several links. Thus, in
our test, the failure rate on a loaded system is greatly in-
creased meaning that more logic must catch and avoid the
long-distance placement of neighboring jobs.

In this preliminary study, we have focused on scheduling
ability and bandwidth consumption only. However, there
are other metrics that are relevant. For example, the time to
find a schedule or scheduling overhead will in some scenarios
be important, but they will be implementation and architec-
ture dependent and are thus not considered in the simulator.
Load-balancing properties of the algorithm is also in some
cases important, but in the conferencing scenario discussed
here, the reduction of bandwidth consumption and load bal-
ancing is contradictory in terms of link overhead, and we
therefore here look at the ability to compact the workload
to save bandwidth.

In our work on efficient scheduling algorithms for inter-job
dependent workloads, we aim for a Linux implementation.
Here, it will be important to also integrate the low- and
high-level schedulers for example to exchange information
about available resources. However, as a first step, we look

37

159

at what kind of means are most promising based on tests in
our scheduling evaluation framework.

6. RELATED WORK
Multi-core scheduling attracts a considerable amount of

research that aims at load-balancing, cache coherency, and
the like. Approaches found in the literature that combine
mapping to processing units and scheduling of tasks on the
processing nodes in one stage, such as PFair [6], can sched-
ule based on processing capacity alone, since they rely on a
unified shared memory architecture. Our problem requires
a coordinated scheduling of processing capacity and inter-
connection bandwidth that is due to a lack of a shared
memory-assumption. Perfect scheduling under these con-
ditions is NP-hard, and alternative heuristics must be ex-
plored. One of the classical scheduling methods are greedy
algorithms. An example of a greedy algorithm can be found
in [1]. Here, the tasks of a parallel application are mapped
onto different processors based on a the expected run-time of
the job. This algorithm does not take job dependencies into
account. Another approach is based on the representation
of dependent parts of an application as a directed acyclic
graph (DAG). DAG can represent both processing and com-
munication demands. Kwok et al. [5] have made a survey of
several classes of scheduling algorithms for allocating work-
load DAGs to a network of processors, e.g., highest level
first with estimated times, linear clustering, task duplica-
tion and mapping heuristic. DAG-algorithms are also often
used to schedule workloads in Grids and several approaches
have been suggested in [2]. These solutions are not directly
applicable to our case because the do not handle dynamic
workloads without full reconfiguration. Another type of al-
gorithms are genetic algorithms [4]. These algorithms are
focused around deterministic scheduling problems, meaning
that all information about the task and their relations to
each other are known in advance. On asymmetric multi-
core processors there have been several approaches for soft
real-time scheduling. In [3], a soft real-time scheduler for
Linux has been implemented. Dependencies and commu-
nication between the real-time jobs have however not been
considered.

7. CONCLUSION
As a step towards better scheduling support in the op-

erating system for inter-dependent jobs on possibly hetero-
geneous multi-processors without uniform shared memory,
we have examined the effects of topologies on the schedula-
bility of dynamic workloads that consist of interdependent
long-lived media operations.
We have motivated the distinction between high-level sched-

ulers that act on the timescale of application scheduling and
assign processing resources to long-living media operations,
and low-level schedulers that managed computing cycles on
processing units locally based on assignments of the high-
level scheduler and otherwise without global knowledge.
We found that high-level schedulers that try to achieve

compact assignment of operations that belong to the same
media session to processing units is generally beneficial (as
expected), but we have observed extremely strong improve-
ments in topologies that rely on a bandwidth-constraint
switched architecture such as the Core 2 or nVidia-GPU
inspired topologies. These effects appear to be fairly inde-

pendent of whether the switches connect few high-capacity
processing units or many low-capacity units. On the other
hand, we can observe that even the simplest tested schedul-
ing algorithm (first fit) performs quite efficiently on the Cell-
inspired ring topology with asymmetric nodes.

In various other tests, we observed also a variety of other
effects of scheduler features. One of the more interesting
observations was that it is not generally feasible to schedule
media operations of a session in larger blocks. This forces
the scheduler in many cases to place the block rather far
away from earlier parts of the session, consuming excessive
interconnection bandwidth and finally, exhausting it. We
could also observe that choosing a suitable first node for
newly starting sessions has a major effect on performance.
An alternative scheduler might generally optimize for min-
imal bandwidth consumption and processing capacity only
as a computational bound.

After these initial observations, we will use our simulator
to evaluate a variety of high-level schedulers. Concurrently,
we are working on programming tools for Cell and nVidia
that circumvent the provided frameworks, which are unable
to schedule non-exclusive workloads, as well as porting of
media operations to these environments. Given such tools,
we will be able to investigate the interaction of high and low-
level schedulers experimentally. We find that a final step in
this development must integrate this scheduling with the
operating system scheduler.

8. REFERENCES
[1] Armstrong, R., Hensgen, D., and Kidd, T. The

relative performance of various mapping algorithms is
independent of sizable variances in run-time
predictions. In Heterogeneous Computing Workshop
(HCW) (Mar. 1998), pp. 79–87.

[2] Batista, D. M., da Fonseca, N. L. S., and
Miyazawa, F. K. A set of schedulers for grid networks.
In ACM Symposium on Applied Computing (SAC)
(New York, NY, USA, 2007), ACM, pp. 209–213.

[3] Calandrino, J. M., Baumberger, D., Li, T., Hahn,
S., and Anderson, J. H. Soft real-time scheduling on
performance asymmetric multicore platforms. In IEEE
Real Time and Embedded Technology and Applications
Symposium (RTAS) (2007), pp. 101–112.

[4] Chockalingam, T., and Arunkumar, S. Genetic
algorithm based heuristics for the mapping problem.
Comput. Oper. Res. 22, 1 (1995), 55–64.

[5] Kwok, Y.-K., and Ahmad, I. Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys 31, 4 (1999),
406–471.

[6] Moir, M., and Ramamurthy, S. Pfair scheduling of
fixed and migrating periodic tasks on multiple
resources. In IEEE Real-Time Systems Symposium
(RTSS) (1999), pp. 294–303.

[7] Wolf, L. C., Burke, W., and Vogt, C. Evaluation
of a cpu scheduling mechanism for multimedia systems.
Software - Practice and Experience 26, 4 (april 1996),
375–398.

38

160

Paper III: Tips, Tricks and Troubles:
Optimizing for Cell and GPU

Title: Tips, Tricks and Troubles: Optimizing for Cell and GPU [112].

Authors: H. K. Stensland, H. Espeland, C. Griwodz, and P. Halvorsen.

Published: The 20th International Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video (NOSSDAV), ACM, 2010.

161

162 . Paper III: Tips, Tricks and Troubles: Optimizing for Cell and GPU

Tips, Tricks and Troubles: Optimizing for Cell and GPU

Håkon Kvale Stensland, Håvard Espeland, Carsten Griwodz, Pål Halvorsen
Simula Research Laboratory, Norway

Department of Informatics, University of Oslo, Norway
{haakonks, haavares, griff, paalh}@simula.no

ABSTRACT
When used efficiently, modern multicore architectures, such
as Cell and GPUs, provide the processing power required by
resource demanding multimedia workloads. However, the
diversity of resources exposed to the programmers, intrinsi-
cally requires specific mindsets for efficiently utilizing these
resources - not only compared to an x86 architecture, but
also between the Cell and the GPUs. In this context, our
analysis of 14 different Motion-JPEG implementations indi-
cates that there exists a large potential for optimizing per-
formance, but there are also many pitfalls to avoid. By ex-
perimentally evaluating algorithmic choices, inter-core data
communication (memory transfers) and architecture-specific
capabilities, such as instruction sets, we present tips, tricks
and troubles with respect to efficient utilization of the avail-
able resources.

Categories and Subject Descriptors
D.1.3 [PROGRAMMING TECHNIQUE]: Concurrent
Programming—Parallel programming

General Terms
Measurement, Performance

1. INTRODUCTION
Heterogeneous systems like the STI Cell Broadband En-

gine (Cell) and PCs with Nvidia graphical processing units
(GPUs) have recently received a lot of attention. They pro-
vide more computing power than traditional single-core sys-
tems, but it is a challenge to use the available resources
efficiently. Processing cores have different strengths and
weaknesses than desktop processors, the use of several dif-
ferent types and sizes of memory is exposed to the devel-
oper, and limited architectual resources require considera-
tions concerning data and code granularity.
We want to learn how to think when the multicore system

at our disposal is a Cell or a GPU. We aim to understand

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’10, June 2–4, 2010, Amsterdam, The Netherlands.
Copyright 2010 ACM 978-1-4503-0043-8/10/06 ...$10.00.

(a) Cell on PS3 (6 SPEs) (b) GPU on GTX 280

Figure 1: Runtime for MJPEG implementations.

how to use the resources efficiently, and point out tips, tricks
and troubles, as a small step towards a programming frame-
work and a scheduler that parallelizes the same code effi-
ciently on several architectures. Specifically, we have looked
at effective programming for the workload-intensive yet rel-
atively straight-forward Motion-JPEG (MJPEG) video en-
coding task. Here, a lot of CPU cycles are consumed in the
sequential discrete cosine transformation (DCT), quantiza-
tion and compression stages. On single core systems, it is
almost impossible to process a 1080p high definition video in
real-time, so it is reasonable to apply multicore computing
in this scenario.

Our comparison of 14 different implementations on both
Cell and GPU gives a good indication that the two consid-
ered architectures are complex to use, and that achieving
high performance is not trivial. Derived from a sequential
codebase, these multicore implementations differ in terms of
algorithms used, resource utilization and coding efficiency.
Figure 1 shows performance results for encoding the “trac-
tor” video clip1 in 4:2:0 HD. The differences between the
fastest and slowest solution are 1869 ms and 362 ms per
frame on Cell and GPU, respectively, and it is worth not-
ing that the fastest solutions were disk I/O-bound. To gain
experience of what works and what does not, we have exam-
ined these solutions. We have not considered coding style,
but revisited algorithmic choices, inter-core data communi-
cation (memory transfers) and use of architecture-specific
capabilities.

In general, we found that these architectures have large
potentials, but also many possible pitfalls, both when choos-
ing specific algorithms and for implementation-specific de-
cisions. The way of thinking cross-platform is substantially
different, making it an art to use them efficiently.

1Available at ftp://ftp.ldv.e-technik.tu-muenchen.de/
dist/test sequences/1080p/tractor.yuv

75

163

2. BACKGROUND

2.1 SIMD and SIMT
Multimedia applications frequently perform identical op-

erations on large data sets. This has been exploited by bring-
ing the concept of SIMD (single instruction, multiple data)
to desktop CPUs, as well as the Cell, where a SIMD in-
struction operates on a short vector of data, e.g., 128-bits
for the Cell SPE. Although SIMD instructions have become
mainstream with the earliest Pentium processors and the
adoption of PowerPC for MacOS, it has remained an art to
use them. On the Cell, SIMD instructions are used explic-
itly through the vector extensions to C/C++, which allow
basic arithmetic operations on vector data types of intrinsic
values. It means that the programmer can apply a sequen-
tial programming model, but needs to adapt memory layout
and algorithms to the use of SIMD vectors and operations.
Nvidia uses an abstraction called SIMT (single-instruction,

multiple thread). SIMT enables code that uses only well-
known intrinsic types but that can be massively threaded.
The runtime system of the GPU schedules these threads
in groups (called warps) whose optimal size is hardware-
specific. The control flow of such threads can diverge like
in an arbitrary program, but this will essentially serialize all
threads of the block. If it does not diverge and all threads
in a group execute the same operation or no operation at
all in a step, then this operation is performed as a vector
operation containing the data of all threads in the block.
The functionality that is provided by SIMD and SIMT

is very similar. In SIMD programming, vectors are used
explicitly by the programmer, who may think in terms of
sequential operations on very large operands. In SIMT pro-
gramming, the programmer can think in terms of threaded
operations on intrinsic data types.

2.2 STI Cell Broadband Engine
The Cell Broadband Engine is developed by Sony Com-

puter Entertainment, Toshiba and IBM. As shown in Fig-
ure 2, the central components are a Power Processing Ele-
ment (PPE) and 8 Synergistic Processing Elements (SPE)
connected by the Element Interconnect Bus (EIB). The PPE
contains a general purpose 64-bit PowerPC RISC core, ca-
pable of executing two simultaneous hardware threads. The
main purpose of the PPE is to control the SPEs, run an
operating system and manage system resources. It also in-
cludes a standard Altivec-compatible SIMD unit. An SPE
contains a Synergistic Processing Unit and a Memory Flow
controller. It works on a small (256KB) very fast memory,
known as the local storage, which is used both for code and
data without any segmentation. The Memory Flow Con-
troller is used to transfer data between the system memory
and local storage using explicit DMA transfers, which can
be issued both from the SPE and PPE.

Figure 2: Cell Broadband Engine Architecture

Figure 3: Nvidia GT200 Architecture

2.3 Nvidia Graphics Processing Units
A GPU is a dedicated graphics rendering device, and

modern GPUs have a parallel structure, making them ef-
fective for doing general-purpose processing. Previously,
shaders were used for programming, but specialized lan-
guages are now available. In this context, Nvidia has re-
leased the CUDA framework with a programming language
similar to ANSI C. In CUDA, the SIMT abstraction is used
for handling thousands of threads.

The latest generation available from Nvidia (GT200) is
shown in Figure 3. The GT200 chip is presented to the
programmer as a highly parallel, multi-threaded, multi-core
processor - connected to the host computer by a PCI Express
bus. The GT200 architecture contains 10 texture process-
ing clusters (TPC) with 3 streaming multiprocessors (SM).
A single SM contains 8 stream processors (SP) which are
the basic ALUs for doing calculations. GPUs have other
memory hierarchies than an x86 processor. Several types of
memory with different properties are available. An applica-
tion (kernel) has exclusive control over the memory. Each
thread has a private local memory, and the threads running
on the same stream multiprocessor (SM) have access to a
shared memory. Two additional read-only memory spaces
called constant and texture are available to all threads. Fi-
nally, there is the global memory that can be accessed by all
threads. Global memory is not cached, and it is important
that the programmer ensures that running threads perform
coalesced memory accesses. Such a coalesced memory access
requires that the threads’ accesses occur in a regular pattern
and creates one large access from several small ones. Mem-
ory accesses that cannot be combined are called uncoalesced.

3. EXPERIMENTS
By learning from the design choices of the implementa-

tions in Figure 1, we designed experiments to investigate
how performance improvements were achieved on both Cell
and GPU. We wanted to quantify the impact of design de-
cisions on these architectures.

All experiments encode HD video (1920x1080, 4:2:0) from
raw YUV frames found in the tractor test sequence. How-
ever, we used only the first frame of the sequence and encode
it 1000 times in each experiment to overcome the disk I/O
bottleneck limit. This becomes apparent at the highest level
of encoding performance since we did not have a high band-
width video source available. All programs have been com-
piled with the highest level of compiler optimizations using
gcc and nvcc, respectively, for Cell and GPU. The Cell ex-
periments have been tested on a QS22 bladeserver (8 SPEs,
the results from Figure 1 were on a PS3 with 6 SPEs) and
the GPU experiments on a GeForce GTX 280 card.

76

164

Figure 4: Overview of the MJPEG encoding process

3.1 Motion JPEG Encoding
The MJPEG format is widely used by webcams and other

embedded systems. It is similar to videocodecs such as Ap-
ple ProRes and VC-3, used for video editing and postpro-
cessing due to their flexibilty and speed, hence the lack of
inter-prediction between frames. As shown in Figure 4, the
encoding process of MJPEG comprises splitting the video
frames in 8x8 macroblocks, each of which must be indi-
vidually transformed to the frequency domain by forward
discrete cosine transform (DCT) and quantized before the
output is entropy coded using variable-length coding (VLC).
JPEG supports both arithmetic coding and Huffman com-
pression for VLC, our encoder uses predefined Huffman ta-
bles for compression of the DCT coefficients of each mac-
roblock. The VLC step is not context adaptative, and mac-
roblocks can thus be compressed independently. The length
of the resulting bitstream, however, is probably not a multi-
ple of eight, and most such blocks must be bit-shifted com-
pletely when the final bitstream is created.
The MJPEG format provides many layers of parallelism;

Starting with the many independent operations of calulating
DCT, the macroblocks can be transformed and quantized in
arbitrary order, also frames and color components can be en-
coded separately. In addition, every frame is entropy-coded
separately. Thus, many frames can be encoded in parallel
before merging the resulting frame output bitstreams. This
gives a very fine-level granularity of parallel tasks, provid-
ing great flexibility in how to implement the encoder. It is
worth noting that many problems have much tighter data
dependencies than we observe in the MJPEG case, but the
general ideas for optimizing individual parts pointed out in
this paper stand regardless of whether the problem is limited
by dependencies or not.
The forward 2D DCT function for a macroblock is defined

in the JPEG standard for image component sy,x to output
DCT coefficients Sv,u as

Sv,u =
1

4
CuCv

7X

x=0

7X

y=0

sy,xcos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16

where Cu, Cv = 1√
2
for u, v = 0 and Cu, Cv = 1 otherwise.

The equation can be directly implemented in an MJPEG
encoder and is referred to as 2D-plain. The algorithm can
be sped up considerably by removing redundant calcula-
tions. One improved version that we label 1D-plain uses
two consecutive 1D transformations with a transpose opera-
tion in between and after. This avoids symmetries, and the
1D transformation can be optimized further. One optimiza-
tion uses the AAN algorithm, originally proposed by Arai
et al. [1] and further refined by Kovac and Ranganathan [5].
Another uses a precomputed 8x8 transformation matrix that
is multiplied with the block together with the transposed
transformation matrix. The matrix includes the postscale
operation, and the full DCT operation can therefore be com-
pleted with just two matrix multiplications, as explained by
Kabeen and Gent [2].
More algorithms for calculating DCT exist, but they are

not covered here. We have implemented the different DCT
algorithms as scalar single-threaded versions on x86 (Intel
Core i5 750). The performance details for encoding HD
video were captured using oprofile and can be seen in Figure
5. The plot shows that the 1D-AAN algorithm using two
transpose operations was the fastest in this scenario, with
the 2D-matrix version as number two. The average encoding
time for a single frame using 2D-plain is more than 9 times
that of a frame encoded using 1D-AAN. For all algorithms,
the DCT step consumed most CPU cycles.

3.2 Cell Broadband Engine Experiments
Considering the embarrassingly parallel parts of MJPEG

video encoding, a number of different layouts is available
for mapping the different steps of the encoding process to
the Cell. Because of the amount of work, the DCT and
quantization steps should be executed on SPEs, but also the
entropy coding step can run in parallel between complete
frames. Thus, given that a few frames of encoding delay
are acceptable, the approach we consider best is to process
full frames on each SPE with every SPE running DCT and
quantization of a full frame. This minimizes synchronization
between cores, and allows us to perform VLC on the SPEs.

Regardless of the placement of the encoding steps, it is
important to avoid idle cores. We solved this by adding a
frame queue between the frame reader and the DCT step,
and another queue between the DCT and VLC steps. Since
a frame is processed in full by a single processor, the AAN
algorithm is well suited for the Cell. It can be implemented
in a straight-forward manner for running on SPEs, with VLC
coding placed on the PPE. We tested the same algorithm
optimized with SPE intrinsics for vector processing (SIMD)
resulting in double encoding throughput, which can be seen
in Figure 6 (Scalar- and Vector/PPE).

Another experiment involved moving the VLC step to the
SPEs, offloading the PPE. This approach left the PPE with
only the task of reading and writing files to disk in addition
to dispatching jobs to SPEs. To be able to do this, the luma
and chroma blocks of the frames had to be transformed and
quantized in interleaved order, i.e., two rows of luma and a
single row of both chroma channels. The results show that

Figure 5: MJPEG encode time on single thread x86

Figure 6: Encoding performance on Cell with differ-
ent implementations of AAN and VLC placement

77

165

the previous encoding speed was limited by the VLC as can
be seen in Figure 6 (Scalar- and Vector/SPE).
To get some insight into SPE utilization, we collected a

trace (using pdtr, part of IBM SDK for Cell) showing how
much time is spent on the encoding parts. Figure 7 shows
the SPE utilization when encoding HD frames for the Scalar-
and Vector/SPE from Figure 6. This distinction is necessary
because the compiler does not generate SIMD code, requir-
ing the programmer to hand-code SIMD intrinsics to obtain
high throughput. The scalar version uses about four times
more SPE time to perform the DCT and quantization steps
for a frame than the vector version, and additionally 30% of
the total SPE time to pack and unpack scalar data into vec-
tors for SIMD operations. Our vectorized AAN implemen-
tation is nearly eight times faster than the scalar version.
With the vector version of DCT and quantization, the

VLC coding uses about 80 % of each SPE. This can possibly
be optimized further, but we did not find time to pursue this.
The Cell experiments demonstrate the necessary level of

fine-grained tuning to get high performance on this archi-
tecture. In particular, correctly implementing an algorithm
using vector intrinsics is imperative. Of the 14 implemen-
tations for Cell in Figure 1, only one offloaded VLC to the
SPEs, but this was the second fastest implementation. The
fastest implementation vectorized the DCT and quantiza-
tion, and the Vector/SPE implementation in Figure 6 is a
combination of these two. One reason why only one imple-
mentation offloaded the VLC may be that it is unintuitive.
An additional communication and shift step is required in
parallelizing VLC because the lack of arbitrary bit-shifting
of large fields on Cell as well as GPU prevents a direct port
from the sequential codes. Another reason may stem from
the dominance of the DCT step in early profiles, as seen
in Figure 5, and the awkward process of gathering profil-
ing data on multicore systems later on. The hard part is
to know what is best in advance, especially because mov-
ing an optimized piece of code from one system to another
can be significant work, and may even require rewriting the
program entirely. It is therefore good practice to structure
programs in such a way that parts are coupled loosely. In
that way, they can both be replaced and moved to other
processors with minimal effort.
When comparing the 14 Cell implementations of the en-

coder shown in Figure 1 to find out what differentiates the
fastest from the medium speed implementations, we found
some distinguising features: The most prominent one be-
ing not exploiting the SPE’s SIMD capabilities, but also in
the areas of memory transfers and job distribution. Uneven
workload distribution and lack of proper frame queuing re-
sulted in idle cores. Additionally, some implementations suf-
fered from small, often unconcealed, DMA operations that
left SPEs in a stalled state waiting for the memory trans-
fer to complete. It is evident that many pitfalls need to be
avoided when writing programs for the Cell architecture, and
we have only touched upon a few of them. Some of these are

Figure 7: SPE utilization using scalar or vector DCT

Figure 8: Optimization of GPU memory accesses

obvious, but not all, and to get acceptable performance out
of a program running on the Cell architecture may require
multiple iterations, restructuring and even rewrites.

3.3 GPU Experiments
As for the Cell, several layouts are available for GPUs.

However, because of the large number of small cores, it is
not feasible to assign one frame to each core. The most time-
consuming parts of the MJPEG encoding process, the DCT
and quantization steps, are well suited for GPU acceleration.
In addition, the VLC step can also be partly adapted.

Coalesced memory accesses are known to have large per-
formance impacts. However, few quantified results exist,
and efficient usage of memory types, alignment and access
patterns remains an art. Weimer et al. [11] experimented
with bank conflicts in shared memory, but to shed light on
the penalties of inefficient memory type usage, further in-
vestigation is needed. We therefore performed experiments
that read and write data to and from memory with both
uncoalesced and coalesced access patterns [7], and used the
Nvidia CUDA Visual Profiler to isolate the GPU-time for
the different kernels.

Figure 8 shows that an uncoalesced access pattern de-
creases throughput in the order of four times due to the
increased number of memory transactions. Constant and
texture memory are cached, and the performance for un-
coalesced accesses to them is improved compared to global
memory, but there is still a three-time penalty. Furthermore,
the cached memory types support only read-only operations
and are restricted in size. When used correctly, the per-
formance of global memory is equal to the performance of
the cached memory types. The experiment also shows that
correct memory usage is imperative even when cached mem-
ory types are used. It is also important to make sure the
memory accesses are correct according to the specifications
of particular GPUs because the optimal access patterns vary
between GPU generations.

To find out how memory accesses and other optimiza-
tions affect programs like a MJPEG encoder, we experi-
mented with different DCT implementations. Our baseline
DCT algorithm is the 2D-plain algorithm. The only opti-
mizations in this implementation are that the input frames
are read into cached texture memory and that the quan-
tization tables are read into cached constant memory. As
we observed in Figure 8, cached memory spaces improve
performance compared to global memory, especially when
memory accesses are uncoalesced. The second implemen-
tation, referred to as 2D-plain optimized, is tuned to run
efficiently using principles from the CUDA Best Practices
Guide [6]. These optimizations include the use of shared
memory as a buffer for pixel values when processing a mac-
roblock, branch avoidance by using boolean arithmetics and
manual loop unrolling. Our third implementation, the 1D-
AAN algorithm, is based upon the scalar implementation

78

166

Figure 9: DCT performance on GPU

used on the Cell. Every macroblock is processed with eight
threads, one thread per row of eight pixels. The input im-
age is stored in cached texture memory, shared memory is
used for temporarily storing data during processing. Finally,
the 2D-matrix DCT using matrix multiplications where each
matrix element is computed by a thread. The input image
is stored in cached texture memory, and shared memory is
used for storing data during calculations.
We know from existing work that to achieve high instruc-

tion throughput, branch prevention and the correct use of
flow control instructions are important. If threads on the
same SM diverge, the paths are serialized which decreases
performance. Loop unrolling is beneficial on GPU kernels
and can be done automatically by the compiler using pragma
directives. To optimize frame exchange, asynchronous trans-
fers between the host and GPU were used. Transferring data
over the PCI Express bus is expensive, and asynchronous
transfers help us reuse the kernels and hides some of the PCI
Express latency by transferring data in the background.
To isolate the DCT performance, we used the CUDA Vi-

sual Profiler. The profiling results of the different imple-
mentations can be seen in Figure 9, and we can observe that
the 2D-plain optimized algorithm is faster than AAN. The
2D-plain algorithm requires significantly more computations
than the others, but by correctly implementing it, we get al-
most as good performance as with the 2D-matrix. The AAN
algorithm, which does the least amount of computations,
suffers from the low number of threads per macroblock. A
low number of threads per SM can result in stalling, where
all the threads are waiting for data from memory, which
should be avoided.
This experiment shows that for architectures with vast

computational capabilities, writing a good implementation
of an algorithm adapted for the underlying hardware can be
as important as the theoretical complexity of an algorithm.

Figure 10: Effect of offloading VLC to the GPU

The last GPU experiment considers entropy coding on the
GPU. As for the Cell, VLC can be offloaded to the GPU by
assigning a thread to each macroblock in a frame to com-
press the coefficients and then store the bitstream of each
macroblock and its length in global memory. The output of
each macroblock’s bitstream can then be merged either on
the host, or by using atomic OR on the GPU. For the experi-
ments here, we chose the former since the host is responsible
for the I/O and must traverse the bitstream anyway. Fig-
ure 10 shows the results of an experiment that compares

MJPEG with AAN DCT with VLC performed on the host
and on the GPU, respectively. We achieved a doubling of
the encoding performance when running VLC on the GPU.
In this particular case offloading VLC was faster than run-
ning on the host. It is worth noting that by running VLC on
the GPU, the entropy coding scales together with the rest of
the encoder with the resources available on the GPU. This
means than if the encoder runs on a machine with a slower
host CPU or faster GPU, the encoder will still scale.

4. DISCUSSION
Heterogeneous architectures like Cell and GPU provide

large amounts of processing power, and achieving encoding
throughputs of 480 MB/s and 465 MB/s, respectively, real-
time MJPEG HD encoding may be no problem. However, an
analysis of the many implementations of MJPEG available
and our additional testing show that it is important to use
the right concepts and abstractions, and that there may be
large differences in the way a programmer must think.

The architectures of GPU and Cell are very different, and
in this respect, some algorithms may be more suited than
others. This can be seen in the experiments, where the
AAN algorithm for DCT calculation performed best on both
x86 and Cell, but did not achieve the highest throughput
on GPU. This was because of the relatively low number of
threads per macroblock for the AAN algorithm, which must
perform the 1D DCT operation (one row of pixels within a
macroblock) as a single thread. This is only one example
of achieving a shorter computation time through increased
parallelity at the price of a higher, sub-optimal total number
of operations.

The programming models used on Cell and GPU mandate
two different ways of thinking parallel. The approach of
Cell is very similar to multi-threaded programming on x86,
with the exception of shared memory. The SPEs are used
as regular cores with explicit caches, and the vector units
on the SPEs require careful data structure consideration to
achieve peak performance. The GPU model of programming
is much more rigid, with a static grid used for blocks of
threads, and only synchronization through barriers. This
hides the architecture complexity, and is therefore a simpler
concept to grasp for some programmers. This notion is also
strengthened by the better average GPU throughput of the
implementations in Figure 1. However, to get the highest
possible performance, the programmer must also understand
the nitty details of the architecture to avoid pitfalls like warp
divergence and uncoalesced memory accesses.

Deciding at which granularity the data should be parti-
tioned is very hard to do correct a priori. The best granular-
ity for a given problem differs with the architecture and even
different models of the same architecture. One approach to-
wards accomplishing this is to try to design the programs
in such a way that the cores are seldom idle or stall. In
practice, however, multiple iterations may be necessary to
determine the best approach.

Similar to data partitioning, code partitioning is hard to
do correctly in advance. In general, a rule of thumb is to
write modular code to allow moving the parts to other cores.
Also, a fine granularity is beneficial, since small modules
can be merged again, and also be executed repeatedly with
small overhead. Offloading is by itself advantageous as re-
sources on the main processor become available for other
tasks. It also improves scalability of the program with new

79

167

generations of hardware. In our MJPEG implementations,
we found that offloading DCT/quantization and VLC cod-
ing was advantageous in terms of performance on both Cell
and GPU, but it may not always be the case that offloading
provides higher throughput.
The encoding throughput achieved on the two architec-

tures was surprisingly similar. Although, the engineering
effort for accomplishing this throughput was much higher
on the Cell. This was mainly caused by the tedious pro-
cess of writing a SIMD version of the encoder. Porting the
encoder to the GPU in a straight-forward manner without
significant optimizations for the architecture yielded a very
good offloading performance compared to native x86. This
indicates that the GPU is easier to use, but to reap the full
potential of the architecture, one must have the same deep
level of understanding as with the Cell architecture.

5. RELATEDWORK
Heterogeneous multi-core platforms like the Cell and GPUs

have attracted a considerable amount of research that aims
at optimizing specific applications for the different architec-
tures such as [9] and [4]. However, little work has been done
to compare general optimization details of different hetero-
geneous architectures. Amesfoort et al. [10] have evaluated
different multicore platforms for data-intensive kernels. The
platforms are evaluated in terms of application performance,
programming effort and cost. Colic et al. [3] look at the
application of optimizing motion estimation on GPUs and
quantify impact of design choices. The workload investi-
gated in this paper is different from the workload we bench-
mark in our experiments, but they show a similar trend as
our GPU experiments. They also conclude that elegant solu-
tions are not easily achievable, and that it takes time, prac-
tice and experience to reap the full potential of the architec-
ture. Petrini et al. [8] implement a communication-heavy ra-
diation transport problem on Cell. They conclude that it is
a good approach to think about problems in terms of five di-
mensions and partitioning them into: process parallelism at
a very large scale, thread-level parallelism that handles inner
loops, data-streaming parallelism that double-buffers data
for each loop, vector parallelism that uses SIMD functions
within a loop, and pipeline parallelism that overlaps data
access with computations by threading. From our MJPEG
implementations we observed that programmers had diffi-
culties thinking parallel in two dimensions. This level of
multi-dimensional considerations strengthens our statement
that intrinsic knowledge of the system is essential to reap
full performance of heterogeneous architectures.

6. CONCLUSION
Heterogeneous, multicore architectures like Cell and GPUs

may provide the resources required for real-time multimedia
processing. However, achieving high performance is not triv-
ial, and in order to learn how to think and use the resources
efficiently, we have experimentally evaluated several issues
to find the tricks and troubles.
In general, there are some similarities, but the way of

thinking must be substantially different - not only compared
to an x86 architecture, but also between the Cell and the
GPUs. The different architectures have different capabili-
ties that must be taken into account both when choosing a
specific algorithm and making implementation-specific deci-

sions. A lot of trust is put on the compilers of development
frameworks and new languages like Open CL, which are sup-
posed to be a “recompile-only” solution. However, to tune
performance, the application must still be hand-optimized
for different versions of the GPUs and Cells available.

Acknowledgements
The authors acknowledge Georgia Institute of Technology,
its Sony-Toshiba-IBM Center of Competence, and National
Science Foundation, for the use of Cell Broadband Engine
resources. We also acknowledge Alexander Ottesen, St̊ale
Kristoffersen, Øystein Gyland, Kristoffer Egil Bonarjee, Kjetil
Endal and Kristian Evensen for their contributions.

