
J Supercomput
DOI 10.1007/s11227-015-1392-1

An analytical GPU performance model for 3D stencil
computations from the angle of data traffic

Huayou Su · Xing Cai · Mei Wen ·
Chunyuan Zhang

© Springer Science+Business Media New York 2015

Abstract The achievable GPU performance of many scientific computations is not
determined by a GPU’s peak floating-point rate, but rather how fast data are moved
through different stages of the entire memory hierarchy. We take low-order 3D stencil
computations as a representative class to study the reachable GPU performance from
the angle of data traffic. Specifically, we propose a simple analytical model to estimate
the execution time based on quantifying the data traffic volume at three stages: (1)
between registers and on-streaming multiprocessor (SMX) storage, (2) between on-
SMX storage and L2 cache, (3) between L2 cache and GPU’s device memory. Three
associated granularities are used: a CUDA thread, a thread block, and a set of simul-
taneously active thread blocks. For four chosen 3D stencil computations, NVIDIA’s
profiling tools are used to verify the accuracy of the quantified data traffic volumes, by
examining a large number of executions with different problem sizes and thread block
configurations. Moreover, by introducing an imbalance coefficient, together with the
known realistic memory bandwidths, we can predict the execution time usage based
on the quantified data traffic volumes. For the four 3D stencils, the average error of

H. Su (B) · M. Wen · C. Zhang
School of Computer, National University of Defense Technology, Changsha, China
e-mail: huayousu@163.com; shyou@nudt.edu.cn

M. Wen
e-mail: meiwen@nudt.edu.cn

C. Zhang
e-mail: cyzhang@nudt.edu.cn

X. Cai
Simula Research Laboratory, Oslo, Norway
e-mail: xingca@simula.no

X. Cai
Department of Informatics, University of Oslo, Oslo, Norway

123



H. Su et al.

the time predictions is 6.9 % for a baseline implementation approach, whereas for a
blocking implementation approach the average prediction error is 9.5 %.

Keywords Analytical performance modeling · GPU · Stencil computation ·
Data traffic

1 Introduction

On modern computing hardware, the disparity between the floating-point capability
and memory bandwidth can pose a serious performance limitation. Let us take for
example the widespread Tesla K20 GPU [16] from NVIDIA. It has 1.17 Tflop/s as
the peak double-precision rate, whereas the peak bandwidth to the device memory is
only 208 GB/s. In other words, to reach the peak floating-point performance, every
double-precision value (8 bytes) that is loaded/stored from/to the device memory
should sustain 45 floating-point operations. Such an arithmetic intensity is impossible
to achieve for most types of scientific computation. The achievable GPU performance
of these computations is thus bound by the amount of data traffic, instead of floating-
point operations.

Stencil-based computations, which are widely used in many branches of computa-
tional science, are well known to have their performance determined by data traffic,
especially for low-order stencils. Such computations have an overall algorithmic form
of repeatedly sweeping through a structured computational mesh, where calculation
at each mesh point depends on a fixed number of neighboring mesh points, i.e., a com-
putational stencil. Due to the simple data structures and regular accesses involved,
stencil computations are good candidates for porting to the powerful GPU architec-
ture [14], even though it is impossible to achieve the theoretical peak floating-point
performance. Exploiting data locality in on-chip storage and adjusting thread granu-
larity are two important approaches to achieving high performance on GPUs. Spatial
blocking (also termed chunking) [13] is a commonly used optimization method to
enhance the GPU performance of stencil computations. The achievable performance
improvement is, however, highly sensitive to the choice of various blocking parame-
ters and the thread block configuration. Blind performance tuning can thus be very
time-consuming to identify the optimal chunking size and thread block configuration,
due to a large search space. On the other hand, an insightful understanding of the
achievable GPU performance will be very helpful.

To understand the realistically reachable GPU performance of stencil computa-
tions, while also pinpointing performance bottlenecks, we propose in this paper a
simple analytical model from the angle of data traffic. More specifically, we focus on
quantifying the volume of data traffic through three stages of the entire GPU mem-
ory hierarchy: (1) between registers and the storage on the streaming multiprocessors
(SMXs), (2) between the on-SMX storage and the L2 cache, (3) between the L2 cache
and GPU’s device memory. A set of general formulas is derived for low-order 3D
stencil computations with help of three granularities: a CUDA thread, a thread block,
and a set of simultaneously active thread blocks. Thereafter, using realistic bandwidths
measured by simple benchmarks, we can pinpoint the exact bottleneck of data traffic

123



An analytical GPU performance model for 3D stencil computations

and thereby estimate the execution time usage of 3D stencil computations on modern
GPUs. Experimental results with four stencils on NVIDIA’s Kepler K20 GPU show
that the accuracy of the three quantified data-traffic volumes is very high. The average
error of the time usage predictions is 6.9 % for baseline implementations and 9.5 %
for implementations based on blocking in the z-direction.

The main contributions of this paper are as follows:

1. We derive a set of detailed yet general formulas to quantify the data traffic volumes
of low-order 3D stencil computations through the three stages mentioned above.

2. We propose an analytical model to estimate the time usage of 3D stencil compu-
tations on a GPU, by combining the quantified data traffic volumes and realistic
memory bandwidths. In addition, we introduce an imbalance coefficient to fine-
tune the estimated time usage.

The organization of the remainder of the paper is as follows: Sect. 2 provides the
background of GPU and CUDA programming related to stencil computations. We
detail the modeling methodology in Sect. 3, whereas Sect. 4 presents an experimental
evaluation. The related work is reviewed in Sect. 5, and a summary of our findings is
given in Sect. 6.

2 GPU architecture and CUDA implementation of stencil computations

2.1 NVIDIA’s Kepler architecture

The hardware architectures of NVIDIA’s GPUs are highly similar with each other, due
to sharing the same programming model named CUDA [17]. In this paper, without loss
of generality, we will only consider the Kepler architecture from NVIDIA. A GPU
consists of several streaming multiprocessors, abbreviated as SMXs for the Kepler
architecture [16]. From the aspect of programming model, a CUDA program consists
of two parts: a host program and one or several CUDA kernels, which are configured
as 1/2/3D thread blocks. Consecutive 32 threads in the same block are grouped as a
warp, executed in a SIMD pattern on the same SMX. Threads from different thread
blocks can only communicate with each other through the global device memory.

The entire memory hierarchy of a NVIDIA’s GPU has four levels. On the top, there
is an off-chip global memory for the entire GPU device. At the second level, an on-chip
L2 cache is shared across all SMXs, with the purpose of caching data loaded from the
global memory. This means that the simultaneously active thread blocks may share
data through the L2 cache. At the third level, each SMX has its own storage including
L1 cache, shared memory, and read-only data cache on the Kepler architecture. The
on-SMX storage is shared among the threads per SMX. It implies that thread blocks
allocated to different SMXs will not share data and can be considered independent
on this level. At the bottom, each thread has access to a number of private registers.
We can thus think of three connections within the entire memory hierarchy: global
memory ↔ L2 cache ↔ on-SMX storage ↔ registers. The bandwidths of the three
connections are considerably different, with the bandwidth of global memory being
the lowest. The volumes of data traffic may also differ considerably, with the largest
one being that between the on-SMX storage and registers.

