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Adjoint Multi-Start Based Estimation of Cardiac
Hyperelastic Material Parameters using Shear Data
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Abstract Cardiac muscle tissue during relaxation is commonly modelled as a
hyperelastic material with strongly nonlinear and anisotropic stress response.
Adapting the behavior of such a model to experiment or patient data gives rise
to a parameter estimation problem which involves a significant number of pa-
rameters. Gradient-based optimization algorithms provide a way to solve such
nonlinear parameter estimation problems with relatively few iterations, but
require the gradient of the objective functional with respect to the model pa-
rameters. This gradient has traditionally been obtained using finite differences,
the calculation of which scales linearly with the number of model parameters,
and introduces a differencing error. By using an automatically derived adjoint
equation, we are able to calculate this gradient more efficiently, and with min-
imal implementation effort. We test this adjoint framework on a least squares
fitting problem involving data from simple shear tests on cardiac tissue sam-
ples. A second challenge which arises in gradient-based optimization is the
dependency of the algorithm on a suitable initial guess. We show how a multi-
start procedure can alleviate this dependency. Finally, we provide estimates for
the material parameters of the Holzapfel and Ogden strain energy law using
finite element models together with experimental shear data.
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1 Introduction

The personalization of computational models in cardiology is a key step to-
wards making models useful in the clinic. A computational model, once prop-
erly calibrated, has the potential to forecast cardiac function and disease,
and can aid in planning treatments and therapies. To describe the mechani-
cal function of the heart, the passive elasticity of the muscle tissue needs to
be represented. Personalizing the effects of this elasticity in a computational
model is typically accomplished by tuning a set of material parameters so that
the output of the model fits observed data. Gradient-based optimization algo-
rithms have successfully been used in the past to automatically perform the
parameter tuning at an organ scale [2,28]. In these studies, the gradient of the
objective functional is approximated using one-sided finite differences.

Compared to using a global optimization method, local gradient-based
methods have the advantage of using relatively few optimization iterations.
This is an important consideration when optimizing organ scale finite element
models, for which running a single forward model can take hours or days.
On the other hand, a disadvantage of using local optimization methods is the
fact that they can converge to local, globally suboptimal, minima. One way
to combine the speed of a local optimization with the robustness of a global
optimization is to use the multi-start method. In this method, many local op-
timizations are run starting from various points in parameter space and the
best fitting solution of the group is taken to be the global optimum.

Another popular approach to parameter fitting is the reduced order un-
scented Kalman filter. This approach was successfully used to fit a transversely
isotropic passive mechanics model to synthetic data [30], to partially calibrate a
multi-physics model [21], and to estimate regional contractility parameters [6].
Note however that the use of both unscented Kalman filtering and finite dif-
ferences carries a computational cost that increases with the number of model
parameters.

Assuming there are k parameters to be estimated, an unscented Kalman
filter with a minimal sigma-point configuration requires k + 1 model evalua-
tions at a single time level for each assimilated data point. An evaluation of a
finite difference derivative on the other hand requires k + 1 runs of the model
throughout the full span of model configurations considered.

In contrast to these two techniques, the adjoint approach computes the
objective functional gradient via the solution to an adjoint equation, which
involves only a single solve of a linearized system for any number of model
parameters. Thus, for models involving many parameters, either due to model
complexity or spatiotemporal parameter variation, the adjoint approach offers
a computationally attractive approach for parameter estimation.
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There are some previous results involving adjoint equations and cardiac
elasticity. Sundar et al. (2009) developed a framework for the estimation of wall
motion based on cine-MRI images and adjoint inversion [25], and Delingette
et al. (2012) used an adjoint equation to estimate contractility parameters [8].
However, both of these studies involve linear and isotropic elasticity mod-
els, which represent a significant simplification of the orthotropic and highly
nonlinear behavior reported in the contemporary cardiac mechanics litera-
ture [7, 9, 16].

One reason why it is difficult to use an adjoint equation with modern
nonlinear anisotropic models is the complexity required in deriving and imple-
menting code for the solution of the adjoint problem. In order to resolve this
issue, we make use of an automatic framework for generating adjoint code [10].
Here, we use this adjoint framework to estimate the material parameters of an
invariant-based orthotropic myocardial strain energy law (the Holzapfel-Ogden
model) [16]. This law is embedded here in an incompressible finite element
framework, and we use the raw data from a simple shearing experiment [9]
as a target for optimization. These data have previously been used to esti-
mate material parameters for a variety of other strain energy functions using
a finite element framework, but with a gradient obtained using finite differ-
ences [23,24]. The material parameters of the particular strain energy density
that we are using have also been previously estimated using digitized data
based on Figure 6 of [9], and a homogeneous deformation model [13, 16, 27].
Our study is however the first to use the adjoint approach for the estima-
tion of cardiac hyperelasticity parameters and the first to provide optimized
material parameters for the incompressible Holzapfel-Ogden model for non-
homogeneous deformations.

