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Abstract—Energy efficiency is an important issue for many
embedded systems, where limited battery lifetime and power-
hungry hardware constrain the usefulness of such devices.
Modern Systems-on-Chip (SoCs) such as the Tegra K1 employ
advanced power management capabilities such as two CPU clus-
ters, clock-gating, power-gating and dynamic frequency tuning
to meet application demands. At design or runtime phases, it
is challenging for system architects and software developers to
understand the effects that these mechanisms have in terms
of power and performance in all parts of the system. This is
because it is impossible to measure directly the power usage of
cores, caches, memory and other hardware components. Rate-
based power models are often proposed as a solution for this,
unfortunately these can mispredict substantially on the Tegra K1
up to 30 %. In this paper, we propose a power modelling method
for the Tegra K1 CPU which overcomes the limitations of the
most common types of models found in literature, but still only
requires power measurement of the board. Through extensive
empirical validation, we demonstrate an accuracy which is close
to 100 %. Preliminary experiments show that our methodology is
able to capture instruction power of individual system processes
and applications and produce detailed power breakdowns of all
components in the system.

I. INTRODUCTION

Power usage is a timely topic in multicore embedded
systems. Devices such as smart phones, drones and laptops
are limited by a combination of power-intensive hardware and
limited battery capacity. For such devices, it is important that
they stay alive for as long as possible while at the same time
providing acceptable quality of service. One example is video
processing. According to Cisco, by 2019, the sum of all forms
of video will be in the range of 80 to 90 percent of global
consumer traffic, and of this, 14 percent will be mobile data
traffic [4]. When recording live events such as sports using
your smart phone or even a drone, it is important that the
device can manage the limited energy resource.

It is well known that state-of-the-art power management
generally reacts too quickly to changes in hardware utilisation,
and consequently end up staying at unnecessarily high CPU
and RAM operating frequencies [13], [15], [17], [22]. For
system architects it is therefore important to fine-tune soft-
ware algorithms, gating techniques, platform frequencies and
workloads for the different parts of the system at early design
stages, or even design intelligent power management schemes
at runtime. However, this facilitates the need to understand
power usage of individual units in the Tegra K1 Variable SMP
(vSMP) [12] processor architecture, such as the Tegra K1’s
Low Power (LP) core, High Performance (HP) cluster, caches,
RAM banks and clocks under the influence of software, which
is often unfeasible due to circuit-layout limitations.

It is not trivial to understand power usage of embedded
SoCs. Simply measuring power is a serious challenge due to a
lack of power measurement sensors. Research has also shown
that such sensors are inaccurate [5] and often only capable of
measuring total power usage. This includes individual power
draw from processor elements, buses, caches, graphics pro-
cessing units, hardware accelerators, regulators [3] and other
components [2]. Researchers often attempt to model power
usage of individual components by correlating total power
usage with hardware activity and/or hardware states, and three
model types are dominant in literature: state-, rate- and cmos-
based power models.

Aside from their individual strengths and limitations, the
three different modelling methodologies share a common de-
ficiency: they have the potential for serious misprediction of
power on the Tegra K1. This flaw has not been apparent before
because the model implementations are not tested extensively
enough over all CPU and memory frequency combinations.
Rate-based power models, which are by far the most com-
monly found in literature [5], [8], [21], [23], can for example
mispredict up to 30 % on the Tegra K1 when the CPU
frequency is above 1 GHz. This occurs for several reasons.
Rate-based models correlate total power usage with hardware
activity, such as the number of instructions, cycles or cache
misses per second. However, many mechanisms that have non-
negligible impact on power usage, such as frequency scaling,
variable cost of instructions, resource contention [1] and clock,
core and rail gating are usually ignored. Additionally, rate-
based models do not consider that rail voltages vary with
operating frequencies, having an adverse affect on power
usage [3], [9], [15]. For this reason, the accuracy of rate-
based models is entirely dependent of the frequency levels
selected by Dynamic Voltage and Frequency Scaling (DVFS)
algorithms at the time of the verification.

Models are necessary to understand the power usage of
small hardware components where direct measurement is
otherwise physically impossible or unsupported. They are
also necessary to attribute energy consumption to individual
software applications, determine and reduce the power usage
of components and to evaluate how systems consume power.
However, existing modeling methods fail to predict power
accurately on the Tegra K1.