7. REFERENCES
[1] Arai, Y., Agui, T., and Nakajima, M. A fast

dct-sq scheme for images. Transactions of IEICE E71,
11 (1988).

[2] Cabeen, K., and Gent, P. Image compression and
the discrete cosine transform. In Math 45, College of
the Redwoods.

[3] Colic, A., Kalva, H., and Furht, B. Exploring
nvidia-cuda for video coding. In ACM SIGMM
conference on Multimedia systems (MMSys) (2010),
ACM, pp. 13–22.

[4] Curry, M., Skjellum, A., Ward, H., and
Brightwell, R. Accelerating reed-solomon coding in
raid systems with gpus. In International Parallel and
Distributed Processing Symposium (IPDPS) (April
2008), IEEE, pp. 1–6.

[5] Kovac, M., and Ranganathan, N. JAGUAR: A
fully pipelined VLSI architecture for JPEG image
compression standard. Proceedings of the IEEE 83, 2
(1995).

[6] Nvidia. Nvidia cuda c programming best practices
guide 2.3, 2009.

[7] Ottesen, A. Efficient parallelisation techniques for
applications running on gpus using the cuda
framework. Master’s thesis, Department of
Informatics, University of Oslo, Norway, May 2009.

[8] Petrini, F., Fossuma, G., Fernandez, J.,
Varbanescu, A. L., Kistler, M., and Perrone,
M. Multicore surprises: Lessons learned from
optimizing Sweep3D on the Cell Broadband Engine.
In International Parallel and Distributed Processing
Symposium (IPDPS) (March 2007), IEEE, pp. 1–10.

[9] Sachdeva, V., Kistler, M., Speight, E., and
Tzeng, T.-H. K. Exploring the viability of the Cell
Broadband Engine for bioinformatics applications.
Parallel Computing 34, 11, 616–626.

[10] van Amsesfoort, A., Varbanescu, A., Sips, H. J.,
and van Nieuwpoort, R. Evaluating multi-core
platforms for hpc data-intensive kernels. In ACM
Conference on Computing Frontiers (ICCF) (2009).

[11] Weimer, W., Boyer, M., and Skadron, K.
Automated dynamic analysis of cuda programs. In
Third Workshop on software Tools for MultiCore
Systems (STMCS) (2008).

80

168

Paper IV: Cheat Detection
Processing: A GPU versus CPU
Comparison

Title: Cheat Detection Processing: A GPU versus CPU Comparison [117].

Authors: H. K. Stensland, M. Ø. Myrseth, C. Griwodz, P. Halvorsen.

Published: Workshop on Network and Systems Support for Games (NetGames 2010),
ACM/IEEE, 2010.

169

170 . Paper IV: Cheat Detection Processing: A GPU versus CPU Comparison

Cheat Detection Processing:
A GPU versus CPU Comparison

Håkon Kvale Stensland, Martin Øinæs Myrseth, Carsten Griwodz, Pål Halvorsen
Simula Research Laboratory, Norway and Department of Informatics, University of Oslo, Norway

Email: {haakonks, martinom, griff, paalh}@simula.no

Abstract—In modern online multi-player games, game
providers are struggling to keep up with the many different
types of cheating. Cheat detection is a task that requires a
lot of computational resources. Advances made within the field
of heterogeneous computing architectures, such as graphics
processing units (GPUs), have given developers easier access
to considerably more computational resources, enabling a new
approach to solving this issue.

In this paper, we have developed a small game simulator that
includes a customizable physics engine and a cheat detection
mechanism that checks the physical model used by the game. To
make sure that the mechanisms are fair to all players, they are
executed on the server side of the game system. We investigate the
advantages of implementing physics cheat detection mechanisms
on a GPU using the Nvidia CUDA framework, and we compare
the GPU implementation of the cheat detection mechanism with a
CPU implementation. The results obtained from the simulations
show that offloading the cheat detection mechanisms to the GPU
reduces the time spent on cheat detection, enabling the servers
to support a larger number of clients.

I. INTRODUCTION

On-line multi-player gaming has experienced an amazing
growth over the last decade. It goes along with cheating as
the most prominent case of malicious behavior performed by
game players [11]. It is therefore in the best interest of game
service providers to eradicate cheating. However, the demand
for a stable service for resource intensive games restricts the
amount of resources that can be dedicated to cheat detection
mechanisms.

Many on-line multi-player games suffer from excessive
cheating in one form or another. However, in many cases,
the existence of cheating is hard to prove [6]. The only part
of a distributed system that a game service provider can trust
is the part of the system running on hardware under their
control. Any other part of the system can and will most likely
be exploited by a cheater. As of now, no existing framework
manages to eliminate all kinds of cheating, so game developers
are forced to either create their own mechanisms or use a
selection of existing solutions to cover the aspects of a game
that a cheater might exploit.

In-game physics, aimed to increase game realism, expe-
riences increased popularity in many kinds of games. Most
games that have implemented in-game physics use it as a major
part of the game-play experience, some even base the entire
game-play around physics alone. In-game physics is therefore
a very likely part of a game to be exploited. To solve this
problem, central servers or other trusted entities must ensure

consistency in the movements of all the clients in the game.
With our approach the physics engine can be implemented
on the server together with the cheat detection mechanisms.
This solution frees resources on the game clients. However, it
requires more hardware at the server side.

Adding more hardware to a system can increase its per-
formance, but this serves only as a temporary solution. The
hardware used in commercial game server clusters is expen-
sive, and the performance gained might only be sufficient for
a short period of time. Because of the physical limitations
halting the single-threaded performance increase in normal
CPUs, further performance increase is accomplished by adding
more identical processing cores. The modern GPU is a rel-
atively inexpensive example of such a parallel architecture.
This forces developers to think differently. The process of
adding new and faster hardware is now slowly substituted by
migrating systems to parallel processors. For this change to
be beneficial, serial algorithms must be parallelized.

Our goal in this paper is to determine if graphics processing
units (GPUs) can handle cheat detection mechanisms in a
client-server based game system. We investigate also how
a GPU implementation might scale when compared to the
same mechanisms running on normal CPUs. The results of
our benchmarks show that the GPU scales better than a
CPU when processing cheat detection mechanisms. Offloading
cheat detection to a GPU also frees server resources.

II. BACKGROUND

One of the main challenges in implementing cheat detection
and prevention mechanisms in games is the consumption of
valuable computational resources by the execution of these
detection mechanisms. Game developers strive to create games
with the latest features in the fields of graphical effects, in-
game physics, etc. These features require already most of the
resources available in a computer, both on the server and the
client side of a system. A mechanism for cheat detection is
only usable if its impact on the application is small, both
with regard to performance demands and modifications to the
existing infrastructure.

A. Classification of Cheating

Through the evolution of on-line multi-player games, cheat-
ing has emerged as a serious problem for game providers.
Cheating can ruin in-game economics, turn honest players
into cheating players and in the worst case, lead to players

978-1-4244-8355-6/10/$26.00 ©2010 IEEE

171

abandoning the game [4]. The diversity of the games being
played on the Internet allows for several means of cheating as
each genre of games have their own unique characteristics and
vulnerabilities. The first important step towards a cheat-free
game is to examine and determine which forms of cheating
are most likely to be attempted.

An early review of the existence of cheating and its pre-
vention was performed by Matt Pritchard [6]. The paper,
aimed at the game development industry, mentions concrete
examples of games which have experienced problems with
cheating, different game communication models and how
cheating applies to these models. The paper also presents
several ideas on solving different cheating cases. However,
cheating problems were largely investigated and dealt with on
a case-by-case basis until Yan and Randell [11] presented an
extensive list of different categories and with it, a taxonomy of
on-line game cheating. This is a three-dimensional taxonomy
based on what are the underlying vulnerabilities, the cheating
consequences and the cheating principals. The taxonomy is
thorough, but unstructured, so GauthierDickey et al [3] present
a more structured taxonomy by categorizing cheats in the
layer in which they occur. Continuing from this work, Webb
and Soh [9] present an updated review and classification of
cheating in networked computer games based on the same
categories defined by [3]:

• Game level cheats are achieved by breaking the rules or
misusing features of the game. Game level cheats do not
require any modifications to the game client or the general
infrastructure.

• Application level cheats include modifications to the
code of the game or the operating system. A common
form of application level cheats are reflex enhancers and
farming bots. Both give the cheater an unfair advantage
by boosting such as the accuracy of the aim or allow
for automation of certain tasks to let the cheater gain
resources while not even playing the game.

• Protocol level cheats are changes to the protocol of a
game like changing packet contents or delaying packets.
Fixed delay cheats are based on introducing a delay be-
fore sending packets from the cheater. This delay appears
only as latency for the other players and the central
server. The delay can allow the cheater to examine all
updates received from the other players before choosing
an appropriate action based on the acquired knowledge.

• Infrastructure level cheats involve modifications and ma-
nipulations of game dependent pieces of infrastructure,
i.e., modifications to driver, libraries, hardware, network,
etc. Information exposure cheats can examine broad-
casted network traffic to give additional information to
a cheater.

B. Existing Cheat Detection Mechanisms

Because of the many existing forms of cheating, there are
many attempted solutions to prevent cheating, both within
academics and the game industry. Different types of cheats
apply to different types of games, therefore some of the

solutions approach different problems with different commu-
nication models. Some are designed for client-server systems,
others for P2P systems and some are usable with whichever
communication model.

There have been several papers suggesting cheat detection
systems. In [12], the authors propose a statistical approach
to cheat detection based on a dynamic Bayesian network
approach. The proposed detection framework relies solely
on the game state, and the proposed solution is designed
to run on the server side to prevent hacks and tampering.
Their experiments show that they are able to effectively detect
cheaters and that the false positive rate is low. However, the
system needs to be trained to detect specific cheats.

A different approach presented by Feng et al. [2] examines
an approach for cheat detection that is based on the use of
stealth measurements via tamper-resistant hardware. This is
a client side modification, and the authors’ solution utilizes
the Intel Active Management Technology platform to access
contents in the physical memory. They present a range of
measurements supported by the hardware that might detect
the methods used by hackers to compromise games. The
challenges with this system are that specialized hardware is
required on all clients and that users might have privacy issues
since this approach requires full access to the physical memory
on their clients.

There are also several anti-cheating systems that have been
put to mainstream use. Three of the most notable are VAC [8],
PunkBuster [1] and Warden [10]. The similarity between the
three mentioned anti-cheat systems is that they are separate
programs that examine programs running alongside the game
being played. They inspect the main memory of the computer,
searching for programs altering or reading the memory used by
the game. Valve reported that over 10.000 cheating players of
"Counter-Strike: Source" were caught within a single week in
late 2006 by running cheating software [7]. However, one issue
with these solutions is that they run in software on the game
clients, and the anti-cheating systems are therefore vulnerable
for hacks and tampering.

Rather than attempting to solve many forms of cheating,
we investigate ways to effectively implement cheat detection
mechanisms in games. We focus on parallel hardware and
how it can be used to make the impact of a cheat detection
mechanism on the game system as transparent as possible. The
cheats that can be exposed by our cheat detection mechanism
could be application, protocol and infrastructure level cheats,
but in particular such cheats that involve modifications to
the client application and network packets to improve game
physics properties. Cheats have also been discovered where
clients increase or decrease the internal clock speed of their
processors, increasing simulation speeds so that objects may
accelerate faster. These kinds of cheats can also be discovered.

C. Nvidia Graphics Processing Units

A GPU is a dedicated graphics rendering device. Modern
GPUs have a parallel structure, making them effective for
general-purpose processing. Previously, shaders were used for

172

Figure 1. Nvidia GF100 Compute Architecture

general-purpose programming, but specialized languages are
now available. Nvidia has released the CUDA framework with
a programming language similar to ANSI C.

The latest generation of GPUs available from Nvidia, il-
lustrated in Figure 1, is the GF100. This generation is often
referred to as the Fermi compute architecture. The GF100
chip is presented to the programmer as a highly parallel,
multi-threaded, multi-core processor. The GF100 architecture
contains up to 512 simple processing cores [5].

GPUs have other memory hierarchies than an x86 proces-
sor. Several types of memory with different properties are
available to the programmer. Each thread has some private
local memory, and the threads running on the same stream
multiprocessor (SM) have access to some shared memory.
Two additional read-only memory spaces called constant and
texture are available to all threads. Finally, there is global
memory that can be accessed by all threads. The GF100
architecture also introduces an L1 cache and a unified L2 cache
for all operations to global and texture memory.

III. EXAMPLE GAME

To show the benefits of using a GPU for cheat detection,
we created a simple space race game simulation, where the
spacecrafts must visit virtual positions, also referred to as
targets. The clients are placed randomly in the virtual world,
giving some clients an advantage as they might be placed
closer to a target. When a target is reached, the clients continue
to the next target. Figure 2 shows a GUI representation of
player objects in the game.

The simulation follows a client-server based game archi-
tecture, where all clients send their position updates to the
server. This approach is chosen for the same reasons as in
consumer market game development: ease of development,
total control of client communication and a centralized control
point. Discrete clients are created within the simulation, and
communication follows the same flow that would be normal
in a networked multi-player game. Furthermore, because we
wanted to design our simulation independent of wallclock
time, we used an artificial timeline based on game ticks. A
tick is a theoretical time duration specified in the configuration
of the system.

To allow reproducible tests, the simulation uses two differ-
ent modes of operation named generation mode and playback
mode. The generation mode uses the principles of the game to
determine random placement of a given number of clients in

Figure 2. Screenshot of the graphical representation of player objects in the
virtual environment.

a virtual environment. From these positions, the clients try
to reach the closest target. After a target is reached, they
continue to the next target. They use a thruster to propel
themselves around. External forces, such as gravity, affect the
clients. While this is happening, the server writes each client’s
location in the virtual environment to several files. These files
are used in playback mode. The generation mode generates
also movement for cheaters. The numbers of cheaters can
be adjusted in generation mode. A cheater behaves in the
same manner as an honest client, but regularly performs
unrealistic motions. Playback mode initializes the clients. The
client state information is read from the files generated in
generation mode, and the states are reported to the server.
The server samples the state information updates from every
client, putting the samples in a sample buffer. The buffer is
read by the cheat detection thread when full.

Because all clients in the game are controlled by the
computer, some rules must be set their behaviour in trying to
reach a target. To reach their targets, the clients require motion
planning. We have not implemented any advanced motion
planning algorithms for this paper. The clients know the targets
that they have reached. After a target is reached, the client
continues to the closest unaccomplished target. The movement
of a client is restricted by the physical model. Honest clients
do not break the rules of the model, while cheating clients do.

In our simulation, the objects experience both linear and
angular acceleration. There is a constant gravitational pull,
affecting the objects, much like the gravity on Earth. All the
other forces are generated by the objects themselves using
thrusters. Figure 3 shows an outline of a game object, with a
main rear thruster and bow thrusters. Objects move forward
with the rear thruster and rotate using the bow thrusters. The
size and thruster power can be modified by parameters.

The physics engine is one of the main parts of the simula-
tion. The engine is responsible for calculating the sum of all
physical forces acting on all objects and updates their positions
accordingly. The physics engine is controlled by configuration
parameters that allow for changing physical properties quickly,

173

Bow thrusters

Main thruster

Figure 3. Illustration of a game object with bow thrusters in the front and
the main thruster at the back.

even during runtime. Game objects are registered with the
physics engine, so it maintains a pool of objects to manage.
Updates of the parameters of an object, such as throttle, are
handled by the individual clients. The integrations of the time
steps from a game tick to the next are done by the engine. The
physics engine does this by updating every game object in the
object pool. The main implementation of the physics engine
runs on the CPU and is only used during generation mode.
During playback mode, the cheat detection mechanisms act as
a reverse physics engine. They try to determine if the position
updates are valid within the current physical model.

The physical model used in this example is a simple model,
with only a couple of physical effects. The most basic of these
effects is linear motion. Basic linear motion is implemented
using Newton’s second law of motion as shown in equation 1:

∑
F = ma (1)

The law states that the sum of all forces acting on an object
is the product of the mass and its acceleration. The acceleration
is measured by looking at the change in speed over a known
distance. In our game, there are two linear forces acting on
an object. The first is the acceleration applied by the game
object’s main thruster as illustrated by figure 3. The second
is the vertical gravity that is constant in the entire model.
The total linear force is represented by the sum of these two
vectors.

The second physical effect is angular motion. To allow
object rotation in all dimensions, the properties of the objects
in the game must be extended. Similar to the linear motion
properties of distance, velocity and acceleration, we have
angular motion properties. The equations 2 and 3

Ω =
dω

dt
(2)

ω =
dα

dt
(3)

where Ω is the angular displacement of an object in radians,
ω is the angular velocity in radians per second, and α is the
angular acceleration in radians per second squared, show how
these relate to each other.

Angular motion is applied to the game objects when the
bow thrusters illustrated in figure 3 are used to change the

course of a object. Support for collisions is implemented in
the model. However, due to the lack of time, it has not been
implemented in the cheat detection mechanisms. It is only
present in generation mode.

There are different ways to perform a cheat in the sim-
ulation. Clients cheat either by modifying the power of their
thruster temporarily or by modifying the values of their current
state: their position, velocity and rotation. If a cheating client
temporarily increases the thrust capabilities of one of its
thrusters, it is able to accelerate faster in a direction to perform
quicker turns or pick up speed faster. Cheaters who change
their state can position themselves closer to a target or change
their rotation to point towards a target. They might also
increase or decrease the magnitude of their velocity vector
when either dashing for a target or slowing down to prevent
passing a target.

IV. IMPLEMENTATION

We have implemented two versions of the cheat detection
mechanism. One is written for the host CPU, while the other
is a CUDA version, written for the GPU device. The cheat
detection mechanism on the GPU is implemented with threads.
The CPU implementation is not threaded and uses a basic
looping structure to simulate the same behavior as the CUDA
version.

The behavior of the mechanisms is illustrated in figure 4. A
single thread works on three consecutive game state samples
for a client, thread one (th1) works on sample s0, s1 and s2,
while thread two (th2) works on sample s1, s2 and s3 etc. A
sample is the state of the client after a tick in the artificial
timeline.

...s0 s1 s2 s3 s4 s5 s6 s7Samples

th1

th2

th3

th4

th5 th7

th6

Figure 4. Sample reading and execution pattern of the threads.

A sample contains the movement of each client and a
positional vector with three values: x, y and z according to
the three-dimensional axes. With three samples the threads can
find the acceleration of the client as a three-dimensional vector.
All external forces added by the physical model can now be
subtracted by applying the calculations of the physical engine
in reverse. The resulting acceleration is the result of the forces
the client has applied to the game object. If the thrust applied
by the client is greater than the maximum thrust allowed by
the game, the client is most likely a cheater.

There are two main node types in our simulation; the server
and the clients. They exchange data as in real networked
games. A packet is either generated by the generation mode or
read from file in playback mode by the clients once for each
game tick.

The server reads all incoming data from the clients. When
a cheater reports erroneous positional data, the cheat detection

174

Figure 5. Execution time (in seconds) of the cheat detection mechanism on
the GPU and the CPU.

mechanisms indicates that the movement of the player does
not follow the rules and restrictions of physical parameters of
the game.

Clients act differently depending on the execution mode.
During the generation of movement files, clients write their
locations and other appropriate data to file. In playback mode,
clients read from the generated files and report the data written
in generation mode back to the server. In this way, the system
allows for reproducible tests as the test data is the same for
each test run.

V. EVALUATION

In this section, we describe the performance of our solution
by presenting the experimental results. We investigate both
the total execution time of the cheat detection system and the
total execution time spent on the cheat detection mechanisms.
All tests were run on data generated in generator mode over
100 seconds of "game time". The number of clients used
in the benchmarks ranges from 10 to 6000. The part of the
mechanisms that runs on the GPU in these benchmarks is the
reverse physics engine.

The cheat detection mechanism we tested is implemented
on the following hardware: the CPU used in the benchmarks
was an Intel Core i5 750 processor running at 2.66 GHz with
4.0 GB RAM. The GPU was an Nvidia GeForce GTX 480
with 480 processing cores, 1.5 GB memory and version 3.1
of the Nvidia CUDA framework.

The results of the first benchmark are shown in figure 5. It
shows the total execution time of the cheat detection system.
We can observe that with a low number of clients, the CPU is
faster than the GPU. The reason for this is the added latency
of moving data and code to the GPU. With more than 100
clients in the game, the execution time for the CPU exceeds
that of the GPU, and the performance gap steadily increases
up to 6000 clients, which is the maximum number of tested
clients. This is due to the size of the memory on our test

Figure 6. Percent of time spent on cheat detection processing on host using
the GPU and the CPU.

machines. When the number of clients increases, the cheat
detection processing on the GPU scales much better than on
the CPU.

When the cheat detection mechanism is processed on the
GPU, the CPU is relieved of performing these tasks and can
work on other game relevant computation.

To determine the offloading effect the GPU has on the CPU,
we have measured how much of the total execution time is
spent on processing cheat detection mechanisms. Figure 6
shows the results of the second benchmark. The results show
that for a small number of clients, the penalty for transferring
data over the PCI Express bus to the GPU is significant,
making the CPU more effective for a small number of clients.
With more than 50 clients, the GPU implementation spends
less time on cheat detection than the CPU implementation.
As the number of clients increases, the time spent on cheat
detection continues to drop to below 15 percent for the GPU
implementation. The CPU version stabilizes around 50 per-
cent. To improve the performance of the GPU implementation
with a low number of clients, it is possible to buffer more
samples before executing the mechanisms on the GPU.

VI. DISCUSSION

We have seen how the CPU and the GPU implementations
of our cheat detection mechanism perform differently when we
increase the numbers of clients in the game. The difference
between the two is smallest when the number of checks
performed on the GPU is small. However, as the number of
clients increases, the increase in execution time of the CPU
implementation is much steeper compared to the increase in
the GPU implementation. This indicates that the GPU imple-
mentation is the more scalable of the two. It is primarily due to
the highly parallel architecture of the GPU. Physics operations
for a large numbers of clients are independent of each other.
They constitute an embarrassingly parallel workload that maps
well to the multi-threaded architecture of the GPU. As further

175

work, both the CPU and the GPU implementation can be
further optimized. The CPU implementation can be extended
with threading and SIMD operations, and the GPU version can
be extended with asynchronous transfers, optimized access to
global memory accesses and elimination of branching in the
compute kernels.

The cheat detection mechanism we have implemented for
our system is easy to parallelize because physics computations
for clients are independent of each other. Similar systems
with workloads that contain operations that can be performed
simultaneously by a large number of threads can benefit from
using a GPU to offload the processing. When offloading
operations to a GPU, it is important to remember that the
GPU is most efficient if it has enough data to process. It is
also important that the tasks offloaded map well to the multi-
threaded architecture of the GPU. Operations that require only
a few calculations over a small number of threads do not
run very efficiently on a GPU. This is mainly due to the
delay associated with transferring data and code over the PCI
Express bus to the GPU. We can also observe this effect in our
benchmarks when the number of clients playing the game is
reduced to below 50. With the next generation of CPUs from
Intel and AMD, we see a trend with GPUs integrated as a part
of the CPU die. Such solutions might reduce the overhead of
offloading computations to the GPU.

A challenge in implementing parts of a program on a GPU
is that developers have to think differently compared to a
CPU implementation. A GPU implementation requires much
more tweaking and optimization to reap the full benefits of
the architecture.

Although we have experimented with cheat detection in a
game simulation, the GPU can be used for several additional
tasks. If the game uses a physics engine that supports GPU
execution, it might be able to perform all physics calculations
on the server. This will reduce the control of the game clients
and remove the need for a cheat detection mechanism for
consistency of movements for entirely. This can also contribute
to lowering the hardware requirements on the client side of the
game. The cost will however increase on the server side, since
game servers traditionally have not been equipped with GPUs.

VII. CONCLUSION

Even though there is an increasing popularity of on-line
multi-player games, cheating is prevalent. This destructive
behavior degrades the gaming experience of honest game
players. The game industry has always been a step behind the
cheaters, struggling to keep up with new and creative cheating
methods. Although the existing solutions are not sufficient to
eliminate cheating, there is an increasing amount of research
attempting to reduce cheating in on-line multi-player games.
Because of the large diversity of the types of existing on-
line games, the existing cheats and the cheating mechanism
that aim to battle them, are equally diverse. In this paper, we
have investigated how GPUs perform compared to CPUs with
respect to processing cheat detection mechanisms.

Our results show that a system processing a cheat detection
mechanism on a GPU can outperform the same mechanism
running on a CPU, even with only a simple physical model,
but depending on the number of clients due to the GPU
data transfer costs. Although cheat detection mechanisms vary
greatly from game to game, a mechanism that checks for
consistency in physical calculations can be migrated to the
GPU to achieve a performance boost. We have also observed
that it is able to offload the CPU by moving the processing of
a cheat detection mechanism to the GPU allowing the CPU
to perform other tasks while the cheat detection mechanism is
executing.

REFERENCES

[1] Even Balance, Inc. PunkBuster Online Countermeasures. http://www.
evenbalance.com/ , Accessed July 2010.

[2] W.-c. Feng, E. Kaiser, and T. Schluessler. Stealth measurements for
cheat detection in on-line games. In NetGames ’08: Proceedings of
the 7th ACM SIGCOMM Workshop on Network and System Support for
Games, pages 15–20, Worcester, Massachusetts, USA, 2008.

[3] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr. Low latency
and cheat-proof event ordering for peer-to-peer games. In NOSSDAV
’04: Proceedings of the 14th international workshop on Network and
operating systems support for digital audio and video, pages 134–139,
Cork, Ireland, 2004.

[4] P. Kabus, W. W. Terpstra, M. Cilia, and A. P. Buchmann. Addressing
cheating in distributed mmogs. In NetGames ’05: Proceedings of 4th
ACM SIGCOMM workshop on Network and system support for games,
pages 1–6, Hawthorne, NY, USA, 2005.

[5] NVIDIA. NVIDIA Next Generation CUDA Compute Architec-
ture: Fermi. http://www.nvidia.com/content/PDF/ fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf , Accessed Au-
gust 2010.

[6] Pritchard, M. How to Hurt the Hackers: The Scoop on Internet Cheating
and How You Can Combat It. http://www.gamasutra.com/ features/
20000724/pritchard_pfv.htm, Accessed May 2009.

[7] Valve. Steam Message. http:// storefront.steampowered.com/Steam/
Marketing/message/837/?l=english, Accessed July 2010.

[8] Valve. Valve Anti-Cheat System. https:// support.steampowered.com/
kb_article.php?p_faqid=370, Accessed July 2010.

[9] S. D. Webb and S. Soh. Cheating in networked computer games: a
review. In DIMEA ’07: Proceedings of the 2nd international conference
on Digital interactive media in entertainment and arts, pages 105–112,
Perth, Australia, 2007.

[10] Wikipedia. Warden (software). http://en.wikipedia.org/wiki/Warden_
(software), Accessed July 2010.

[11] J. Yan and B. Randell. A systematic classification of cheating in online
games. In NetGames ’05: Proceedings of 4th ACM SIGCOMM workshop
on Network and system support for games, pages 1–9, Hawthorne, NY,
USA, 2005.

[12] S. F. Yeung and J. C. S. Lui. Detecting cheaters for multiplayer games:
Theory, design and implementation. In NIME ’05: IEEE International
Workshop on Networking Issues in Multimedia Entertainment, pages
1178–1182, Las Vegas, Nevada, USA, 2005.

176

Paper V: Reducing Processing
Demands for Multi-Rate Video
Encoding: Implementation and
Evaluation

Title: Reducing Processing Demands for Multi-Rate Video Encoding: Implementation
and Evaluation [34].

Authors: H. Espeland, H. K. Stensland, D. H. Finstad, P. Halvorsen.

Published: International Journal of Multimedia Data Engineering and Management
(IJMDEM), Volume 3, Issue 2, IGI Global, 2012.

177

178
. Paper V: Reducing Processing Demands for Multi-Rate Video Encoding:

Implementation and Evaluation

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198
. Paper V: Reducing Processing Demands for Multi-Rate Video Encoding:

Implementation and Evaluation

Paper VI: LEARS: A Lockless,
Relaxed-Atomicity State Model for
Parallel Execution of a Game Server
Partition

Title: LEARS: A Lockless, Relaxed-Atomicity State Model for Parallel Execution of a
Game Server Partition [102].

Authors: K. Raaen, H. Espeland, H. Stensland, A. Petlund, P. Halvorsen, and C. Gri-
wodz.

Published: Proceedings of the International Workshop on Scheduling and Resource
Management for Parallel and Distributed Systems (SRMPDS) - The 2012 Inter-
national Conference on Parallel Processing Workshops, IEEE, 2012.

199

200
. Paper VI: LEARS: A Lockless, Relaxed-Atomicity State Model for Parallel

Execution of a Game Server Partition

LEARS: A Lockless, Relaxed-Atomicity State
Model for Parallel Execution of a Game Server

Partition
Kjetil Raaen, Håvard Espeland, Håkon K. Stensland, Andreas Petlund, Pål Halvorsen, Carsten Griwodz

NITH, Norway Simula Research Laboratory, Norway IFI, University of Oslo, Norway
Email: raakje@nith.no, {haavares, haakonks, apetlund, paalh, griff}@ifi.uio.no

Abstract—Supporting thousands of interacting players in a
virtual world poses huge challenges with respect to processing.
Existing work that addresses the challenge utilizes a variety of
spatial partitioning algorithms to distribute the load. If, however,
a large number of players needs to interact tightly across an area
of the game world, spatial partitioning cannot subdivide this
area without incurring massive communication costs, latency or
inconsistency. It is a major challenge of game engines to scale such
areas to the largest number of players possible; in a deviation
from earlier thinking, parallelism on multi-core architectures is
applied to increase scalability. In this paper, we evaluate the
design and implementation of our game server architecture,
called LEARS, which allows for lock-free parallel processing of
a single spatial partition by considering every game cycle an
atomic tick. Our prototype is evaluated using traces from live
game sessions where we measure the server response time for
all objects that need timely updates. We also measure how the
response time for the multi-threaded implementation varies with
the number of threads used. Our results show that the challenge
of scaling up a game-server can be an embarrassingly parallel
problem.

I. INTRODUCTION

Over the last decade, online multi-player gaming has expe-
rienced an amazing growth. Providers of the popular online
games must deliver a reliable service to thousands of concur-
rent players meeting strict processing deadlines in order for
the players to have an acceptable quality of experience (QoE).
One major goal for large game providers is to support as
many concurrent players in a game-world as possible while
preserving the strict latency requirements in order for the
players to have an acceptable quality of experience (QoE).
Load distribution in these systems is typically achieved by
partitioning game-worlds into areas-of-interest to minimize
message passing between players and to allow the game-world
to be divided between servers. Load balancing is usually com-
pletely static, where each area has dedicated hardware. This
approach is, however, limited by the distribution of players
in the game-world, and the problem is that the distribution
of players is heavy-tailed with about 30% of players in 1%
of the game area [5]. To handle the most popular areas of
the game world without reducing the maximum interaction
distance for players, individual spatial partitions can not be
serial. An MMO-server will experience the most CPU load
while the players experience the most “action”. Hence, the

worst case scenario for the server is when a large proportion of
the players gather in a small area for high intensity gameplay.
In such scenarios, the important metric for online multi-

player games is latency. Claypool et. al. [7] classify different
types of games and conclude that for first person shooter (FPS)
and racing games, the threshold for an acceptable latency
is 100ms. For other classes of networked games, like real-
time strategy (RTS) and massively multi-player online games
(MMOGs) players tolerate somewhat higher delays, but there
are still strict latency requirements in order to provide a good
QoE. The accumulated latency of network transmission, server
processing and client processing adds up to the latencies that
the user is experiencing, and reducing any of these latencies
improves the users’ experience.
The traditional design of massively multi-player game

servers rely on sharding for further load distribution when too
many players visit the same place simultaneously. Sharding
involves making a new copy of an area of a game, where
players in different copies are unable to interact. This approach
eliminates most requirements for communication between the
processes running individual shards. An example of such a
design can be found in [6].
The industry is now experimenting with implementations

that allow for a greater level of parallelization. One known ex-
ample is Eve Online [8] where they avoid sharding and allow
all players to potentially interact. Large-scale interactions in
Eve Online are handled through an optimized database. On the
local scale, however, the server is not parallel, and performance
is extremely limited when too many players congregate in
one area. With LEARS, we take this approach even further
and focus on how many players that can be handled in a
single segment of the game world. We present a model that
allows for better resource utilization of multi-processor, game
server systems which should not replace spatial partitioning
techniques for work distribution, but rather complement them
to improve on their limitations. Furthermore, a real prototype
game is used for evaluation where captured traces are used to
generate server load. We compare multi-threaded and single-
threaded implementations in order to measure the overhead of
parallelizing the implementation and showing the experienced
benefits of parallelization. The change in responsiveness of
different implementations with increased load on the server is

2012 41st International Conference on Parallel Processing Workshops

1530-2016/12 $26.00 © 2012 IEEE
DOI 10.1109/ICPPW.2012.55

382

201

studied, and we discuss how generic elements of this game
design impact the performance on our chosen platform of
implementation.
Our results indicate that it is possible to design an “em-
barrassingly parallel” game server. We also observe that the
implementation is able to handle a quadratic increase of in-
server communication when many players interact in a game-
world hotspot.
The rest of the paper is organized as follows: In section II,
we describe the basic idea of LEARS, before we present the
design and implementation of the prototype in section III. We
evaluate our prototype in section IV and discuss our idea in
section V. In section VI, we put our idea in the context of
other existing work. Finally, we summarize and conclude the
paper in section VII and give directions for further work in
section VIII.