The rest of this paper is organized as follows. In Section 2 we describe
the variational formulation of the elasticity model, the optimization problem
for identifying the material parameters, and how the adjoint gradient formula
can be used to calculate a functional gradient. In Section 3 we describe the
verification of the forward and inverse solvers, present timings to show the ef-
ficiency of the adjoint method, and show the results of parameter estimations.
Finally, we test a multi-start optimization method in order to reduce the de-
pendence of the gradient-based algorithm on the choice of initial parameter
set. We conclude by discussing our findings in Section 4, and drawing some
conclusions in Section 5.

2 Mathematical models and methods

We shall use the notion of the directional derivative frequently throughout.
For a functional f : Y → R for some vector space Y , we define the directional
derivative of f with respect to the argument named y in the direction δy:

Dyf(y)[δy] ≡ ∂

∂ε
f(y + ε δy)

∣∣∣
ε=0

,

with shortcut notation Dδyf(y) ≡ Dyf(y)[δy].
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2.1 Hyperelasticity model

Let Ω ⊂ R3 be an open and bounded domain with coordinates X and bound-
ary ∂Ω, occupied by an incompressible hyperelastic body. We consider the
quasi-static regime of a body undergoing a large deformation x = x(X) and
are interested in finding the displacement u = u(X) = x − X and the hy-
drostatic pressure p = p(X) that minimize the incompressible strain energy
Π = Π(u, p,m):

Π(u, p,m) =

∫
Ω

ψ(C,m) + p(J − 1) dx (1)

over the space of admissible displacements and pressures satisfying any given
Dirichlet boundary conditions. In (1), J = det F, where F = ∇x = ∇u + I

denotes the deformation gradient, I is the identity tensor in R3, C = J−
2
3 FTF

denotes a volume-preserving right Cauchy-Green strain tensor, ψ denotes an
isochoric strain energy density, and m is a set of material parameters.

The incompressible Holzapfel and Ogden hyperelasticity model [16] de-
scribes large deformations and stresses in cardiac tissue via the following en-
ergy density ψ:

ψ(C,m) =
a

2b

(
exp

[
b(I1(C)− 3)

]
− 1
)

+
∑
i=f,s

h(I4i(C))ai
2bi

(
exp

[
bi(I4i(C)− 1)2

]
− 1
)

+
afs
2bfs

(
exp

[
bfsI

2
8fs(C)

]
− 1
)
.

(2)

Here f, s denote fiber and sheet directions, respectively; h(x) is a Heaviside
function with a jump at x = 1, and the material parameters are

m = (a, b, af , bf , as, bs, afs, bfs). (3)

Moreover, I1, I4s, I4f , I
2
8fs are rotation invariant functions given by

I1(C) = tr C

I4i(C) = ei·Cei i = f, s

I8fs(C) = es·Cef

where tr denotes the tensor trace and ef , es denote unit vectors pointing in
the local myocardial fiber and sheet directions [16]. The strain energy density
ψ is rotation-invariant, and polyconvex if m > 0 [16].

The Euler-Lagrange equations for the minimizing displacement u and pres-
sure p of (1) read: for given m, find w = (u, p) such that

R(w,m; δw) ≡ Dδu,δpΠ(u, p) = 0, (4)
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for all admissible virtual variations δw = (δu, δp). Inserting the total potential
energy from (1) and taking the directional derivative, we obtain

Dδu,δpΠ(u, p,m) =

∫
Ω

((
JF−T +

∂ψ(C,m)

∂F

)
: ∇ δu + (J − 1)δp

)
dx.

2.2 Parameter estimation as a PDE-constrained optimization problem

In the general case, the passive material parameters m entering the consti-
tutive relationship (2) are not known. In order to estimate these parameters
from data, we propose to use a numerical approximation in combination with
a gradient-based optimization algorithm in which the gradients are computed
via an adjoint model. The optimization algorithm seeks to minimize the mis-
fit between model output and observations. Denoting the misfit functional by
I = I(w(m),m), the optimization problem reads:

min
m

I(w(m),m) subject to R(w,m; δw) = 0 ∀δw ∈W, (5)

together with suitable Dirichlet boundary conditions on w. We also require
that m > 0 to ensure the functional (1) is polyconvex [16]. For notational con-
venience we will sometimes use the reduced formulation of the misfit functional
and its gradient with respect to the material parameters m. In particular, we
introduce the reduced functional Î and its gradient defined via:

Î(m) ≡ I(w(m),m),

∇Î(m) ≡ D

Dm
I(w(m),m).