In our previous work [18], we developed a high precision
power model for the GPU on the Tegra K1. This model
included a very simplified model for the Tegra K1’s LP core.
In this paper, we extend this model to predict power usage
of the Tegra K1’s quad-core CPU, different CPU caches and
memory. The accuracy is close to 100 % for multimedia



workloads such as the Discrete Cosine Transform (DCT),
huffman encoding, motion vector search and rotation. The
main contribution compared to the GPU model is that the
CPU cannot be modelled generally. This is because there is
a lack of Hardware Performance Counters (HPCs) that can
measure individual integer, floating point, data movement and
other types of instructions. Instead, our method for the CPU
estimates the average capacitive load per instruction on a
per-process basis. By taking into account measured rail volt-
ages and fine-grained hardware activity predictors, our model
exposes detailed insight into the power usage of individual
components, such as rail and core leakage currents, RAM
and CPU clock, RAM reads and writes, application-specific
workload power and cache hierarchies. Using the model, it is
possible to identify power-intensive hardware components and
software workloads. This can for example be used to optimise
the power usage of individual system services, reducing idle-
system workload power by 21 %. Combined, our GPU and
CPU models comprise a complete heterogeneous power model
for the Tegra K1, covering all general purpose compute aspects
of the SoC from its dual-cluster CPU, RAM and GPU.

The rest of this paper is organised as follows. We survey
related work and background on power modelling in Section II.
Section III describes the Tegra K1 platform and the details that
are important to model the platform accurately, in particular,
why it is impossible to build an entirely generic power model
for the Tegra K1’s CPU. The modeling methodology, model
training benchmarks as well as the coefficients are introduced
in Section IV. Furthermore, we extensively verify our model
over all platform frequencies using several intense compute
workloads in Section V, where we also investigate workload-
dependent power components and some preliminary use cases
of our model. We conclude our work in Section VI.

II. BACKGROUND AND MOTIVATION

There is an abundance of work which attempts to model
power usage of embedded systems. These generally fall into
three categories of models: state-, rate- and cmos-based mod-
els. Each type has its own advantages and disadvantages; but
as mentioned in the previous section, they can mispredict
badly depending on operating frequencies. Surprisingly, all of
them contribute with important insight into power, and they
all hold some merit which is key to building accurate models.
In this section, we take a brief look at these model types and
study their accuracy on the Tegra K1. More extensive details
about model predictors and estimated coefficients for these are
available for download here1.

Modern SoCs are based on CMOS technology and are built
with voltage-islands. This means that the components within
the SoC (clock generators, caches, buses, compute cores etc)
are divided into regions supplied by individual power rails
(see Figure 1). The power on a rail PR is the sum of static
PR,stat and dynamic PR,dyn power [9], [3] and make up the
foundation for cmos-based models:

PR = IR,leakVR + αRCRV
2
RfR (1)

In this equation, rail voltage VR and leakage current IR,leak
defines the static power component. Dynamic power is caused
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Fig. 1: Overview of the Tegra K1 SoC architecture [11].
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Fig. 2: Measured rail voltages.

by transistor switching activity, where fR is the operating
frequency in cycles per second on that rail, CR is the potential
maximum switching capacitance per cycle (in coloumbs per
volt), and αR ∈ [0, 1] is best viewed as a workload-specific
factor which decides how much of CR is being switched
through the circuitry on that rail, per cycle. A key point from
Equation 1 is that rail power is strongly dependent on rail
voltage, which again depends on operating frequencies in that
domain (see Figure 2).

Several authors [3], [15] have attempted to estimate leakage
currents IR,leak and switching capacitance αRCR for rails
directly using regression. However, despite being theoretically
well-founded, cmos-based models mostly mispredicts between
20 to 25 % (see Figure 3a). This is a trend we also discovered
in our cmos-model [15] which occurs because the model as-
sumes an independent relationship between switching activity
and frequency levels in different domains. It is implicitly
assumed that the increase in power as for example CPU
frequency increases, is caused only by increased switching
activity on that rail. However, it is easy to imagine cases
where this is not true, for example when executing a memory
intensive program.