II. LEARS: THE BASIC IDEA

Traditionally, game servers have been implemented much
like game clients. They are based around a main loop, which
updates every active element in the game. These elements
include for example player characters, non-player characters
and projectiles. The simulated world has a list of all the
active elements in the game and typically calls an “update”
method on each element. The simulated time is kept constant
throughout each iteration of the loop, so that all elements get
updates at the same points in simulated time. This point in time
is referred to as a tick. Using this method, the active element
performs all its actions for the tick. Since only one element
updates at a time, all actions can be performed directly. The
character reads input from the network, performs updates on
itself according to the input, and updates other elements with
the results of its actions.
LEARS is a game server model with support for lockless,
relaxed-atomicity state-parallel execution. The main concept
is to split the game server executable into lightweight threads
at the finest possible granularity. Each update of every player
character, AI opponent and projectile runs as an independent
work unit.
White et al. [15] describe a model they call a state-effect

pattern. Based on the observation that changes in a large,
actor-based simulation are happening simultaneously, they
separate read and write operations. Read operations work on a
consistent previous state, and all write operations are batched
and executed to produce the state for the next tick. This means
that the ordering of events scheduled to execute at a tick
does not need to be considered or enforced. For the design
in this paper, we additionally remove the requirement for
batching of write operations, allowing these to happen anytime
during the tick. The rationale for this relaxation is found
in the way traditional game servers work. In the traditional
single-threaded main-loop approach, every update is allowed
to change any part of the simulation state at any time. In such
a scenario the state at a given time is a combination of values

from two different points in time, current and previous, exactly
the same situation that occurs in the design presented here.
The second relaxation relates to the atomicity of game state
updates. The fine granularity creates a need for significant
communication between threads to avoid problematic lock
contentions. Systems where elements can only update their
own state and read any state without locking [1] do obviously
not work in all cases. However, game servers are not accurate
simulators, and again, depending on the game design, some
(internal) errors are acceptable without violating game state
consistency. Consider the following example: Character A
moves while character B attacks. If only the X coordinate
of character A is updated at the point in time when the attack
is executed, the attack sees character A at a position with the
new X coordinate and the old Y coordinate. This position is
within the accuracy of the simulation which in any case is no
better than the distance an object can move within one tick.
On the other hand, for actions where a margin of error is not
acceptable, transactions can be used keeping the object’s state
internally consistent. However, locking the state is expensive.
Fortunately, most common game actions do not require trans-
actions, an observation that we take advantage of in LEARS.
These two relaxations allow actions to be performed on
game objects in any order without global locking. It can be
implemented using message passing between threads and re-
tains consistency for most game actions. This includes actions
such as moving, shooting, spells and so forth. Consider player
A shooting at player B: A subtracts her ammunition state,
and send bullets in B’s general direction by spawning bullet
objects. The bullet objects runs as independent work units, and
if one of them hits player B, it sends a message to player B.
When reading this message, player B subtracts his health and
sends a message to player A if it reaches zero. Player A then
updates her statistics when she receives player B’s message.
This series of events can be time critical at certain points. The
most important point is where the decision is made if the bullet
hits player B. If player B is moving, the order of updates can
be critical in deciding if the bullet hits or misses. In the case
where the bullet moves first, the player does not get a chance
to move out of the way. This inconsistency is however not
a product of the LEARS approach. Game servers in general
insert active items into their loops in an arbitrary fashion, and
there is no rule to state which order is “correct”.
The end result of our proposed design philosophy is that
there is no synchronization in the server under normal run-
ning conditions. Since there are cases where transactions are
required, they can be implemented outside the LEARS event
handler running as transactions requiring locking. In the rest of
the paper, we consider a practical implementation of LEARS,
and evaluate its performance and scalability.

III. DESIGN AND IMPLEMENTATION

In our experimental prototype implementation of the
LEARS concept, the parallel approach is realized using thread
pools and blocking queues.

383

202

��������
�	
���

���
������

����������
������

��������
�	
���

��������
�������

�������
������

�������
��������

�������	

�

���	����

�
�
��

Figure 1. Design of the Game Server

A. Thread pool

Creation and deletion of threads incur large overheads, and
context switching is an expensive operation. These overheads
constrain how a system can be designed, i.e., threads should
be kept as long as possible, and the number of threads should
not grow unbounded. We use a thread pool pattern to work
around these constraints, and a thread pool executor (the
Java ThreadPoolExecutor class) to maintain the pool of
threads and a queue of tasks. When a thread is available, the
executor picks a task from the queue and executes it. The
thread pool system itself is not preemptive, so the thread runs
each task until it is done. This means that in contrast to normal
threading, each task should be as small as possible, i.e., larger
units of work should be split up into several sub-tasks.
The thread pool is a good way to balance the number of
threads when the work is split into extremely small units.
When an active element is created in the virtual world, it is
scheduled for execution by the thread pool executor, and the
active element updates its state exactly as in the single threaded
case. Furthermore, our thread pool supports the concept of
delayed execution. This means that tasks can be put into the
work queue for execution at a time specified in the future.
When the task is finished for one time slot, it can reschedule
itself for the next slot, delayed by a specified time. This allows
active elements to have any lifetime from one-shot executions
to the duration of the program. It also allows different elements
to be updated at different rates depending on the requirements
of the game developer.
All work is executed by the same thread pool, including the
slower I/O operations. This is a consistent and clear approach,
but it does mean that game updates could be stuck waiting for
I/O if there are not enough threads available.

B. Blocking queues

The thread pool executor used as described above does not
constrain which tasks are executed in parallel. All systems
elements must therefore allow any of the other elements to
execute concurrently.
To enable a fast communication between threads with shared

memory (and caches), we use blocking queues, using the Java
BlockingQueue class, which implements queues that are
synchronized separately at each end. This means that elements
can be removed from and added to the queue simultaneously,
and since each of these operations are extremely fast, the prob-
ability of blocking is low. In the scenario analysed here, all
active elements can potentially communicate with all others.
Thus, these queues allow information to be passed between
active objects. Each active object that can be influenced by
others has a blocking queue of messages. During its update,
it reads and processes the pending messages from its queue.
Messages are processed in the order they were put in the
queue. Other active elements put messages in the queue to
be processed when they need to change the state of other
elements in the game.
Messages in the queues can only contain relative informa-

tion, and not absolute values. This restriction ensures that the
change is always based on updated data. For example, if a
projectile needs to tell a player character that it took damage,
it should only inform the player character about the amount
of damage, not the new health total. Since all changes are put
in the queue, and the entire queue is processed by the same
work unit, all updates are based on up-to-date data.

C. Our implementation

To demonstrate LEARS, we have implemented a prototype
game containing all the basic elements of a full MMOG with
the exception of persistent state. The basic architecture of the
game server is described in figure 1. The thread pool size
can be configured, and will execute the different workloads
on the CPU cores. The workloads include processing of
network messages, moving computer controlled elements (in
this prototype only projectiles) checking for collisions and hits
and sending outgoing network messages.
Persistent state do introduce some complications, but as

database transactions are often not time critical and can usually
be scheduled outside peak load situations, we leave this to
future work.
In the game, each player controls a small circle ("the

character") with an indicator for which direction they are
heading (see figure 2). The characters are moved around by
pressing keyboard buttons. They also have two types of attack,
i.e., one projectile and one instant area of effect attack. Both
attacks are aimed straight ahead. If an attack hits another
player character, the attacker gets a positive point, and the
character that was hit gets a negative point. The game provides
examples of all the elements of the design described above:

• The player character is a long lifetime active object.
It processes messages from clients, updates states and
potentially produces other active objects (attacks). In

384

203

Figure 2. Screen shot of a game with six players.

addition to position, which all objects have, the player
also has information about how many times it has been
hit and how many times it has hit others. The player
character also has a message queue to receive messages
from other active objects. At the end of its update, it
enqueues itself for the next update unless the client it
represents has disconnected.

• The frontal cone attack is a one shot task that finds player
characters in its designated area and sends messages to
those hit so they can update their counters, as well as
back to the attacking player informing about how many
were hit.

• The projectile is a short lifetime object that moves in the
world, checks if it has hit anything and reschedules itself
for another update, unless it has hit something or ran to
the end of its range. The projectile can only hit one target.

To simulate an MMORPG workload that grow linearly
with number of players, especially collision checks with the
ground and other static objects, we have included a synthetic
load which emulates collision detection with a high-resolution
terrain mesh. The synthetic load ensures that the cache is
regularly flushed to enhance the realism of our game server
prototype compared to a large-scale game server.
The game used in these experiments is simple, but it
contains examples of all elements typically available in the
action based parts of a typical MMO-like game.
The system described in this paper is implemented in Java.
This programming language has strong support for multi-
threading and has well-tested implementations of all the re-
quired components. The absolute values resulting from these
experiments depend strongly on the complexity of the game,
as a more complex game would require more processing.

In addition, the absolute values depend on the runtime en-
vironment, especially the server hardware, and the choice of
programming language also influence absolute results from the
experiments. However, the focus of this paper is the relative
results, as we are interested in comparing scalability of the
multi-threaded solution with a single-threaded approach and
whether the multi-threaded implementation can handle the
quadratic increase in traffic as new players join.

IV. EVALUATION

To have a realistic behavior of the game clients, the game
was run with 5 human players playing the game with a game
update frequency of 10 Hz. The network input to the server
from this session was recorded with a timestamp for each
message. The recorded game interactions were then played
back multiple times in parallel to simulate a large number of
clients. To ensure that client performance is not a bottleneck,
the simulated clients were distributed among multiple physical
machines. Furthermore, as an average client generates 2.6 kbps
network traffic, the 1 Gbps local network interface that was
used for the experiments did not limit the performance. The
game server was run on a server machine containing 4 Dual-
Core AMD Opteron 8218 (2600 MHz) with 16 GB RAM.
To ensure comparable numbers, the server was taken down
between each test run.

A. Response latency

The most important performance metric for client-server
games is response latency from the server. From a player
perspective, latency is only visible when it exceeds a certain
threshold. Individual peaks in response time are obvious to
the players, and will have the most impact on the Quality of
Experience, hence we focus on peak values as well as averages
in the evaluation.
The experiments were run with client numbers ranging from
40 to 800 in increments of 40, where the goal is to keep the
latencies close to the 100 ms QoE threshold for FPS games [7].
Figure 3 shows a box-plot of the response time statistics from
these experiments. All experiments used a pool of 48 worker
threads and distributed the network connections across 8 IP
ports.
From these plots, we can see that the single-threaded
implementation is struggling to support 280 players at an
average latency close to 100 ms. The median response time
is 299 ms, and it already has extreme values all the way to
860 ms, exceeding the threshold for a good QoE. The multi-
threaded server, on the other hand, is handling the players
well up to 640 players where we are getting samples above 1
second, and the median is at 149 ms.
These statistics are somewhat influenced by the fact that the
number of samples is proportional to the update frequency.
This means that long update cycles to a certain degree get
artificially lower weight.
Figure 4 shows details of two interesting cases. In figure
4(a), the single-threaded server is missing all its deadlines
with 400 concurrent players, while the multi-threaded version

385

204

0
50

0
10

00
15

00
20

00
25

00

Number of concurrent clients

D
el

ay
 p

er
 s

ch
ed

ul
ed

 r
un

 (
m

s)

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800

(a) Single-threaded server

0
50

0
10

00
15

00
20

00
25

00

Number of concurrent clients

D
el

ay
 p

er
 s

ch
ed

ul
ed

 r
un

 (
m

s)

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800

(b) Multi-threaded server

Figure 3. Response time for single- and multi-threaded servers (dotted line is the 100 ms threshold).

� ���� ���� ���� ���� ����

��
�

��
�

��
�

��
	

��

��
�

��
������������������
�����������

�
�

�

��
 ! �������
"!�#
�� �������

$

$

$

$

$ $

$ $

$ $ $

�

�

�

�

� � �

� �

(a) 400 concurrent clients

� ���� ���� ���� ���� ����

��
�

��
�

��
�

��
	

��

��
�

��
������������������
�����������

�
�

�

��
 ! �������
"!�#
�� �������

$

$

$

$

$ $ $ $

�

�

�

�

�

�

� �

$ $

(b) 800 concurrent clients

Figure 4. CDF of response time for single- and multi-threaded servers with 400 and 800 concurrent clients.

20
0

40
0

60
0

80
0

C
P

U
 lo

ad
 (

%
)

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Seconds since start of test

R
es

po
ns

e
tim

e
(s

)

Figure 5. CPU load and response time for 620 concurrent clients on the
multi-threaded server.

is processing almost everything on time. At 800 players
(figure 4(b)), the outliers are going much further for both cases.
Here, even the multi-threaded implementation is struggling to
keep up, though it is still handling the load significantly better
than the single-threaded version, which is generally completely
unplayable.

B. Resource consumption

We have investigated the resource consumption when play-
ers connect to the multhreaded server as shown in figure 5. We
present the results for 620 players, as this is the highest number
of simultaneous players that server handles before significant
degradation in performance, as shown in figure 3(b). The mean
response time is 133 ms, above the ideal delay of 100 ms.
Still, the server is able to keep the update rate smooth, without
significant spikes. The CPU utilization grows while the clients
are logging on, then stabilizes at an almost full CPU utilization
for the rest of the run. The two spikes in response time happen
while new players log in to the server at a very fast rate (30
clients pr. second). Receiving a new player requires a lock in

386

205

0 50 100 150 200 250

0
50

0
10

00
15

00
20

00
25

00

Number of threads in threadpool

D
el

ay
 p

er
 s

ch
ed

ul
ed

 r
un

 (
m

s)

Figure 6. Response time for 700 concurrent clients on using varying number
of threads. Shaded area from 5 to 95 percentiles.

the server, hence this operation is, to a certain degree, serial.

C. Effects of thread-pool size

To investigate the effects of the number of threads in the
threadpool, we performed an experiment where we kept the
number of clients constant while varying the number of threads
in the pool. 700 clients were chosen, as this number slightly
overloads the server. The number of threads in the pool was
increased in increments of 2 from 2 to 256. In figure 6,
we see clearly that the system utilizes more than 4 cores
efficiently, as the 4 thread version shows significantly higher
response times. At one thread per core or more, the numbers
are relatively stable, with a tendency towards more consistent
low response times with more available threads, to about 40
threads. This could mean that threads are occasionally waiting
for I/O operations. Since thread pools are not pre-emptive,
such situations would lead to one core going idle if there are
no other available threads. Too many threads, on the other
hand, could lead to excessive context switch overhead. The
results show that the average is slowly increasing after about
50 threads, though the 95-percentile is still decreasing with
increased number of threads, up to about 100. From then on
the best case is worsening again most likely due to context
switching overhead.
A game developer needs to consider this trade-off when
tuning the parameters for a specific game.

V. DISCUSSION

Most approaches to multi-threaded game server implemen-
tations in the literature (e.g., [1]) use some form of spatial
partitioning to lock parts of the game world while allowing
separate parts to run in parallel. Spatial partitioning is also
used in other situations to limit workload. The number of play-
ers that game designers can allow in one area in a game server
is limited by the worst-case scenario. The worst case scenario
for a spatially partitioned game world is when everybody move

to the same point, where the spatial partitioning still ends up
with everybody in the same partition regardless of granularity.
This paper investigates an orthogonal and complementary
approach which tries to increase the maximum number of users
in the worst case scenario where all players can see each other
at all times. Thus, spatial partitioning could be added to further
scale the game server.
Experiments using multiple instances of a single-threaded
server are not performed, as having clients distribueted acrosss
multiple servers would mean partitioning the clients in areas
where they can not interact, making numbers from such a
scenario incomparable to the multithreaded solutions.
The LEARS approach does have limitations and is for ex-
ample not suitable if the outcome of a message put restrictions
on an object’s state. This is mainly a game design issue, but
situations such as trades can be accommodated by doing full
transactions. The following example where two players trade
illustrates the problem: Player A sends a message to player B
where he proposes to buy her sword for X units. After this
is sent, player C steals player A’s money, and player A is
unable to pay player B should the request go through. This is
only a problem for trades within a single game tick where the
result of a message to another object puts a constraint on the
original sender, and can be solved by means such as putting
the money in escrow until the trade has been resolved, or by
doing a transaction outside of LEARS (such as in a database).
Moreover, the design also adds some overhead in that the code
is somewhat more complex, i.e., all communication between
elements in the system needs to go through message queues.
The same issue will also create some runtime overhead, but
our results still demonstrate a significant benefit in terms of
the supported number of clients.
Tasks in a thread pool can not be pre-empted, but the threads

used for execution can. This distinction creates an interesting
look into the performance trade-off of pre-emption. If the
number of threads in the threadpool is equal to the number of
CPU cores, we have a fully cooperative multitasking system.
Increasing the number of threads allow for more pre-emption,
but introduces context-switching overhead.

VI. RELATED WORK

At Netgames 2011 [12], we presented a demo with a
preliminary version of LEARS. Significant research has been
done on how to optimize game server architectures for online
games, both MMOGs and smaller-scale games. In this section,
we summarize some of the most important findings from
related research in this field. For example, "Red Dwarf",
the community-based successor to "Project Darkstar" by Sun
Microsystems [13], is a good example of a parallel approach to
game server design. Here, response time is considered one of
the most important metrics for game server performance, and
suggests a parallel approach for scaling. The described system
uses transactions for all updates to world state, including
player position. This differs from LEARS, which investigates
the case for common actions where atomicity of transactions
is not necessary.

387

206

Work has also been done on scaling games by looking at
the optimization as a data management problem. The authors
in [14] have developed a highly expressive scripting language
called SGL that provides game developers a data-driven AI
scheme for non-player characters. By using query processing
and indexing techniques, they can efficiently scale to a large
number of non-player objects in games. This group also
introduces the concept state-effect pattern in [15], which we
extend in this paper. They test this and other parallel concepts
using a simulated actor interaction model, in contrast to this
paper which evaluates a running prototype of a working games
under realistic conditions.
Moreover, Cai et al. [4] present a scalable architecture
for supporting large-scale interactive Internet games. Their
approach divides the game world into multiple partitions and
assigns each partition to a server. The issues with this solution
is that the architecture of the game server is still a limiting
factor in worst case scenarios as only a limited number of
players can interact in the same server partition at a given time.
There have also been proposed several middleware systems
for automatically distributing the game state among several
participants. In [9], the authors present a middleware which
allows game developers to create large, seamless virtual worlds
and to migrate zones between servers. This approach does,
however, not solve the challenge of many players that want
to interact in a popular area. The research presented in [10]
shows that proxy servers are needed to scale the number of
players in the game, while the authors discuss the possibility
of using grids as servers for MMOGs. Beskow et al. [3] have
also been investigating partitioning and migration of game
servers. Their approach uses core selection algorithms to locate
the most optimal server. We have worked on how to reduce
latency by modifying the TCP protocol to better support time-
dependent applications [11]. However, the latency is not only
determined by the network, but also the response time for the
game servers. If the servers have a too large workload, the
latency will suffer.
In [2], the authors are discussing the behavior and per-
formance of multi-player game servers. They find that in
the terms of benchmarking methodology, game servers are
very different from other scientific workloads. Most of the
sequentially implemented game servers can only support a
limited numbers of players, and the bottlenecks in the servers
are both game-related and network-related. The authors in [1]
extend their work and use the computer game Quake to study
the behavior of the game. When running on a server with up
to eight processing cores the game suffers because of lock
synchronization during request processing. High wait times
due to workload imbalances at global synchronization points
are also a challenge.
A large body of research exits on how to partition the
server and scale the number of players by offloading to several

servers. Modern game servers have also been parallelized
to scale with more processors. However, a large amount of
processing time is still wasted on lock synchronization, or the
scaling is limited by partitioning requirements. In our game
server design, we provide a complementary solution and try
to eliminate the global synchronization points and locks, i.e.,
making the game server “embarrassingly parallel” which aims
at increasing the number of concurrent users per machine.

VII. CONCLUSION

In this paper, we have shown that we can improve resource
utilization by distributing load across multiple CPUs in a uni-
fied memory multi-processor system. This distribution is made
possible by relaxing constraints to the ordering and atomicity
of events. The system scales well, even in the case where all
players must be aware of all other players and their actions.
The thread pool system balances load well between the cores,
and its queue-based nature means that no task is starved unless
the entire system lacks resources. Message passing through
the blocking queue allows objects to communicate intensively
without blocking each other. Running our prototype game, we
show that the 8-core server can handle twice as many clients
before the response time becomes unacceptable.

VIII. FUTURE WORK

From the research described in this paper, a series of further
experiments present themselves. The relationship between
linearly scaling load and quadratic load can be tweaked in our
implementation. This could answer questions about which type
of load scale better under multi-threaded implementations.
Ideally, the approach presented here should be implemented
in a full, complete massive multiplayer game. This should
give results that are fully realistic, at least with respect to
this specific game.
Another direction this work could be extended is to go
beyond the single shared memory computer used and distribute
the workload across clusters of computers. This could be
achieved by implementing cross-server communication di-
rectly in the server code, or by using existing technology that
makes cluster behave like shared memory machines.
Furthermore, all experiments described here were run with
an update frequency of 10 Hz. This is good for many types
of games, but different frequencies are relevant for different
games. Investigating the effects of running with a higher or
lower frequency of updates on server performance could yield
interesting results.
If, during the implementation of a complex game, it is
shown that some state changes must be atomic to keep the
game state consistent, the message passing nature of this
implementation means that we can use read-write-locks for
any required blocking. If such cases are found, investigat-
ing how read-write-locking influence performance would be
worthwhile.

388

207

REFERENCES

[1] A. Abdelkhalek and A. Bilas. Parallelization and performance of
interactive multiplayer game servers. In Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS), page 72, april
2004.

[2] A. Abdelkhalek, A. Bilas, and A. Moshovos. Behavior and performance
of interactive multi-player game servers. Cluster Computing, 6:355–366,
October 2003.

[3] P. B. Beskow, G. A. Erikstad, P. Halvorsen, and C. Griwodz. Evaluating
ginnungagap: a middleware for migration of partial game-state utilizing
core-selection for latency reduction. In Proceedings of the 8th Annual
Workshop on Network and Systems Support for Games (NetGames),
pages 10:1–10:6, 2009.

[4] W. Cai, P. Xavier, S. J. Turner, and B.-S. Lee. A scalable architecture
for supporting interactive games on the internet. In Proceedings of the
sixteenth workshop on Parallel and distributed simulation (PADS), pages
60–67, 2002.

[5] K.-T. Chen and C.-L. Lei. Network game design: hints and implications
of player interaction. In Proceedings of the workshop on Network and
system support for games (NetGames), 2006.

[6] H. S. Chu. Building a simple yet powerful mmo game ar-
chitecture. http://www.ibm.com/developerworks/architecture/library/ar-
powerup1/, Sept. 2008.

[7] M. Claypool and K. Claypool. Latency and player actions in online
games. Communications of the ACM, 49(11):40–45, Nov. 2005.

[8] B. Drain. Eve evolved: Eve online’s server model.
http://massively.joystiq.com/2008/09/28/eve-evolved-eve-onlines-
server-model/, Sept. 2008.

[9] F. Glinka, A. Ploß, J. Müller-lden, and S. Gorlatch. Rtf: a real-
time framework for developing scalable multiplayer online games. In
Proceedings of the workshop on Network and system support for games
(NetGames), pages 81–86, 2007.

[10] J. Müller and S. Gorlatch. Enhancing online computer games for grids.
In V. Malyshkin, editor, Parallel Computing Technologies, volume 4671
of Lecture Notes in Computer Science, pages 80–95. Springer Berlin /
Heidelberg, 2007.

[11] A. Petlund. Improving latency for interactive, thin-stream applications
over reliable transport. Phd thesis, Simula Research Laboratory /
University of Oslo, Unipub, Oslo, Norway, 2009.

[12] K. Raaen, H. Espeland, H. K. Stensland, A. Petlund, P. Halvorsen, and
C. Griwodz. A demonstration of a lockless, relaxed atomicity state
parallel game server (LEARS). In Proceedings of the workshop on
Network and system support for games (NetGames), pages 1–3, 2011.

[13] J. Waldo. Scaling in games and virtual worlds. Commun. ACM, 51:38–
44, Aug. 2008.

[14] W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan.
Scaling games to epic proportions. In Proceedings of the international
conference on Management of data (SIGMOD), pages 31–42, 2007.

[15] W. White, B. Sowell, J. Gehrke, and A. Demers. Declarative processing
for computer games. In Proceedings of the ACM SIGGRAPH symposium
on Video games (Sandbox), pages 23–30, 2008.

389

208

Paper VII: P2G: A Framework for
Distributed Real-Time Processing of
Multimedia Data

Title: P2G: A Framework for Distributed Real-Time Processing of Multimedia Data [31].

Authors: H. Espeland, P. B. Beskow, H. K. Stensland, P. N. Olsen, S. B. Kristoffersen,
C. Griwodz, and P. Halvorsen.

Published: Proceedings of the International Workshop on Scheduling and Resource
Management for Parallel and Distributed Systems (SRMPDS) - The 2011 Inter-
national Conference on Parallel Processing Workshops, IEEE, 2011.

209

210
. Paper VII: P2G: A Framework for Distributed Real-Time Processing of Multimedia

Data

P2G: A Framework for Distributed Real-Time
Processing of Multimedia Data

Håvard Espeland, Paul B. Beskow, Håkon K. Stensland, Preben N. Olsen,
Ståle Kristoffersen, Carsten Griwodz, Pål Halvorsen

Department of Informatics, University of Oslo, Norway
Simula Research Laboratory, Norway

Email: {haavares, paulbb, haakonks, prebenno, staalebk, griff, paalh}@ifi.uio.no

Abstract—The computational demands of multimedia data
processing are steadily increasing as consumers call for pro-
gressively more complex and intelligent multimedia services.
New multi-core hardware architectures provide the required
resources, but writing parallel, distributed applications remains
a labor-intensive task compared to their sequential counter-part.
For this reason, Google and Microsoft implemented their respec-
tive processing frameworks MapReduce [10] and Dryad [19], as
they allow the developer to think sequentially, yet benefit from
parallel and distributed execution. An inherent limitation in the
design of these batch processing frameworks is their inability to
express arbitrarily complex workloads. The dependency graphs
of the frameworks are often limited to directed acyclic graphs,
or even pre-determined stages. This is particularly problematic
for video encoding and other algorithms that depend on iterative
execution.
With the Nornir runtime system for parallel programs [39],

which is a Kahn Process Network implementation, we addressed
and solved several of these limitations. However, it is more
difficult to use than other frameworks due to its complex pro-
gramming model. In this paper, we build on the knowledge gained
from Nornir and present a new framework, called P2G, designed
specifically for developing and processing distributed real-time
multimedia data. P2G supports arbitrarily complex dependency
graphs with cycles, branches and deadlines, and provides both
data- and task-parallelism. The framework is implemented to
scale transparently with available (heterogeneous) resources, a
concept familiar from the cloud computing paradigm. We have
implemented an (interchangeable) P2G kernel language to ease
development. In this paper, we present a proof of concept
implementation of a P2G execution node and some experimental
examples using complex workloads like Motion JPEG and K-
means clustering. The results show that the P2G system is a
feasible approach to multimedia processing.

I. INTRODUCTION

Live, interactive multimedia services are steadily growing
in volume. Interactively refined video search, dynamic par-
ticipation in video conferencing systems and user-controlled
views in live media transmissions are a few examples of
features that future consumers will expect when they consume
multimedia content. New usage patterns, such as extracting
features in pictures to identify objects, calculation of 3D
depth information from camera arrays, or generating free-
view videos from multiple camera sources in real-time, add
further magnitudes of processing requirements to already

computationally intensive tasks like traditional video encoding.
This fact is further exacerbated by the advent of high-definition
videos.
Many-core systems, such as graphic processor units (GPUs),

digital signal processors (DSPs) and large scale distributed
systems in general, provide the required processing power, but
taking advantage of the parallel computational capacity of such
hardware is much more complex than single-core solutions. In
addition, heterogeneous hardware requires individual adapta-
tion of the code, and often involve domain specific knowledge.
All this places additional burdens on the application developer.
As a consequence, several frameworks have emerged that aim
at making distributed application development and processing
easier, such as Google’s MapReduce [10] and Microsoft’s
Dryad [19]. These frameworks are limited by their design
for batch processing of large amounts of data, with few
dependencies across a large cluster of machines. Modifications
and enhancements that address bottlenecks [8] together with
support for new types of workloads and additional hard-
ware exist [9], [16], [31]. It is also worth mentioning that
new languages for current batch frameworks have been pro-
posed [29], [30]. However, the development and processing of
distributed multimedia applications is inherently more difficult.
Multimedia applications also have stricter requirements for
flexibility. Support for iterations is essential, and knowledge of
deadlines is often imperative. The traditional batch processing
frameworks do not support this.
In our Nornir runtime system for parallel processing [39],

we addressed many of the shortcomings of the batch process-
ing frameworks. Nornir is based on the idea of Kahn Process
Networks (KPN). Compared to MapReduce-like approaches,
Nornir adds support for arbitrary processing graphs, determin-
istic execution, etc. However, KPNs are designed with some
unrealistic assumptions (like unlimited queue sizes), and the
Nornir programming model is much more complex than that
of frameworks like MapReduce and Dryad. It demands that
the application developer establishes communication channels
manually to form the dependency graph.
In this paper, we expand on our visions and present our
initial ideas of P2G. It is a completely new framework for
distributed real-time multimedia processing. P2G is designed

211

to work on continuous flows of data, such as live video
streams, while still maintaining the ability to support batch
workloads. We discuss the initial ideas and present a proof-
of-concept prototype1 running on x86 multi-core machines.
We present experimental results using concrete multimedia
examples. Our main conclusion is that the P2G approach is a
step in the right direction for development and execution of
complex parallel workloads.

II. RELATED WORK

A lot of research has been dedicated to addressing the
challenges introduced by parallel and distributed program-
ming. This has led to the development of a number of
tools, programming languages and frameworks to ease the
development effort.
For example, several solutions have emerged for simplifying
distributed processing of large quantities of data. We have
already mentioned Google’s MapReduce [10] and Microsoft’s
Dryad [19]. In addition, you have IBM’s System S and ac-
companying programming language SPADE [13]. Yahoo have
also implemented a programming language with their PigLatin
language [29], other notable mentions for increased language
support is Cosmos [26], Scope [6], CIEL [25], SNAPPLE [40]
and DryadLINQ [41]. The high-level languages provide easy
abstractions for the developers in an environment where mis-
takes are hard to correct.
Dryad, Cosmos and System S have many properties in
common. They all use directed graphs to model computations
and execute them on a cluster. System S also supports cycles
in graphs, while Dryad supports non-deterministic constructs.
However, not much is known about these systems, since no
open implementations are freely available. MapReduce on the
other hand has become one of the most cited paradigms for
expressing parallel computations. While Dryad and System
S use a task parallel model, MapReduce uses a data-parallel
model based on keys and values. There are several imple-
mentations of MapReduce for clusters [1], multi-core [31],
the Cell BE architecture [9], and also for GPUs [16]. Map-
Reduce-Merge [8] adds a merge step to process data rela-
tionships among heterogeneous data sets efficiently, operations
not directly supported by the original MapReduce model. In
Oivos [35], the same issues are addressed, but in addition, this
system provides a more expressive, declarative programming
model. Finally, reducing the layering overhead of software
running on top of MapReduce is the goal of Cogset [36] where
the processing architecture is changed to increase performance.
An inherent limitation in MapReduce, Dryad and Cosmos
is their inability to model iterative algorithms. In addition,
the rigid MapReduce semantics do not map well to all types
of problems [8], which may lead to unnaturally expressed
solutions and decreased performance [38]. The limited support
for iterative algorithms has been mitigated in HaLoop [5], a
fork of Hadoop optimized for batch processing of iterative

1The P2G source code and workload examples are available for download
from http://www.p2gproject.org/.

Figure 1. Overview of nodes in the P2G system.

algorithms where data is kept local for future iterations of the
MR steps. However, the programming model of MapReduce
is designed for batch processing huge datasets, and not well
suited for multimedia algorithms. Finally, Google’s patent on
MapReduce [11] may prompt commercial actors to look for
an alternative framework.