123



H. Su et al.

2.2 Baseline CUDA implementation of stencil computations

A very simple example of low-order 3D stencil computation is as follows:

unew
i, j,k = αuold

i, j,k + β
(

uold
i−1, j,k + uold

i+1, j,k + uold
i, j−1,k +uold

i, j+1,k + uold
i, j,k−1+uold

i, j,k+1

)

1 ≤ (i, j, k) ≤ (Nx , Ny, Nz), (1)

where α and β are scalar constants, Nx , Ny and Nz denote the number of computational
points in the three spatial directions. It can be seen that the above computation uses
a 7-point stencil, in that computing unew

i, j,k requires seven point values of uold. This

stencil computation, to be denoted as 7PT-1 throughout the following text, may arise
from solving the Laplace equation using finite difference discretization and the Jacobi
iterative solver.

The most important content of a straightforward CUDA implementation of the
7PT-1 stencil is as follows:

dim3 grid(Nx, Ny, Nz);
dim3 block(Bx, By, Bz);
stencil<<<grid, block>>> (u_old, u_new, alpha,

beta, pitch, Nx, Ny, Nz);

__global__ void stencil(double *u_old, double *u_new,
double alpha, double beta,
int pitch, int Nx, int Ny, int Nz)

{
int stride_z = pitch*(Ny+2);
int gidx = blockIdx.x*blockDim.x + threadIdx.x + 1;
int gidy = blockIdx.y*blockDim.y + threadIdx.y + 1;
int gidz = blockIdx.z*blockDim.z + threadIdx.z + 1;
int gid = gidz*stride_z + gidy*pitch + gidx;
if (0<gidx<=Nx && 0<gidy<=Ny && 0<gidz<=Nz)
u_new[gid] = alpha*u_old[gid]

+ beta*(u_old[gid-1] + u_old[gid+1]
+ u_old[gid-pitch] + u_old[gid+pitch]
+ u_old[gid-stride_z] + u_old[gid+stride_z]);

}

In the above code segment, pitch is a variable that stores the number of values
allocated in the x-direction including padding, similar to the standard CUDA function
cudaMallocPitch() [17]. As can be seen in the kernel function stencil, each
CUDA thread is responsible for computing unew at a single mesh point. Throughout the
remaining text, we will label one-thread one-point CUDA implementations as baseline.
Improvement of such straight forward implementations is possible. For example, the
technique of blocking lets each thread compute a column of points in a certain direction,
usually in the z-direction.

123



An analytical GPU performance model for 3D stencil computations

3 Analytical modeling

Assuming that the time used by a computation is dominated by its data traffic, and
that a GPU is good at simultaneously scheduling various data movements to avoid
unnecessary stalls, we propose the following model to estimate the execution time of
a program.

Time usage ≥ max

(
VGM

BWGM
,

VL2

BWL2
,

VSMX

BWSMX

)
, (2)

where VGM denotes the total volume of data loaded from and stored to the global
memory, while BWGM denotes its realistically achievable bandwidth. The definitions
of VL2, BWL2, VSMX and BWSMX are similar. To predict the actual execution time
usage, it is important to accurately quantify the three volumes of data traffic: VGM, VL2
and VSMX. We remark that (2) is applicable to all data-traffic dominated computations.
The main focus of this paper is on low-order 3D stencil computations, for which we
will derive detailed formulas of the three data-traffic volumes. It should also be noticed
that not all the stencil codes are definitely bandwidth limited. For some high-order
and computation intensive stencils, the bottleneck may be the computation or both
computation and memory accessing. In this situation, the time usage of the arithmetic
instructions should be considered. Nevertheless, in this paper, we focus on memory
bound stencil applications.

3.1 Between on-SMX storage and registers

In (2), VSMX denotes the total volume of data traffic between on-SMX storage and
registers. This volume consists of two parts: data loaded from on-SMX storage and
data stored into on-SMX storage. For stencil computations, we can safely assume that
the number of loads is the same for all threads, so is the number of stores. Moreover,
since different threads do not share their registers, the data-traffic volume VSMX can
be calculated as:

VSMX = #threads ×
(

nld
SMX,T + nst

SMX,T

)
× sizeof(type), (3)

where nld
SMX,T denotes the number of values loaded per thread from the on-SMX

storage to its registers. Similarly, nst
SMX,T denotes the number of values stored per

thread. For double-precision computations, sizeof(type) is 8 bytes.
In connection with stencil computations, nst

SMX,T typically equals the number of
values that each thread is responsible for updating. For example, for the baseline
implementation of 7PT-1 shown in Sect. 2.2, the value of nst

SMX,T is 1. Determining

the value of nld
SMX,T , however, requires some care. One important factor is whether

the data values to be loaded by a warp align with a 128-byte boundary (an L1 cache
line). The load operations thus have two types: aligned and misaligned, where the
latter type requires additional data traffic. The following formula calculates the actual
number of loads per thread:

123



H. Su et al.

nld
SMX,T = #aligned loadsT + 2 × #misaligned loadsT . (4)

Again, let us take the baseline implementation of 7PT-1 as example. Loads of uold
i, j,k ,

uold
i, j±1,k , and uold

i, j,k±1 are typically aligned, whereas loads of uold
i±1, j,k are not. Therefore,

the value of #aligned loadsT is 5 and that of #misaligned loadsT is 2. The value of
nld

SMX,T is thus 9.

3.2 Between L2 cache and on-SMX storage

It is reasonable to assume that the CUDA thread blocks are scheduled to the SMXs
in a cyclic order [2]. The probability of adjacent thread blocks being assigned to the
same SMX is thus very low. We therefore assume that the thread blocks designated to
the same SMX do not share data in the on-SMX storage. Consequently, we can use a
thread block as the basic granularity to calculate VL2 that is needed in (2):

VL2 = #thread blocks ×
(

nld
L2,B + nst

L2,B

)
× sizeof(type), (5)

where nld
L2,B denotes the number of data values loaded per thread block from L2 into

on-SMX storage. Similarly, nst
L2,B denotes the number of values stored per thread

block.
The number of thread blocks can be easily calculated by dividing the total num-

ber of threads by #threads per block, where the latter is decided by the program-
mer. Determining nst

L2,B is equally straightforward by multiplying nst
SMX,T with

#threads per block. However, care is needed when deriving a formula for nld
L2,B ,

because on-SMX storage capacity miss should be considered. That is, data loaded
from L2 cache consists of two parts: the compulsorily required values for each thread
block nld,net