State-based models are perhaps the simplest model type
found in literature [16]. Models of this type abstract hardware
components into states and associate each with a constant
power draw and transition cost between these [19]. For ex-
ample, the Tegra K1’s CPU can be abstracted into two states
that reflect the currently active cluster, where either the Low
Power (LP) core or High Performance (HP) cluster is active.
It is further possible to add the state cost of having individual
cores active. State-based models are relatable to the change in
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(b) State-based model.
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(d) Our hybrid model.

Fig. 3: Power estimation error for common model types running a DCT filter (four cores).

leakage current IR,leak on power rails which is directly tied to
the activation and deactivation of hardware components such
as cores and rails. However, they have bad accuracy on the
Tegra K1 because they ignore changes in rail voltages and
dynamic power completely (see Figure 3b).

Rate-based models are the most intensively used models
in the literature [5], [8], [14], [20], [21], [23] and has seen
widespread adoption since 1999 [6] (which is the first rate-
based model we have found). Rate-based models attempt to
correlate power usage with the rate at which hardware events
occur according to the following formula:

Ptot = β0 +

Nρ∑
i=1

ρiβi (2)

In Equation 2, β0 is the power of idle components with
constant power draw, ρi is a predictor (hardware event) with
units of accesses per second, βi is the cost in Watt-seconds
per access and Nρ is the number of predictors. Example of
hardware events can be instruction execution, elapsed cycles,
cache hits and misses and branching. These events naturally
reflect transistor switching activity, tying it to the dynamic
power component of Equation 1. With a prediction error
between 0 to 30 %, this model predicts better than the state-
based one (see Figure 3c). However, rate-based models ignore
rail voltages and static power. The only known exception is
Hong, S. and Kim, H. [7] who presented a standard rate-based
model, but it considers voltage as a part of the leakage current.
In defence of rate-based models, ignoring voltage levels might
not have a negative effect if power management is poorly
designed. For example, it is much easier to stick the Tegra K1
HP frequency at 1.15 V (see Figure 2a) independently of
frequency. It does however have an adverse effect on systems
where this is not the case, such as the Tegra K1.

In summary, state-based models reflect static power, but
do not capture dynamic power. Rate-based models are the
opposite. These reflect hardware utilisation and dynamic power
but not static power. Both ignore changes in voltage as a result
of changes in frequencies, and is a key source of inaccuracy

in these model types. Cmos-based models incorporate both
static and dynamic power as well as rail voltages. In terms
of accuracy, it shows less error variation, but has an inherent
weakness in that they assume independency in switching ac-
tivity and operating frequencies between rails. Our hypothesis
is therefore that we can achieve better accuracy if hardware
utilisation and switching capacitance can be captured more
accurately and independently on each rail. In the following
sections, we will outline important hardware activity predictors
on the Tegra K1’s CPU and how these can be combined with
voltage measurements to achieve close to 100 % accuracy (see
Figure 3d).

III. TEGRA K1 MOBILE SOC

In order to successfully build a high-precision power
model, it is important to have a solid understanding of the
platform (see Figure 1). We have chosen the Tegra K1 as a
case study due to its similarity with modern island-style SoCs.
In this section, we introduce the most important power rails
and clocks, and we describe how it is possible to monitor
hardware activity in the various units. Power measurement and
synchronisation is done as in our previous work [15], where
the Jetson-TK1 retrieves power measurement readings from a
Keithley 2280S power source via a dedicated measurement ma-
chine. We measure individual rail voltages using the Keithley
2110 high-precision voltage measurement unit.

A. Tegra K1 Architecture: Rails and Clocks

The Tegra K1 is a complete SoC featuring several rails
powering various functional units on the processor [10]. The
rails which are relevant for our investigation (see Figure 1) are
the core, HP and memory rails. These rails power the LP (core)
and HP clusters, as well as the External Memory Controller
(EMC) and memory banks. The power usage on all other rails
are assumed to be constant with no hardware activity.