KPN-based frameworks are one such alternative. KPNs
support arbitrary communication graphs with cycles and are
deterministic. However, in practice, very few general-purpose
KPN runtime implementations exist. Known implementations
include the Sesame project [34], the process network frame-
work [28], YAPI [22] and our own Nornir [39]. These frame-
works have several benefits, but for application developers, the
KPN model has some challenges, particularly in a distributed
scenario. To mention some issues, a distributed version of a
KPN implementation requires a distributed deadlock detec-
tion and a developer must specify communication channels
between the processes manually.

An alternative framework based on a process network
paradigm is StreamIt [15], which comprises a language and a
runtime system for simplifying the implementation of stream
programs described by a graph that consists of computational
blocks (filters) with a single input and output. Filters can be
combined in fork-join patterns and loops, but must provide
bounds on the number of produced and consumed messages,
so a StreamIt graph is actually a synchronous data-flow
process network [23]. The compiler produces code that can
make use of multiple machines or CPUs, whose number is
specified at compile-time, i.e., a compiled application cannot
adapt to resource availability.

The processing and development of distributed multime-
dia applications is inherently more difficult than traditional
sequential batch applications. Multimedia applications have
strict requirements and knowledge of deadlines is necessary,
especially in a live scenario. For multimedia applications that
enable live communication, iterative processing is essential.
Also, elastic scaling with the available resources becomes
imperative when the workload, requirements or machine re-
souces change. Thus, all of the existing frameworks have some
short-comings that are difficult to address, and the traditional
batch processing frameworks simply come up short in our
multimedia scenario. Next, inspired by the strengths of the
different approach, we present our ideas for a new framework
for distributed real-time multimedia processing.

212

III. BASIC IDEA

The idea of P2G was born out of the observation that
most distributed processing framework lack support for real-
time multimedia workloads, and that data or task parallelism,
two orthogonal dimensions for expressing parallelism, is often
sacrificed in existing frameworks. With data parallelism, mul-
tiple CPUs perform the same operation over multiple disjoint
data chunks. Task parallelism uses multiple CPUs to perform
different operations in parallel. Several existing frameworks
optimize for either task or data parallelism, not both. In
doing so, they can severely limit the ability to express the
parallelism of a given workload. For example, MapReduce
and its related approaches provide considerable power for
parallelization, but restrict runtime processing to the domain of
data parallelism [12]. Functional languages such as Erlang [3]
and Haskell [18] and the event-based SDL [21], map well
to task parallelism. Programs are expressed as communicating
processes either through message passing or event distribution,
which makes it difficult to express data parallelism without
specifying a fixed number of communication channels.
In our multimedia scenario, Nornir improves on many of the
shortcomings of the traditional batch processing frameworks,
like MapReduce and Dryad. KPNs are deterministic; each
execution of a process network produces the same output
given the same input. KPNs support also arbitrary com-
munication graphs (with cycles/iterations), while frameworks
like MapReduce and Dryad restrict application developers
to a parallel pipeline structure and directed acyclic graphs
(DAGs). However, Nornir is task-parallel, and data-parallelism
must be explicitly added by the programmer. Furthermore,
as a distributed, multi-machine processing framework, Nornir
still has some challenges. For example, the message-passing
communication channels, having exactly one sender and one
receiver, are modeled as infinite FIFO queues. In real-life
distributed implementations, however, queue length is limited
by available memory. A distributed Nornir implementation
would therefore require a distributed deadlock detection al-
gorithm. Another issue is the complex programming model.
The KPN model requires the application developer to specify
the communication channels between the processes manually.
This requires the developer to think differently than for other
distributed frameworks.
With P2G, we build on the knowledge gained from devel-
oping Nornir and address the requirements from multimedia
workloads, with inherent support for deadlines. A particu-
larly desirable feature for processing multimedia workloads
includes automatic combined task and data parallelism. Intra-
frame prediction in H.264 AVC, for example, introduces many
dependencies between sub-blocks of a frame, and together
with other overlapping processing stages, these operations
have a high potential for benefiting from both types of par-
allelism. We demonstrated the potential in earlier work with
Nornir, whose deterministic nature showed great paralleliza-
tion potential in processing arbitrary dependency graphs.
Multimedia algorithms being iterative by nature exhibit

many pipeline parallel opportunities. Exploiting them are hard
because intrinsic knowledge of fine-grained dependences are
required, and structuring programs in such a way that pipeline
parallelism can be used is difficult. Thies et al. [33] wrote
an analysis tool for finding parallel pipeline opportunities by
evaluating memory accesses assuming that the behaviour is
stable. They evaluated their system on multimedia algorithms
and gained significantly increased parallelism by utilizing the
complex dependencies found. In the P2G framework, applica-
tion developers model data and task dependencies explicitly,
and this enable the runtime to automatically detect and take
full advantage of all parallel opportunities without manual
intervention.
A major source of non-determinism in other languages and
frameworks lies in the arbitrary order of read and write opera-
tions from and to memory. The source of this non-deterministic
behavior can be removed by adopting strict write-once seman-
tics for writing to memory [4]. Languages that take advantage
of the concept of single assignment include Erlang [3] and
Haskell [18]. It enables schedulers to determine when code
depending on a memory cell is runnable. This is a key concept
that we adopted for P2G. While write-once-semantics are well-
suited for a scheduler’s dependency analysis, it is not straight-
forward to think about multimedia algorithms in the functional
terms of Erlang and Haskell. Multimedia algorithms tend to be
formulated in terms of iterations of sequential transformation
steps. They act on multi-dimensional arrays of data (e.g.,
pixels in a picture) and provide frequently very intuitive
data partitioning opportunities (e.g., 8x8-pixel macro-blocks
of a picture). Prominent examples are the computation-heavy
MPEG-4 AVC encoding [20] and SIFT [24] pipelines. Both are
also examples of algorithms whose subsequent steps provide
data decomposition opportunities at different granularities and
along different dimensions of input data. Consequently, P2G
should allow programmers to think in terms of fields without
loosing write-once-semantics.
Flexible partitioning requires the processing of clearly dis-
tinct data units without side-effects. The idea adopted for P2G
is to use kernels as in stream processing [15], [27]. Such
a kernel is written once and describes the transformation of
multi-dimensional fields of data. Where such a transformation
is formulated as a loop of equal steps, the field should instead
be partitioned and the kernel instantiated to achieve data-
parallel execution. Each of these data partitions and tasks can
then be scheduled independently by the schedulers, which can
analyze dependencies and guarantee fully deterministic output
independent of order due to the write-once semantics of fields.
Together, these observations determined four basic ideas for
the design of P2G:

• The use of multi-dimensional fields as the central con-
cept for storing data in P2G to achieve straight-forward
implementations of complex multimedia algorithms.

• The use of kernels that process slices of fields to achieve
data decomposition.

• The use of write-once semantics to such fields to achieve
deterministic behavior.

213

• The use of runtime dependency analysis at a granularity
finer than entire fields to achieve task decomposition
along with data decomposition.

Within the boundaries of these basic ideas, P2G should be
easily accessible for programmers who only need to write
isolated, sequential pieces of code embedded in kernel def-
initions. The multi-dimensional fields offer a natural way to
express multimedia data, and provide a direct way for kernels
to fetch slices of a field in as fine a granularity as possible,
supporting data parallelism.
P2G is designed to be language independent, however, we
have defined a C-like language that captures many of P2G’s
central concepts. As such, the P2G language is inspired by
many existing languages. In fact, Cray’s Chapel [7] language
antedates many of P2G’s features in a more complete manner.
P2G adds, however, write-once semantics and support for
multimedia workloads. Furthermore, P2G programs consist
of interchangeable language elements that formulate data
dependencies between implicitly instantiated kernels, which
are (currently) written in C/C++.
The biggest deviation from most other modern language
designs is that the P2G kernel language makes both message
passing and parallelism implicit and allows users to think in
terms of sequential data transformations. Furthermore, P2G
supports deadlines, which allows scheduling decisions such as
termination, branching and the use of alternative code paths
based on runtime observations.
In summary, we have opted for an idea that allows pro-
grammers to focus on data transformations in a sequential
manner, while simultaneously providing enough information
for dynamically adapting the data and task parallelization.
As an end result of our considerations. P2G’s fields look
mostly like global multi-dimensional arrays in C, although
their representation in memory may deviate, i.e., they need not
be placed contiguously in the memory of a single node, and
may even be distributed across multiple machines. Although
this looks contrary to our message-based KPN approach used
in Nornir, it maps well when slices of fields are interpreted
as messages and the run-queues of worker threads as KPN
channels. An obvious difference is that fields can be read as
often as necessary.

IV. ARCHITECTURE

As shown in figure 1, the P2G architecture consists of
a master node and an arbitrary number of execution nodes.
Each execution node reports its local topology (a graph of
multi-core and single-core CPUs and GPUs, connected by
various kinds of buses and other networks) to the master node,
which combines this information into a global topology of
available resources. As such, the global topology can change
during runtime as execution nodes are dynamically added and
removed to accommodate for changes in the global load.
To maximize throughput, P2G uses a two-level scheduling
approach. On the master node, we have a high-level sched-
uler (HLS), and on the execution node(s), we use a low-
level scheduler (LLS). The HLS can analyze a workloads

Figure 2. Intermediate implicit static dependency graph

Figure 3. Final implicit static dependency graph

store and fetch statements, from which it can generate an
intermediate implicit static dependency graph (see figure 2)
where edges connecting two kernels through a field can be
merged, circumventing the need for a vertex representing the
field (as seen in figure 3). From the intermediate graph, the
HLS can then derive a final implicit static dependency graph
(see figure 3). The HLS can then use a graph partitioning [17]
or search based [14] algorithm to partition the workload into
a suitable number of components that can be distributed to,
and run, on the resources available in the topology. Using
instrumentation data collected from the nodes executing the
workload the final graph can be weighted with this profiling
data during runtime. The weighted final graph can then be
repartitioned, with the intent of improving the throughput in
the system, or accommodate for changes in the global load.
Given a partial workload (such as partition A from figure 3),

an LLS at an execution node is responsible for maximizing lo-
cal scheduling decisions. We discuss this further in section V,
but figure 4 shows how the LLS can combine tasks and data
to minimize overhead introduced by P2G, and take advantage
of specialized hardware, such as GPUs.
This idea of using a two level scheduling approach is not
new. It has also been considered by Roh et al. [32], where they
have performed simulations on parallel scheduling decisions
for instruction sets of a functional language. Simple workloads
are mapped to various simulated architectures, using a "merge-

214

up" algorithm, which is equivalent to our LLS, and "merge-
down" algorithm, which is equivalent to our HLS. These
algorithms cluster instructions in such a way that parallelism
is not limited, their conclusion is that utilizing a merge-down
strategy often is better.
Data distribution, reporting, and other communication pat-
terns is achieved in P2G through an event-based, distributed
publish-subscribe model. Dependencies between components
in a workload are deterministically derived from the code
and the high-level schedulers partitioning decisions, and direct
communication occurs.
As such, P2G relies on its combination of a HLS, LLS,
instrumentation data and the global topology to make best
use of the performance of several heterogeneous cores in a
distributed system.

V. PROGRAMMING MODEL

The programming model of P2G consists of two central
concepts, the implicit static dependency graph (figures 2
and 3) and the dynamically created directed acyclic depen-
dency graph (DC-DAG) (figure 4). We have also developed a
kernel language (see figure 5), to make it easier to develop
applications using the P2G programming model, though we
consider this language to be interchangeable.
The example we use throughout this discussion consists of
two primary kernels: mul2 and plus5. These two kernels form
a pipeline where mul2 first multiples a value by 2 and stores
this data, which plus5 then fetches and increases by 5, mul2
then fetches the data stored by plus5, and so on. The print
kernel runs orthogonally to these two kernels and fetches and
writes the data they have produced to cout. In combination,
these three kernels form a cycle. The kernel init runs only
once and writes some initial data for mul2 to consume. The
kernels operate on two 1-dimensional, 5 element fields. The
print kernel writes {10, 11, 12, 13, 14}, {20, 22, 24, 26, 28} for
the first age and {25, 27, 29, 31, 33}, {50, 54, 58, 62, 66} for
the second, etc (as seen in figure 4). As such, the first iteration
produces the data: {10, 11, 12, 13, 14}, {20, 22, 24, 26, 28}
and {25, 27, 29, 31, 33}, and the second iteration produces
the data: {50, 54, 58, 62, 66} and {55, 59, 63, 67, 71}, etc.
Since there is no termination condition for this program it runs
indefinitely.

A. Dependency graphs

The intermediate implicit static dependency graph (as seen
in figure 2) is derived from the interaction between fields and
kernel definitions, more precisely from the fetch and store
statements of a kernel definition. This intermediate graph can
be further refined by merging the edges of kernels linked
through a field vertex, resulting in a final implicit static
dependency graph, as depicted in figure 3. This final graph
can serve as input to the HLS, which can use it to determine
how best to partition the workload given a global topology.
The graph can be further weighted using instrumentation data,
to serve as input for repartitioning. It is important to note
that these weighted graphs can serve as input to static offline

analysis. For example, it could be used as input to a simulator
to best determine how to initially configure a workload, given
various global topology configurations.
During runtime, the intermediate implicit static dependency
graph is expanded to form a dynamically created directed
acyclic dependency graph, as seen in figure 4. This expansion
from a cyclic graph to a directed acyclic graph occurs as a
result of our write-once semantics. As such, we can see how
P2G is designed to unroll loops without introducing implicit
barriers between iteration. We have chosen to call each such
unrolled loop an Age. The LLS can then use the DC-DAG
to combine tasks and data to reduce overhead introduced by
P2G and to take advantage of specialized hardware, such as
GPUs. It can then try different combinations of these low-level
scheduling decisions to improve the throughput of the system.
We can see how this is accomplished in figure 4. When
moving from Age=1 to Age=2, we can see how the LLS has
made a decision to reduce data parallelity. In P2G, kernels
fetch slices of data, and initially mul2 was defined to work on
each single field entry in parallel, but in Age=2, the LLS has
decreased the granularity of the fetch statement to encompass
the entire field. It could also have split the field in two, leading
to two kernel instances of mul2, working on disparate sets of
the field.
Moving from Age=2 to Age=3, we see how the LLS
has made a decision to decrease the task parallelity. This is
possible because mul2 and plus5 effectively form a pipeline,
information that is available from the static graphs. By com-
bining these two tasks, the individual store operations of the
tasks are deferred until the data has been fully processed by
each task. If the print kernel was not present, storing to the
intermediate field m_data could be circumvented in its entirety.
Finally, moving from Age=3 to Age=4, we can see how
a decision to decrease both task and data parallelity has
been taken. This renders this single kernel instance effectively
instance into a classical for-loop, working on each data el-
ement of the field, with each task (mul2, plus5) performed
sequentially on the data.
P2G makes runtime adjustments dynamically to both data
and task parallelism based on the possibly oscillating resource
availability and the reported performance monitoring.

B. Kernel language

From our experience with developing Nornir, we came
to the realization that expressing workloads in a framework
capable of supporting such complex graphs without a high-
level language is a difficult task. We have therefore developed
a kernel language. An implementation of a simple workload is
outlined in figure 5, with a C++ equivalent listed in figure 6.
In the current version of our system, P2G is exposed to the
developer through this kernel language. The language itself
is not an integral part and can be replaced easily. However, it
exposes several foundations of the P2G design. Most important
are the kernel and field definitions, which describe the code
and interaction patterns in P2G.

215

Figure 4. Dynamically created directed acyclic dependency graph (DC-DAG)

Figure 5. Kernel and field definitions

A kernel definition’s primary purpose is to describe the
required interaction of a kernel instance with an arbitrary
number of fields (holding the application data) through the
fetch and store statements. As such, a field serves as an
interaction point for kernel definitions, as can be seen in
figure 2.

An important aspect of multimedia workloads is the ability
to express deadlines, where it does not make sense to encode
a frame if the playback has moved past that point in the

void print(int *data, int num)
{

for(int i = 0; i < num; ++i)
std::cout << data[i] << " ";

std::cout << std::endl;
}
int main()
{

int m_data[5] = { 10, 11, 12, 13, 14 };
int p_data[5];

while(true)
{

for(int i = 0; i < 5; ++i)
p_data[i] = m_data[i] * 2;

print(m_data, 5);
print(p_data, 5);

for(int i = 0; i < 5; ++i)
m_data[i] = p_data[i] + 5;

}
return 0;

}

Figure 6. C++ equivalent of mul/sum example

video-stream. Consequently, we have implemented language
support for expressing deadlines. In principle, a deadline gives
the application developer the option of defining a global
timer: timer t1. This timer can then be polled, and updated,
from within a kernel definition, for example t1+100ms or
t1 = now. Given a condition based on a deadline such as
t1+100ms, a timeout can occur and an alternate code-path
can be executed. Such an alternate code-path is executed by
storing to a different field then in the primary path, leading to
new dependencies and new behavior. Currently, we have basic
support for expressing deadlines in the kernel language, but
the semantics of these expressions require refinement, as their
implications can be considerable.
Fields in P2G have a number of properties, including a type

and a dimensionality. Another property is, as mentioned above,
aging, which allows kernels to be iterative while maintaining
write-once semantics in such cyclic execution. Aging enables
unique storage to the same position in a field several times,

216

as long as the age increases for each store operation (as seen
in figure 4). In essence, this adds a dimension to the field
and makes it possible to accommodate iterative algorithms.
Additionally, it is important to realize that fields are not
connected to any single node, and can be fully localized or
distributed across multiple execution nodes (as seen in figure
1).
In defining the interaction between kernels and fields, it is
encouraged that the programmer expresses the finest possi-
ble granularity of kernel definitions, and, likewise, the most
precise slices possible for the kernel within the field. This is
encouraged because it provides the low-level scheduler more
control over the granularity of task and data decomposition.
Aided by instrumentation data, it can reduce scheduling over-
head by combining several instances of a kernel that process
different data, or several instances of different kernels that
process data in sequence (as seen in figure 4). The scheduler
makes its decisions based on the implicit static dependency
graph and instrumentation data.

C. Runtime

Following from the previous discussions, we can extrapolate
the concept of kernel definitions to kernel instances. A kernel
instance is the unit of code that is executed during runtime,
and the number of kernel instances executed in parallel for a
given kernel definition depends on its fetch statements.
To clarify, a kernel instance works on an arbitrary number of
slices of fields, depending on the number of fetch statements
of the kernel definition. For example, looking at figure 4 and
5, we can see how the mul2 kernel, given its fetch statement on
m_data with age=a and index=x fetches only a single element
of the data. Thus, since the m_data field consists of five
data elements, this means that P2G can execute a maximum
possible x kernel instances simultaneously per age, giving a*x
mul2 kernel instances. Though, as we have seen, this number
can be decreased by the scheduler making mul2 work over
larger slices of data from m_data.
With P2G we support implicit resizing of fields, this can
be witnessed by looking at the kernel definition of print in
figure 5. Initially, the extents of m_data and p_data are not
defined, as such, with each iteration of the for-loop in init
the local field values is resized locally, leading to a resize
of the global field m_data when values is stored to it. These
extents are then propagated to the respective fields impacted
by this resize, such as p_data. Following the discussion from
the previous paragraph, such an implicit resize can lead to
additional kernel instances being dispatched.
It is worth noting that a kernel instance is only dispatched
when all its dependencies are fulfilled, i.e., that the data it
fetches has been stored to the respective fields and elements.
Looking at figure 4 and 5 again, we can see that mul2 stores
its result to p_data with age=a and index=x. This means that
once mul2 has stored its results to p_data with index=2 and
age=0, this means that the kernel instance plus5 with the fetch
statement fetch(0)[2] can be dispatched. In our system, each
kernel instance is only dispatched once, due to our write-once

semantics. To summarize, the print kernel instance working
on age=0 becomes runnable when all the elements of m_data
and p_data for age=0 have been stored. Once it has become
runnable, it is dispatched and runs only once.

VI. PROTOTYPE IMPLEMENTATION

To verify the feasibility of the P2G framework presented
in this paper, we have implemented a prototype version. The
prototype consists of a compiler for the kernel language and
a runtime that can execute P2G programs on multi-core linux
machines.

A. Compiler

Programs written for the P2G system are designed to be
platform independent and feature native blocks of code written
in C or C++. Heterogeneous systems are specifically targeted,
but many of these require a custom compiler for the native
blocks, such as nVIDIA’s nvcc compiler for the CUDA system
and IBM’s XL compiler for the Cell Broadband Engine. We
decided to compile P2G programs into C++ files, which can be
further compiled and linked with native code blocks, instead
of generating binaries directly. This approach gives us less
control of the resulting object code, but we gain the flexibility
and sophisticated optimization of the native compilers, result-
ing in a lightweight P2G compiler. The P2G compiler works
also as a compiler driver for the native compiler and produces
complete binaries for programs that run directly on the target
system.

B. Runtime

The runtime prototype implements the basic features of a
P2G execution node, including multi-dimensional field sup-
port, implicit resizing of fields, instrumentation and parallel
execution of kernel instances on multiple processors using
the implicit dependency graph formed by kernel definitions.
However, at the time of writing, the prototype runtime does
not yet have a full implementation of deadline expressions,
this is because the semantics of the kernel language support
for this feature is not fully defined yet.
The prototype targets a node with multiple processors. It is

designed as a push-based system using event subscriptions on
field operations. Kernel instances are executed in parallel and
produce events on store statements, which may require resize
operations. A kernel subscribes to events related to fields that
it depends on, i.e., fields referenced to by the kernels fetch
statements. When receiving such a storage event, the runtime
finds all new valid combinations of age and index variables
that can be processed as a result of the store statement, and
puts these in a per-kernel ready queue. This means that the
ready queues contain always the maximum number of parallel
instances that can be executed at any time, only limited by
unfulfilled data dependencies.
The low-level scheduler consists of a dependency analyzer
and kernel instance dispatcher. Using the implicit dependency
graph, the dependency analyzer adds new kernel instances to
a ready queue, which later can be processed by the worker

217

Figure 7. Overview of the K-means clustering algorithm

threads. Dependencies are analyzed in a dedicated thread
which handles events emitted from running kernel instances
that notifies on store and resize operations performed on fields.
Kernel instances are executed by a worker thread dispatched
from the ready queue. They are scheduled in an order that
prefers the execution of kernel instances with a lower age value
(older kernel instances). This ensures that no runnable kernel
instance is starved by others that have no fetch statements or
by groups of kernels that satisfy their own dependencies in
aging cycles, such as the mul2 and plus5 kernel in figure 5.
The runtime is written in C++ and uses the blitz++ [37]
library for high-performance multi-dimensional arrays. The
source code for the P2G compiler and runtime can be down-
loaded from http://www.p2gproject.org/.

VII. WORKLOADS

We have implemented a few workloads commonly used in
multimedia processing to test the prototype implementation.
The P2G kernel language is able to expose both the data and
task parallelism of the programs to the P2G system, so the
runtime is able to adapt execution of the programs to suit the
target architecture.

A. K-means clustering

K-means clustering is an iterative algorithm for cluster
analysis which aims to partition n datapoints into k clusters in
which each datapoint belongs to the cluster with the nearest
mean. As shown in figure 7, the P2G k-means implementation
consists of an init kernel, which generates n datapoints and
stores them to the datapoints field. Then, it selects k of these
datapoints randomly, as the initial means, and stores them to
the centroids field. Next, the assign kernel fetches a slice of
data, a single datapoint per kernel instance, the last calculated
centroids, and stores this datapoint to the cluster of the closest
centroids using the euclidean distance calculation. Finally,
the refine kernel fetches a cluster, calculates its new mean
and stores this information in the centroids field. The kernel
definitions of assign and refine form a loop which gradually
leads to a convergence in centroids, at which point the k-means
algorithm has completed.

B. Motion JPEG

Motion JPEG (MJPEG) is a video coding format using a
sequence of separately compressed JPEG images. The MJPEG

Figure 8. Overview of the MJPEG encoding process

4-way Intel Core i7
CPU-name Intel Core i7 860 2,8 GHz
Physical cores 4
Logical threads 8
Microarchitecture Nehalem (Intel)

8-way AMD Opteron
CPU-name AMD Opteron 8218 2,6 GHz
Physical cores 8
Logical threads 8
Microarchitecture Santa Rosa (AMD)

Table I
OVERVIEW OF TEST MACHINES

format provides many layers of parallelism, well suited for
illustrating the potential of the framework. We focused on op-
timizing the discrete cosine transform (DCT) and quantization
part as this is the most compute-intensive part of the codec.
The read + splitYUV kernel reads the input video in YUV-
format and stores the data in three global fields, yInput, uInput,
and vInput. The read loop ends when the kernel stops storing
to the next age, e.g., at the end of the file. In our scenario,
three YUV components can be processed independently of
each other and this property is exploited by creating three
kernels, yDCT, uDCT and vDCT, one for each component.
From figure 8, we see that the respective DCT kernels are
dependent on one of these fields.
The encoding process of MJPEG comprises splitting the
video frames into 8x8 macro-blocks. For example, given the
CIF resolution of 352x288 pixels per frame used in our tests,
this generates 1584 macro-blocks of Y (luminance) data, each
with 64 pixel values. This makes it possible to create 1584
instances per age of the DCT kernel transforming luminance.
The 4:2:2 chroma sub-sampling yields 396 kernel instances
from both the U and V (chroma) data. Each of these kernel
instances stores the DCT’ed macro-block into global result
fields yResult, uResult and vResult. Finally, the VLC + write
kernel store the MJPEG bit-stream to disk.

VIII. EVALUATION

We have run tests with the workloads Motion JPEG and
K-means (described in section VII). Each test was run on a
4-way Core i7 and an 8-way Opteron (see table I for hardware
specifications) ranging from 1 worker thread to 8 worker
threads with 10 iterations per worker thread count. The results
of these tests are reported in the figures 10 and 9, which show
the mean running time in seconds for each machine for a given
thread count with standard deviation reported as error-bars.

218

1 2 3 4 5 6 7 8
Number of worker threads

0

5

10

15

20

25

30

35

T
im

e
 (

s
)

21

30

11

15

8

10

78
7

6 6
5 6

5 55

4-way core i7

8-way opteron

Figure 9. Workload execution time for Motion JPEG

Kernel Instances Dispatch Time Kernel Time
init 1 69.00 μs 18.00 μs
read/splityuv 51 35.50 μs 1641.57 μs
yDCT 80784 3.07 μs 170.30 μs
uDCT 20196 3.14 μs 170.24 μs
vDCT 20196 3.15 μs 170.58 μs
VLC/write 51 3.09 μs 2160.71 μs

Table II
MICRO-BENCHMARK OF MJPEG ENCODING IN P2G

In addition, we have performed micro-benchmarks for each
workload, summarized in the tables II and III. The benchmarks
summarize the number of kernel instances dispatched per
kernel definition, dispatch overhead and time spent in kernel
code.

A. Motion JPEG

The Motion JPEG workload is run on the standard test
sequence Foreman encoded in CIF resolution. We limited the
workload to process 50 frames of video.
As we can observe from figure 9, P2G is able to scale close
to linearly with the resources it has available. In P2G, the
dependency analyzer of the LLS runs in a dedicated thread.
This affects the running time when moving from 7 to 8
worker threads. Where the eighth thread shares resources with
the dependency analyzer. To compare, the standalone single
threaded MJPEG encoder on which the P2G version is based
upon has a running time of 30 seconds on the Opteron machine
and 19 seconds on the Core i7 machine. Note that both the
standalone and P2G versions of the MJPEG encoder use a
naive DCT calculation, there are versions of DCT that can
significantly improve performance, such as FastDCT [2].
From table II, we can see that time spent in kernel code
is considerably higher compared to the dispatch overhead for
the kernel definitions. The dispatch time includes allocation
or reallocation of fields as part of the timing operation. As
a result, init and read/splitYUV have a considerably higher
dispatch time then the *DCT operations.
We can also see that the majority of CPU-time is spent
in the kernel instances of yDCT, uDCT and vDCT, which
is the computationally intensive part of the workload. This

1 2 3 4 5 6 7 8
Number of worker threads

0

10

20

30

40

50

60

70

T
im

e
 (

s
)

20

37

13

26

9

19

8

16

8

22

8

30

11

44

14

614-way core i7

8-way opteron

Figure 10. Workload execution time for K-means

indicates that decreasing data and task granularity, as discussed
in section V-A, has little impact on the throughput of the
system. This is because the majority of time is already spent
in kernel code.
Note that even though there are 51 instances of the read-
/write kernel definitions, only 50 frames are encoded, because
the last instance reaches the end of the video stream.

B. K-means

The K-means workload is run with K=100 using a randomly
generated data set containing 2000 datapoints. The K-means
algorithm is not run until convergence, but with 10 iterations.
If we do not define this break-point it is undefined when the
algorithm converges, and as such, we have introduced this
condition to ensure that we get a relatively stable running time
for each run.
As seen in figure 10, the K-means workload scales to 4
worker threads. After this, the running time increases with
the number of worker threads. This can be explained by the
fine granularity of the assign kernel definition, as witnessed
when comparing the dispatch time to the time spent in kernel
code. This leads to the serial dependency analyzer becoming
a bottle-neck in the system. As discussed in section V-A, this
condition could be alleviated by decreasing the granularity
of data-parallelism, in effect leading to each kernel instance
of assign working on larger slices of data. By doing so, we
would increase the ratio of time spent in kernel code compared
to dispatch time and reduce the workload of the dependency
analyzer. The reduction in work for the dependency analyzer
is a result of the lower number of kernel instances being run.
The two different test machines behave somewhat differ-

ently in that the Opteron suffers more than the Core i7 when
the dependency analyzer saturates a core. The Core i7 is able
to increase the frequency of a single core to mitigate serial
bottlenecks, and we think this is why the Core i7 suffers less
when we meet the limitations dictated by Amdahl’s law.
The considerable time init spends in kernel code is because
it generates the data set.

219

Kernel Instances Dispatch Time Kernel Time
init 1 58.00 μs 9829.00 μs
assign 2024251 4.07 μs 6.95 μs
refine 1000 3.21 μs 92.91 μs
print 11 1.09 μs 379.36 μs

Table III
MICRO-BENCHMARK OF K-MEANS IN P2G

C. Summary

We have shown that our prototype implementation of an
execution node is able to scale with the available resources,
as seen in figure 9 and 10. Our initial results indicate that the
functionality of decreasing the granularity of task and data
parallelity, as discussed in section V-A, is important to ensure
full resource utilization.

IX. DISCUSSION

Even though support for deadlines is not yet fully imple-
mented in the P2G runtime, the concept of deadlines formed an
integral part of our design goal. The intention behind deadlines
is to accommodate for live multimedia workloads, where real-
time requirements are mission essential. Varying conditions
over time, both in the workload and topology, may effect
scheduling decisions: such as termination, branching and the
use of alternative code paths based on runtime observations.
This is similar to SDL, but unlike contemporary high perfor-
mance languages.
In P2G, we encourage the programmer to describe the work-
load in as fine granularity as possible, both in the functional
and data decomposition domains. The low-level scheduler
has an understanding of both decomposition domains and
deadlines. Given this information, the low-level scheduler can
minimize overhead by combining functional components and
slices of data by adapting to its available resources, be it local
cores, or even GPU execution units.
Write-once semantics on fields incurs a large penalty if
implemented naively, both in terms of memory usage and
data cache misses. However, as the fields are virtual and do
not even have to reside in continuous memory, the compiler
and runtime are free to optimize field usage. This includes
re-using buffers for increased cache locality when old ages
are no longer referenced, and garbage collecting old ages.
The explicit programming model of P2G allows the system
to anticipate what data is needed in the future, which can be
used for further optimizations.
Given the complexity of multimedia workloads and the
(potentially) heterogeneous resources available in a modern
topology, and in many cases, no knowledge of the underlying
capabilities of the resources (which is common in modern
cloud services), mapping these complex multimedia workloads
manually to the available resources becomes an increasingly
difficult task, and at some point, even impossible. This is par-
ticularly the case where resource availability fluctuates, such
as in modern virtual machine parks. With batch processing,
where the workloads frequently are not associated with some
intrinsic deadline, this task is solved, with frameworks such as

MapReduce and Dryad. However, for processing continuous
streams such as iterative multimedia algorithms in an elastic
manner requires new frameworks; P2G is a step in that
direction.