L2,B and the reloaded values due to on-SMX storage capacity miss. Moreover,

nld,net
L2,B needs to cover the computational points processed by one thread block, plus

halo regions if applicable. Take for instance the values that need to be loaded for one
7-point stencil. If each CUDA thread is responsible for one computational point, nld,net

L2,B
can be calculated as follows:

nld,net
L2,B = Bx × By × Bz + (

(Bx × Bz) + (Bx × By)
) × halo_width

+
(

SMX line size

sizeof(type)
× (By × Bz)

)
× 2, (6)

where Bx , By and Bz denote the dimension of a thread block. The first term (Bx × By ×
Bz) of (6) corresponds to the computational points processed. The remaining terms
correspond to the halo regions in the three directions, while the value of halo_width
is 2 for stencils to be used in this paper. Here, we remark that the contribution due to
the halo region in the x-direction, i.e., the last term in (6), is calculated in a special
way. This is because for each halo point in the x-direction, one entire cache line in the
on-SMX storage needs to load data from the L2 cache. We can also mention that (6)

123



An analytical GPU performance model for 3D stencil computations

remains exactly the same for the case of a 19-point stencil, provided that each CUDA
thread is still responsible for one computational point. For the case of chunking, i.e.,
each CUDA thread is responsible for multiple computational points, the above formula
needs to be modified, as will be discussed in Sect. 3.5. Nevertheless, the modeling
methodology remains unchanged.

To quantify the number of reloaded values due to on-SMX storage capacity miss,
we can incorporate an SMX miss ratio when calculating the value of nld

L2,B . More
specifically, we propose

nld
L2,B = nld,net

L2,B × (1 + SMX miss ratio), (7)

SMX miss ratio = occupancy × #maximum threads per SMX × nld,net
L2,B

#threads per block × on-SMX storage size
sizeof(type)

× δ. (8)

The rationale behind the above formula of SMX miss ratio is that the more thread
blocks that are simultaneously active, the more likely are misses in the on-SMX stor-
age. The value of occupancy can be calculated according to the number of required
registers per thread and the shared memory requirement per thread block. Both of
them can be obtained by adding option ‘--ptxas-options=-v’ during compila-
tion. Moreover, δ is a prescribed small constant in (8), which connects the capacity
miss ratio with the total data volume needed by the active thread blocks in the same
SMX. One way is to use a large amount of measurements to statistically fit the value
of δ, which we consider to be dependent on the GPU hardware configuration, but
independent of particular stencil computations.

3.3 Between global memory and L2 cache

To quantify the data traffic volume VGM that is needed in (2), we now use as the basic
granularity an entire group of simultaneously active thread blocks. This is because
the L2 cache is shared across all active thread blocks. We assume that the whole
computation is divided into several such groups. Since the size of L2 cache is relatively
small, data reuse between different groups is negligible. Following the same path of
reasoning as above, we can calculate VGM as follows:

VGM = #groups ×
(

nld
GM,G + nst

GM,G

)
× sizeof(type), (9)

where nld
GM,G denotes the number of data values loaded per group from global memory

to L2 cache, whereas nst
GM,G denotes the number of values stored to global memory

per group. The value of #groups is calculated by

#groups =
⌈

#thread blocks

#thread blocks per group

⌉
, (10)

where the number of thread blocks per group can be calculated according to the
occupancy and the number of SMXs.

123



H. Su et al.

As before, calculating nst
GM,G for (9) is straightforward. To calculate nld

GM,G , we use

a similar strategy as for nld
L2,B , i.e., dividing it into the compulsorily required values

per group nld,net
GM,G and the reloaded values due to L2 cache capacity miss:

nld
GM,G = nld,net

GM,G × (1 + L2 miss ratio). (11)

It is reasonable to assume that thread blocks belonging to the same group are
consecutive, if thread blocks are allocated to the SMXs cyclically [2]. Therefore, the
data processed by each group will form a continuous big block, which we denote by
subdomain. The size of a subdomain equals to nld,net

GM,G , which for a 7-point or 19-point
stencil can be calculated by

nld,net
GM,G =

(
Nx + L2 cache line size

sizeof(type)
× 2

)
× width_y × height_z. (12)

Since each group contains many thread blocks, it is reasonable to assume that a
subdomain covers all the Nx computational points plus also the halo points in the
x-direction. This explains the first term in (12). Moreover, width_y and height_z
represent the width of a subdomain in the y-direction and its height in the z-direction,
respectively,

width_y = By ×
⌈

#thread blocks per group × Bx

Nx

⌉
+ halo_width, (13)

height_z = Bz ×
⎡
⎢⎢⎢

#thread blocks per group
Nx ×Ny
Bx ×By

⎤
⎥⎥⎥

+ halo_width. (14)

In (14), Nx ×Ny
Bx ×By

calculates the number of thread blocks on the xy-plane. Similar to
the capacity miss ratio of on-SMX storage, we can estimate the L2 capacity miss ratio
as follows:

L2 miss ratio = nld,net
GM,G × sizeof(type)

L2 cache size
× ε, (15)

where ε is another prescribed small constant, similar to δ used in (8).

3.4 An illustrating example

To demonstrate the use of the formulas developed so far, let us revisit the base-
line CUDA implementation of stencil 7PT-1 shown in Sect. 2.2. The representative
NVIDIA K20 GPU is chosen as the hardware testbed, see Table 1 for its specifications.
For a specific computation size Nx = Ny = Nz = 256 and a particular thread block
dimension Bx = 32, By = 4, and Bz = 1, Table 2 shows, step by step, how to cal-
culate VSMX, VL2 and VGM. For quantifying the latter two volumes we have adopted
δ = ε = 0.01. The three data-traffic volumes are thus quantified as 1.25 GB, 844 MB
and 534 MB. Compared with the actual measurements provided by nvprof [18], the

123



An analytical GPU performance model for 3D stencil computations

Table 1 Hardware specifications of a NVIDIA K20 GPU

Items Values Items Values

#SMXs 13 RODC per SMX 48 KB

#SPs 2496 L2 cache size 1280 KB

Clock 0.71 GHz Measured BWSMX 1215.35 GB/s

Registers per SMX 65536 Measured BWL2 367.87 GB/s

Peak DP rate 1170 Gflop/s Measured BWGM 160.88 GB/s

accuracy of VSMX is 100 %, whereas for VL2 and VGM the accuracy is 94.1 and 96.8 %,
respectively.

3.5 Extensions

As mentioned in Sect. 3.2, Formula (6) assumes that each CUDA thread is responsible
for one computational point, i.e., following the baseline programming approach. To
show that the same modeling methodology is also applicable for the case of multiple
computational points per CUDA thread, let us consider for instance a special variant
of the 3D blocking technique. More specially, each CUDA thread is now assigned to
compute chunk_z points in the z-direction.