Clocks drive switching activity inside the Tegra K1’s
hardware components. Every clock cycle consumes energy,
and CPU clock cycles normally correlate very strongly with



Clock Affects Description Frequency Voltage Range
Steps Range [MHz]

cpu g HP Rail HP cluster 20 [204, 2320] [0.80, 1.20]

cpu lp Core Rail LP core 9 [51, 1092] [0.90, 1.05]

EMC Core Rail Memory 6 [204, 924] [0.90, 1.01]

TABLE I: Tegra K1 cores, clock and voltage ranges.

power in rate-based models [20]. Clocks are also provided as a
power management mechanism where the operating frequency
of a component can be reduced to mitigate power dissipation
(while reducing performance). The Tegra K1 features a range
of different clocks driving different functional blocks (see
Table I). When building power models, it is important to be
aware that the voltages on different rails change, and that they
change with clock frequency [3], [9]. For example, depending
on the HP cluster clock (cpu g), HP rail voltage Vhp varies
between 0.81 and 1.13 V (see Figure 2a). The core rail voltage
is more complex. Its voltage Vcore depends on the LP core
frequency (cpu lp) as well as the EMC bus frequency. Unless
the HP cluster is active, the voltage set on this rail is always the
maximum required by any of these two clocks at any point in
time (see Figure 2b). Finally, memory rail voltage is statically
set to 1.35 V and does not change.

B. Power Saving Mechanisms

The Tegra K1 features several mechanisms to limit power
usage depending on the current demand for resources and hard-
ware utilisation. Generally, there are two types of optimisation
approaches to achieve this goal, which have never been taken
directly into account in previous models:

• Clock gating disables clock distribution to various
entities of the SoC, which disables their function and
reduces dynamic power. State is retained.

• Power gating disables supply voltage to various parts
of the circuity. This completely removes static power
draw and normally implies clock gating. Power gating
causes loss of state (for example in caches).

Exactly when and for how long cores are gated is decided
by both software and hardware. On the Jetson-TK1, the CPU-
idle kernel drivers monitor idle CPU cores and make decisions
to clock- or power-gate individual cores based on estimated
idle intervals and state transition overheads. Additonally, the
CPU cores perform clock-gating in hardware without the
intervention of software.

Application demand for processing time is satisfied by
automatic cluster and core selection as well as CPU and
memory frequency tuning. All of these mechanisms impact
power usage. Typically, when the Tegra K1 is idle, processing
is restricted to the LP core, in which case the entire HP rail is
power gated by disabling the HP rail voltage regulator. Kernel
drivers monitor resource usage. These may decide to switch
between the application clusters, activate additional CPU cores,
clock- and power-gate individual cores in short idle periods and
adjust EMC and CPU frequency. The challenge with regards to
power modelling is to track when and for how long processors
or other parts of the circuitry remains gated. To solve this,
we modified the Tegra K1 kernel sources to count the time
spent in the gated states and expose this information to running
applications.

C. Instruction Cost (Workload-Dependent Power)

One of the main challenges of power modelling the
Tegra K1 is that it does not have fine-grained accounting
for the types and number of instructions executed. Pricopi
et. al. [14] built a rate-based power model for a big.Little
CPU, which is the same cluster technology the Tegra K1 uses.
They show that it is possible to attribute an instruction cost to
different instructions such as branching, integer and floating
point operations, as well as RAM loads and stores. However,
the CPU implementation they used had dedicated HPCs to
count these instructions. This is also in accordance with our
experiences on the Tegra K1’s GPU [18], where we build
an fully generic power model using fine-grained instruction
accounting. Unfortunately, the Tegra K1 does not implement
these HPCs on its CPU.

When there is no possibility to trace what types of instruc-
tions have been executed, loss of generality in terms of power
modelling is unavoidable. Every application and system service
has its own way of exersising the processing pipeline using
different instructions. The only instruction counter we can use
is the instruction executed HPC, which counts the
number of instructions executed. Since the number of CPU
instructions can be counted on a per-process basis, we choose
to track these and estimate an average capacitance load per
instruction for each workload. The assumption behind this
is that each application will have roughly the same average
capacitive load over time. ARM CPUs are not required to im-
plement HPCs for fine-grained instruction accoutning, which
means that for CPUs it will be unavoidable to model workload
power in this way.

D. Cache Maintenance and Off-Chip Memory Access

The Tegra K1 implements a two-level on-chip cache hierar-
chy with last-recently used eviction policy. Cache costs usually
surface as a part of rate-based power models, where authors
attempt to attribute power costs to cache accesses and misses
directly [20]. In our model training, we found that these events
generally do not correlate well with power, often breaking the
estimation such that coefficients are negative. This is not easy
to understand, but we believe that the cost of accessing caches
is not constant. A cache access may end up in other data being
evicted elsewhere or trigger refills from other cache levels or
memory: the cost is not generic in itself and depends on many
other factors.