X. CONCLUSION

With P2G, we have proposed a new flexible framework for
automatic parallel, real-time processing of multimedia work-
loads. We encourage the programmer to specify parallelism in
as fine a granularity as possible along the axes of data and task
decomposition. Using our kernel language this decomposition
is expressed through kernel definitions and fetch and store
statements on fields. This language is independent from the
P2G runtime and can easily be replaced. Given a workload
defined in our kernel language it is compiled for execution
in P2G. This workload can then be partitioned by the high-
level scheduler of a P2G master node, which then distributes
partitions to P2G execution nodes which runs the tasks locally.
Execution nodes can consist of heterogeneous resources. A
low-level scheduler at the execution nodes then adapted the
partial (or full) workload to run optimally using resources
at hand. Feedback from the instrumentation daemon at the
execution node can lead to repartitioning of the workload (a
task performed by the high-level scheduler). The aim is to
bring the ease of batch-processing frameworks to multimedia
workloads.
In this paper we have presented an execution node capable

of running on a multi-way architecture. This results from our
experiments running on this prototype show the potential of
our ideas. However, there still remains a number of vectors
for optimization. In the low-level scheduler we have identified
that combining task and data to minimize overhead introduced
by P2G is a first reasonable modification. Additionally, com-
pleting the implementation of a fully distributed version is
in the pipeline. Also, writing workloads for heterogeneous
processing cores like GPUs and non-cache coherent architec-
tures like Intel’s SCC is a further consideration. Currently, we
are investigating appropriate mechanisms for both high- and
low-level scheduling, garbage collection, fat binaries, resource
profiling and monitoring, and efficient migration of tasks.
While a number of optimizations remain, we have deter-

mined that P2G is feasible, through the implementation of
this execution node, and the successful implementation of
multimedia workloads, such as Motion JPEG and k-means.
With these workloads we have shown that it is possible to
express multimedia workloads in the kernel language and we
have implemented a prototype of an execution node in the P2G
framework that is able to execute kernels and scales with the
available resources.

REFERENCES

[1] Apache. Hadoop, Accessed July 2010. http://hadoop.apache.org.
[2] Y. Arai, T. Agui, and M. Nakajima. A fast dct-sq scheme for images.
Transactions of IEICE, E71(11), 1988.

[3] J. Armstrong. A history of Erlang. In Proc. of ACM HOTL III, pages
6:1–6:26, 2007.

[4] R. Arvind, R. Nikhil, and K. Pingali. I-structures: Data structures for
parallel computing. TOPLAS, 11(4):598–632, 1989.

220

[5] Y. Blu, B. Howe, M. Balazinska, and M. Ernst. Haloop: Efficient iter-
ative data processing on large clusters. In Proceedings of International
Conference on Very Large Data Bases (VLDB), 2010.

[6] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. Scope: easy and efficient parallel processing of massive
data sets. Proc. VLDB Endow., 1:1265–1276, August 2008.

[7] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmabil-
ity and the Chapel language. International Journal of High Performance
Computing Applications, 23(3), 2007.

[8] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-
merge: simplified relational data processing on large clusters. In Proc. of
ACM SIGMOD, pages 1029–1040, New York, NY, USA, 2007. ACM.

[9] M. de Kruijf and K. Sankaralingam. MapReduce for the Cell BE
architecture. University of Wisconsin Computer Sciences Technical
Report CS-TR-2007, 1625, 2007.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. In Proc. of USENIX OSDI, pages 10–10, 2004.

[11] J. Dean and S. Ghemawat. System and method for efficient large-scale
data processing. US Patent Application, (US 7650331), 2010.

[12] I. Foster. Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering. Addison-Wesley, 1995.

[13] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. Spade: the
system s declarative stream processing engine. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data,
SIGMOD ’08, pages 1123–1134, New York, NY, USA, 2008. ACM.

[14] F. Glover. Tabu search, Part I1. ORSA journal on Computing, 2(1):4–32,
1990.

[15] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs. In ASPLOS-
XII: Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, pages 151–
162, New York, NY, USA, 2006. ACM.

[16] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: a
MapReduce framework on graphics processors. In Proc. of PACT, pages
260–269, New York, NY, USA, 2008. ACM.

[17] B. Hendrickson and T. Kolda. Graph partitioning models for parallel
computing* 1. Parallel Computing, 26(12):1519–1534, 2000.

[18] P. H. J. Hughes, S. P. Jones, and P. Wadler. A history of Haskell: being
lazy with class. In Proc. of ACM HOTL III, pages 12:1–12:55, 2007.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In Proc. of ACM
EuroSys, pages 59–72, New York, NY, USA, 2007. ACM.

[20] ISO/IEC. ISO/IEC 14496-10:2003, 2003. Information technology -
Coding of audio-visual objects - Part 10: Advanced Video Coding.

[21] ITU. Z.100, 2007. Specification and Description Language (SDL).
[22] E. A. D. Kock, G. Essink, W. J. M. Smits, and P. V. D. Wolf. Yapi:

Application modeling for signal processing systems. In In Proc. 37th
Design Automation Conference (DAC’2000, pages 402–405. ACM Press,
2000.

[23] T. Lee, E.A.; Parks. Dataflow process networks. Proceedings of the
IEEE, 83(5):773–801, 1995.

[24] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60:91–110, 2004.

[25] D. Murray, M. Schwarzkopf, and C. Smowton. Ciel: a universal
execution engine for distributed data-flow computing. In Proceedings of
Symposium on Networked Systems Design and Implementation (NSDI),
2011.

[26] C. Nicolaou. An architecture for real-time multimedia communication
systems. Selected Areas in Communications, IEEE Journal on, 8(3):391–
400, 1990.

[27] Nvidia. Nvidia cuda programming guide 3.2, Aug. 2010.
[28] A. G. Olson and B. L. Evans. Deadlock detection for distributed

process networks. In in Proc. IEEE Int. Conf. Acoustics, Speech, Signal
Processing (ICASSP, pages 73–76, 2006.

[29] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. In Proc. of ACM
SIGMOD, pages 1099–1110, New York, NY, USA, 2008. ACM.

[30] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data:
Parallel analysis with Sawzall. Sci. Program., 13(4):277–298, 2005.

[31] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
Evaluating MapReduce for multi-core and multiprocessor systems. In
Proc. of IEEE HPCA, pages 13–24, Washington, DC, USA, 2007. IEEE
Computer Society.

[32] L. Roh, W. A. Najjar, and A. P. W. Böhm. Generation and quan-
titative evaluation of dataflow clusters. In ACM FPCA: Functional
Programming Languages and Computer Architecture, New York, NY,
USA, 1993. ACM.

[33] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach
to exploiting coarse-grained pipeline parallelism in c programs. In
Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 40, pages 356–369, Washington, DC, USA,
2007. IEEE Computer Society.

[34] M. Thompson and A. Pimentel. Towards multi-application workload
modeling in sesame for system-level design space exploration. In
S. Vassiliadis, M. Berekovic, and T. Hämäläinen, editors, Embedded
Computer Systems: Architectures, Modeling, and Simulation, volume
4599 of Lecture Notes in Computer Science, pages 222–232. Springer
Berlin / Heidelberg, 2007.

[35] S. V. Valvåg and D. Johansen. Oivos: Simple and efficient distributed
data processing. In Proc. of IEEE International Conference on High
Performance Computing and Communications (HPCC), pages 113–122,
2008.

[36] S. V. Valvåg and D. Johansen. Cogset: A unified engine for reliable stor-
age and parallel processing. In Proc. of IFIP International Conference
on Network and Parallel Computing Workshops (NPC), pages 174–181,
2009.

[37] T. L. Veldhuizen. Arrays in blitz++. In Proceedings of the Second
International Symposium on Computing in Object-Oriented Parallel En-
vironments, ISCOPE ’98, pages 223–230, London, UK, 1998. Springer-
Verlag.

[38] Ẑ. Vrba, P. Halvorsen, C. Griwodz, and P. Beskow. Kahn process
networks are a flexible alternative to mapreduce. High Performance
Computing and Communications, 10th IEEE International Conference
on, 0:154–162, 2009.

[39] Ẑ. Vrba, P. Halvorsen, C. Griwodz, P. Beskow, H. Espeland, and
D. Johansen. The Nornir run-time system for parallel programs using
Kahn process networks on multi-core machines - a flexible alternative
to MapReduce. Journal of Sumpercomputing, 27(1), 2010.

[40] D. Waddington, C. Tian, and K. Sivaramakrishnan. Scalable lightweight
task management for mimd processors, 2011.

[41] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Gunda, and
J. Currey. Dryadlinq: A system for general-puropose distributed data-
parallel computing using a high-level language, 2008.

221

222
. Paper VII: P2G: A Framework for Distributed Real-Time Processing of Multimedia

Data

Paper VIII: Bagadus: An Integrated
Real-Time System for Soccer
Analytics

Title: Bagadus: An Integrated Real-Time System for Soccer Analytics [114].

Authors: H. K. Stensland, V. R. Gaddam, M. Tennøe, E. Helgedagsrud, M. Næss, H.
K. Alstad, A. Mortensen, R. Langseth, S. Ljødal, Ø. Landsverk, M. Stenshaug, P.
Halvorsen, C. Griwodz and D. Johansen.

Published: ACM Transactions on Multimedia Computing, Communications and Appli-
cations (TOMM), Volume 10, Issue 1s, ACM, 2014.

223

224 . Paper VIII: Bagadus: An Integrated Real-Time System for Soccer Analytics

14

Bagadus: An Integrated Real-Time System for
Soccer Analytics

HÅKON KVALE STENSLAND, VAMSIDHAR REDDY GADDAM, MARIUS TENNØE,
ESPEN HELGEDAGSRUD, MIKKEL NÆSS, HENRIK KJUS ALSTAD, ASGEIR MORTENSEN,
RAGNAR LANGSETH, SIGURD LJØDAL, ØYSTEIN LANDSVERK, CARSTEN GRIWODZ, and
PÅL HALVORSEN, University of Oslo and Simula Research Laboratory
MAGNUS STENHAUG and DAG JOHANSEN, University of Tromsø

The importance of winning has increased the role of performance analysis in the sports industry, and this underscores how
statistics and technology keep changing the way sports are played. Thus, this is a growing area of interest, both from a computer
system view in managing the technical challenges and from a sport performance view in aiding the development of athletes. In
this respect, Bagadus is a real-time prototype of a sports analytics application using soccer as a case study. Bagadus integrates
a sensor system, a soccer analytics annotations system, and a video processing system using a video camera array. A prototype
is currently installed at Alfheim Stadium in Norway, and in this article, we describe how the system can be used in real-time to
playback events. The system supports both stitched panorama video and camera switching modes and creates video summaries
based on queries to the sensor system. Moreover, we evaluate the system from a systems point of view, benchmarking different
approaches, algorithms, and trade-offs, and show how the system runs in real time.

Categories and Subject Descriptors: H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems—
Video

General Terms: Experimentation, Measurement, Performance
Additional Key Words and Phrases: Real-time panorama video, system integration, camera array, sensor tracking, video anno-
tation, sport analytics, soccer system

ACM Reference Format:
Håkon Kvale Stensland, Vamsidhar Reddy Gaddam, Marius Tennøe, Espen Helgedagsrud, Mikkel Næss, Henrik Kjus Alstad,
Asgeir Mortensen, Ragnar Langseth, Sigurd Ljødal, Øystein Landsverk, Carsten Griwodz, and Pål Halvorsen. 2014. Bagadus:
An integrated real-time system for soccer analytics. ACM Trans. Multimedia Comput. Commun. Appl. 10, 1s, Article 14 (January
2014), 21 pages.
DOI: http://dx.doi.org/10.1145/2541011

1. INTRODUCTION

Sport analysis has become a large industry, and a large number of (elite) sports clubs study their game
performance, spending a large amount of resources. This analysis is performed either manually or
using one of the many existing analytics tools. In the area of soccer, several systems enable trainers

This work has been performed in the context of the iAD Centre for Research-Based Innovation (project number 174867) funded
by the Norwegian Research Council.
H. K. Stensland’s (corresponding author) email: haakonks@ifi.uio.no.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2014 ACM 1551-6857/2014/01-ART14 $15.00

DOI: http://dx.doi.org/10.1145/2541011

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

225

14:2 • H. K. Stensland et al.

and coaches to analyze the game play in order to improve the performance. For instance, in Interplay
Sports [2013], video streams are manually analyzed and annotated using a soccer ontology classifi-
cation scheme. ProZone [2013] automates some of the manual annotation process by video-analysis
software. In particular, it quantifies player movement patterns and characteristics like speed, velocity,
and position of the athletes, and it has been successfully used at, for example, Old Trafford in Manch-
ester and Reebook Stadium in Bolton [Salvo et al. 2006]. Similarly, STATS SportVU Tracking Tech-
nology [Stats 2013] uses video cameras to collect the positioning data of the players within the playing
field in real time. This is further compiled into player statistics and performance. Camargus [2013]
provides a very nice video technology infrastructure but lacks other analytics tools. As an alternative
to video analysis, which often is inaccurate and resource hungry, both the Cairo’s VIS.TRACK [Cairos
Technologies 2013b] and ZXY Sport Tracking [ZXY 2013] systems use global positioning and radio-
based systems for capturing performance measurements of athletes. Thus, these systems can present
player statistics, including speed profiles, accumulated distances, fatigue, fitness graphs and coverage
maps, in many different ways, such as charts, 3D graphics, and animations.

To improve game analytics, video that replays real game events becomes increasingly important.
However, the integration of the player statistics systems and video systems still requires a large
amount of manual labor. For example, events tagged by coaches or other human expert annotators
must be manually extracted from the videos, often requiring hours of work in front of the computer.
Furthermore, connecting the player statistics to the video also requires manual work. One recent ex-
ample is the Muihtu system [Johansen et al. 2012], which integrates coach annotations with related
video sequences, but the video must be manually transferred and mapped to the game timeline.

As these examples show, there exist several tools for soccer analysis. However, to the best of our
knowledge, there does not exist a system that fully integrates all these features. In this respect, we
have presented earlier [Halvorsen et al. 2013] and demonstrated [Sægrov et al. 2012] a system called
Bagadus. This system integrates a camera array video capture system with the ZXY Sport Tracking
system for player statistics and a system for human expert annotations. Bagadus allows the game
analytics to automatically play back a tagged game event or extract a video of events extracted from
the statistical player data, for example, all sprints at a given speed. Using the exact player position
provided by sensors, a trainer can also follow individuals or groups of players, where the videos are
presented either using a stitched panorama view or by switching cameras. Our earlier work [Halvorsen
et al. 2013; Sægrov et al. 2012] demonstrated the integrated concept but did not have all operations,
like generation of the panorama video, in real time. In this article, we present enhancements providing
live, real-time analysis and video playback by using algorithms to enhance the image quality, parallel
processing, and offloading to co-processing units like GPUs. Our prototype is deployed at Alfheim
Stadium (Tromsø IL, Norway), and we use a dataset captured at a Norwegian premier league game to
demonstrate our system.

The remainder of the article is structured as follows. Next, in Section 2, we give a brief overview of
the basic idea of Bagadus and introduce the main subsystems. Then, we look at the video-, tracking-,
and analysis-subsystems in more detail in Sections 3, 4, and 5, respectively. Then, we briefly explain
the case study at Alfheim Stadium in Section 6. Section 7 provides a brief discussion of various aspect
of the system before we conclude in Section 8.

2. BAGADUS – THE BASIC IDEA

Interest in sports analysis systems has recently increased a lot, and it is predicted that sports ana-
lytics will be a real game-changer, that is, “statistics keep changing the way sports are played—and
changing minds in the industry” [Dizikes 2013]. As already described, several systems exist, some for
a long time, already providing game statistics, player movements, video highlights, etc. However, to a
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

226

Bagadus • 14:3

Fig. 1. Overall Bagadus architecture.

large degree, the existing systems are offline systems, and they require a large portion of manual work
to integrate information from various computer systems and expert sport analytics. In this respect,
Bagadus is a prototype that aims to fully integrate existing systems and enable real-time presentation
of sport events. Our system is built in cooperation with the Tromsø IL soccer club and the ZXY Sport
Tracking company for soccer analysis. A brief overview of the architecture and interaction of the dif-
ferent components is given in Figure 1. The Bagadus system is divided into three different subsystems
which are integrated in our soccer analysis application.

The video subsystem consists of multiple, small, shutter-synchronized cameras that record a high
resolution video of the soccer field. They cover the full field with sufficient overlap to identify common
features necessary for camera calibration and image stitching. Furthermore, the video subsystem sup-
ports two different playback options. The first allows playback of video that switches between streams
delivered from the different cameras, either manually selecting a camera or automatically following
players based on sensor information. The second option plays back a panorama video stitched from
the different camera feeds. The cameras are calibrated in their fixed position, and the captured videos
are each processed and stored using a capture–debarrel–rotate–stitch–encode–store pipeline. In an of-
fline mode, Bagadus allows a user to zoom in on and mark player(s) in the retrieved video on the fly
(see Figure 1), but this is not yet supported in the live mode used during the game.

To identify and follow players on the field, we use a tracking (sensor) subsystem. In this respect,
tracking people through camera arrays has been an active research topic for several years. The accu-
racy of such systems has improved greatly, but there are still errors. Therefore, for stadium sports, an
interesting approach is to use sensors on players to capture the exact position. In this area, ZXY Sport

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

227

14:4 • H. K. Stensland et al.

Tracking [ZXY 2013] provides such a sensor-based solution that provides player position information.
Bagadus uses this position information to track players, or groups of players, in single camera views,
stitched views, or zoomed-in modes.

The third component of Bagadus is an analytics subsystem. Coaches have for a long time analyzed
games in order to improve their own team’s game play and to understand their opponents. Tradition-
ally, this has been done by making notes using pen and paper, either during the game or by watching
hours of video. Some clubs even hire one person per player to describe the player’s performance. To
reduce the manual labor, we have implemented a subsystem that equips members of the trainer team
with a tablet (or even a mobile phone), where they can register predefined events quickly with the
press of a button or provide textual annotations. In Bagadus, the registered events are stored in an
analytics database and can later be extracted automatically and shown along with a video of the event.

Bagadus implements and integrates many well-known components to support our arena sports ana-
lytics application scenario. The main novelty of our approach is then the combination and integration
of components enabling automatic presentation of video events based on the sensor and analytics data
that are synchronized with the video system. This gives a threefold contribution: (1) a method for spa-
tially mapping the different coordinate systems of location (sensor) data and video images to allow
for seamless integration; (2) a method for recording and synchronizing the signals temporally to en-
able semantic extraction capabilities; and (3) the integration of the entire system into an interactive
application that can be used online and offline.

Thus, in the offline mode, Bagadus will, for example, be able to automatically present a video clip of
all the situations where a given player runs faster than 10 meters per second or when all the defenders
were located in the opponent’s 18-yard box (penalty box). Furthermore, we can follow single players
and groups of players in the video and retrieve and play back the events annotated by expert users.
Thus, where people earlier used a huge amount of time analyzing the game manually, Bagadus is an
integrated system where the required operations and the synchronization with video is automatically
managed. In the online mode, Bagadus receives expert annotated events by the team analytics team
and enables immediate playback during a game or a practice session.

3. VIDEO SUBSYSTEM

To be able to record high-resolution video of the entire soccer field, we have installed a camera array
using small industry cameras which, together, cover the entire field. The video subsystem then ex-
tracts, process, and delivers video events based on given time intervals, player positions, etc. There are
two versions of the video subsystem. One non-real-time system and one live real-time system. Both the
video subsystems support two different playback modes. The first mode allows the user to play video
from the individual cameras by manually selecting a camera or by automatically following players.
The second mode plays back a panorama video stitched from the four camera feeds. The non-real-time
system plays back recorded video stored on disks, and because of the processing times, it will not be
available before the match is finished. The live system, on the other hand, supports playing back video
directly from the cameras, and events will be available in real time.

3.1 Camera Setup

To record high-resolution video of the entire soccer field, we have installed a camera array consisting
of four Basler industry cameras with a 1/3-inch image sensor supporting 30fps and a resolution of
1280 × 960. The cameras are synchronized by an external trigger signal in order to enable a video-
stitching process that produces a panorama video picture. For a minimal installation, the cameras are
mounted close to the middle line under the roof covering the spectator area, that is, approximately
10 meters from the side line and 10 meters above the ground. With a 3.5mm wide-angle lens, each
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

228

Bagadus • 14:5

Fig. 2. Camera setup at Alfheim Stadium.

camera covers a field-of-view of about 68 degrees, that is, all four cover the full field with sufficient
overlap to identify common features necessary for camera calibration and stitching (see Figure 2).

The cameras are managed using our own library, called Northlight, to manage frame synchroniza-
tion, storage, encoding, etc. The system is currently running on a single computer with an Intel Core
i7-3930K @ 3.2GHz and 16GB memory. Northlight integrates the SDK provided by Basler for the cam-
eras, video encoding using x264, and color-space conversion using FFmpeg.

3.2 Digital Zoom

Bagadus supports digital zooming on tracked players, where the tracked player is kept in the center of
the image while zooming in. An important operation here is interpolation, where we use known data
to estimate values at unknown points when we resize or remap (i.e., distort) the image. In this respect,
we have compared four different interpolation algorithms, that is, nearest neighbor, bilinear, bicubic,
and Lanczos interpolation. In image processing, bicubic interpolation is often chosen over bilinear in-
terpolation or nearest neighbor in image resampling when speed is not an issue. Lanczos interpolation
has the advantages of bicubic interpolation and is known to produce sharper results than bicubic inter-
polation. In Bagadus, our initial tests show that the average interpolation times per frame are 4.2ms,
7.4ms, 48.3ms, and 240ms for nearest-neighbor, bilinear, bicubic, and Lanczos interpolation, respec-
tively [Halvorsen et al. 2013]. Due to our time constraints, we use nearest-neighbor interpolation.

3.3 Stitching

Tracking game events over multiple cameras is a nice feature, but in many situations, it may be desir-
able to have a complete view of the field. In addition to the camera selection functionality, we therefore
generate a panorama picture by combining images from multiple trigger-synchronized cameras. The
cameras are calibrated in their fixed position using a classical chessboard pattern [Zhang 1999], and
the stitching operation requires a more complex processing pipeline. We have alternative implemen-
tations with respect to what is stored and processed offline, but in general, we must (1) correct the
images for lens distortion in the outer parts of the frame due to a fish-eye lens; (2) rotate and morph
the images into the panorama perspective due to different positions covering different areas of the
field; (3) correct the image brightness due to light differences; and (4) stitch the video images into a
panorama image. Figure 3 shows the process of using four warped camera images into a single large
panorama image. The highlighted areas in the figure are the regions where the cameras overlap.

After the initial steps, the overlapping areas between the frames are used to stitch the four videos
into a panorama picture before storing it to disk. We first tried the open-source solutions given by com-
puter vision library OpenCV, which are based on the automatic panoramic image stitcher by Brown
and Lowe [2007], that is, we used the auto-stitcher functions using planar, cylindrical, and spheri-
cal projections. Our analysis shows that neither of the OpenCV implementations are perfect, having
large execution times and varying image quality and resolutions [Halvorsen et al. 2013]. The fastest

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

229

14:6 • H. K. Stensland et al.

Fig. 3. The stitching process. Each image from the four different frames are warped and combined into a panorama.

Fig. 4. The Bagadus single-threaded processing loop stitching implementation.

algorithm is the spherical projection, but it has severe barreling effects, and the execution time is
1746ms per frame—far above our real-time goal. Therefore, a different approach called homography
stitching [Hartley and Zisserman 2004] has been selected, where we use a homography given by the
projective geometry translating ZXY’s coordinate system to pixel coordinates.

3.4 Non-Real-Time Processing Loop Implementation

As a first proof-of-concept prototype [Halvorsen et al. 2013], we implemented the stitching operation as
a single-threaded sequential processing loop, as shown in Figure 4(a), that is, processing one frame per
loop iteration. As seen in the figure, it consists of four main parts. One preprocessing part that reads
video frames from either disk or cameras converts the video from YUV to RGB, which is used by the
rest of the pipeline and debarreling to remove any barrel distortion from the cameras. For this version
of the system, the debarreling functions in OpenCV is used. The next part is the primary stitching
part using the homography-based stitching algorithm to stitch the four individual camera frames into
a 7000×960 panorama frame. As we can observe from Figure 4(b), this is the most resource-demanding
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

230

Bagadus • 14:7

Fig. 5. The parallel and distributed processing implementation of the stitching pipeline.

part of the system. After the stitching, the postprocessing is responsible for converting the video back
from RGB to YUV due to lacking support for RGB in the x264 video encoder. The single-threaded loop
means that all the steps are performed sequentially for one set of frames before the next set of frames
is processed. The performance is presented in Figure 4(b), and the total execution time per panorama
frame exceeds 1100ms on average. In order to meet our 30fps requirement, our next approach improves
the performance by parallelizing and distributing the operations in a processing pipeline and offloading
several steps onto a GPU.

3.5 Real-Time Parallel and Distributed Processing Implementation

The previous sections displayed some severe processing overheads with respect to generating a 30fps
panorama video in real time. In this section, we address this by implementing the modules in a parallel
pipeline in contrast to the loop previously described, and we offload compute-intensive parts of the
pipeline to a modern GPU, as seen in Figure 5.

3.5.1 Implementation. Figure 5 shows that the parallel pipeline is separated into two main parts:
one part running on the CPU, and the other part running on a GPU. Several of the CPU modules
in the pipeline are the same as in the non-real-time loop. The CamReader, Converter, Debarreler,
SingleCamWriter, and PenoramaWriters are based on the same design, but are now running in their
own threads and with an updated version of the x264 encoder. The controller module is new and is
responsible for initializing the pipeline, synchronizing the different modules, handling global errors
and frame drops, and transferring data or data pointers between the different modules. The controller
also checks the execution speed. If an earlier step in the pipeline runs too slow, and one or more frames
have been lost from the cameras, the controller tells the modules in the pipeline to skip the delayed or
dropped frame and reuse the previous frame.

A background subtractor module is running both on the CPU and on the GPU. This module is
new in the pipeline and is responsible for determining which pixels of a video belong to the fore-
ground and which pixel belong to the background. The background subtractor can also get input from
the ZXY sensor system to improve the performance and precision. Even though we have enhanced
the background subtraction with sensor data input, there are several implementation alternatives.
When determining which algorithm to implement, we evaluated two different alternatives, that is,

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

231

14:8 • H. K. Stensland et al.

those of Zivkovic [2004] and Zivkovic and van der Heijden [2006] and those of KaewTraKulPong and
Bowden [2001]. Both algorithms uses a Gaussian mixture model (GMM), are implemented in OpenCV,
and have shown promising results in other surveys [Brutzer et al. 2011]. In the end, Zivkovic provided
the best accuracy, which is important for our scenario, and it was therefore selected.

There are also several modules that are running primarily on the GPU. The Uploader and Down-
loader are managing the dataflow to and from the GPU. The Uploader transfers RGB frames and
the background subtraction player pixel maps from the CPU to the GPU for further processing. The
Downloader transfers back the stitched video in YUV 4:2:0 format for encoding. Both modules use
double-buffering and asynchronous transfers.

The main parts of the panorama creation is performed by the warper, color-corrector, and stitcher
modules running on the GPU. The warper module warps (as previously described) the camera frames
and the foreground masks from the background subtractor module to fit the common panorama plane.
Here, we used the Nvidia Performance Primitives library (NPP) for an optimized implementation.
The Color-corrector in this implementation is added to the pipeline because it is nearly impossible to
calibrate the cameras to output the exact same colors because of the uncontrolled lighting conditions.
This means that, to generate a best-possible panorama video, we correct the colors of all the frames to
remove eventual color disparities. This operation is performed after the images are warped. The reason
for this is that locating the overlapping regions is easier with aligned images, and the overlap is also
needed when stitching the images together. The implementation is based on the algorithm presented
in Xiong and Pulli [2009], which has been optimized to run in real-time with CUDA.

The stitcher module is similar to the homography stitcher in the loop implementation, where a seam
is created between the overlapping camera frames. Our previous approach uses static cuts for seams,
which means that a fixed rectangular area from each frame is copied directly to the output frame.
Static cut panoramas are very fast but can introduce graphical errors in the seam area, especially
when there is movement in the scene, as illustrated in Figure 6(a). Thus, to make a better visual
result, a dynamic cut stitcher is introduced. This module now creates seams by first creating a rect-
angle of adjustable width over the static seam area. Then, it treats all pixels within the seam area as
graph nodes. Each of these edges’ weights are calculated using a custom function that compares the
absolute color difference between the corresponding pixel in each of the two frames we are trying to
stitch. The weight function also checks the foreground masks from the background subtractor to see
if any player is in the pixel, and if so, it adds a large weight to the node. We then run a simplified
version of the Dijkstra graph algorithm (only going up in the image) on the graph to create a min-
imal cost route from the bottom of the image to the end at the top. An illustration of how the final
seam looks can be seen in Figure 6(b), while the seams without and with color correction are shown in
Figures 6(c) and 6(d).

3.5.2 Execution Time Evaluation. To evaluate the processing performance of the parallel and dis-
tributed processing pipeline implementation, we used a single computer with an Intel Server Adapter
i350-T4 for connecting the four cameras with gigabit ethernet, an Intel Core i7-3930K six-core proces-
sor with 32GB RAM, and a single Nvidia GeForce GTX Titan graphics processor.

The overall performance of the parallel pipeline is shown in Figure 7(a). The CPU modules are
marked in blue, and the GPU modules are marked in green. The uploader and downloader module run
both on the CPU and the GPU, but we have chosen to mark them as CPU modules, since they both are
controlled by the CPU.

Images from all four cameras are asynchronously transfered to the GPU as soon as they are avail-
able. The number of threads and blocks on the GPU is automatically adjusted by how many cores are

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

232

Bagadus • 14:9

Fig. 6. Stitcher comparison: improving the visual quality with dynamic seams and color correction.

available on the GPU. The modules executing on the GPU synchronize with barriers: when one module
finishes, the next will be stared. Data is stored in global memory, and pointers to the data are trans-
fered between the different modules. When processing is finished on the GPU, data is asynchronously
transfered back to the CPU for encoding and writing to disk.

We can see that when executing the whole pipeline, all modules perform well below the real-time
threshold. Note that the reader module is limited by the cameras which produce a new frame every
33ms. Remember that all these modules run in parallel, sharing the processing elements. Thus, since
all modules perform better than the 33ms threshold, we are able to deliver panorama frames in real
time. This is further demonstrated by measuring the differences between the single camera writes and
the differences between the panorama writes. In Figure 7(b), we present the write differences between
the frames, and we observe that a new frame is output every 33ms, that is, equal to the input rate of

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

233

14:10 • H. K. Stensland et al.

Fig. 7. The processing performance of the parallel and distributed processing pipeline.

the cameras. These results show that our parallel and distributed processing implementation executes
in real time on a single off-the-shelf computer.

4. TRACKING SUBSYSTEM

Tracking people through camera arrays has been an active research topic for several years, and many
approaches have been suggested (e.g., [Ben Shitrit et al. 2011; Berclaz et al. 2011; Jiang et al. 2007;
Xu et al. 2004]). The accuracy of such tracking solutions vary according to scenarios and is con-
tinuously improving, but they are still giving errors, that is, both missed detections and false posi-
tives [Ben Shitrit et al. 2011]. Often these approaches perform well in controlled lighting conditions,
like indoor sport arenas, but the widely varying light conditions in an outdoor stadium provide bigger
challenges.

For stadium sports, an interesting approach is to use sensors on players to capture the exact position.
ZXY Sport Tracking [ZXY 2013] provides such a solution, where a sensor system submits position and
orientation information at a maximum accuracy error of about one meter at a frequency of 20Hz. As
indicated in Figure 1, the players wear a data chip with sensors that sends signals to antennas located
around the perimeter of the pitch. The sensor data is then stored in a relational database system. Based
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

234

Bagadus • 14:11

on these sensor data, statistics like total length run, number of sprints of a given speed, foot frequency,
heart rate, etc., can be queried in addition to the exact position of all players at all times. Due to the
availability of the ZXY system at our case study stadium, Bagadus uses the sensor system position in-
formation to extract videos of, for example, particular players, and the rest of the system can be used to
extract time intervals of the video (e.g., all time intervals where player X sprints towards his own goal).

The ZXY sensor belt is worn by all the players on TIL (the home team); it is voluntary for the visiting
team to use the sensor belts. If they choose to use the belts, they will have access to the data recorded
during the match. The belts are small and compact and do not disturb the players during the match;
they are also approved by FIFA for use during international matches.

Although the amount of data generated by the position sensors is small compared to video, a game
of 90 minutes still produces approximately 2.4 million records. Nevertheless, as we show later in Sec-
tion 6, we still have reasonable response times from when we send a complex database query until the
video starts to play the corresponding query result events.

4.1 Mapping Sensor Positions to Image Pixels

The ZXY system reports the players’ positions on the field using the Cartesian coordinate system. In
order to locate a player in the video, we need a transformation from the sensor coordinates to the image
pixels for all valid pixel coordinates in a video frame. In this respect, we calculate a 3×3 transformation
matrix using fixed known points on the field, as shown in Figure 8(a). Then, using the homography
between two planes, each plane can be warped to fit the other, as shown in Figures 8(c) and 8(d), using
camera 2 as an example. The accuracy of the mapping is fairly good, that is, only in the outer areas of
the image where debarreling have changed some pixels can we see a very small deviation between the
planes. However, if we look at the mapping to the stitched image in Figure 8(b), the accuracy is reduced
due to imperfections in the image processing when debarreling and, in particular, when warping and
rotating. Nevertheless, at the distance between the cameras and the players, the accuracy seems to be
good enough for our purposes (though inaccuracies in the mapping might also contribute to inaccurate
tracking, as shown later).