The motivation of doing this 3D blocking is to reduce the data-traffic volumes.
We can start by observing that the total number of threads becomes (Nx × Ny ×
Nz)/chunk_z. For the 7PT-1 stencil, we can count that

#aligned loadsT = 3 × chunk_z + 2, and #misaligned loadsT = 2 × chunk_z.

Averaging to each point, the number of aligned loads is about 3. Compared with the
original value of #aligned loadsT for the baseline implementation, which is 5, we can
thus see that about 40 % of the aligned loads can now be saved. Consequently, the
new value of VSMX is considerably lower.

To see that saving also arises with respect to the data traffic from L2 cache to on-
SMX storage, we can derive a new formula of nld,net

L2,B that incorporates chunk_z as
follows:

nld,net
L2,B = Bx × By × Bz × chunk_z

+ (
Bx × Bz × chunk_z + Bx × By

) × halo_width

+
(

SMX line size

sizeof(type)
× By × Bz × chunk_z

)
× 2. (16)

Comparing between (6) and (16), we can see that the increase factor in nld,net
L2,B is less

than chunk_z. There is therefore a reduction in the data-traffic volume VL2, due to
blocking in the z-direction.

123



H. Su et al.

Table 2 Quantifying the data traffic volumes on a K20 GPU for the baseline CUDA implementation of the
7PT-1 stencil, where we have used Nx = Ny = Nz = 256, Bx = 32, By = 4, Bz = 1, and δ = ε = 0.01

Model parameter Source Value

1 #Maximum threads
per SMX

Table 1 2048

2 On-SMX storage
size

Table 1 48 KB (used for read-only data
cache)

3 #SMXs Hardware specification Table 1 13

4 L2 cache size Hardware specification Table 1 1.25 MB

5 L2 cache line size Hardware specification 32 bytes

6 #Threads per block Bx × By × Bz 32 × 4 × 1 = 128

7 #Threads Nx × Ny × Nz 256 × 256 × 256 = 16,777,216

8 #Thread blocks #Threads
#Threads per block

16,777,216
128 = 131,072

9 Occupancy Program guide [17] 1.0

10 #Thread blocks per
SMX

Program guide [17] 2048
128 = 16

11 #Thread blocks per
group

#Thread blocks per SMX ×
#SMXs

16 × 13 = 208

12 #Aligned loadsT Code analysis 5

13 #Misaligned loadsT Code analysis 2

14 #nld
SMX,T Formula (4) 5 + 2 × 2 = 9

15 #nst
SMX,T Code analysis 1

16 nld,net
L2,B Formula (6) 128 +

(
256
8 × 4 + 32 + 128

)

× 2 = 704

17 SMX miss ratio Formula (8) 1.0×2048×704
128×48×1024

8
× δ = 1.83δ

18 nld
L2,B Formula (7) 704 × (1 + 1.83δ)

19 nst
L2,B #Threads per block × #nst

SMX,T 128 × 1 = 128

20 #Groups Formula (10)
⌈

131,072
208

⌉
= 631

21 Width_y Formula (13) 4 ×
⌈

208×32
256

⌉
+ 2 = 106

22 Height_z Formula (14) 1 ×
⌈

208
256×256

32×4

⌉
+ 2 = 3

23 nld,net
GM,G Formula (12)

(
256 + 32

8 × 2
)

× 106 × 3

= 83,952

24 L2 miss ratio Formula (15) 83,952×8
1.25×10242 × ε = 0.512ε

25 nld
GM,G Formula (11) 83,952 × (1 + 0.512ε)

26 nst
GM,G #Thread blocks per group

× nst
L2,B

208 × 128 = 26624

27 VSMX Formula (3) 16,777,216×(9+1)×8
10243 = 1.25

GB

123



An analytical GPU performance model for 3D stencil computations

Table 2 continued

Model parameter Source Value

28 VL2 Formula (5) 131,072×(704×(1+1.83×0.01)+128)×8
10242

= 844 MB

29 VGM Formula (9) 631×(83,952×(1+0.512×0.01)+26,624)×8
10242

= 534 MB

One negative consequence, however, will arise when the size of chunk_z is so large
that

#thread blocks per SMX × nld,net
L2,B × sizeof(type)

exceeds the capacity of on-SMX storage. It is then necessary to adjust the SMX miss
ratio as follows:

SMX miss ratio = occupancy × #maximum threads per SMX × nld,net
L2,B

#threads per block × on-SMX storage size
sizeof(type)

× 1 + halo_width

chunk_z + halo_width
× δ

+ log 2

⎛
⎜⎝chunk_z × #warps per thread block

#streaming processors per SMX
#threads per warp

⎞
⎟⎠ × η. (17)

The rationale behind the above formula is that we consider two phases: initial stage and
reuse stage. During the initial stage, the on-SMX storage capacity miss ratio complies
with Formula (8). At the reuse stage, because uold

i, j,k−1 and uold
i, j,k have already been

loaded into on-SMX storage, we thus increment Formula (8) with a second term in
(17). The purpose is to describe the capacity miss ratio caused by increased data (due to
chunk_z) and the consequent warp scheduling, where η is a prescribed small constant.

3.6 Remarks

Our analytical model has not considered shared memory of the on-SMX storage. This
is because the performance of implementations using read-only data cache (RODC) is
better than that of shared memory-based implementations, as long as no time tiling is
applied between sweeps of a 3D stencil. There are, however, no principal obstacles to
applying the same modeling methodology to CUDA implementations that also make
use of shared memory.

In the case of very low occupancy, there may not be enough warps to hide the
memory latency. Estimates of the execution time that are produced by our model will
thus be too optimistic. The capacity miss ratio formulas are rather simplistic, which

123



H. Su et al.

may also cause inaccurate time estimates, the inaccuracy of the model, especially for
a very large value of chunk_z. However, for moderate sizes of chunk_z, experiments
show that the impact of the capacity miss ratios is insignificant.

4 Validation

4.1 Experimental setup

An NVIDIA K20 GPU is used as the hardware testbed, with its specifications shown
in Table 1. For the Kepler architecture, each SMX has 48 KB of RODC. As explained
in Sect. 3.6, on-SMX storage in this paper only considers RODC, not shared mem-
ory. For measuring the realistic bandwidths BWSMX and BWL2, we have designed
micro benchmarks similar to those published in [20]. The realistic value of BWGM is
measured using NVIDIA’s bandwidthTest program.