Because of the problems of modelling cache accesses, we
decided to attempt to model instead the power which is spent
maintaining the cache. The intuition behind this is that, if we
can model the way the cache maintains its own consistency,
cache accesses will instead just be an integral part of the
average instruction cost (see Section III-C). The ARM HPC
implementation has a range of cache performance counters.
We use the following HPCs:

• L1D CACHE REFILL. Counts data cache refill
events from external, off-chip memory.

• L1D CACHE WB. Counts data cache writebacks to
external, off-chip memory.

• L2D CACHE REFILL. Counts data cache refill
events from L1 cache or external, off-chip memory.



• L2D CACHE WB. Counts data cache writebacks to
L1 cache or external, off-chip memory.

We then defined two new counters that trace cache main-
tenance operations between the cache hierarchies:

ρl1l2 = (Nl1,refill −Nl2,refill) + (Nl1,wb −Nl2,wb) (3)

ρl2ram = Nl2,refill +Nl2,wb (4)

where ρl1l2 is an indication of on-chip cache maintenance
between L1 and L2 data caches, and ρl2ram is an indication
of cache traffic between L2 and off-chip memory. Note that
the Tegra K1 also implements other types of caches, for
example L1 instruction cache. Since only seven HPCs can be
occupied concurrently, and one of these always is the active
cycle HPC, there is not enough HPC space to trace all the
hierarchies.

Unique memory accesses ultimately end up in off-chip
memory accesses at least once. Exactly how often this happens
is very hard to trace. CPU HPCs exist, but there may be
many other components in the system which also access
RAM, such as PCI devices and peripherals. Fortunately, the
Tegra K1 implements an activity monitor which can provide
the number of active memory cycles spent serving the CPU or
other peripherals. We modifiy the kernel driver for the activity
monitor to provide us with these statistics, which represent our
measure of memory utilisation.

IV. HIGH-PRECISION POWER MODELLING

We outline our methodology to model the Tegra K1 power
usage with high precision. The method is an extension to
our previous work on the Tegra K1’s GPU [18]. The main
challenge with modelling power on the Tegra K1’s CPU
compared to the GPU is that it is impossible to build an
entirely generic model. This is because the CPU does not
have dedicated HPCs for the type and number of instructions
executed (see Section III-C). Therefore, the resulting model is
a combination of generic power (most of the predictors seen in
Table II) and workload-specifc power, which varies depending
on the various types of instructions executed on each core.

A. Derivation

Following our discussion in Section II, we now describe the
dynamic power component of Equation 1 in terms of measur-
able hardware activity predictors as outlined in Section III. The
dynamic part of Equation 1 can be re-interpreted as follows:

PR,dyn =

NR∑
i=1

CR,iρR,iV
2
R (5)

In Equation 5, NR is the number of hardware predictors, ρR,i
is a hardware activity predictor for rail R in occurrences per
second (for example instructions per second), and CR,i is the
unknown switching capacitance per occurrence of event ρR,i.
Static power on a rail R is the product of that rail’s voltage
VR and total leakage current IR,ltot [9]:

PR,stat = VRIR,ltot (6)

The Tegra K1 continuously performs power gating of proces-
sors on the HP and core rails. When power gating a core, the

leakage current Icpu,leak from that core is also removed. The
total leakage current on the HP and core rail, for Nc active
cores, is:

IR,ltot = IR,leak +

Nc∑
i=1

Icpu,leak (7)

The total power usage of the Jetson-TK1 becomes:

Pjetson =

R∈R∑
(PR,dyn + PR,stat) + Pbase (8)

Noting that the static power on the memory rail cannot be
modelled, because the rail voltage on this rail does not change.
It is instead a part of base power Pbase, which also includes
the constant power draw of all other rails and idle components.

B. Methodology

The total power usage of the Jetson-TK1 is shown in
Equation 8, where the unknown variables are the capacitive
loads, rail and core leakage coefficients (CR,i, IR,leak and
Icpu,leak). Base power Pbase is also unknown. Our method-
ology to find these terms is based on multi-variable, linear
regression. We create seven benchmarks spesialised to stress
different architectural units of the Tegra K1’s processor (see
Table III):

• We have several versions of a simple matrix-multiply
program, where the element type, for example inte-
ger, floating point (VFP) or vectorised floating point
(NEON), is being varied.