(6)

In our numerical experiments we use limited memory BFGS (Broyden, Fletcher,
Goldfarb, and Shanno) with bound constrains [5], as implemented in [31] and
wrapped in the package SciPy [18] in order to solve (5).

2.3 Multi-start Optimization

A common challenge with gradient-based algorithms is that the solution ob-
tained depends on the choice of initialization point for the algorithm. More-
over, the optimized solution may be a local minimum only and not necessarily
a global minimum. One way to attack these issues is to run many optimiza-
tions from randomly chosen initial parameter points, and to chose the resulting
optimized material parameter set that gives the best fit. This method is of-
ten referred to as multi-start optimization [4] and is an example of combining
global and local optimization.

Due to the presence of exponential functions in the strain energy (2), it is
possible for calculated stresses to become very large, which may result in con-
vergence issues for the numerical solution of the Euler-Lagrange equation (4).
This can easily occur if several material parameters have large values. In order
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to minimize this problem we have designed a procedure to generate random ini-
tial guesses which limits the number of large material parameter values while
still allowing for a large range of initial possible values for each parameter.
The procedure works as follows: first set a maximum parameter value Pmax.
Then choose n (with n = 8 in our case) points from a uniform distribution
defined over the interval [0, Pmax]. The parameter values are then set to be
the distances between successive randomly drawn points.

2.4 Computing the functional gradient via the adjoint solution

Gradient-based optimization algorithms in general, and the BFGS algorithm
in particular, rely on the total derivative of the objective functional (6). By
introducing an adjoint state variable, this derivative may be computed effi-
ciently. We summarize this result below. Our presentation is based on [15],
and is adapted here to the solid mechanics setting.

We define three abstract spaces W , M , and Φ, where W is the space of all
possible solutions to the variational equation (4) which also satisfy any given
Dirichlet boundary conditions, M is the material parameter vector space, and
Φ is the space of virtual variations. The Lagrangian L : W ×M × Φ → R is
defined as:

L(w,m, φ) = I(w,m)−R(w,m;φ). (7)

For all m ∈M , w ∈W solving the state equation (4), we have

D

Dm
R(w(m),m;φ) = 0,

such that the total derivatives of I and L coincide,

D

Dm
I(w(m),m) =

D

Dm
L(w(m),m, φ). (8)

If we (can) choose φ ∈ Φ such that

DwL(w,m, φ)[δw] = 0 (9)

for all δw ∈ W , which in particular includes δw = Dδmw(m), the total
derivative of L with respect to m in the direction δm simplifies as follows
using the chain rule:

D

Dm
L(w(m),m, φ)[δm] = DwL(w,m, φ)[Dδmw(m)] +DδmL(w,m, φ)

= DδmL(w,m, φ)

(10)

Then, for any infinitesimal variation in the material parameters δm, com-
bining (8), (10), and (7) yields an efficient evaluation formula, not requiring
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derivatives of the state variable w with respect to the material parameters m,
for the total derivative of I:

D

Dm
I(w(m),m) = DδmI(w,m)−DδmR(w,m, φ). (11)

We still need to compute φ. By defining the form Rw and its adjoint R∗w,

Rw(w,m; δw, φ) ≡ DδwR(w,m;φ),

R∗w(w,m;φ, δw) ≡ Rw(w,m; δw, φ),

we can rewrite (9) as

DwL(w,m, φ)[δw] = DwI(w,m)[δw]−R∗w(w,m;φ, δw) = 0,

and thus recognize the adjoint equation: given m, w, find φ ∈ Φ such that

R∗w(w,m;φ, δw) = DwI(w,m)[δw] (12)

for all δw ∈W .
In summary, the adjoint-based gradient evaluation formula is: given m, first

compute w by solving the state equation (4), next compute φ by solving (12),
and finally evaluate (11).

2.5 Description of shearing experiments

We aim to optimize the material parameters of the Holzapfel-Ogden model (2)
with respect to target experimental data, in particular data resulting from an
earlier set of simple shearing experiments [9]. In these experiments, 6 pig hearts
were extracted. From each heart, three adjacent 3mm × 3mm × 3mm cubic
blocks were cut in such a way that the sides of the cubes were aligned with
the local myocardial fiber and sheet directions. A device held two opposing
faces of each cube between two plates using an adhesive. The top plate was
displaced in order to put each specimen in simple shear. For each specimen
6 different modes of shear were tested. These modes are described using the
F, S,N coordinate system, which refer to the myocardial fiber, sheet and sheet
normal directions, respectively. Each mode is denoted by two letters, where
the first defines the normal of the face of the cube that is being displaced,
and the second refers to the direction of displacement. These 6 modes are
FS, FN, SF, SN,NF,NS.

In order to remove the effects of strain softening, preliminary displacements
were applied to the tissue samples until no further softening was observed.
After that, displacements were once again applied, and the forces in the shear
direction were measured on the top plate. These measurements were taken for
circa 200− 250 various states of shear per mode.