In order to have a system where the players are tracked in real time, the ZXY (x, y) → pixel(u, v)
mapping using the 3 × 3 matrix must be fast. A profile of the system when tracking all 22 soccer
players indicates that about 7.2–7.7 microseconds are consumed for this operation, that is, coordinate
translation is hardly noticeable compared to the other components in the system.

4.2 Automatic Camera Selection

As shown in Figure 2, the four cameras cover different parts of the field. To follow a player (or group
of players) and be able to automatically generate a video selecting images across multiple cameras, we
also need to map player positions to the view of the cameras. In this respect, we use the same mapping
as described in Section 4.1, using our own transformation matrix for each camera. Selecting a camera
is then only a matter of checking if the position of the player is within the boundaries of the image
pixels. When tracking multiple players, we use the same routine and count the number of tracked
players present in each camera and select the camera with the most tracked players.

5. ANALYTICS SUBSYSTEM

To improve a team’s performance and understand their opponents, coaches analyze the game play in
various ways. Traditionally, this has been done by making notes using pen and paper, either during
the game or by watching hours of video. To reduce the manual labor, we have, in close colaboration
with the coach-team, developed Muithu, a novel notational analysis system [Johansen et al. 2012] that

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

235

14:12 • H. K. Stensland et al.

Fig. 8. Pixel mapping between the video images and the ZXY tracking system.

is non-invasive for the users, mobile, and lightweight. A cellular phone is used by head coaches during
practice or games for annotating important performance events. A coach usually carries a cellular, even
during practice. Thus, to avoid any extra coach devices, the cellular is used in the notational process
as a notational device. Input is given using the tile-based interface shown in Figures 9(b) and 9(c),
and Figure 9(a) illustrates use of the system by a coach during a recent game in the Norwegian elite
division. Our experience indicates that this simple drag-and-drop user interaction requires in the order
of 3 seconds per notational input. All the events in the app can be custmized by the coaches, and
the number of input notations for a regular 90-minute elite soccer game varies slightly over different
games, but for the 2012 season, the average is in the order of 16 events per game [Johansen et al. 2012].

In order to be usable during a game, the user interface of Muithu has to be easy to use and fast. It
is therefore based on managing tiles in a drag-and-drop fashion, and it can be easily configured with
input tiles and hierarchies of tiles. In the case study described in Section 6, one preferred configuration
pattern for general practice is to have a two-layer hierarchy, where the root node is a number or all
of the players involved. The next layer is a set of 3–4 training goals associated with each individual
player. By simply touching the picture of a player on a tile, his specific training goals appear on adjacent

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

236

Bagadus • 14:13

Fig. 9. Operation of the mobile device during a game (a). Select a player (b) and drag the image tile to the appropriate event
type (c) to register an event.

Fig. 10. An example of notations captured during a game (time axis in HH:MM after game start). Observe that offensive
notations are displayed above the timeline, defensive notations below.

tiles. Dragging the face tile over one of these goal tiles is then sufficient for capturing the intended
notation.

For heated game purposes, a simpler configuration is preferred: typically one tile for offensive and
one for defensive notations (see Figure 9(c)). Using this interface as an example, Figure 10 depicts the
distribution of such notations during a home game in September 2012.

Recall of performance-related events without any observation aids is traditionally problematic in
soccer, but the recall abilities of the head coaches using Muithu have improved rapidly approaching
almost 1 (100%). A small but fundamental detail is the use of hindsight recording, which implies that
the coach observes an entire situation and determines afterwards whether it was a notable event
worth capturing. By tagging in retrospect, the coach essentially marks the end of a notable event, and
the system finds the start of the sequence by a preconfigured interval length. This simple yet not so
intuitive approach has reduced the number of false positives, that is, increased precision dramatically.

Only those events tagged by the head coaches are retrieved for movement patterns, strategy, and
tactics evaluation. The key to this process is that the video footage is automatically retrieved from the
video system when the event is selected in the video playout interface. This scales both technically and
operationally, which enables expedited retrieval. The video sequence interval according to the recorded
event time-stamp is a configuration option easy to change, but operational practice has shown that an
interval around 15 seconds is appropriate for capturing the event on video. It is also possible to adjust
this interval, both when the event is created and during playback.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

237

14:14 • H. K. Stensland et al.

Fig. 11. The offline Linux interface (tracking three players in camera-switching mode).

Fig. 12. Example query.

6. ALFHEIM STADIUM CASE STUDY

We have a prototype installation at Alfheim Stadium in Tromsø (Norway). The interface of the of-
fline prototype [Halvorsen et al. 2013]1 is shown in Figure 11, where we can follow and zoom in on
particular player(s) and play back expert-annotated events from the game in panorama video- and
camera-switching mode.

In the offline mode, the system has support for generating automatic summaries, that is, selecting
multiple time intervals and playing it out as one video (not yet integrated into the user interface).
This means that the game analytics, for example, may perform queries against the ZXY database
and get the corresponding video events. An example could be to see “all the events where defender
X is in the other team’s 18-yard box in the second half”. In this example, the position and corre-
sponding time of player X in the former example is returned by the pseudo-query shown in Figure 12.
Here, the player is located within the [0.0, 16.5] in the x-coordinate and [17.5, 50.5] on the y-axis (using
the metric system) defining the 18-yard box. The returned time stamps and positions are then used
to select video frames (selecting the correct camera or the panorama picture) which are automatically
presented to the user. Extracting summaries like the preceding example used to be a time-consuming

1A video of the (offline) Linux-based system is available at http://www.youtube.com/watch?v=1zsgvjQkL1E. At the time of the
submission, we have not been able to make a video of the online system.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

238

Bagadus • 14:15

Table I. Latency Profiling (in ms) of the Event Extraction Operation Using
ZXY and the Video System

Operation Mean Minimum Maximum Standard deviation

Query received 2.7 1.5 5.3 0.38
Query compiled 4.9 2.9 7.8 0.61
First DB row returned 500.4 482.4 532.1 5.91
First video frame displayed 671.2 648.0 794.6 8.82

Fig. 13. The online HTML5 interface used for expert annotated events. Here the events are sorted by player and then time.

and cumbersome (manual) process. Bagadus, on the other hand, automates the video generation. For
instance, the response time of returning the resulting video summary from the preceding query was
measured to be around 671ms (see Table I for more detailed statistics). Note that this was measured
on a local machine, that is, if the display device is remote, network latency must be added. The SQL
queries are made for expert users. We have also implemented a number of predefined queries that are
availible in the user interface.

As shown in the online mode HTML5 interface in Figure 13, we can in a similar way extract video
events based on expert annotations. Events may be tagged through a Web interface or using the mo-
bile phone sending an HTTP POST command, and all annotated events from the analytics subsystem
then appear in the list of events. Using a standard Web browser, the corresponding videos start by
clicking on the event title. Thus, the integration of subsystems enable event playout during a game or
a practice session.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

239

14:16 • H. K. Stensland et al.

Fig. 14. Lighting challenges at Alfheim Stadium. Comparison between Bagadus and two professional Norwegian broadcasters.
(The images are from the same game but different situations during the game.)

7. DISCUSSION

Performance analysis of athletes in the sports industry is a growing field of interest. In the context
of computer systems managing the technical challenges, there are numerous issues that must be ad-
dressed to provide real-time operations. In this respect, our Bagadus soccer analysis application in-
tegrates a sensor system, soccer analytics annotations, and video processing of a video camera array.
There exist several components that can be used, and we have investigated several alternatives in our
research. Furthermore, by providing a parallel video-processing pipeline distributing load on multiple
CPUs and GPUs, Bagadus supports analysis operations at 30fps. Note, however, that our prototype
aims to prove the possible integration at the system level with real-time performance, rather than be-
ing optimized for optimal resource utilization, that is, there are several areas with potential for further
optimizations.

For example, most stitching processes assume the pinhole camera model where there is no image
distortion because of lenses. In our work, we have observed that a camera can be calibrated to minimize
lens distortion caused by imperfections in a lens but making a perfect calibration is hard. This makes
finding a homography between planes difficult and error-prone, which affects the stitched result.

Another problem we have identified is parallax errors. In this respect, OpenCV’s auto-stitcher has
functionality for selecting seams at places where parallax errors are less obvious. However, when
stitching video recorded from cameras capturing the field from the same position but with different
angles (requiring rotation and warping), parallax errors will become prominent. Such problems arise
because the centers of the projection of different cameras are not aligned well enough. We are look-
ing at solutions to eliminate this problem: one of the most interesting solutions is the arrangement of
cameras over cross, such as each camera capturing one side of the field, similar to Fehn et al. [2006].

Furthermore, the stitching itself can be moved from a homography-based stitching with dynamic
seams to avoid moving objects to more advanced warping techniques, like the one mentioned in Lin
et al. [2011]. A rather intriguing challenge would be to incorporate such a process into Bagadus and
perform this approach in real time, too. Moreover, we have later found several promising alternative
algorithms in the area of video processing (vision) (e.g., [Lin et al. 2011; Jin 2008; Li and Du 2010;
Ozawa et al. 2012]), and there is also scope for further improvement in color correction [Xiong and
Pulli 2010], since the exposure times and other parameters across the cameras may vary.

A major challenge is managing variations in lighting conditions. In most weather conditions, our
current setup works fine, but our main challenge here is a low and bright sun. The visual quality is
exceptional when it is partly or completely cloudy, but the striking difference between the amount of
light available from highlights and shadows during a clear day leaves us with a choice of having a good
dynamic range in only one region. An example from Alfheim Stadium is shown in Figure 14. When
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

240

Bagadus • 14:17

there are intensely bright and dark areas in the image (Figure 14(a)), most cameras have problems
creating a representative image. Particularly, in our Alfheim case study, the location of the stadium
is only 2,271km from the North Pole (69.6489986◦N). The sun is significant lower on the sky than
most of the habitable world, resulting in challenges, as shown in the figure. In such a case, aiming for
good quality in highlights leads to loss of details in shadows. Our system currently lacks the ability to
make an appropriate decision which often depends on the events on the field. Professional broadcasters
also experience these problems, but they have people manning cameras (and thus also the exposure
settings) as well as a someone controlling the live broadcast who also can perform manual adjustments
(Figures 14(c) and 14(b)).

Our system needs to handle this without human interaction and in real time. The problem is related
to suboptimal auto-exposure and insufficient dynamic range on the camera sensors. Improvements can
be achieved several ways. In this respect, one could solve common auto-exposure problems as proposed
in Kao et al. [2011] and use real-time assembling of high-dynamic-range (HDR) video by using low-
dynamic-range images [Ali and Mann 2012; Guthier et al. 2012]. Investigations of such approaches are
currently ongoing.

The GPU implementation has been tested on an Nvidia GeForce Titan (GK110) GPU with compute
3.5 capabilities and has been profiled with Nvidia’s Visual Profiler to investigate the possibilities of
scaling the pipeline to more cameras with higher resolution. Currently, we are only using a small
portion of the available PCI Express bandwidth between the CPU and the GPU. Our uploader uses
737MB/sec, and our downloader uses 291MB/sec. The theoretical bidirectional bandwidth of a 16-lane
PCI Express 3.0 link is 16GB/sec. The real-time pipeline uses seven kernels running concurrently
on the GPU. These seven kernels have an average compute utilization of 14.8% on this GPU. The
individual CUDA kernels are also not optimized for the architecture used in our benchmarks, since
the priority was to get the entire pipeline in real time. There is therefore a lot of potential on the GPU
for scaling the pipeline to a larger number of cameras with higher resolution.

In our case study, we have analyzed data and retrieving video from only one game. However, we have
shown earlier how one could search for events and generate video summaries on-the-fly in terms of a
video playlist [Johansen et al. 2009] over large libraries of video content. In the used test scenario, there
are events identified from multiple subcomponents, for example, the sensor system and the annotation
system. In many cases, it would be valuable to be able to search across all the metadata and also across
games. This is a feature we are currently adding, that is, the underlying video system fully supporting
the video extraction, but the interface has not yet been implemented.

The design of Bagadus having three tightly integrated, but still separate subsystems, enables easy
subsystem replacement. For example, we have used ZXY to track players, providing some extra nice
features (heart rate, impact, etc.). However, tracking players (or, generally, objects) through video anal-
ysis is a popular research area (e.g., both in sports [Fehn et al. 2006; Yongduek et al. 1997; Iwase
and Saito 2004; Kang et al. 2003] and surveillance [Fuentes and Velastin 2006; Chen et al. 2011;
Siebel and Maybank 2002]). Thus, the Bagadus idea should easily be transferable to arenas where
the sensor system is unavailable or to other arena sports, like ice hockey, handball, baseball, tennis,
American football, rugby, etc. Similarly, video-processing components can easily be replaced to match
other codec’s and other filters or to suit other end devices and platforms. Equally, the annotation sys-
tem can be replaced (or expanded) to retrieve metadata of events from other sources, like on-the-fly
live text commentaries found in newspapers and online TV stations, like we did in our DAVVI sys-
tem [Johansen et al. 2009].

One engineering challenge in systems like Bagadus is time synchronization at several levels. First,
to be able to stitch several images to a panorama image, the shutters must be synchronized at the sub-
millisecond level, that is, as the players are moving fast across cameras, imperfect synchronization

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

241

14:18 • H. K. Stensland et al.

Fig. 15. An example of when the tracking box fails to capture the tracked player. Even though our analysis of the system
indicates very infrequent errors, it may be various reasons for failed tracking, for example, both clock skew, sensor system
accuracy, and coordinate mapping.

would lead to massive pixel offsets across camera perspectives resulting in severely blurred composite
images of players. This is currently solved using an external trigger box (i.e., embedded trigger con-
troller based on an ATMega16 microcontroller) which sends an input signal to the camera’s electronic
shutter. Another observed challenge in this respect is that the clock in the trigger box drifts slightly
compared to our computer clocks depending on temperature (which changes a lot under the harsh
outdoor conditions in northern Norway). While the shutters across cameras remains in sync, a drift-
ing clock leads to slight variations in frame rate of the captured video. Similarly, Bagadus integrates
several subsystems running on different systems. In this respect, the clock in the ZXY system also
slightly drifts compared to the clock in our video capture machines (which will be potentially solved
when we switch ZXY to the same NTP server). So far, these small errors have been identified, but since
we alleviate the problem in our video player by fetching a couple of seconds more video data around a
requested event time stamp, the effects have been small. Another more visible (still very infrequent)
effect of time skew is that the box-marker marking the players in the video gives small misplacement
errors, as shown in Figure 15. However, the bounding box is slightly larger compared to the personob-
ject itself. This means that the player is usually contained in the box, even though not exactly in the
middle. At the current stage of our prototype, we have not solved all the synchronization aspects, but
it is subject to ongoing work.

The ZXY’s tracking system installed at Alfheim Stadium has a maximum accuracy error of one
meter (their new system reduces this error down to a maximum of 10 centimeters). This means that if
a player is at a given position, the measured coordinate on the field could be ± one meter. This could
give effects like those shown in Figure 15, but for the practical purposes of our case study, it has no
influence on the results.

The players are tracked as described using the ZXY Sport Tracking system. Another issue which
is not yet included in Bagadus is ball tracking, that is, a feature that could potentially improve the
analysis further. Even though ball tracking is not officially approved by the international soccer as-
sociations due to the limited reliability and failure to provide 100% accuracy, there exist several ap-
proaches. For example, Adidas and Cairos Technologies have tried to put sensors inside the ball, that
is, using a magnetic field to provide pinpoint accuracy of the ball’s location inside the field [McKeegan
2007; Cairos Technologies 2013a]. Other approaches include using multiple cameras to track the ball.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

242

Bagadus • 14:19

Hawk-Eye [2013] is one example which tries to visually track the trajectory of the ball and display a
record of its most statistically likely path as a moving image. Nevertheless, ball tracking in Bagadus
is a future feature.

This article presents Bagadus in the context of sports analysis for a limited user group within a
team. However, the applicability we conjecture is outside the trainer and athlete sphere, since we have
a potential platform for next-generation personalized edutainment. We consider use case scenarios
where users can subscribe to specific players, events, and physical proximities in real time. For in-
stance, when the main activity is around the opponent goal, a specific target player can be zoomed
into. Combine this with commonplace social networking services, and we might have a compelling
next-generation social networking experience in real time.

8. CONCLUSIONS

We have presented a real-time prototype of a sports analysis system called Bagadus targeting auto-
matic processing and retrieval of events in a sports arena. Using soccer as a case study, we described
how Bagadus integrates a sensor system, a soccer analytics annotations system, and a camera ar-
ray video processing system. Then, we showed how the system removes the large amount of manual
labor traditionally required by such systems. We have described the different subsystems and the
possible trade-offs in order to run the system in real-time mode. Compared to our initial demonstra-
tor [Halvorsen et al. 2013], the improved processing pipeline parallelizing the operational steps and
distributing workload to both CPUs and GPUs enables real-time operations, and the picture qual-
ity has been improved using dynamic seams and color correction. Furthermore, we have presented
functional results using a prototype installation at Alfheim Stadium in Norway. Bagadus enable a
user to follow and zoom in on particular player(s), playback events from the games using the stitched
panorama video and/or the camera switching mode, and create video summaries based on queries to
the sensor system.

Finally, there are still several areas for future improvements, for example, in the areas of image
quality improvements handling a wide range of lighting conditions, performance enhancements as our
profiling results show that we can optimize the resource utilization further and subjective user evalu-
ations. All these areas are subjects for ongoing work, for example, we are testing algorithms discussed
in Section 7 for improving the image quality, we are evaluating higher-resolution cameras like the 2K
Basler aca2000-50gc, and we are further optimizing and distributing algorithms onto multiple cores
and offloading calculations to GPUs for speed improvements and better utilization of both cores and
buses.

ACKNOWLEDGMENTS

The authors also acknowledge support given by Kai-Even Nilssen and Håvard Johansen who have been
helpful with the practical installation at Alfheim, the coaches in TIL (Per-Mathias Høgmo and Agnar
Christensen) who have given feedback on the functionality of the system, and Rune Stoltz Bertinussen
for taking player photos.

REFERENCES

Mir Adnan Ali and Steve Mann. 2012. Comparametric image compositing: Computationally efficient high dynamic range imag-
ing. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 913–916.

Horesh Ben Shitrit, Jerome Berclaz, Francois Fleuret, and Pascal Fua. 2011. Tracking multiple people under global appearance
constraints. In Proceedings of the IEEE International Conference on Computer Vision (CCV). 137–144.

Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pascal Fua. 2011. Multiple object tracking using k-shortest paths
optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33, 9, 1806–1819.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

243

14:20 • H. K. Stensland et al.

Matthew Brown and David G. Lowe. 2007. Automatic panoramic image stitching using invariant features. Int. J. Comput.
Vision 74, 1, 59–73.

S. Brutzer, B. Hoferlin, and G. Heidemann. 2011. Evaluation of background subtraction techniques for video surveillance. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1937–1944.

Cairos Technologies. 2013a. Goal Line Technology (GLT) system. http://www.cairos.com/unternehmen/gltsystem.php.
Cairos Technologies. 2013b. VIS.TRACK. http://www.cairos.com/unternehmen/vistrack.php.
Camargus. 2013. Premium Stadium Video Technology Inrastructure. http://www.camargus.com/.
Chao-Ho Chen, Tsong-Yi Chen, Je-Ching Lin, and Da-Jinn Wang. 2011. People tracking in the multi-camera surveillance system.

In Proceedings of the 2nd International Conference on Innovations in Bio-inspired Computing and Applications (IBICA). 1–4.
Peter Dizikes. 2013. Sports analytics: A real game-changer. http://web.mit.edu/newsoffice/2013/sloan-sports-analytics-

conference-2013-0304.html.
Christoph Fehn, Christian Weissig, Ingo Feldmann, Markus Muller, Peter Eisert, Peter Kauff, and Hans Bloss. 2006. Creation

of high-resolution video panoramas of sport events. In Proceedings of the 8th IEEE International Symposium on Multimedia
(ISM). 291–298.

Luis M. Fuentes and Sergio A. Velastin. 2006. People tracking in surveillance applications. Image Vision Comput. 24, 11,
1165–1171.

Benjamin Guthier, Stephan Kopf, and Wolfgang Effelsberg. 2012. Optimal shutter speed sequences for real-time HDR video. In
Proceedings of the IEEE International Conference on Image Systems and Techniques (IST). 303–308.

Pål Halvorsen, Simen Sægrov, Asgeir Mortensen, David K. C. Kristensen, Alexander Eichhorn, Magnus Stenhaug, Stian Dahl,
Håkon Kvale Stensland, Vamsidhar Reddy Gaddam, Carsten Griwodz, and Dag Johansen. 2013. Bagadus: An integrated
system for arena sports analytics a soccer case study. In Proceedings of the 4th ACM Multimedia Systems Conference (MMSys).
48–59.

R. I. Hartley and A. Zisserman. 2004. Multiple View Geometry in Computer Vision 2nd Ed. Cambridge University Press.
Hawk-Eye. 2013. Football::Hawk-Eye. http://www.hawkeyeinnovations.co.uk/page/sports-officiating/football.
Interplay Sports. 2013. The ultimate video analysis and scouting software. http://www.interplay-sports.com/.
Sachiko Iwase and Hideo Saito. 2004. Parallel tracking of all soccer players by integrating detected positions in multiple view

images. In Proceedings of the 7th International Conference on Pattern Recognition (ICPR). 751–754.
Hao Jiang, Sidney Fels, and James J. Little. 2007. A linear programming approach for multiple object tracking. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Hailin Jin. 2008. A three-point minimal solution for panoramic stitching with lens distortion. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 1–8.
Dag Johansen, Håvard Johansen, Tjalve Aarflot, Joseph Hurley, Åge Kvalnes, Cathal Gurrin, Sorin Sav, Bjørn Olstad, Erik

Aaberg, Tore Endestad, Haakon Riiser, Carsten Griwodz, and Pål Halvorsen. 2009. DAVVI: A prototype for the next gen-
eration multimedia entertainment platform. In Proceedings of the 17th ACM International Conference on Multimedia (MM).
989–990.

Dag Johansen, Magnus Stenhaug, Roger Bruun Asp Hansen, Agnar Christensen, and Per-Mathias Høgmo. 2012. Muithu:
Smaller footprint, potentially larger imprint. In Proceedings of the 7th International Conference on Digital Information Man-
agement (ICDIM). 205–214.

P. Kaewtrakulpong and R. Bowden. 2001. An improved adaptive background mixture model for realtime tracking with shadow
detection. In Proceedings of the Video-Based Surveillance Systems. 135–144.

Jinman Kang, Isaac Cohen, and Gerard Medioni. 2003. Soccer player tracking across uncalibrated camera streams. In Proceed-
ings of the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveil-
lance (VS-PETS). 172–179.

Wen-Chung Kao, Li-Wei Cheng, Chen-Yu Chien, and Wen-Kuo Lin. 2011. Robust brightness measurement and exposure control
in real-time video recording. IEEE Trans. Instrument. Measur. 60, 4, 1206–1216.

Jubiao Li and Junping Du. 2010. Study on panoramic image stitching algorithm. In Proceedings of the 2nd Pacific-Asia Confer-
ence on Circuits, Communications and Systems (PACCS). 417–420.

Wen-Yan Lin, Siying Liu, Y. Matsushita, Tian-Tsong Ng, and Loong-Fah Cheong. 2011. Smoothly varying affine stitching. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 345–352.

Noel McKeegan. 2007. The Adidas intelligent football. http://www.gizmag.com/adidas-intelligent-football/8512/.
Tomohiro Ozawa, Kris M. Kitani, and Hideki Koike. 2012. Human-centric panoramic imaging stitching. In Proceedings of the

Augmented Human International Conferences Series (AH). 20:1–20:6.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

244

Bagadus • 14:21

Prozone. 2013. Prozone Sports – Introducing Prozone performance analysis products. http://www.prozonesports.com/
products.html.

Simen Sægrov, Alexander Eichhorn, Jørgen Emerslund, Håkon Kvale Stensland, Carsten Griwodz, Dag Johansen, and Pål
Halvorsen. 2012. Bagadus: An integrated system for soccer analysis (demo). In Proceedings of the 6th International Conference
on Distributed Smart Cameras (ICDSC).

Valter Di Salvo, Adam Collins, Barry McNeill, and Marco Cardinale. 2006. Validation of Prozone: A new video-based performance
analysis system. Int. J. Perform. Anal. Sport 6, 1, 108–119.

Nils T. Siebel and Stephen J. Maybank. 2002. Fusion of multiple tracking algorithms for robust people tracking. In Proceedings
of the 7th European Conference on Computer Vision (ECCV). Lecture Notes in Computer Science, vol. 2353, Springer-Verlag,
Berlin Heidelberg, 373–387.

Stats. 2013. STATS—SportVU—Football/Soccer. http://www.sportvu.com/football.asp.
Yingen Xiong and Kari Pulli. 2009. Color correction for mobile panorama imaging. In Proceedings of the 1st International

Conference on Internet Multimedia Computing and Service (ICIMCS). 219–226.
Yingen Xiong and Kari Pulli. 2010. Fast panorama stitching for high-quality panoramic images on mobile phones. IEEE Trans.

Consumer Electron. 56, 2.
Ming Xu, James Orwell, and Graetne Jones. 2004. Tracking football players with multiple cameras. In Proceedings of the

International Conference on Image Processing (ICIP). 2909–2912.
Sunghoon Choi Yongduek, Sunghoon Choi, Yongduek Seo, Hyunwoo Kim, and Ki sang Hong. 1997. Where are the ball and

players? Soccer game analysis with color-based tracking and image mosaick. In Proceedings of the 9th International Conference
on Image Analysis and Processing (ICIAP). Lecture Notes in Computer Science, vol. 1311, Springer-Varlag, Berlin Heidelberg,
196–203.

Zhengyou Zhang. 1999. Flexible camera calibration by viewing a plane from unknown orientations. In Proceedings of the 7th
IEEE International Conference on Computer Vision (ICCV). 666–673.

Z. Zivkovic. 2004. Improved adaptive gaussian mixture model for background subtraction. In Proceedings of the 17th Interna-
tional Conference on Pattern Recognition (ICPR). 28–31. Vol. 2.

Zoran Zivkovic and Ferdinand van der Heijden. 2006. Efficient adaptive density estimation per image pixel for the task of
background subtraction. Pattern Recog. Lett. 27, 7, 773–780.

ZXY. 2013. ZXY Sport Tracking. http://www.zxy.no/.

Received May 2013; revised August 2013; accepted October 2013

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 1s, Article 14, Publication date: January 2014.

245

246 . Paper VIII: Bagadus: An Integrated Real-Time System for Soccer Analytics

Paper IX: Processing Panorama
Video in Real-Time

Title: Processing Panorama Video in Real-Time [113].

Authors: H. K. Stensland, V. R. Gaddam, M. Tennøe, E. Helgedagsrud, M. Næss, H.
K. Alstad, C. Griwodz, P. Halvorsen and D. Johansen.

Published: International Journal of Semantic Computing (IJSC), Volume 8, Issue 2,
World Scientific, 2014.

247

248 . Paper IX: Processing Panorama Video in Real-Time

Processing Panorama Video in Real-time

Håkon Kvale Stensland*, Vamsidhar Reddy Gaddam,
Marius Tennøe, Espen Helgedagsrud, Mikkel Næss,

Henrik Kjus Alstad, Carsten Griwodz and Pål Halvorsen

University of Oslo/Simula Research Laboratory
Oslo, Norway

*haakonks@ifi.uio.no

Dag Johansen

University of Troms�

Troms�, Norway

There are many scenarios where high resolution, wide ¯eld of view video is useful. Such pano-

rama video may be generated using camera arrays where the feeds from multiple cameras
pointing at di®erent parts of the captured area are stitched together. However, processing the

di®erent steps of a panorama video pipeline in real-time is challenging due to the high data rates

and the stringent timeliness requirements. In our research, we use panorama video in a sport
analysis system called Bagadus. This system is deployed at Alfheim stadium in Tromsø, and due

to live usage, the video events must be generated in real-time. In this paper, we describe our real-

time panorama system built using a low-cost CCD HD video camera array. We describe how we

have implemented di®erent components and evaluated alternatives. The performance results
from experiments ran on commodity hardware with and without co-processors like graphics

processing units (GPUs) show that the entire pipeline is able to run in real-time.

Keywords: Real-time panorama video; system integration; camera array.

1. Introduction

A wide ¯eld of view (panoramic) image or video is often used in applications like

surveillance, navigation, scenic views, educational exhibits and sports analysis. Here,

video feeds are often captured using multiple cameras capturing slightly overlapping

areas, and the frames are processed and stitched into a single unbroken frame of the

whole surrounding region. To prepare the individual frames for stitching and ¯nally

generating the panorama frame, each individual frame must be processed for barrel

distortion, rotated to have the same angle, warped to the same plane and corrected

for color di®erences. Then, the frames are stitched to one large panorama image,

where the stitch operation also includes searching for the best possible seam in the

overlapping areas to avoid seams through objects of interest in the video. Finally, the

panorama frame is encoded to save storage space and transfer bandwidth and,

International Journal of Semantic Computing
Vol. 8, No. 2 (2014) 209–227

°c World Scienti¯c Publishing Company

DOI: 10.1142/S1793351X14400054

209

249

written to disk. As several of these steps include direct pixel manipulation and

movement of large amounts of data, the described process is very resource hungry.

In [30], we described our implementation of a real-time panorama video pipeline

for an arena sports application called Bagadus [11, 28], and this is an extended

version providing more details. In our panorama setup, we use a static array of low-

cost CCD HD video cameras, each pointing at a di®erent direction, to capture the

wide ¯eld of view of the arena. These di®erent views are slightly overlapped in order

to facilitate the stitching of these videos to form the panoramic video. Several similar

non-real-time stitching systems exist (e.g. [23]), and a simple non-real-time version of

this system has earlier been described and demonstrated at the functional level [11,

26]. Our initial prototype is the ¯rst sports application to successfully integrate per-

athlete sensors [17], an expert annotation system [16] and a video system, but due to

the non-real-time stitching, the panorama video was only available to the coaches

some time after a game. The ¯rst prototype also did not use any form of color

correction or dynamic seam detection. Hence, the static seam did not take into

account moving objects (such as players), and the seam was therefore very visible.

Fig. 1. Overall system architecture.

210 H. K. Stensland et al.

250

However, new requirements like real-time performance and better visual quality have

resulted in a new and improved pipeline. Using our new real-time pipeline, such

systems can be used during the game. A brief overview of the architecture and

interaction of the di®erent components is given in Fig. 1. In this paper we will focus

on the details of the whole pipeline from capturing images from the cameras via

various corrections steps for panorama generation to encoding and storage of both

the panorama video and the individual camera streams on disks. We describe how we

have evaluated di®erent implementation alternatives (both algorithms and imple-

mentation options), and we benchmark the performance with and without using

graphics processing units (GPUs) as an co-processors. We evaluate each individual

component, and, we show how the entire pipeline is able to run in real-time on a low-

cost 6-core machine with a GPU, i.e. moving the 1 frame per second (fps) system to

30 fps enabling game analysis during the ongoing event.

The remainder of the paper is structured as follows. We give a brief overview of

the basic idea of our system in Sec. 2, and then we analyze the state of the art in

Sec. 3 to see if systems exist that meet our requirements. Then, we describe and

evaluate our real-time panorama video pipeline in Sec. 4. Various aspect of the

system are discussed in Sec. 5 before we ¯nally conclude the paper in Sec. 6.

2. Our Sports Analysis Systems

Today, a large number of (elite) sports clubs spend a large amount of resources to

analyze their game performance, either manually or using one of the many existing

analytics tools. For example, in the area of soccer, several systems enable trainers and

coaches to analyze the gameplay in order to improve the performance. For instance,

Interplay-sports, ProZone, STATS SportVU Tracking Technology and Camargus

provide very nice video technology infrastructures. These systems can present player

statistics, including speed pro¯les, accumulated distances, fatigue, ¯tness graphs and

coverage maps using di®erent charts, 3D graphics and animations. Thus, there exist

several tools for soccer analysis. However, to the best of our knowledge, there does

not exist a system that fully integrates all desired features in real-time, and existing

systems still require manual work moving data between di®erent components. In this

respect, we have presented Bagadus [11, 26], which integrates a camera array video

capture system with a sensor-based sport tracking system for player statistics and a

system for human expert annotations. Our system allows the game analytics to

automatically playout a tagged game event or to extract a video of events extracted

from the statistical player data. This means that we for example can query for all

sprints faster than X or all situations where a player is in the center circle. Using the

exact player position provided by sensors, a trainer can also follow individuals or

groups of players, where the videos are presented either using a stitched panorama

view of the entire ¯eld or by (manually or automatically) switching between the

di®erent camera views. Our prototype is currently deployed at an elite club stadium.