• An idle benchmark, where only the Linux kernel and
system services are running, is useful to trigger power-
and clock-gating mechanisms.

• We found it necessary to also implement specialised
benchmarks to stress L1 cache refills and write-backs
more than the other benchmarks did.

Each benchmark is run over all possible memory and
processor frequency combination (see Table I), and over the
five possible core combinations (LP core or any number of the
four HP cores active). During the benchmarks, power is being
logged while the HPCs are being collected at regular, short
intervals of 100 ms. This is to avoid counter overflow, which
occurs relatively easily for some of the HPCs (under loads,
the active cycle counter overflows within two seconds at the
maximum operating frequency). The final dataset size is of
30912 entries containing the necessary predictors and power
measurement samples. The coefficient estimates can be seen
in Table II.

As argued in Section III-C, it is not possible to generalise
the cost of instruction execution because different instruction
types (integer, floating point, data movement) have different
costs. The Tegra K1 only has one instruction counter, and
the estimated cost per instruction will vary depending on
workload. We make a single instruction cost estimate for each
of the benchmarks in Table III. The estimates are shown
in Table III. Not considering the IDLE test, which has a
significantly larger instruction cost, the cost is similar across
the rest of the benchmarks. Higher instruction cost does not
automatically imply a higher rate of energy consumption. For
example, the IDLE test consumes less power on average than



Rail Number Predictor Description Coefficient Value

HP

0 Vhp HP rail voltage (when powered) Ihp,leak 59.8mA

1 ρhp,clk1 Active clock cycles per second (first core) Chp,clk1 395.65 pCV
2 ρhp,clk2 Active clock cycles per second (second core) Chp,clk2 270.40 pCV
3 ρhp,clk3 Active clock cycles per second (third core) Chp,clk3 261.89 pCV
4 ρhp,clk4 Active clock cycles per second (fourth core) Chp,clk4 213.95 pCV

Core 0 Vcore Core rail voltage (always powered) Icore,leak 633.7mA

1 ρcore,clk Active clock cycles per second (LP core) Ccore,clk 301.49 pCV

Common

0 Vcom,online Rail voltage when any core is online (not gated) Icpu,leak 24.00mA
1 ρcom,l1l2 Cache maintenance, L1 and L2 Ccom,l1l2 2.35nCV
2 ρcom,l2ram Cache maintenance, L2 and RAM Ccom,l2ram 2.29nCV
3 ρcom,ips Instructions per second (workload-specific) Ccom,ips See Table III

Memory

0 ρmem,clk Total clock cycles per second Cmem,clk 238.21 pCV
1 βmem,204 Power offset at 204 MHz Pmem,204 11.80mW
2 βmem,300 Power offset at 300 MHz Pmem,300 69.00mW
3 ρmem,CPU CPU busy memory (EMC) cycles per second Cmem,cpu 2.15nCV
4 ρmem,OTH Other busy memory (EMC) cycles per second Cmem,oth 2.76nCV

Other Pbase Base power - 0.87W

TABLE II: Overview of generic energy model predictors and coefficients.

Benchmark Description Components under explicit stress Instruction CostRAM
(CPU)

L1 - L2 L2 - RAM INT FPU NEON

Idle CPU CPU idle. 2.50nC
V

L1-WB L1 writeback stress. 0.15nC
V

L1-RF L1 refill stress. 0.18nC
V

MMUL-INT Matrix multiply (integer op-
erations).

0.45nC
V

MMUL-INT-VOL Same as above, volatile
memory.

0.27nC
V

MMUL-F32 Matrix multiply (floating
point operations).

0.36nC
V

MMUL-NEON Matrix multiply (NEON
floating point operations).

0.44nC
V

TABLE III: Benchmarks and components under stress.

the other benchmarks, despite the high estimated instruction
cost. This is because so few instructions are executed compared
to the other benchmarks. Similar conclusions can be made to
the other benchmarks. Comparing for example floating point
matrix multiply with VFP or NEON instructions, the NEON
variant has a higher estimated cost per instruction. However,
NEON instructions process four floating point values at a time
whereas the VFP variant only process one at a time. Our
training data therefore shows that the NEON variant draws
less average power than the VFP variant.