In addition to the 7PT-1 stencil from Sect. 2.2, we will use three more represen-
tative low-order 3D stencils to validate the accuracy of our modeling methodology
presented in the previous section. Two different stencil shapes, 7-point and 19-point,
are associated with these stencils, which also differ in the number of input arrays and
how these arrays are accessed.

unew
i, j,k = αuold

i, j,k + β
(

uold
i±1, j,k + uold

i, j±1,k + uold
i, j,k±1

)
(7PT-1)

unew
i, j,k = αγi, j,k + β

(
uold

i±1, j,k + uold
i, j±1,k + uold

i, j,k±1

)
(7PT-2)

unew
i, j,k = uold

i, j,k + γi, j,k (7PT-3)

+α
((

κi+1, j,k + κi, j,k
) (

uold
i+1, j,k − uold

i, j,k

)

− (
κi, j,k + κi−1, j,k

) (
uold

i, j,k − uold
i−1, j,k

)

+ (
κi, j+1,k + κi, j,k

) (
uold

i, j+1,k − uold
i, j,k

)

− (
κi, j,k + κi, j−1,k

) (
uold

i, j,k − uold
i, j−1,k

)

+ (
κi, j,k+1 + κi, j,k

) (
uold

i, j,k+1 − uold
i, j,k

)

− (
κi, j,k + κi, j,k−1

) (
uold

i, j,k − uold
i, j,k−1

))

unew
i, j,k = αγi, j,k + β

(
uold

i±1, j,k + uold
i, j±1,k + uold

i, j,k±1

)

+
(

uold
i±1, j±1,k + uold

i±1, j,k±1 + uold
i, j±1,k±1

)
. (19PT)

Four different computation sizes 643, 1283, 2563 and 5123 are tried for all the
four stencils, each with a baseline (one-thread-one-point) CUDA implementation and
another CUDA implementation that adopts blocking in the z-direction. All the com-
putations have used double precision.

123



An analytical GPU performance model for 3D stencil computations

To limit the total number of experiments, we have restricted the thread block con-
figurations as follows: the value of Bx must be divisible by 32 and the thread block
size is within 1024. We have used NVIDIA’s nvprof tool to measure the actual data
traffic volumes. All the CUDA implementations are compiled with nvcc.

4.2 Validation using baseline implementations

We first study the accuracy of VSMX, VL2 and VGM, which are quantified by Formulas
(3), (5) and (9), by comparing them with actual measurements obtained by nvprof.
The four baseline CUDA implementations are investigated, for which we have varied
the computation size and the thread block configuration. For a given 3D stencil, the
value of VSMX only depends on the computation size, independent of the thread block
configuration. This is indeed confirmed by the actual measurements from nvprof,
with 100 % accuracy. For VL2 and VGM, Table 3 shows their average prediction errors.
We can observe a good accuracy for both data traffic volumes. The average predicted
error ranges from 0 to 9 %, indicating that our modeling methodology presented in
Sect. 2 works well for all the four baseline CUDA implementations.

Figure 1 shows, for the baseline implementation of 7PT-1 and computation size
2563, a detailed comparison of predicted values of VSMX, VL2 and VGM against the
actual measurements from nvprof. It can be seen that, the predicted data-traffic
volumes closely follow the actual measurements for all three memory connections,

Table 3 Comparing actual measurements of VL2 and VGM with their predictions for four baseline imple-
mentations (using δ = ε = 0.01)

Size Average error in VL2 Average error in VGM

643 (%) 1283 (%) 2563 (%) 5123 (%) 643 (%) 1283 (%) 2563 (%) 5123 (%)

7PT-1 3.60 4.00 3.45 3.45 0.86 2.00 1.72 1.59

7PT-2 2.78 3.25 2.75 2.73 0.18 1.01 1.41 1.32

7PT-3 6.97 6.82 6.88 4.46 1.12 3.81 1.58 1.90

19PT 8.43 8.14 8.70 8.76 0.39 0.54 0.04 0.00

0
200
400
600
800

1000
1200
1400

1 2 4 8 16 1 2 4 8 16 1 2 4 8 1 2 4 1 2 1 2 4 8 16 1 2 4 8 1 2 4 1 2 1 1 2 4 8 1 2 4 1 2 1 1 2 4 1 2 1 

1 2 4 8 16 1 2 4 8 16 1 2 4 8 1 2 4 

32 64 128 256 

M
B

Actual_VSMX Predicted_VSMX Actual_VL2 Predicted_VL2 Actual_VGM Predicted_VGM

Array size: 2563

Bz

By

Bx

Actual_VSMX Predicted_VSMX Predicted_VL2Actual_VL2 Actual_VGM Predicted_VGM

Fig. 1 A detailed comparison of predicted values of VSMX, VL2 and VGM against actual measurements,
for the baseline implementation of stencil 7PT-1 with computation size 2563

123



H. Su et al.

except for small thread block sizes. In particular, for block size of 32 or 64, the predicted
VL2 values are distinctly higher than the actual measurements. This discrepancy is
probably due to a certain level of data sharing between thread blocks through RODC,
which is not considered in Formula (5). Another interesting observation is that VGM
decreases with an increasing value of Bz , which implies that our assumption about the
group of simultaneously active thread blocks is reasonable for CUDA programming.

We have also experimented with ignoring L2 cache capacity misses, by setting
ε = 0 in (15). It turns out to have a very small effect on the accuracy of predicted VGM
values. This is because the amount of data required by one group is smaller than the
size of L2 cache on K20, see Table 2.

Once predictions of VSMX, VL2 and VGM are ready, we can use Formula (2) and
bandwidths given in Table 1 to predict the execution time usages. Figure 2 shows a
comparison between the actual time usages and the predictions for the four baseline
CUDA implementations using computation size 2563. The four plots show that the
predicted time usages due to VGM/BWGM (or VL2/BWL2) closely follow the actual
time measurements. When the thread block size is smaller than 64, the predicted time
usages are noticeably lower than the actual measurements. This is because occupancy
can be quite low for small thread blocks, such as 0.25 for thread block size of 32.
Consequently, low occupancy may result in that the GPU being partially idle. The
performance bottleneck for stencils 7PT-1, 7PT-2 and 7PT-3 is the data traffic between
global memory and L2 cache. For the baseline implementation of stencil 19PT, the
performance bottleneck can be between L2 cache and on-SMX storage (RODC) for
small values of By or Bz . This is because the data reuse ratio within a thread block
can be very low, thereby large values of VL2. We can also see that accuracy of time
usage prediction for stencil 19PT is lower than that of the three 7-point stencils.

4.3 Validation using z-blocked implementations

Here, we continue to validate our modeling methodology for non-baseline CUDA
implementations of 3D stencil computations. As discussed in Sect. 3.5, we now inves-
tigate another set of implementations of the four stencils that allow each CUDA thread
to compute chunk_z points. Table 4 compares the predicted values of VL2 and VGM
against the actual measurements provided by nvprof. We have varied the values of
Bx and By (while fixing Bz at 1) together with varying chunk_z = 2i , 0 ≤ i ≤ 8. The
accuracy of VL2 predictions is quite good for the three 7-point stencils, whereas that
of 19PT is less satisfactory. We believe this is due to an inaccurate quantification of
the SMX miss ratio, i.e., Formula (17), for this 19-point stencil. For VGM, the average
prediction accuracy is 96.5 %. The error is mainly caused by large values of chunk_z,
the accuracy of predicted VGM values is thus lower for computation size 5123 than
that of other computation sizes.