We use a dataset captured at a premier league game to experiment and to perform

Processing Panorama Video in Real-time 211

251

benchmarks on our system. In previous versions of the system, the panorama video

had to be generated o®line, and it had static seams [11]. For comparison with the new

pipeline presented in Sec. 4, we next present the camera setup and the old pipeline.

2.1. Camera setup

To record the high resolution video of the entire soccer ¯eld, we have installed a

camera array consisting of four Basler industry cameras with a 1/3-inch image

sensors supporting 30 fps at a resolution of 1280� 960. The cameras are synchro-

nized by an external trigger signal in order to enable a video stitching process that

produces a panorama video picture. The cameras are mounted close to the middle

line (see Fig. 2), i.e. under the roof of the stadium covering the spectator area

approximately 10 meters from the side line and 10 meters above the ground. With a

3.5mm wide-angle lens, each camera covers a ¯eld-of-view of about 68 degrees, and

the full ¯eld with su±cient overlap to identify common features necessary for camera

calibration and stitching, is achieved using the four cameras. Calibration is done via

a classic chessboard pattern [33].

2.2. The o®line, static stitching pipeline

Our ¯rst prototype focused on integrating the di®erent subsystems. We therefore did

not put large e®orts into real-time performance resulting in an unoptimized, o®line

panorama video pipeline that combined images from multiple, trigger-synchronized

cameras as described above. The general steps in this stitching pipeline are: (1)

correct the images for lens distortion in the outer parts of the frame due to a wide-

angle ¯sh-eye lens; (2) rotate and morph the images into the panorama perspective

caused by di®erent positions covering di®erent areas of the ¯eld; (3) rotate and stitch

the video images into a panorama image; and (4) encode and store the stitched video

to persistent storage. Several implementations were tested for the stitching operation

such as the OpenCV planar projection, cylindrical projection and spherical projec-

tion algorithms, but due to the processing performance and quality of the output

image, the used solution is a homography based algorithm.

Fig. 2. Camera setup at the stadium.

212 H. K. Stensland et al.

252

The ¯rst step before executing the pipeline, is to ¯nd corresponding pixel points in

order to compute the homography between the camera planes [12], i.e. the head

camera plane and the remaining camera planes. When the homography is calculated,

the image can be warped (step 2) in order to ¯t the plane of the second image. The

images must be padded to have the same size, and the seams for the stitching must be

found in the overlapping regions (our ¯rst pipeline used static seams). Figure 3 shows

the four rotated, wrapped and stitched images. The whole process of stitching the

images is described in [28]. We also calculate the homography between the sensor

data plane and the camera planes to ¯nd the mapping between sensor data coordi-

nates and pixel positions.

As can be seen in the ¯gure, the picture is not perfect, but the main challenge is

the high execution time. On an Intel Core i7-2600 @ 3.4GHz and 8GB memory

machine, the stitching operation consumed 974ms of CPU time to generate each

7000� 960 pixel panorama image [11]. Taking into account that the target display

rate is 30 fps, i.e. requiring a new panorama image every 33ms, there are large

performance issues that must be addressed in order to bring the panorama pipeline

from a 1 fps system to a 30 fps system. However, the stitching operations can be

parallelized and parts of it o®loaded to external devices such as GPUs, which, as we

will see in Sec. 4, results in a performance good enough for real-time, online pro-

cessing and generation of a panorama video.

3. Related Work

Real-time panorama image stitching is becoming common. For example, many have

proposed systems for panorama image stitching (e.g. [6, 14, 19–21]), and modern

operating systems for smart phones like Apple iOS and Google Android support

generation of panorama pictures in real-time. However, the de¯nition of real-time is

not necessarily the same for all applications, and in this case, real-time is similar to

`̀ within a second or two". For video, real-time has another meaning, and a panorama

picture must be generated in the same speed as the display frame rate, e.g. every

33ms for a 30 frame-per-second (fps) video.

One of these existing systems is Camargus [1]. The people developing this system

claim to deliver high de¯nition panorama video in real-time from a setup consisting

of 16 cameras (ordered in an array), but since this is a commercial system, we have no

insights to the details. Another example is Immersive Cockpit [29] which aims to

generate a panorama for tele-immersive applications. They generate a stitched video

Fig. 3. The homography-based panorama image stitched from four cameras.

Processing Panorama Video in Real-time 213

253

which capture a large ¯eld-of-view, but their main goal is not to give output with

high visual quality. Although they are able to generate video at a frame rate of about

25 fps for 4 cameras, there are visual limitations to the system, which makes the

system not well suited for our scenario.

Moreover, Baudisch et al. [5] present an application for creating panoramic

images, but the system is highly dependent on user input. Their de¯nition of real

time is `̀ panorama construction that o®ers a real-time preview of the panorama while

shooting", but they are only able to produce about 4 fps (far below our 30 fps re-

quirement). A system similar to ours is presented in [4], which computes stitch-maps

on a GPU, but the presented system produces low resolution images (and is limited

to two cameras). The performance is within our real-time requirement, but the

timings are based on the assumption that the user accepts a lower quality image than

the cameras can produce.

Haynes [3] describes a system by the Content Interface Corporation that creates

ultra high resolution videos. The Omnicam system from the Fascinate [2, 27] project

also produces high resolution videos. However, both these systems use expensive

and specialized hardware. The system described in [3] also makes use of static

stitching. A system for creating panoramic videos from already existing video clips is

presented in [7], but it does not manage to create panorama videos within our

de¯nition of real-time. As far as we know, the same issue of real-time is also present in

[5, 13, 23, 31].

In summary, existing systems (e.g. [7, 13, 23, 29, 31]) do not meet our demand of

being able to generate the video in real-time, and commercial systems (e.g. [1, 3]) as

well as the systems presented in [2, 27] do often not ¯t into our goal to create a system

with limited resource demands. The system presented in [4] is similar to our system,

but we require high quality results from processing a minimum of four cameras

streams at 30 fps. Thus, due to the lack of a low-cost implementations ful¯lling our

demands, we have implemented our own panorama video processing pipeline which

utilize processing resources on both the CPU and GPU.

4. A Real-Time Panorama Stitcher

In this paper, we do not focus on selecting the best algorithms etc., as this is mostly

covered in [11]. The focus here is to describe the panorama pipeline and how the

di®erent components in the pipeline are implemented in order to run in real-time. We

will also point out various performance trade-o®s.

As depicted in Fig. 4, the new and improved panorama stitcher pipeline is sep-

arated into two main parts: one part running on the CPU, and the other running on a

GPU using the CUDA framework. The decision of using a GPU as part of the

pipeline was due to the potential high performance and the parallel nature of the

workload. The decision of using the GPU for the pipeline has a®ected the architec-

ture to a large degree. Unless otherwise stated (we have tested several CPUs and

GPUs), our test machine for the new pipeline is an Intel Core i7-3930K, i.e. a 6-core

214 H. K. Stensland et al.

254

processor based on the Sandy Bridge-E architecture, with 32GB RAM and an Nvidia

GeForce GTX 680GPU based on the GK104 Kepler architecture.

4.1. The Controller module

The single-threaded Controller is responsible for initializing the pipeline, synchro-

nizing the di®erent modules, handling global errors and frame drops, and transferring

data between the di®erentmodules. After initialization, it will wait for and get the next

set of frames from the camera reader (CamReader) module (see below). Next, it will

control the transfers of data from the output bu®ers ofmoduleN to the input bu®ers of

moduleN þ 1. This is done primarily by pointer swapping, and withmemory copies as

an alternative. It then signals all modules to process the new input and waits for them

to¯nish processing.Next, the controller continues looping bywaiting for the next set of

frames from the reader. Another important task of the Controller is to check the

execution speed. If an earlier step in the pipeline runs too slow, and one or more frames

has been lost from the cameras, the controllerwill tell themodules in the pipeline to skip

the delayed or dropped frame, and reuse the previous frame.

4.2. The CamReader module

The CamReader module is responsible for retrieving frames from the cameras. It

consists of one dedicated reader thread per camera. Each of the threads will wait for

the next frame, and then write the retrieved frame to a output bu®er, overwriting the

previous frame. The cameras provide a single frame in YUV 4:2:2 format, and the

retrieval rate of frames in the CamReader is what determines the real time threshold

for the rest of the pipeline. As described above, the camera shutter synchronization is

controlled by an external trigger box, and in our current con¯guration, the cameras

deliver a frame rate of 30 fps, i.e. the real-time threshold and the CamReader pro-

cessing time are thus 33ms.

4.3. The Converter module

The CamReader module outputs frames in YUV 4:2:2 format. However, the stitching

pipeline requires RGBA internally for processing, and the system therefore converts

frames from YUV 4:2:2 to RGBA. This is handled by the Converter module using

1) CamReader
2) Converter

YUV422=>RGBA
3) Debarreler 5) Uploader

5) Uploader 6) Background-
subtractor 9) Stitcher 10) Converter

RGBA=>YUV420

6) Background-
subtractor 11) Downloader

11) Downloader

12) Panorama-
Writer

GPU
CPU

4) SingleCam-
Writer

Controller

Player coordinate
database (ZXY)

8) Color-corrector7) Warper

Fig. 4. Panorama stitcher pipeline architecture. The orange and blue components run in the CPU and

the green components run on the GPU.

Processing Panorama Video in Real-time 215

255

®mpeg and swscale. The processing time for these conversions on the CPU, as seen

later in Fig. 11, is well below the real-time requirement, so this operation can run as a

single thread.

4.4. The Debarreler module

Due to the wide angle lenses used with our cameras in order to capture the entire

¯eld, the images delivered are su®ering from barrel distortion which needs to be

corrected. We found the performance of the existing debarreling implementation in

the old stitching pipeline to perform fast enough. The Debarreler module is therefore

still based on OpenCVs debarreling function, using nearest neighbor interpolation,

and is executing as a dedicated thread per camera.

4.5. The SingleCamWriter module

In addition to storing the stitched panorama video, we also want to store the video

from the separate cameras. This storage operation is done by the SingleCamWriter,

which is running as a dedicated thread per camera. As we can see in [11], storing the

videos as raw data proved to be impractical due to the size of uncompressed raw

data. The di®erent CamWriter modules (here SingleCamWriter) therefore encode

and compress frames into 3 seconds long H.264 ¯les, which proved to be very e±-

cient. Due to the use of H.264, every SingleCamWriter thread starts by converting

from RGBA to YUV 4:2:0, which is the required input format by the x264 encoder.

The threads then encode the frames and write the results to disk.

4.6. The Uploader module

Due to the large potential of parallelizing the panorama workload and the high

computing power of modern GPUs, large parts of our pipeline run on a GPU. We

therefore need to transfer data from the CPU to the GPU, i.e. a task performed by

the Uploader module. In addition, the Uploader is also responsible for executing the

CPU part of the BackgroundSubtractor (BGS) module (see Sec. 4.7). The Uploader

consists of a single CPU thread, that ¯rst runs the player pixel lookup creation

needed by the BGS. Next, it transfers the current RGBA frames and the corre-

sponding player pixel maps from the CPU to the GPU. This is done by use of double

bu®ering and asynchronous transfers.

4.7. The BackgroundSubtractor module

Background subtraction is the process of determining which pixels of a video that

belong to the foreground and which pixels that belong to the background. The

BackgroundSubtractor module, running on the GPU, generates a foreground mask

(for moving objects like players) that is later used in the Stitcher module later to

avoid seams in the players. Our BackgroundSubtractor can run like traditional

systems searching the entire image for foreground objects. However, we can also

216 H. K. Stensland et al.

256

exploit information gained by the tight integration with the player sensor system. In

this respect, through the sensor system, we know the player coordinates which can be

used to improve both performance and precision of the module. By ¯rst retrieving

player coordinates for a frame, we can then create a player pixel lookup map, where

we only set the players pixels, including a safety margin, to 1. The creation of these

lookup maps are executed on the CPU as part of the Uploader. The BGS on GPU

then uses this lookup map to only process pixels close to a player, which reduces the

GPU kernel processing times, from 811.793 microseconds to 327.576 microseconds on

average on a GeForce GTX 680. When run in a pipelined fashion, the processing

delay caused by the lookup map creation is also eliminated. The sensor system

coordinates are retrieved by a dedicated slave thread that continuously polls the

sensor system database for new samples.

Even though we enhance the background subtraction with sensor data input,

there are several implementation alternatives. When determining which algorithm to

implement, we evaluated two alternatives: Zivkovic [34, 35] and KaewTraKulPong

[18]. Even though the CPU implementation was slower (see Fig. 5), Zivkovic pro-

vided the best visual results, and was therefore selected for further modi¯cation.

Furthermore, the Zivkovic algorithm proved to be fast enough when modi¯ed with

input from the sensor system data. The GPU implementation, based on [25], proved

to be even faster, and the ¯nal performance numbers for a single camera stream can

be seen in Fig. 5. A visual comparison of the unmodi¯ed Zivkovic implementation

and the sensor system-modi¯ed version is seen in Fig. 6 where the sensor coordinate

modi¯cation reduce the noise as seen in the upper parts of the pictures.

Fig. 5. Execution time of alternative algorithms for the BackgroundSubtractor module (1 camera

stream).

(a) Unmodi¯ed Zivkovic (b) Player sensor data modi¯cation of Zivkovic

Fig. 6. Background subtraction comparison.

Processing Panorama Video in Real-time 217

257

4.8. The Warper module

The Warper module is responsible for warping the camera frames to ¯t the stitched

panorama image. By warping we mean twisting, rotating and skewing the images to

¯t the common panorama plane. Like we have seen from the old pipeline, this is

necessary because the stitcher assumes that its input images are perfectly warped

and aligned to be stitched to a large panorama. Executing on the GPU, the Warper

also warps the foreground masks provided by the BGS module. This is because the

Stitcher module at a later point will use the masks and therefore expects the masks to

¯t perfectly to the corresponding warped camera frames. Here, we use the Nvidia

Performance Primitives library (NPP) for an optimized implementation.

4.9. The Color-corrector module

When recording frames from several di®erent cameras pointing in di®erent direction,

it is nearly impossible to calibrate the cameras to output the exact same colors due to

the di®erent lighting conditions. This means that, to generate the best panorama

videos, we need to correct the colors of all the frames to remove color disparities. In

our panorama pipeline, this is done by the Color-corrector module running on the

GPU.

We choose to do the color correction after warping the images. The reason for this

is that locating the overlapping regions is easier with aligned images, and the overlap

is also needed when stitching the images together. This algorithm is executed on the

GPU, enabling fast color correction within our pipeline. The implementation is based

on the algorithm presented in [32], but have some minor modi¯cations. We calculate

the color di®erences between the images for every single set of frames delivered from

the cameras. Currently, we color-correct each image in a sequence, meaning that

each image is corrected according to the overlapping frame to the left. The algorithm

implemented is easy to parallelize and does not make use of pixel to pixel mapping

which makes it well suited for our scenario. Figure 7 shows a comparison between

running the algorithm on the CPU and on a GPU.

4.10. The Stitcher module

Like in the old pipeline, we use a homography based stitcher where we simply create

seams between the overlapping camera frames, and then copy pixels from the images

based on these seams. These frames need to follow the same homography, which is

Fig. 7. Execution time of color correction.

218 H. K. Stensland et al.

258

why they have to be warped. Our old pipeline used static cuts for seams, which means

that a ¯xed rectangular area from each frame is copied directly to the output frame.

Static cut panoramas are faster, but can introduce graphical errors in the seam area,

especially when there are movement in the scene (illustrated in Fig. 8).

To make a better seam with a better visual result, we therefore introduce a

dynamic cut stitcher instead of the old static cut. The dynamic cut stitcher creates

seams by ¯rst creating a rectangle of adjustable width over the static seam area.

Then, it treats all pixels within the seam area as graph nodes. The graph is directed

from the bottom to the top in such a way that each pixel points to the three adjacent

ones above (left and right-most pixels only point to the two available). Each of these

edge's weight are calculated by using a custom function that compares the absolute

color di®erence between the corresponding pixel in each of the two frames we are

trying to stitch. The weight function also checks the foreground masks from the BGS

module to see if any player is in the pixel, and if so it adds a large weight to the node.

In e®ect, both these steps will make edges between nodes where the colors di®ers and

players are present have much larger weights. We then run the Dijkstra graph

Fig. 8. Stitcher comparison ��� improving the visual quality with dynamic seams and color correction.

The ¯rst image shows the original stitch [11] with a ¯xed cut stitch with a straight vertical seam. The
middle image shows a dynamic stitch with no color correction. The embedded thumbnail shows the seam.

The bottom image shows a dynamic stitch with color correction, i.e. resulting in that the seam is no longer

visible.

Processing Panorama Video in Real-time 219

259

algorithm on the graph to create a minimal cost route from the start of the o®set at

the bottom of the image to the end at the top. Since our path is directed upwards, we

can only move up or diagonally from each node, and we will only get one node per

horizontal position. By looping through the path, we therefore get our new cut o®sets

by adding the node's horizontal position to the base o®set.

An illustration of how the ¯nal seam looks can be seen in bottom image in Fig. 8,

where the seams without and with color correction are shown in the embedded

thumbnails. Timings for the dynamic stitching module can be seen in Fig. 9. The

CPU version is currently slightly faster than our GPU version (as searches and

branches often are more e±cient on traditional CPUs), but further optimization of

the CUDA code will likely improve this GPU performance. Note that the min and

max numbers for the GPU are skewed by frames dropping (no processing), and the

initial run being slower.

4.11. The YuvConverter module

Before storing the stitched panorama frames, we need to convert back from RGBA to

YUV 4:2:0 for the H.264 encoder, just as in the SingleCamWriter module. However,

due to the size of the output panorama, this conversion is not fast enough on the

CPU, even with the highly optimize swscale. This module is therefore implemented

on the GPU. In Fig. 10, we can see the performance of the CPU based implemen-

tation versus the optimized GPU based version.

Nvidia NPP contains several conversion primitives, but not a direct conversion

from RGBA to YUV 4:2:0. The GPU based version is therefore ¯rst using NPP to

convert from RGBA to YUV 4:4:4, and then a self written CUDA code to convert

from YUV 4:4:4 to YUV 4:2:0.

4.12. The Downloader module

Before we can write the stitched panorama frames to disk, we need to transfer it back

to the CPU, which is done by the Downloader module. It runs as a single CPU thread

Fig. 9. Execution time for dynamic stitching.

Fig. 10. Execution time for RGBA to YUV 4:2:0 conversion.

220 H. K. Stensland et al.

260

that copies a frame synchronously to the CPU. We could have implemented the

Downloader as an asynchronous transfer with double bu®ering like the Uploader, but

since the performance as seen in Fig. 11 is very good, this is left as future work.

4.13. The PanoramaWriter module

The last module, executing on the CPU, is the Writer that writes the panorama

frames to disk. The conversion from RGBA to YUV has already been done on the

GPU, so the only steps the PanoramaWriter needs to follow, is to ¯rst encode the

input frame to H.264, and then write the result to disk as three second H.264 video

¯les.

4.14. Pipeline performance

In order to evaluate the performance of our pipeline, we used an o®-the-shelf PC with

an Intel Core i7-3930K processor and an nVidia GeForce GTX 680 GPU. We have

benchmarked each individual component and the pipeline as a whole capturing,

processing and storing 1000 frames from the cameras.

In the initial pipeline [11], the main bottleneck was the panorama creation

(warping and stitching). This operation alone used 974ms per frame. As shown by

the breakdown into individual components' performance in Fig. 11, the new pipeline

has been greatly improved. Note that all individual components run in real-time

running concurrently on the same set of hardware. Adding all these, however, gives

times far larger than 33ms. The reason why the pipeline is still running in real-time is

because several frames are processed in parallel. Note here that all CUDA kernels are

executing at the same time on a single GPU, so the performance of all GPU modules

are a®ected by the performance of the other GPU modules. On earlier GPUs like the

GTX 280, this was not allowed, but concurrent CUDA kernel execution was intro-

duced in the Fermi architecture [24] (GTX 480 and above). Thus, since the

Fig. 11. Improved stitching pipeline performance, module overview (Nvidia GeForce GTX 680 and Intel
Core i7-3930K).

Processing Panorama Video in Real-time 221

261

Controller module schedules the other modules according to the input rate of 30 fps,

the amount of resources are su±cient for real-time execution.

For the pipeline to be real-time, the output rate should follow the input rate, i.e.

deliver all output frames (both 4 single camera and 1 panorama) at 30 fps. Thus, to

give an idea of how often a frame is written to ¯le, Fig. 12 shows individual and

average frame inter-departure rates. The ¯gures show the time di®erence between

consecutive writes for the generated panorama as well as for the individual camera

streams. Operating system calls, interrupts and disk accesses will most likely cause

small spikes in the write times (as seen in the scatter plot in Figs. 12(a) and 12(b)),

but as long as the average times are equal to the real-time threshold, the pipeline can

be considered real-time. As we can see in Figs. 11, 12(c) and 12(d), the average frame

inter-arrival time (Reader) is equal to the average frame inter-departure time (both

SingleCamWriter and PanoramaWriter). This is also the case testing other CPU

frequencies and number of available cores. Thus, the pipeline runs in real-time.

As said above and seen in Figs. 12(a) and 12(b), there is a small latency in the

panorama pipeline compared to writing the single cameras immediately. The total

panorama pipeline latency, i.e. the end to end frame delay from read from the camera

(a) SingleCamWriter inter-departure time (b) Inter-departure time of PanoramaWriter.

The inter-departure frames delayed by ¯ve

seconds due to the two second safety
bu®er in CPU/GPU transfer and the

three second delay of the sensor data

(c) Core count scalability (d) Core frequency scalability

Fig. 12. Inter-departure time of frames when running the entire pipeline. In a real-time scenario, the

output rate should follow the input rate (given here by the trigger box) at 30 fps (33ms).

222 H. K. Stensland et al.

262

until written to disk, is equal to 33ms per sequential module (as long as the modules

perform fast enough) plus a 5 second input bu®er (the input bu®er is because the

sensor system has at least 3 second latency before the data is ready for use, and we

have added a 2 second bu®er for GPU processing). The 33ms are caused by the

camera frame rate of 30 fps, meaning that even though a module may ¯nish before

the threshold, the Controller will make it wait until the next set of frames arrive

before it is signaled to re-execute. This means that the pipeline latency is 5.33 seconds

per frame on average.

5. Discussion

Our soccer analysis application integrates a sensor system, soccer analytics anno-

tations and video processing of a video camera array. There already exist several

components that can be used, and we have investigated several alternatives in our

research. Our ¯rst prototype aimed at full integration at the system level, rather than

being optimized for performance. In this paper, however, our challenge has been of an

order of magnitude harder by making the system run in real-time on low-cost, o®-

the-shelf hardware.

The new real-time capability also enables future enhancements with respect to

functionality. For example, several systems have already shown the ability to serve

available panorama video to the masses [13, 23], and by also generating the pano-

rama video live, the audience can mark and follow particular players and events.

Furthermore, ongoing work also include machine learning of sensor and video data to

extract player and team statistics for evaluation of physical and tactical perfor-

mance. We can also use this information to make video playlists [15] automatically

giving a video summary of extracted events. Due to limited availability of resources,

we have not been able to test our system with more cameras or higher resolution

cameras. However, to still get an impression of the scalability capabilities of our

pipeline, we have performed several benchmarks changing the number of available

cores, the processor clock frequency and GPUs with di®erent architecture and

compute resources. Figure 13a shows the results changing the number of available

cores that can process the many concurrent threads in the CPU-part of pipeline

(Fig. 12(c) shows that the pipeline is still in real-time). As we can observe from the

¯gure, every component runs in real-time using more than 4 cores, and the pipeline as

a whole using 8 or more cores. Furthermore, the CPU pipeline contains a large, but

con¯gurable number of threads (86 in the current setup), and due to the many

threads of the embarrassingly parallel workload, the pipeline seems to scale well with

the number of available cores.

Similar conclusions can be drawn from Fig. 14 where the processing time is re-

duced with a higher processor clock frequency, i.e. the pipeline runs in real-time

already at 3.2GHz, and there is almost a linear scaling withCPU frequency (Fig. 12(d)

aNote that this experiment was run on a machine with more available cores (16), each at a lower clock

frequency (2.0GHz) compared to the machine installed at the stadium which was used for all other tests.

Processing Panorama Video in Real-time 223

263

shows that the pipeline is still in real-time). Especially the H.264 encoder scales very

good when scaling the CPU frequency. With respect to the GPU-part of the pipeline,

Fig. 15 plots the processing times using di®erent GPUs.

The high-end GPUs GTX 480 and above (Compute 2.x and higher) all achieve

real-time performance on the current setup. The GTX 280 is only compute 1.3 which

does not support the concurrent CUDA kernel execution in the Fermi architecture

[24], and the performance is therefore slower than real-time. As expected, more

powerful GPUs reduce the processing time. For now, one GPU ful¯lls our real-time

requirement, we did therefore not experiment with multiple GPUs, but the GPU

processing power can easily be increased by adding multiple cards. Thus, based on

these results, we believe that our pipeline easily can be scaled up to both higher

numbers of cameras and higher resolution cameras.

Fig. 13. Core count scalability.

Fig. 14. CPU frequency scalability.

Fig. 15. GPU comparison.

224 H. K. Stensland et al.

264

6. Conclusions

In this paper, we have presented a prototype of a real-time panorama video pro-

cessing system. The panorama prototype is used as a sub-component in a real sport

analysis system where the target is automatic processing and retrieval of events at a

sports arena. We have described the pipeline in detail, where we use both the CPU

and a GPU for o®loading. Furthermore, we have provided experimental results

which prove the real-time properties of the pipeline on a low-cost 6-core machine

with a commodity GPU, both for each component and the combination of the dif-

ferent components forming the entire pipeline.

The entire system is under constant development, and new functionality is added

all the time, e.g. camera-array-wide synchronized automatic exposure [8], interactive

zoom and panning [9, 10], extended search functionality [22] and scaling the pano-

rama system up to a higher number of cameras and to higher resolution cameras [9].

So far, the pipeline scales nicely with the CPU frequencies, number of cores and GPU

resources. We plan to use PCI Express-based interconnect technology from Dolphin

Interconnect Solutions for low latency and fast data transfers between machines.

Experimental results in this respect is though ongoing work and out of scope in this

paper.

Acknowledgments

This work has been performed in the context of the iAD centre for Research-based

Innovation (project number 174867) funded by the Norwegian Research Council.

Furthermore, the authors also acknowledge the support given by Kai-Even Nilssen

for practical assistance with respect to the installation at Alfheim stadium.

References

[1] Camargus ��� Premium Stadium Video Technology Infrastructure, http://www.
camargus.com/. [Online; accessed 01-March-2013.]

[2] Live ultra-high resolution panoramic video, http://www.fascinate-project.eu/index.
php/tech-section/hi-res-video/. [Online; accessed 04-March-2012.]

[3] Software stitches 5k videos into huge panoramic video walls, in real time, http://www.
sixteen-nine.net/2012/10/22/software-stitches-5k-videos-huge-panoramic-video-walls-
real-time/, 2012. [Online; accessed 05-March-2012.]

[4] M. Adam, C. Jung, S. Roth and G. Brunnett, Real-time stereo-image stitching using
GPU-based belief propagation, 2009, pp. 215–224.

[5] P. Baudisch, D. Tan, D. Steedly, E. Rudolph, M. Uyttendaele, C. Pal and R. Szeliski, An
exploration of user interface designs for real-time panoramic photography, Australasian
Journal of Information Systems 13(2) (2006) 151.

[6] M. Brown and D. G. Lowe, Automatic panoramic image stitching using invariant fea-
tures, International Journal of Computer Vision 74(1) (2007) 59–73.

[7] D.-Y. Chen, M.-C. Ho and M. Ouhyoung, Videovr: A real-time system for automatically
constructing panoramic images from video clips, in Proc. CAPTECH, 1998, pp. 140–143.

Processing Panorama Video in Real-time 225

265

[8] V. R. Gaddam, C. Griwodz and P. Halvorsen, Automatic exposure for panoramic sys-
tems in uncontrolled lighting conditions: A football stadium case study, in Proc. SPIE/
IS&T Electronic Imaging ��� the Engineering Reality of Virtual Reality, 2014,
pp. 90120C–90120C-9.

[9] V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos, V. Charvillat, C. Griwodz and
P. Halvorsen, Interactive zoom and panning from live panoramic video, in Proc.
NOSSDAV, 2014, pp. 19:19–19:24.

[10] V. R. Gaddam, R. Langseth, H. K. Stensland, P. Gurdjos, V. Charvillat, C. Griwodz,
D. Johansen and P. Halvorsen, Be your own cameraman: Real-time support for zooming
and panning into stored and live panoramic video, in Proc. MMSys, 2014, pp. 168–171.

[11] P. Halvorsen, S. Sægrov, A. Mortensen, D. K. C. Kristensen, A. Eichhorn, M. Stenhaug,
S. Dahl, H. K. Stensland, V. R. Gaddam, C. Griwodz and D. Johansen, Bagadus: An
integrated system for arena sports analytics ��� a soccer case study, in Proc. MMSys,
2013, pp. 48–59.

[12] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge
University Press, 2003).

[13] K. Huguenin, A.-M. Kermarrec, K. Kloudas and F. Taiani, Content and geographical
locality in user-generated content sharing systems, in Proc. NOSSDAV, 2012, pp. 77–82.

[14] J. Jia and C.-K. Tang, Image stitching using structure deformation, IEEE Transactions
on Pattern Analysis and Machine Intelligence 30(4) (2008) 617–631.

[15] D. Johansen, H. Johansen, T. Aar°ot, J. Hurley, Å. Kvalnes, C. Gurrin, S. Sav,
B. Olstad, E. Aaberg, T. Endestad, H. Riiser, C. Griwodz and P. Halvorsen, DAVVI: A
prototype for the next generation multimedia entertainment platform, in Proc. ACM
MM, 2009, pp. 989–990.

[16] D. Johansen, M. Stenhaug, R. B. A. Hansen, A. Christensen and P.-M. Høgmo, Muithu:
Smaller footprint, potentially larger imprint, in Proceedings of the IEEE International
Conference on Digital Information Management, 2012, pp. 205–214.

[17] H. D. Johansen, S. A. Pettersen, P. Halvorsen and D. Johansen, Combining video and
player telemetry for evidence-based decisions in soccer, in Proceedings of the Interna-
tional Congress on Sports Science Research and Technology Support, 2013, pp. 197–205.

[18] P. KaewTraKulPong and R. Bowden, An improved adaptive background mixture model
for real-time tracking with shadow detection, in Video-Based Surveillance Systems
(Springer, 2002), pp. 135–144.

[19] A. Levin, A. Zomet, S. Peleg and Y. Weiss, Seamless image stitching in the gradient
domain, Computer Vision ��� ECCV 2004, 2004, pp. 377–389.

[20] Y. Li and L. Ma, A fast and robust image stitching algorithm, in Proc. WCICA 2 (2006)
9604–9608.

[21] A. Mills and G. Dudek, Image stitching with dynamic elements, Image and Vision
Computing 27(10) (2009) 1593–1602.

[22] A. Mortensen, V. R. Gaddam, H. K. Stensland, C. Griwodz, D. Johansen and P. Hal-
vorsen, Automatic event extraction and video summaries from soccer games, in Proc.
MMSys, 2014, pp. 176–179.

[23] O. A. Niamut, R. Kaiser, G. Kienast, A. Kochale, J. Spille, O. Schreer, J. R. Hidalgo,
J.-F. Macq and B. Shirley, Towards a format-agnostic approach for production, delivery
and rendering of immersive media, in Proc. MMSys, 2013, pp. 249–260.

[24] nVIDIA. Nvidia's next generation CUDA compute architecture: Fermi. http://www.
nvidia.com/content/PDF/fermi white papers/NVIDIA Fermi Compute Architecture
Whitepaper.pdf, 2010. [Online; accessed 08-March-2013].

[25] V. Pham, P. Vo, V. T. Hung et al., GPU implementation of extended gaussian mixture
model for background subtraction, in IEEE International Conference on Computing

226 H. K. Stensland et al.

266

and Communication Technologies, Research, Innovation and Vision for the Future,
2010, pp. 1–4.

[26] S. Sægrov, A. Eichhorn, J. Emerslund, H. K. Stensland, C. Griwodz, D. Johansen and
P. Halvorsen, Bagadus: An integrated system for soccer analysis (demo), in Proc.
ICDSC, 2012, pp. 1–2.

[27] O. Schreer, I. Feldmann, C. Weissig, P. Kau® and R. Schafer, Ultrahigh-resolution
panoramic imaging for format-agnostic video production, in Proceedings of the IEEE
101(1) (2013) 99–114.

[28] H. K. Stensland, V. R. Gaddam, M. Tennøe, E. Helgedagsrud, M. Næss, H. K. Alstad, A.
Mortensen, R. Langseth, S. Ljødal, Ø. Landsverk, C. Griwodz, P. Halvorsen, M. Sten-
haug and D. Johansen, Bagadus: An integrated real-time system for soccer analytics,
Transactions on Multimedia Computing, Communications and Applications 10(1s)
(2014) 14:1–14:21.