V. EXPERIMENTS

In this section, we verify the accuracy of our model
by extensive validation over all operating frequencies. The
workloads we use are common video processing operations for
the DCT, Huffman coding, motion vector search and rotation.
Due to space limitations, we are unable to describe these
here, but interested readers can refer to our previous work for
details [18]. We also argue that our method to model workload-
specific instruction power is correct, and finally present some
preliminary case studies of potential use cases for the model.

A. Verification

To verify our model, we let our video processing filters
process an HD stream at 25 FPS over all possible operating
frequencies. This process is done once for each core configura-
tion (five possible combinations where either the LP cluster or
any number of the four HP cores are active). While running,
our implementation estimates generic platform power every
100 ms (see Section III-C) using the predictors in Table II and

additionally logs measured total power usage. The workload-
dependent power usage is now missing, and must be estimated
per workload. When each filter is done processing the HD
stream at all frequency combinations, per-instruction switch-
ing capacitance is estimated by subtracting predicted generic
platform power from total measured power. The residual power
is always positive and is used in a linear regression solver to
estimate the switching capacitance per instruction, which is in
turn used to estimate the power component directly related to
instruction execution.

The resulting prediction error can be seen in Figures 3d
and 4 for all of our filters. Due to space restrictions, we can
not show all the error plots for each core configuration, but
we include plots across all of them for at least one filter. The
plots show that our model performs well, with a high accuracy
across all frequency domains which is very close to 100 %.
In general, the average accuracy over all frequencies is never
below 98 % for any filter, with worst-case prediction errors
that are never worse than ± 4 %. This is much better than
the related modelling methods in Figure 3, where our model
not only successfully captures hardware utilisation (dynamic
power), but also takes into account increased power from
higher rail voltages and leakage currents (static power).

B. Residual (Workload/Instruction-Dependent) Power

Our verification methodology has an unavoidable weak
point in the way workload-dependent power is estimated. Per-
instruction capacitance loss is estimated based on residual
power after generic power components are removed from real
measurements. The estimated workload power is subsequently
added to the power prediction. It is possible to claim that
this estimated workload-dependent power component ”simply
happens to nicely cover” most of the residual power which
would otherwise be the root cause of a large prediction
error. It is difficult to conclusively disprove this claim. Per-
instruction capacitance loss is tied to software implementation;
it can not be re-used for other pieces of code and it cannot
be guaranteed to be the same if the code is changed by
recompilation or by changing input data (for example, reducing
video resolution or changing algorithmic parameters). It is,
however, possible to show in some more detail how residual
workload power behaves across frequencies, how diverse per-
instruction capacitance loss estimates are and how they can be
used in practice.
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(a) Rotation filter (three cores).
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(b) Huffman filter (one HP core).
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(c) Motion vector search (LP core).

Fig. 4: Power estimation error for idle and video processing scenarios.
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Fig. 5: Residual (workload-specific) power plotted for the
model predictor (square-voltage instructions per second).

When generic power has been removed from measured
power, the residual power Pres should reflect only the cost
of executing instructions (see Equation 5):

Pres = Ccom,ipsρcom,ipsV
2
R (9)

In Equation 9, the unknown variable is the per-instruction
capacitance loss Ccom,ips. Figure 5 shows the residual power
Pres for the DCT filter running on four cores. Each residual,
which represents a unique sample at an operating frequency
point, is plotted for its corresponding predictor (ρcom,ipsV 2

R in
Equation 9). From the figure, we can see that residual power
follows a linear trend with its predictor, which is as expected
from Equation 9 and confirms our theory that instruction power
can be modelled this way. At the data points around 3E9,
we can see that the residuals ”drop” by some 50-60 mW.
This is because the rail voltage reading, which is stored as
a frequency-dependent static table in our code, is slightly
incorrect: buck regulator output voltage is unpredictive and
varies with output current. This is also visible in Figure 3d at
around 1 GHz CPU frequency.

The gradient of the line in Figure 5 is the estimate of
switching capacitance Ccom,ips. This is easily found using
regression, which yields a capacitive load of 439pCV per
instruction. We also use the estimated constant offset in the
model, which is rarely above 30-40 mW. For the rest of the
filters, estimated capacitive load is never above 607pCV (HP,
single-core DCT) and never below 197pCV (LP core, huffman).
In general, for all the filters, the more cores are active the
higher the capacitive instruction load.