Similarly, we give a detailed comparison between the predicted data-traffic volumes
and actual measurements in Fig. 3, for stencil 7PT-1 and computation size 2563. Only
results with Bx = 32 are shown in the plot. Different from the baseline implementation,
blocking in the z-direction considerably improves data reuse in registers. The predicted
value of VSMX thus decreases when chunk_z becomes larger. We can also see a perfect

123



An analytical GPU performance model for 3D stencil computations

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 4 8 16 1 2 4 8 16 1 2 4 8 1 2 4 1 2 1 2 4 8 16 1 2 4 8 1 2 4 1 2 1 1 2 4 8 1 2 4 1 2 1 1 2 4 1 2 1 

1 2 4 8 16 1 2 4 8 16 1 2 4 8 1 2 4 

32 64 128 256 

m
s

Actual_Time Predicted_RODC_Time Predicted_L2_Time Predicted_GM_Time

Bz

By

Bx

(a) 7PT-1

0

1

2

3

4

5

6

1 2 4 8 16 1 2 4 8 16 1 2 4 8 1 2 4 1 2 1 2 4 8 16 1 2 4 8 1 2 4 1 2 1 1 2 4 8 1 2 4 1 2 1 1 2 4 1 2 1

1 2 4 8 16 1 2 4 8 16 1 2 4 8 1 2 4

32 64 128 256

m
s

Actual_Time Predicted_RODC_Time Predicted_L2_Time Predicted_GM_Time

Bz

By

Bx

(b) 7PT-2

0
1
2
3
4
5
6
7
8

4 16 4 1 1 1 4 1 4 2 1 4 2 1 1

1 2 4 8 16 1 2 4 8 1 2 4 1 2

32 64 128 256

m
s

Actual_Time Predicted_RODC_Time
Predicted_L2_Time Predicted_GM_Time

Bz

By

Bx

(c) 7PT-3

0

1

2

3

4

5

6

4 16 2 8 2 1 1 4 1 4 2 1 4 2 1 1

1 2 4 8 16 1 2 4 8 1 2 4 1 2

32 64 128 256

m
s

Actual_Time Predicted_RODC_Time
Predicted_L2_Time Predicted_GM_Time

Bz

By

Bx

(d) 19PT

Fig. 2 Comparing actual time usages with predictions that are given by Formula (2), for four baseline
implementations with computation size 2563, Bx , By , and Bz are the thread block sizes in the corre-
sponding directions, Actual_T ime donates the actual program time, while Predicted_RO DC_T ime
means the estimated time according to data traffic volume of on-SMX storage, Predicted_L2_T ime and
Predicted_G M_T ime are similar

accuracy of the VSMX predictions. The predicted values of VL2 and VGM also closely
follow the actual measurements.

In Fig. 4, we also study the impact of L2 cache capacity miss on the accuracy of VGM
predictions. That is, an additional set of VGM predictions (green curve) is produced
by setting ε = 0 in Formula (15). It can be seen that when chunk_z ≤ 32, omitting

123



H. Su et al.

Table 4 Comparing actual measurements of VL2 and VGM with their predictions for four z-blocked imple-
mentations

Size Average error in VL2 Average error in VGM

643 (%) 1283 (%) 2563 (%) 5123 (%) 643 (%) 1283 (%) 2563 (%) 5123 (%)

7PT-1 5.93 6.41 5.79 5.82 3.41 2.03 3.76 8.58

7PT-2 5.22 5.93 7.12 7.27 3.11 2.60 4.49 8.56

7PT-3 4.91 5.49 6.04 6.11 4.37 3.18 4.31 9.87

19PT 11.50 10.71 12.54 12.59 2.43 2.03 3.95 6.91

0
200
400
600
800

1000
1200
1400

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256

4 8 16

32

M
B

RODC_Actual RODC_Predicted L2_Actual L2_Predicted GM_Actual GM_Predicted

Bx

By

chunk_z

Array size: 2563

Actual_V Predicted_VSMX Predicted_VL2Actual_VL2 Actual_VGM Predicted_VGMalSMX

Fig. 3 A detail comparison of predicted values of VSMX, VL2 and VGM against actual measurements, for
a z-blocked implementation of stencil 7PT-1 with computation size 2563

L2 cache capacity miss has a very small impact on the accuracy of VGM predictions.
However, when chunk_z increases from 32, the actual amount of data loaded from
GPU’s global memory also increases. This is due to the increased capacity miss of L2
cache. It is therefore very important to use a nonzero ε value associated with the largest
chunk_z value of 256. Otherwise, omitting ε can reduce the prediction accuracy of
VGM by as much as 30 %. This applies to all the four stencils.

Figure 5 shows a comparison between the actual time usages and predictions. The
red curves arise from Formula (2). It can be seen that, when chunk_z is smaller than
16, the prediction accuracy achieves up to 95 %. However, when chunk_z becomes
larger, although the accuracy of VGM predictions is still very high (see Fig. 4), the
predicted time usages (red curves) have a noticeable gap to the actual time usages
(blue curves). We believe that, for very large values of chunk_z, the number of thread
blocks may be so small that will result in an imbalance in scheduling. In addition, a
low occupancy rate will also impact the execution time. Therefore, we can adjust the
predicted time usage by adopting an imbalance coefficient that is related to the number
of groups and the occupancy efficiency:

T imeAdjusted = T imePredicted ×
1 + 1

#groups
occupancy efficiency

, (18)

123



An analytical GPU performance model for 3D stencil computations

0
100
200
300
400
500
600

1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64

4 8 16 2 4 8 1 2 4 1 2

32 64 128 256

M
B

Actual Predicted Predicted without capacity miss

(a) 7PT-1 with array size 2563

Bx

By

chunk_z

0
100
200
300
400
500
600
700
800

1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64

4 8 16 2 4 8 1 2 4 1 2

32 64 128 256

M
B

Actual Predicted Predicted without capacity miss

(b) 7PT-2 with array size 2563

Bx

By

chunk_z

0
200
400
600
800

1000
1200

1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64

4 8 16 2 4 8 1 2 4 1 2

32 64 128 256

M
B

Actual Predicted Predicted without capacity miss

(c) 7PT-3 with array size 2563

Bx

By

chunk_z

0

200

400

600

800

1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64

4 8 16 2 4 8 1 2 4 1 2

32 64 128 256

M
B

Actual Predicted Predicted without capacity miss

(d) 19PT with array size 2563

Bx

By

chunk_z

Fig. 4 Comparing actual measurements of VGM against predictions that consider or ignore L2 cache
capacity miss (color figure online)

where occupancy efficiency is the ratio between the current occupancy rate and the
maximal occupancy. Formula (18) means that when the last group is executed, the
hardware efficiency is lower than when other groups are executed, because of too few