[29] W.-K. Tang, T.-T. Wong and P.-A. Heng, A system for real-time panorama generation
and display in tele-immersive applications, IEEE Transactions on Multimedia 7(2)
(2005) 280–292.

[30] M. Tennøe, E. Helgedagsrud, M. Næss, H. K. Alstad, V. R. Gaddam, H. K. Stensland, C.
Griwodz, D. Johansen and P. Halvorsen, E±cient implementation and processing of a
real-time panorama video pipeline, in Proc. ISM, 2013, pp. 76–83.

[31] C. Weissig, O. Schreer, P. Eisert and P. Kau®, The ultimate immersive experience:
Panoramic 3d video acquisition, Advances in Multimedia Modeling, LNCS Vol. 7131
(Springer, 2012), pp. 671–681.

[32] Y. Xiong and K. Pulli, Color correction for mobile panorama imaging, in Proc. ICIMCS,
2009, pp. 219–226.

[33] Z. Zhang, Flexible camera calibration by viewing a plane from unknown orientations, in
Proceedings of the IEEE International Conference onComputer Vision, 1999, pp. 666–673.

[34] Z. Zivkovic, Improved adaptive gaussian mixture model for background subtraction, in
Proc. ICPR 2 (2004) 28–31.

[35] Z. Zivkovic and F. van der Heijden, E±cient adaptive density estimation per image
pixel for the task of background subtraction, Pattern Recognition Letters 27(7) (2006)
773–780.

Processing Panorama Video in Real-time 227

267

268 . Paper IX: Processing Panorama Video in Real-Time

Posters and live demonstrations

Transparent protocol translation and load balancing

on a network processor in a media streaming scenario

Title: Transparent protocol translation and load balancing on a network processor in a
media streaming scenario [33].

Authors: H. Espeland, C. Lunde, H. K. Stensland, C. Griwodz, and P. Halvorsen.

Published: Proceedings of the 18th International Workshop on Network and Operating
Systems Support for Digital Audio and Video - NOSSDAV ’08.

Summary: A live demonstration of the proxy was presented at NOSSDAV.

Processing of Multimedia Data using the P2G Frame-

work

Title: Processing of Multimedia Data using the P2G Framework [11].

Authors: P. B. Beskow, H. K. Stensland, H. Espeland, E. A. Kristiansen, P. N. Olsen,
S. B. Kristoffersen, C. Griwodz, and P. Halvorsen.

Published: Proceedings of the 19th ACM international conference on Multimedia (MM),
ACM, 2011.

Summary: A live demonstration of the P2G framework encoding video and dynamically
adapting to the available resources was presented at ACM Multimedia.

Distributed Real-Time Processing of Multimedia Data

with the P2G Framework

Title: Distributed Real-Time Processing of Multimedia Data with the P2G Framework
[10].

269

270 . Posters and live demonstrations

Authors: P. B. Beskow, H. Espeland, H. K. Stensland, P. N. Olsen, S. B. Kristoffersen,
E. A. Kristiansen, C. Griwodz, and P. Halvorsen.

Published: EuroSys 2011 (Poster Session), ACM, 2011.

Summary: Ideas about the P2G prototype, with early experimental results were pre-
sented at a poster session on the EuroSys conference.

A Demonstration Of a Lockless, Relaxed Atomicity

State Parallel Game Server (LEARS)

Title: A Demonstration Of a Lockless, Relaxed Atomicity State Parallel Game Server
(LEARS) [101].

Authors: K. Raaen, H. Espeland, H. K. Stensland, A. Petlund, P. Halvorsen, and C.
Griwodz.

Published: Workshop on Network and Systems Support for Games (NetGames), IEEE
/ ACM, 2011.

Summary: A live demonstration of the LEARS lockless game server was presented at
NetGames.

BAGADUS: An Integrated System for Soccer Analysis

Title: BAGADUS: An Integrated System for Soccer Analysis [105].

Authors: S. Sægrov, A. Eichhorn, J. Emerslund, H. K. Stensland, C. Griwodz, and P.
Halvorsen

Published: Proceedings of the International Conference on Distributed Smart Cameras
(ICDSC), ACM /IEEE, 2012

Summary: The offline version of the Bagadus Soccer Analysis system demonstrated at
ICDSC.

Realtime Panorama Video Processing Using NVIDIA

GPUs

Title: Realtime Panorama Video Processing Using NVIDIA GPUs [120].

271

Authors: M. Tennøe, E. O. Helgedagsrud, M. Næss, H. K. Alstad, H. K. Stensland, P.
Halvorsen, and C. Griwodz.

Published: Nvidia GPU Technology Conference, 2013.

Summary: Poster about the real-time Bagadus panorama pipeline presented at GTC.

Performance and Application of the NVIDIA NVENC

H.264 Encoder

Title: Performance and Application of the NVIDIA NVENC H.264 Encoder [132].

Authors: M. A. Wilhelmsen, H. K. Stensland, V. R. Gaddam, P. Halvorsen, and C.
Griwodz

Published: Nvidia GPU Technology Conference, 2014.

Summary: Poster about using hardware encoder for delivery of interactive video streams
presented at GTC.

272 . Posters and live demonstrations

Other research papers

Efficient Implementation and Processing of a Real-

time Panorama Video Pipeline

Title: Efficient Implementation and Processing of a Real-time Panorama Video Pipeline
[119].

Authors: M. Tennøe, E. O. Helgedagsrud, M. Næss, H. K. Alstad, H. K. Stensland, V.
R. Gaddam, D. Johansen, P. Halvorsen, and C. Griwodz.

Published: Proceedings of the International Symposium on Multimedia (ISM), IEEE,
2013.

Abstract: High resolution, wide field of view video generated from multiple camera
feeds has many use cases. However, processing the different steps of a panorama
video pipeline in real-time is challenging due to the high data rates and the stringent
requirements of timeliness. We use panorama video in a sport analysis system where
video events must be generated in real-time. In this respect, we present a system
for real-time panorama video generation from an array of low-cost CCD HD video
cameras. We describe how we have implemented different components and evaluated
alternatives. We also present performance results with and without co- processors
like graphics processing units (GPUs), and we evaluate each individual component
and show how the entire pipeline is able to run in real-time on commodity hardware.

Bagadus: An Integrated System for Arena Sports An-

alytics A Soccer Case Study

Title: Bagadus: An Integrated System for Arena Sports Analytics A Soccer Case Study
[46].

Authors: P. Halvorsen, S. Sægrov, A. Mortensen, D. K. C. Kristensen, A. Eichhorn, M.
Stenhaug, S. Dahl, H. K. Stensland, V. R. Gaddam, C. Griwodz, and D. Johansen

Published: Proceedings of the 4th annual ACM conference on Multimedia Systems
(MMSYS), ACM, 2013.

273

274 . Other research papers

Abstract: Sports analytics is a growing area of interest, both from a computer system
view to manage the technical challenges and from a sport performance view to aid
the development of athletes. In this paper, we present Bagadus, a prototype of
a sports analytics application using soccer as a case study. Bagadus integrates a
sensor system, a soccer analytics annotations system and a video processing system
using a video camera array. A prototype is currently installed at Alfheim Stadium
in Norway, and in this paper, we describe how the system can follow and zoom in
on particular player(s). Next, the system will playout events from the games using
stitched panorama video or camera switching mode and create video summaries
based on queries to the sensor system. Further- more, we evaluate the system from
a systems point of view, benchmarking different approaches, algorithms and trade-
offs.

Improved Multi-Rate Video Encoding

Title: Improved Multi-Rate Video Encoding [35].

Authors: D. H. Finstad, H. K. Stensland, H. Espeland, and P. Halvorsen

Published: Proceedings of the International Symposium on Multimedia (ISM), IEEE,
2011.

Abstract: Adaptive HTTP streaming is frequently used for both live and on-Demand
video delivery over the Internet. Adaptiveness is often achieved by encoding the
video stream in multiple qualities (and thus bitrates), and then transparently switch-
ing between the qualities according to the bandwidth fluctuations and the amount
of resources available for decoding the video content on the end device. For this
kind of video delivery over the Internet, H.264 is currently the most used codec,
but VP8 is an emerging open-source codec expected to compete with H.264 in the
streaming scenario. The challenge is that, when encoding video for adaptive video
streaming, both VP8 and H.264 run once for each quality layer, i.e., consuming
both time and resources, especially important in a live video delivery scenario. In
this paper, we address the resource consumption issues by proposing a method for
reusing redundant steps in a video encoder, emitting multiple outputs with varying
bitrates and qualities. It shares and reuses the computational heavy analysis step,
notably macro-block mode decision, intra prediction and inter prediction between
the instances, and outputs video in several rates. The method has been implemented
in the VP8 reference encoder, and experimental results show that we can encode
the different quality layers at the same rates and qualities compared to the VP8
reference encoder, while reducing the encoding time significantly.

275

Improving File Tree Traversal Performance by Schedul-

ing I/O Operations in User space

Title: Improving File Tree Traversal Performance by Scheduling I/O Operations in User
space [76].

Authors: C. H. Lunde, H. Espeland, H. K. Stensland, and P. Halvorsen.

Published: Proceedings of the 28th IEEE International Performance Computing and
Communications Conference (IPCCC), IEEE, 2009.

Abstract: Current in-kernel disk schedulers provide efficient means to optimize the order
(and minimize disk seeks) of issued, in-queue I/O requests. However, they fail to
optimize sequential multi-file operations, like traversing a large file tree, because
only requests from one file are available in the scheduling queue at a time. We
have therefore investigated a user-level, I/O request sorting approach to reduce
inter-file disk arm movements. This is achieved by allowing applications to utilize
the placement of inodes and disk blocks to make a one sweep schedule for all file
I/Os requested by a process, i.e., data placement information is read first before
issuing the low-level I/O requests to the storage system. Our experiments with a
modified version of tar show reduced disk arm movements and large performance
improvements.

Improving Disk I/O Performance on Linux

Title: Improving Disk I/O Performance on Linux [77].

Authors: C. H. Lunde, H. Espeland, H. K. Stensland, A. Petlund, and P. Halvorsen.

Published: UpTimes - Proceedings of Linux-Kongress and OpenSolaris Developer Con-
ference, GUUG, 2009.

Abstract: The existing Linux disk schedulers are in general efficient, but we have iden-
tified two scenarios where we have observed a non-optimal behavior. The first is
when an application requires a fixed bandwidth, and the second is when an oper-
ation performs a file tree traversal. In this paper, we address both these scenarios
and propose solutions which both increase performance.

Making an SCI Fabric Dynamically Fault Tolerant

Title: Making an SCI Fabric Dynamically Fault Tolerant [116].

Authors: H. K. Stensland, O. Lysne, R. Nordstrœm, and H. Kohmann.

276 . Other research papers

Published: Proceedings of the IEEE International Symposium on Parallel and Dis-
tributed Processing (IPDPS), 2008.

Abstract: In this paper we present a method for dynamic fault tolerant routing for SCI
networks implemented on Dolphin Interconnect Solutions hardware. By dynamic
fault tolerance, we mean that the interconnection network reroutes affected packets
around a fault, while the rest of the network is fully functional. To the best of our
knowledge this is the first reported case of dynamic fault tolerant routing available
on commercial off the shelf interconnection network technology without duplicating
hardware resources. The development is focused around a 2-D torus topology, and is
compatible with the existing hardware, and software stack. We look into the existing
mechanisms for routing in SCI. We describe how to make the nodes that detect the
faulty component do routing decisions, and what changes are needed in the existing
routing to enable support for local rerouting. The new routing algorithm is tested on
clusters with real hardware. Our tests show that distributed databases like MySQL
can run uninterruptedly while the network reacts to faults. The solution is now part
of Dolphin Interconnect Solutions SCI driver, and hardware development to further
decrease the reaction time is underway.

Appendix A

BNF Grammar of the P2G Kernel
Language

%token <n> IDENTIFIER
%token <n> INTEGER
%token <n> VECTOR
%token <n> INTRINSIC
%token <s> NATIVE
%token TYPE
%token INDEX
%token LOCAL
%token AGE
%token LAST
%token SIZE
%token ORDERED
%token INT
%token INCR
%token WRAP
%token FETCH
%token STORE
%token DEF
%token NEXT
%token TOP HEADER
%token TOP CODE
%token HEADER
%token CODE
%token BIND
%token IF
%token THEN
%token ELSE
%token END
%token DOTDOT
%token EQ
%token LE
%token GE
%token HOUR
%token MIN
%token SEC
%token US
%token MS

277

278 Appendix A. BNF Grammar of the P2G Kernel Language

%token FINAL
%token FINALIZE
%token FINALIZE ON ALL
%token FINALIZE ON ONE
%token TIMER
%token SET
%token NOW
%token DEADLINE

%r i g h t ’= ’
%l e f t ’< ’ ’> ’ GE LE EQ
%l e f t DOTDOT ’ : ’
%l e f t ’+ ’ ’− ’
%l e f t ’∗ ’ ’ / ’ ’% ’
%l e f t UNARY MINUS PRECEDENCE

%%

s t a r t : s tatements
;

s tatements : s tatements statement
|
;

statement : f i e l d d e f i n i t i o n
| t i m e r d e f i n i t i o n
| k e r n e l d e f i n i t i o n
| TOP HEADER ’ : ’ NATIVE /∗ top o f generated header f i l e ∗/
| TOP CODE ’ : ’ NATIVE /∗ top o f generated code f i l e ∗/
| HEADER ’ : ’ NATIVE /∗ a f t e r f i e l d d e f i n i t i o n s in generated

header f i l e ∗/
| CODE ’ : ’ NATIVE /∗ a f t e r f i e l d d e c l a r a t i o n s in generated

code f i l e ∗/
;

/∗∗
∗ % Each f i e l d i s a v i r t u a l multi−dimens iona l array o f data .
∗ % I t i s v i r t u a l because the ke rne l program f o r b i d s to wr i t e to
∗ % the same f i e l d in more than one unique kerne l , which does
∗ % n a t u r a l l y not make sense in r e a l i t y .
∗ % The data cannot be s to r ed cont i guous ly in memory , e i th e r ,
∗ % because p a r a l l e l a r c h i t e c t u r e w i l l encourage p i p e l i n i n g o f
∗ % data through s e v e r a l k e r n e l s be f o r e wr i t i ng i t to a
∗ % cont iguous l o c a t i o n in memory (i f ever) .
∗ % In the proce s s o f mapping , many o f these f i e l d s w i l l be
∗ % i d e n t i f i e d with each other or be opt imized out .
∗ % A f i e l d should not be cons ide r ed a bunch o f memory c e l l s ,
∗ % but a bunch o f memory c e l l s at the time o f a kerne l ’ s run .
∗ % Example f i e l d d e f i n i t i o n s :
∗ % f l o a t 1 2 8 f ;
∗ % int32 [4] array ;
∗ % vector3<f l o a t64 > [3] t h r e e c o o r d i n a t e s , three more , and three more ;
∗ % vector8 complex128 [] [8] [] [] [2 5 6] w e i r d s t u f f ;
∗/

279

f i e l d d e f i n i t i o n : datatype d e f i n e g l o b a l f i e l d n a m e s f i e l d a t t r i b u t e s ’ ; ’
| i n t r i n s i c d a t a t y p e e r r o r ’ ; ’
;

datatype : i n t r i n s i c d a t a t y p e f i e l d d i m e n s i o n s
| VECTOR i n t r i n s i c d a t a t y p e f i e l d d i m e n s i o n s
;

i n t r i n s i c d a t a t y p e : INTRINSIC
| TYPE type name
;

type name : IDENTIFIER
;

f i e l d d i m e n s i o n s : f i e l d d i m e n s i o n s ’ [’ INTEGER ’] ’
| f i e l d d i m e n s i o n s ’ [’ ’] ’
| /∗ empty ∗/
;

f i e l d a t t r i b u t e s : f i e l d a t t r i b u t e s AGE ’ (’ FINALIZE ON ALL ’) ’
| f i e l d a t t r i b u t e s AGE ’ (’ FINALIZE ON ONE ’) ’
| f i e l d a t t r i b u t e s AGE
| f i e l d a t t r i b u t e s ORDERED
| /∗ empty ∗/
;

d e f i n e g l o b a l f i e l d n a m e s : d e f i n e g l o b a l f i e l d n a m e s ’ , ’
d e f i n e g l o b a l f i e l d n a m e

| d e f i n e g l o b a l f i e l d n a m e
;

t i m e r d e f i n i t i o n : TIMER def t imer names t i m e r a t t r i b u t e s ’ ; ’
;

de f t imer names : de f t imer names ’ , ’ de f ine t imer name
| de f ine t imer name
;

t i m e r a t t r i b u t e s : t i m e r a t t r i b u t e s AGE
| /∗ empty ∗/
;

d e f i n e l o c a l f i e l d n a m e s : d e f i n e l o c a l f i e l d n a m e s ’ , ’
d e f i n e l o c a l f i e l d n a m e

| d e f i n e l o c a l f i e l d n a m e
;

k e r n e l d e f i n i t i o n : kernel name k e r n e l n a t i v e a t t r i b u t e s ’ : ’ k e rne l head
NATIVE k e r n e l t a i l k e r n e l d e a d l i n e

| kernel name k e r n e l n a t i v e a t t r i b u t e s ’ : ’ k e rne l head
k e r n e l t a i l k e r n e l d e a d l i n e

| kernel name k e r n e l n a t i v e a t t r i b u t e s ’ : ’ k e rne l head IF
NATIVE THEN k e r n e l t a i l END opt semico lon
k e r n e l d e a d l i n e

| kernel name k e r n e l n a t i v e a t t r i b u t e s ’ : ’ k e rne l head IF
NATIVE THEN k e r n e l t a i l ELSE k e r n e l t a i l END
opt semico lon k e r n e l d e a d l i n e

;

280 Appendix A. BNF Grammar of the P2G Kernel Language

opt semico lon : ’ ; ’
| /∗ empty ∗/
;

/∗∗
∗ Native a t t r i b u t e s w i l l be used to g ive the dependency
∗ ana ly s e r h in t s about s p e c i a l k e r n e l s .
∗ In p r i n c i p l e , a ke rne l can be placed anywhere , but i f
∗ the nat ive code r e q u i r e s user input , d i sk a c c e s s and so on ,
∗ i t should be expres sed by a l i s t o f i d e n t i f i e r s
∗ (commas s t r i c t l y op t i ona l and without semantic meaning) .
∗/

k e r n e l n a t i v e a t t r i b u t e s : BIND k e r n e l n a t i v e a t t r l i s t
| ’% ’ e r r o r
| /∗ empty ∗/
;

k e r n e l n a t i v e a t t r l i s t : k e r n e l n a t i v e a t t r l i s t IDENTIFIER
| IDENTIFIER
;

kerne l head : ke rne l head f e t ch s ta t ement
| kerne l head i n d e x v a r d e c l a r a t i o n
| kerne l head f i e l d s i z e e x p r e s s i o n
| kerne l head DEF e r r o r ’ ; ’
| /∗ empty ∗/
;

k e r n e l t a i l : k e r n e l t a i l s t o r e s t a t ement
| k e r n e l t a i l next statement
| k e r n e l t a i l t i me r s e t s t a t em e n t
| /∗ empty ∗/
;

k e r n e l d e a d l i n e : k e r n e l d e a d l i n e dead l ine s ta t ement
| /∗ empty ∗/
;

f i e l d s i z e e x p r e s s i o n : SIZE f i e l d s i z e ’= ’ f i e l d s i z e e x p r ’ ; ’
;

f i e l d s i z e e x p r : f i e l d s i z e e x p r ’∗ ’ f i e l d s i z e e x p r
| f i e l d s i z e e x p r ’/ ’ f i e l d s i z e e x p r
| f i e l d s i z e e x p r ’% ’ f i e l d s i z e e x p r
| f i e l d s i z e e x p r ’+ ’ f i e l d s i z e e x p r
| f i e l d s i z e e x p r ’− ’ f i e l d s i z e e x p r
| ’ (’ f i e l d s i z e e x p r ’) ’
| INTEGER
| ’− ’ INTEGER %prec UNARY MINUS PRECEDENCE
| ’+ ’ INTEGER %prec UNARY MINUS PRECEDENCE
| f i e l d s i z e

;

f i e l d s i z e : u s e f i e l d n a m e f i e l d a g e s ’ . ’ INTEGER
;

f i e l d a g e s : f i e l d a g e s ’ . ’ AGE ’ (’ age expr ’) ’
|
;

281

i n d e x v a r d e c l a r a t i o n : INDEX i n d e x v a r i n t o r n o t index var wrap or not
index var inc rement index var s ’ ; ’

| LOCAL i n d e x v a r i n t o r n o t index var wrap or not
index var inc rement index var s ’ ; ’

| INT index var wrap or not index var inc rement
index var s ’ ; ’

| AGE index var s ’ ; ’
| LOCAL datatype d e f i n e l o c a l f i e l d n a m e s ’ ; ’
| INDEX i n t r i n s i c d a t a t y p e e r r o r ’ ; ’
| LOCAL i n t r i n s i c d a t a t y p e e r r o r ’ ; ’
| AGE i n t r i n s i c d a t a t y p e e r r o r ’ ; ’
;

i n d e x v a r i n t o r n o t : INT
| /∗ empty ∗/
;

index var wrap or not : WRAP
| /∗ empty ∗/
;

index var inc rement : INCR ’ (’ INTEGER ’) ’
| /∗ empty ∗/
;

index var s : i ndex var s ’ , ’ index name
| index name

;
f e t ch s ta t ement : FETCH u s e f i e l d n a m e index use ’= ’ u s e f i e l d n a m e

index use ’ ; ’
;

s t o r e s t a t ement : s t o r e f i n a l p r e f i x STORE u s e f i e l d n a m e index use ’= ’
u s e f i e l d n a m e index use ’ ; ’

;
s t o r e f i n a l p r e f i x : FINAL

|
;

f i n a l i z e s t a t e m e n t : FINALIZE u s e f i e l d n a m e index use ’ ; ’
;

next statement : NEXT index name ’ ; ’
;

t i m e r s e t s t a t em e n t : SET use t imer name a g e l i s t ’= ’ t imer expr ’ ; ’
;

d ead l ine s ta t ement : DEADLINE ’ (’ d e a d l i n e c o n d i t i o n ’) ’ d e a d l i n e a c t i o n s
END opt semico lon

;
d e a d l i n e c o n d i t i o n : t imer expr expr cond cmp t imer expr

;
d e a d l i n e a c t i o n s : d e a d l i n e a c t i o n s s t o r e s t a t ement

| d e a d l i n e a c t i o n s f i n a l i z e s t a t e m e n t
| /∗ empty ∗/

;

/∗∗
∗ % Express ion l i s t s a l low f e t c h and s t o r e ope ra t i on s with i n d i c e s
∗ % that are computed s t a t i c a l l y when dependenc ies are eva luated .
∗ % I t would be n i c e i f they could be eva luated s t a t i c a l l y , but that
∗ % would r e q u i r e constant f i e l d s i z e s and we don ’ t want to l i m i t
∗ % o u r s e l v e s to that .

282 Appendix A. BNF Grammar of the P2G Kernel Language

∗ % As a very s imple example con s id e r the f o l l o w i n g ke rne l head :
∗ % int64 [1 0] a , b ;
∗ % def x ;
∗ % f e t c h i=a (x) ;
∗ % f e t c h j=b(9−x) ;
∗ % This i n i t i a t e s 10 kerne l s , because the f i e l d s are C−indexed and
∗ % both have 10 f i e l d s .
∗ % The f e t c h statements
∗ % f e t c h i=a (x) ;
∗ % f e t c h j=b(10−x) ;
∗ % on the other hand , would i n i t i a t e only 9 kerne l s , because the
∗ % case x==0 i s ou t s id e the range o f f i e l d b .
∗ %
∗ % However , i t i s a l s o p o s s i b l e to use l a r g e r b locks o f memory
∗ % in a s i n g l e ke rne l . Consider :
∗ % f l o a t 6 4 [3 2] [3 2] f i e l d ;
∗ % f e t c h v = f i e l d [x : 8] [y : 8] ;
∗ % This avo ids that 32x32=1024 k e r n e l s are s t a r t e d . Instead ,
∗ % i t s t a r t s 16 kerne l s , where v i s i n t e r p r e t e d as double v [8] [8] .
∗ % However , i f you want to s t a r t 1024 ke rne l and make a l l p o s s i b l e
∗ % 8x8 sub−b locks a v a i l a b l e to the nat ive code , you have to
∗ % do the f o l l o w i n g :
∗ % f l o a t 6 4 [3 2] [3 2] f i e l d ;
∗ % f e t c h v00 = f i e l d [x] [y] ;
∗ % f e t c h v01 = f i e l d [x] [y +1] ;
∗ % . . .
∗ % f e t c h v77 = f i e l d [x +7] [y +7] ;
∗ % I f people want th i s , we can c r e a t e a b e t t e r syntax f o r t h i s l a t e r .
∗ % I t might make sense , f o r example to p a r a l l e l i z e motion vec to r
∗ % search at a super−f i n e g r a n u l a r i t y and l e t the dependency
∗ % a n a l y s i s take care o f e f f i c i e n c y .
∗/

index use : e x p r l i s t
;

e x p r l i s t : e x p r l i s t ’ [’ exprs ’] ’
| e x p r l i s t ’ [’ exprs ’ | ’ expr cond a ’] ’
| e x p r l i s t ’ [’ ’] ’
| a g e l i s t
;

a g e l i s t : a g e l i s t ’ (’ age expr ’) ’
| a g e l i s t ’ . ’ AGE ’ (’ age expr ’) ’
| /∗ empty ∗/
;

age expr : age expr ’∗ ’ age expr
| age expr ’/ ’ age expr
| age expr ’% ’ age expr
| age expr ’+ ’ age expr
| age expr ’− ’ age expr
| INTEGER
| ’− ’ INTEGER %prec UNARY MINUS PRECEDENCE
| ’+ ’ INTEGER %prec UNARY MINUS PRECEDENCE
| LAST
| index name
;

283

exprs : exprs ’ , ’ expr
| expr
;

/∗∗ Note : O r i g i n a l l y I used BNF f o r e x p l i c i t precedence .
∗ Changed to b i son ex t en s i on s %r i g h t and %l e f t to
∗ d e c l a r e precedence to make the code more compact .
∗/

expr : expr DOTDOT expr
| expr ’ : ’ INTEGER
| expr ’∗ ’ expr
| expr ’/ ’ expr
| expr ’% ’ expr
| expr ’+ ’ expr
| expr ’− ’ expr
| ’ (’ expr ’) ’
| INTEGER
| ’− ’ INTEGER %prec UNARY MINUS PRECEDENCE /∗ %prec o v e r r i d e s

precedence o f %l e f t ∗/
| ’+ ’ INTEGER %prec UNARY MINUS PRECEDENCE
| index name
;

expr cond a : expr cond a ’ , ’ expr cond b
| expr cond b
;

expr cond b : expr expr cond cmp expr
;

expr cond cmp : ’< ’
| ’> ’
| EQ
| LE
| GE
;

t imer expr : t imer expr ’∗ ’ t imer expr
| t imer expr ’/ ’ t imer expr
| t imer expr ’% ’ t imer expr
| t imer expr ’+ ’ t imer expr
| t imer expr ’− ’ t imer expr
| INTEGER t im e r u n i t
| ’− ’ INTEGER t i me r u n i t %prec UNARY MINUS PRECEDENCE
| ’+ ’ INTEGER t i m e r u n i t %prec UNARY MINUS PRECEDENCE
| NOW
| use t imer name a g e l i s t

;
t im e r u n i t : HOUR

| MIN
| SEC
| MS
| US
;

284 Appendix A. BNF Grammar of the P2G Kernel Language

/∗∗
∗ % Kernel names have t h e i r own namespace .
∗/

kernel name : IDENTIFIER
;

d e f i n e g l o b a l f i e l d n a m e : f i e ld name
;

d e f i n e l o c a l f i e l d n a m e : f i e ld name
;

u s e f i e l d n a m e : f i e ld name
;

de f ine t imer name : IDENTIFIER
;

use t imer name : IDENTIFIER
;

/∗∗
∗ % Fie ld names have t h e i r own namespace .
∗/

f i e ld name : IDENTIFIER
;

/∗∗
∗ % The only meaning o f an index name i s as a p l a c eho ld e r
∗ % f o r one dimension needed f o r a c c e s s i n g a c e l l in a f i e l d .
∗ % I t i s s i m i l a r to a v a r i a b l e in a C for−loop , but the
∗ % body can ’ t change i t . An index name can be used f o r
∗ % computations in s e v e r a l dimensions (e . g . r equ i r ed f o r
∗ % transpos ing matr i ce s) . Using a name index in a f e t c h
∗ % operat ion i s s i m i l a r to the c r e a t i o n o f an i m p l i c i t
∗ % foreach loop . One ke rne l should be s t a r t e d f o r every
∗ % p o s s i b l e combination o f i n d i c e s . I t i s impos s ib l e to
∗ % prevent t h i s from happening without programming a s p e c i a l
∗ % kerne l that cuts a sub− f i e l d out o f a l a r g e r f i e l d .
∗ % I t i s expected that the eva lua t i on o f the dependency
∗ % graph makes i t p o s s i b l e to trans form such mapping
∗ % opera t i on s in to no−ops .
∗ %
∗ % Index names have t h e i r own namespace .
∗/

index name : IDENTIFIER
;

	I Overview
	Introduction
	Background and Motivation
	Heterogeneous Architectures
	Multimedia Workloads

	Problem Statement
	Limitations
	Research Method
	Main Contributions
	Outline

	Heterogeneous Computing
	Hardware Architectures
	Intel x86 Processor Architecture
	Intel IXP Network Processor
	Nvidia Graphics Processing Units
	STI Cell Broadband Engine
	Other Hardware Architectures
	Summary

	Hardware Abstractions and Programming Models
	SMT
	SIMD
	SIMT
	Summary

	Summary

	Using Heterogeneous Architectures for Simple Tasks
	Intel IXP Network Processor
	Case Study: Network Protocol Translation
	Implications

	x86 Processor Architecture
	Case study: Motion JPEG Encoding
	Case Study: Multi-Rate Video Encoding with VP8
	Case Study: Parallel Execution of a Game Server
	Implications

	Graphics Processing Units
	Case Study: GPU Memory Spaces and Access Patterns
	Case Study: Host–Device Communication Optimization
	Case Study: Cheat Detection
	Case Study: MJPEG Encoding
	Implications

	Cell Broadband Engine
	Case Study: MJPEG Encoding
	Implications

	Architecture Comparison
	Summary

	Using Heterogeneous Architectures for Complex Workloads
	Bagadus Sports Analysis System
	Bagadus: The Basic Idea
	Video Subsystem

	The Real-Time Bagadus Video Pipeline
	Performance Analysis
	Discussion

	Summary

	The P2G Framework and the Future
	Summary of Challenges
	Design Ideas for a New Processing Framework
	Existing Processing Frameworks
	The P2G Framework
	Architecture
	Programming Model
	Prototype
	Workloads
	Evaluation
	Summary

	The Future

	Papers and Author's Contributions
	Overview of Research Papers
	Paper I: Transparent Protocol Translation for Streaming
	Paper II: Evaluation of Multi-Core Scheduling Mechanisms for Heterogeneous Processing Architectures
	Paper III: Tips, Tricks and Troubles: Optimizing for Cell and GPU
	Paper IV: Cheat Detection Processing: A GPU versus CPU Comparison
	Paper V: Reducing Processing Demands for Multi-Rate Video Encoding: Implementation and Evaluation
	Paper VI: LEARS: A Lockless, Relaxed-Atomicity State Model for Parallel Execution of a Game Server Partition
	Paper VII: P2G: A Framework for Distributed Real-Time Processing of Multimedia Data
	Paper VIII: Bagadus: An Integrated Real-Time System for Soccer Analytics
	Paper IX: Processing Panorama Video in Real-Time
	Supervised Master's Students
	Other Publications

	Conclusion
	Summary
	Concluding Remarks
	Future Work

	II Research Papers
	Paper I: Transparent Protocol Translation for Streaming
	Paper II: Evaluation of Multi-Core Scheduling Mechanisms for Heterogeneous Processing Architectures
	Paper III: Tips, Tricks and Troubles: Optimizing for Cell and GPU
	Paper IV: Cheat Detection Processing: A GPU versus CPU Comparison
	Paper V: Reducing Processing Demands for Multi-Rate Video Encoding: Implementation and Evaluation
	Paper VI: LEARS: A Lockless, Relaxed-Atomicity State Model for Parallel Execution of a Game Server Partition
	Paper VII: P2G: A Framework for Distributed Real-Time Processing of Multimedia Data
	Paper VIII: Bagadus: An Integrated Real-Time System for Soccer Analytics
	Paper IX: Processing Panorama Video in Real-Time
	Posters and live demonstrations
	Other research papers
	BNF Grammar of the P2G Kernel Language