The capacitive load itself does not offer any insight into
the actual power usage of instructions. This depends on how
many of these are executed per second. To investigate this,
we plot the generic and workload-specific power in Figures 6a
and 6b. We see that instructions can account for a substantial
fraction of the total estimated power. Not considering base
power Pbase, instruction power can account for up to 50 % of
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Fig. 6: Estimated power.
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Fig. 7: Idle system power breakdown.

the total power and varies between 0.4 to 2.0 W. This means
that instruction power is an important power component, and
that care must be taken to estimate it correctly to achieve a
high prediction accuracy. However, this may not always be
easy to achieve in practice. Our workloads are cyclic in that
they continuously perform the same work (and instructions) on
new incoming frames. It is easy to imagine scenarios where
it may not be so easy to estimate average instruction cost,
for example for workloads which are not cyclic or incorporate
heavy branching (not always following the same code paths).
It is for example tempting to hypothesise that instruction
cost could be estimate along code branches. SoCs with fine-
grained instruction accounting (as for the Tegra K1’s GPU)
can potentially solve this problem by enabling fully generic
models, but in practice, it is likely that there will always be
SoCs which only implement HPCs for the total number of
executed instructions.

C. Use Cases

We now conduct a set of experiments to show how high-
precision power modelling can be useful to developers and
system architects. A basic use case is to produce power break-
down of the system, in order to analyse the power consuming
components and identifying important candidates to minimise
power usage. For example, Figure 7 shows the contribution
to power from each of the generic power components. The
system is idle, and under the control of the standard power
management algorithms where the CPU and memory are run-
ning generally underutilised at the same frequency (204 MHz).
We can see that cache maintenance and off-chip RAM accesses



Normal No Clock
0

5

10

15

20

25

P
ow

er
 [m

W
]

Call Disabled Avahi

Profiler
Avahidaemon
ACTMON
P

w

Normal Optimised

Fig. 8: Instruction power breakdown of the three dominating
idle system services.

are virtually non-present. Workload power is negligible, only
accounting for about 20 mW. The memory clock accounts
for the second most substantial power component. This is
interesting as the capacitance loss per cycle is comparative
with the CPU and they are both running at the same frequency.
However, the CPU is better at handling underutilisation with
clock- and power-gating and is consequently better at hiding
the unnecessary power overhead. The memory, however, is not
clock-gated and therefore ends up wasting cycles which are
not used. Among the static power contributors, the core rail
leakage current is very large at 570 mW, but little can be done
to this component other than ensuring that the core rail voltage
is as small as possible.

Our methodology is also fine-grained enough to estimate
instruction power of individual system services. To show that
it is able to handle very small changes in instruction power,
we focus on the three most dominating system services for
the idle system. The residual workload power from these is
only 20 mW and the breakdown can be seen to the left in
Figure 8 for the profiler (our modelling and estimation tool),
the avahidaemon and an activity monitor which logs RAM
utilisation. Studying the source code for the activity monitor,
we found several optimisation points where we were able
to remove expensive string comparison functions. We also
disabled the avahidaemon, which is unnecessary. The result
shows that we are able to reduce residual power by 20 %
(Pw). While the actual impact of the system is small (some
5 mW), this proves that the model is indeed fine-grained and
is able to pick up on very small changes in the system.

VI. CONCLUSION

Power models are important tools to diagnose modern
embedded multicore SoCs at early design stages or for runtime
power analysis and management. This is because it is not
trivial to measure and attribute power of individual compu-
tational units, such as cores, caches, clocks and memory to
applications. In this paper, we have shown that state-of-the-
art power modelling methods can mispredict substantially on
the Tegra K1. Our main contribution is a methodology which,
by considering rail voltages and fine-grained hardware activity
measurements, is able to predict power with an accuracy close
to 100 %. It is not possible to build a fully generic model
for the Tegra K1 because of a lack of fine-grained CPU
instruction accounting. Instead, we extend our method from
previous work [18] and show how instruction power can be
measured on a per-process basis using only a single HPC
for the total number of instructions executed. It has been

extensively verified over all frequencies using several video
processing workloads.
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