123



H. Su et al.

0
0.5

1
1.5

2
2.5

3
3.5

1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64

4 8 16 2 4 8 1 2 4 1 2

32 64 128 256

m
s

Actual_Time Predicted_Time Adjusted_Time Lower_Boundary_Time

(a) 7PT-1 with array size 2563

Bx

By

chunk_z

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64

4 8 16 2 4 8 1 2 4 1 2

32 64 128 256

m
s

Actual_Time Predicted_Time Adjusted_Time Lower_Boundary_Time

(b) 7PT-2 with array size 2563

Bx

By

chunk_z

0
1
2
3
4
5
6
7
8

1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64

4 8 16 2 4 8 1 2 4 1 2

32 64 128 256

m
s

Actual_Time Predicted_Time Adjusted_Time Lower_Boundary_Time

(c) 7PT-3 with array size 2563

Bx

By

chunk_z

0

1

2

3

4

5

6

1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64 1 8 64

4 8 16 2 4 8 1 2 4 1 2

32 64 128 256

m
s

Actual_Time Predicted_Time Adjusted_Time Lower_Boundary_Time

(d) 19PT with array size 2563

Bx

By

chunk_z

Fig. 5 Comparing the actual time usages with predicted time usages for the four z-blocked implementations.
Predictions labeled as “Adjusted” are produced by Formula (18) (color figure online)

123



An analytical GPU performance model for 3D stencil computations

thread blocks in the last group. For instance, when the thread block size is 128, the
19PT stencil achieves its maximal occupancy of 0.875. When the thread block size is
512, the actual occupancy rate is reduced to 0.75. The occupancy efficiency is thus
0.75
0.875 = 85.7 %. The green curves in Fig. 5 denote the adjusted time usage predictions
following Formula (18).

5 Related work

To investigate the performance of stencil computations, earlier work focused on using
various optimizations to manually improve the data locality and parallelism on multi-
core and many-core processors [3,6,10]. We examined in [23,24] the performance of
OpenCL-implemented stencil computations on NVIDIA’s GPU and compared them
with the corresponding results with the CUDA programming model. The results
showed that the performance of stencil computation on GPU is mainly determined
by the data transfer. Based on these observations, we have proposed the analytical
model in this paper.

To relieve the programming burden, automated code generation and tuning methods
are widely used to achieve high performance of stencil computations on GPU [7,11].
Mint [25] provided an OpenMP-like method to generate CUDA code of 3D stencil
computations. However, the programmer always faced the problem of choosing the
best thread block configuration. Zhang and Mueller [27] presented an auto-generator
for 3D stencil computation on GPU clusters. Although an auto-tuning method was
introduced, they restricted the value of chunk_z to be the size of array, which may not
find the optimal configuration.

There also exist some works that attempt to understand the performance of stencil
computations through modeling or quantitative analysis. Rahman et al. [19] proposed
a regression analysis model to study the performance of stencil computations on mul-
ticore CPUs by using hardware counters to monitor the efficiency of architectural
components. This approach requires the programmer to conduct heavy experiments
to obtain the statistical metrics. Datta et al. [4] reviewed the cache reuse optimizations
of stencil computations on modern microprocessors. They also studied the impact of
different blocking sizes on the performance, especially focused on the cache miss ratio
of modern processors. Kamil et al. [9] also proposed a performance model to study
the performance of stencil computations on modern processors. Very recently, de la
Cruz and Araya-Polo [5] studied the performance of stencil computation on modern
HPC architectures. They focused on quantifying the cache misses on multicore or
many-core architectures. As published, their prediction error for most relevant cases
is 5–15 %. Stengel et al. quantified the performance bottlenecks of stencil computa-
tions based on the execution-cache-memory model [22]. According to the analysis,
they explained the effect of typical optimization approaches. However, their focus
has mainly been on the modern multicore processors, for which the hardware and the
programming model are quite different from the modern GPU.

Meng and Skadron [12] studied the performance of iterative stencil loops on GPUs
with ghost optimizations. Their method focuses on the ghost zone optimization and
estimates the overhead of instructions, but not the data throughput. The prediction

123



H. Su et al.

error for 3D stencils is 28–30 %. Meanwhile, the size of the array used in their tests
is 1003, allowing most of the elements to be kept in cache during kernel execution.

Regarding other performance modeling works, Williams et al. [26] proposed the
Roofline model, which can be used to visualize compute-bounded or memory-bounded
multicore architectures. Hong and Kim [8] proposed an MWP-CWP analytical model
to estimate the cost of memory operations based on the compiled PTX codes. Based
on [8], authors of [21] developed an analysis framework to predict performance poten-
tial and provide programmer-interpretable metrics by following the work-depth graph
formalism. Based on program dependence graph, Baghsorkhi et al. [1] presented a
performance model to assist programming and tuning GPGPU applications. Nugteren
et al. proposed a detailed GPU cache model based on reuse distance theory [15]. They
extended the reuse distance model to GPU by combining the GPU parallel hierar-
chies, such as threads, warps and thread blocks, which is similar with the execution
granularity of the three memory hierarchies used in our paper.

6 Conclusion

This paper has proposed an analytical model to study the GPU performance of low-
order 3D stencil computations. Our focus has been on quantifying the volumes of
data traffic at three stages: (1) between registers and the on-SMX storage, (2) between
the on-SMX storage and the L2 cache, (3) between the L2 cache and GPU’s device
memory. The corresponding granularities are a CUDA thread, a thread block, and
a group of simultaneously active thread blocks. The quantified data-traffic volumes,
together with realistic memory bandwidths, can then be used to predict the execution
time usage. Experimental results have shown good accuracy of the three quantified
data-traffic volumes, with a satisfactory accuracy of time usage predictions as the
result.

Acknowledgments The authors gratefully acknowledge the support from the National Natural Science
Foundation of China under NSFC Nos. 61033008, 61103080 and 61272145, SRFDP Nos. 20104307110002
and 20124307130004, Innovation in Graduate School of NUDT Nos. B100603, B120605, the FRINATEK
program of the Research Council of Norway under No. 214113/F20.

References

1. Baghsorkhi SS, Delahaye M, Patel SJ, Gropp WD, Hwu WMW (2010) An adaptive performance
modeling tool for GPU architectures. In: Proceedings of PPoPP’10. ACM, New York, pp 105–114.
doi:10.1145/1693453.1693470

2. Bakhoda A, Yuan GL, Fung WW, Wong H, Aamodt TM (2009) Analyzing cuda workloads using a
detailed GPU simulator. In: IEEE international symposium on performance analysis of systems and
software (ISPASS’09). IEEE, pp 163–174

3. Datta K, Murphy M, Volkov V, Williams S, Carter J, Oliker L, Patterson D, Shalf J, Yelick K (2008)
Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures. In: Pro-
ceedings of SC’08. IEEE Press, Piscataway, pp 4:1–4:12. doi:10.1109/SC.2008.5222004

4. Datta K, Kamil S, Williams S, Oliker L, Shalf J, Yelick K (2009) Optimization and performance
modeling of stencil computations on modern microprocessors. SIAM Rev 51(1):129–159

5. de la Cruz R, Araya-Polo M (in press) Modeling stencil computations on modern HPC architectures

123

http://dx.doi.org/10.1145/1693453.1693470
http://dx.doi.org/10.1109/SC.2008.5222004


An analytical GPU performance model for 3D stencil computations

6. De La Cruz R, Araya-Polo M (2014) Algorithm 942: semi-stencil. ACM Trans Math Softw (TOMS)
40(3):23

7. Holewinski J, Pouchet LN, Sadayappan P (2012) High-performance code generation for stencil com-
putations on GPU architectures. In: Proceedings of ICS’12. ACM, New York, pp 311–320. doi:10.
1145/2304576.2304619

8. Hong S, Kim H (2009) An analytical model for a GPU architecture with memory-level and thread-
level parallelism awareness. In: Proceedings of ISCA’09. ACM, New York, pp 152–163. doi:10.1145/
1555754.1555775

9. Kamil S, Husbands P, Oliker L, Shalf J, Yelick K (2005) Impact of modern memory subsystems on
cache optimizations for stencil computations. In: Proceedings of MSP’05. ACM, New York, pp 36–43.
doi:10.1145/1111583.1111589

10. Kamil S, Datta K, Williams S, Oliker L, Shalf J, Yelick K (2006) Implicit and explicit optimizations for
stencil computations. In: Proceedings of MSPC’06. ACM, New York, pp 51–60. doi:10.1145/1178597.
1178605

11. Kamil S, Chan C, Oliker L, Shalf J, Williams S (2010) An auto-tuning framework for parallel multicore
stencil computations. In: Proceedings of IPDPS’10, pp 1–12. doi:10.1109/IPDPS.2010.5470421

12. Meng J, Skadron K (2009) Performance modeling and automatic ghost zone optimization for iterative
stencil loops on GPUs. In: Proceedings of ICS’09. ACM, New York, pp 256–265. doi:10.1145/1542275.
1542313

13. Micikevicius P (2009) 3D finite difference computation on GPUs using CUDA. In: GPGPU-2. ACM,
New York, pp 79–84. doi:10.1145/1513895.1513905

14. Nickolls J, Dally W (2010) The GPU computing era. Micro IEEE 30(2):56–69. doi:10.1109/MM.
2010.41

15. Nugteren C, van den Braak GJ, Corporaal H, Bal H (2014) A detailed GPU cache model based on reuse
distance theory. In: IEEE 20th international symposium on high performance computer architecture
(HPCA). IEEE, pp 37–48

16. NVIDIA T (2013) K20-k20x GPU accelerators benchmarks. ApplicationPerformance Technical Brief,
Nvidia. http://www.nvidia.com/docs/IO/122874/K20-and-K20X-application-performance-technical-
brief.pdf

17. NVIDIA C (2012a) CUDA API reference manual
18. Profiler user’s guide.http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
19. Rahman SMF, Yi Q, Qasem A (2011) Understanding stencil code performance on multicore architec-

tures. In: Proceedings of the 8th ACM international conference on computing frontiers. ACM, New
York p 30

20. Schäfer A, Fey D (2011) High performance stencil code algorithms for GPGPUs. Procedia Comput
Sci 4:2027–2036

21. Sim J, Dasgupta A, Kim H, Vuduc R (2012) A performance analysis framework for identifying potential
benefits in GPGPU applications. In: Proceedings of PPoPP’12. ACM, New York, pp 11–22. doi:10.
1145/2145816.2145819

22. Stengel H, Treibig J, Hager G, Wellein G (2014) Quantifying performance bottlenecks of stencil
computations using the execution-cache-memory model. arXiv:1410.5010

23. Su H, Wu N, Wen M, Zhang C, Cai X (2013a) On the GPU–CPU performance portability of OpenCL
for 3D stencil computations. In: International conference on parallel and distributed systems (ICPADS).
IEEE, pp 78–85

24. Su H, Wu N, Wen M, Zhang C, Cai X (2013b) On the GPU performance of 3D stencil computations
implemented in OpenCL. In: Supercomputing. Springer, New York, pp 125–135

25. Unat D, Cai X, Baden SB (2011) Mint: realizing CUDA performance in 3D stencil methods with
annotated C. In: Proceedings of ICS’11. ACM, New York, pp 214–224. doi:10.1145/1995896.1995932

26. Williams S, Waterman A, Patterson D (2009) Roofline: an insightful visual performance model for
multicore architectures. Commun ACM 52(4):65–76. doi:10.1145/1498765.1498785

27. Zhang Y, Mueller F (2012) Auto-generation and auto-tuning of 3D stencil codes on GPU clusters. In:
Proceedings of CGO’12. ACM, New York, pp 155–164. doi:10.1145/2259016.2259037

123

http://dx.doi.org/10.1145/2304576.2304619
http://dx.doi.org/10.1145/2304576.2304619
http://dx.doi.org/10.1145/1555754.1555775
http://dx.doi.org/10.1145/1555754.1555775
http://dx.doi.org/10.1145/1111583.1111589
http://dx.doi.org/10.1145/1178597.1178605
http://dx.doi.org/10.1145/1178597.1178605
http://dx.doi.org/10.1109/IPDPS.2010.5470421
http://dx.doi.org/10.1145/1542275.1542313
http://dx.doi.org/10.1145/1542275.1542313
http://dx.doi.org/10.1145/1513895.1513905
http://dx.doi.org/10.1109/MM.2010.41
http://dx.doi.org/10.1109/MM.2010.41
http://www.nvidia.com/docs/IO/122874/K20-and-K20X-application-performance-technical-brief.pdf
http://www.nvidia.com/docs/IO/122874/K20-and-K20X-application-performance-technical-brief.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
http://dx.doi.org/10.1145/2145816.2145819
http://dx.doi.org/10.1145/2145816.2145819
http://arxiv.org/abs/1410.5010
http://dx.doi.org/10.1145/1995896.1995932
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1145/2259016.2259037

	An analytical GPU performance model for 3D stencil computations from the angle of data traffic
	Abstract
	1 Introduction
	2 GPU architecture and CUDA implementation of stencil computations
	2.1 NVIDIA's Kepler architecture
	2.2 Baseline CUDA implementation of stencil computations

	3 Analytical modeling
	3.1 Between on-SMX storage and registers
	3.2 Between L2 cache and on-SMX storage
	3.3 Between global memory and L2 cache
	3.4 An illustrating example
	3.5 Extensions
	3.6 Remarks

	4 Validation
	4.1 Experimental setup
	4.2 Validation using baseline implementations
	4.3 Validation using z-blocked implementations

	5 Related work
	6 Conclusion
	Acknowledgments
	References