In Figure 1 we display the stress-strain relations that were obtained during
the shearing experiments [9]. As we only consider the elastic, and not the
viscous, material response only the loading curves are displayed. Furthermore
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we observe that the experimentally obtained curves contain a high degree of
symmetry through the line y = −x and we have therefore chosen to use only
the data for positive shear displacements. We can expect the same symmetry in
the stresses computed by finite element models which use the strain energy (2)
since changing the sign of the displacement map will change the sign of the
resulting stresses but preserve their magnitude.

In our numerical experiments we use two data sets with reference to the
numbering of [9]. The first is Data Set 6, and the second data is Data Set 2
with the SF and SN curves swapped. This swap and the choice of data sets
are discussed further in Section 4. For clarity, we shall refer to Data Set 6 as
”transversely isotropic” and Data Set 2 with the swap as ”orthotropic”, as the
respective stress-strain curves are typical of materials of these types. For each
mode, the prescribed shear displacement is modelled as a Dirichlet boundary
condition for the displacement on the respective top and bottom faces in the
respective direction.

2.6 Choice of objective functional

In order to estimate the passive material parameters of the Holzapfel-Ogden
model, we make use of a least squares objective functional. This functional
defines a distance from the model output to the data points of the shearing
experiment, and we seek the material parameter set m that minimizes this.
Before introducing our objective functional, we define the set of directions
D = {F, S,N}, referring to fiber, sheet and sheet normal directions. We also
use the notation (i, j) to refer to a mode, with the index i referring to the
normal of the face that is shifted, and j to the direction in which the shift
occurs.

Our fit function is similar to that used in [22], and is given by

Î(m)2 =
∑
i∈D

∑
j∈D

G∑
k=1

ωk

(
ti,jmodel(xk,m)− ti,jexper(xk)

)2
(13)

In (13), ti,jexper is the force measured during the experiment, and ti,jmodel is the
force generated by the finite element model at each prescribed shear displace-
ment xk ∈ [0, Xi,j ], where Xi,j is the maximal prescribed displacement of the
mode (i, j) in the experiment. Each xk is chosen to be a Gauss point of a
G-point rule defined over [0, Xi,j ], and ωk is the value of the Gauss weight
related to xk. Explicitly, for mode (i, j) with top face ∂Ωi, t

i,j
model is given by

ti,jmodel(xk,m) =

∫
∂Ωi

∂ψ(u(xk),m)

∂Fi,j
dS,

where Fi,j = ei·Fej the shear component of the deformation gradient.

Evaluating the inner loop of Î requires solving (4) once for each given shear
displacement xj . The motion given by the calculated displacements is then
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Fig. 1 Stress-strain relations, numbered 1 through 6, obtained from simple shearing exper-
iments performed on 3mm × 3mm × 3mm cubes of myocardium extracted from 6 porcine
hearts. The modes are ordered from highest to lowest stiffness in each experiment. The data
originates from the study [9], but were not published in the subsequent article. In Experi-
ment 4 the data for one of the NS-NF curves was copied into the other before we received
it, so the two curves lie here on top of one another.

a quasi-static approximation of the motion undergone by the corresponding
tissue in the shearing experiment.

Following [22], we evaluate the least squares fit (13) at G (G = 9) Gauss
integration points, rather than for all 250 recorded points for each shear mode.
At each Gauss point we obtain the corresponding shear stress by linearly
interpolating between the two neighbouring stresses which were recorded in
the experiments of Dokos et al. [9].
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2.7 Finite element discretization of the hyperelasticity equations

We represent each tissue sample of the shearing experiments by a three-
dimensional cube Ω = [0, 3]3 (mm3). An N × N × N mesh of this cube was
constructed by uniformly dividing the mesh into N ×N ×N boxes and then
subdividing the boxes into tetrahedra. On these geometries, we solve (4) and
its adjoint, using a Galerkin finite element method with the Taylor-Hood finite
element pair [17]; e.g. a continuous piecewise quadratic vector field for the dis-
placement and a continuous piecewise linear scalar field for the pressure. For
the solution of the nonlinear system of equations, we use a Newton trust region
method. The absolute tolerance of the nonlinear solver was set to 10−10 in the
numerical experiments below. Linear systems are solved by LU factorization.

Additionally, we model the case of a homogeneous deformation which cor-
responds to a linear displacement with a constant shear angle throughout the
domain. Such a model can be represented by discretizing the cubes with a
single layer of linear finite elements: the resulting displacement is completely
determined by the prescribed boundary conditions. Figure 2 illustrates the
two kinds of deformations on cube meshes.

The discrete variational formulation of the Euler-Lagrange equations is im-
plemented using the FEniCS Project software [1, 20] and dolfin-adjoint [10].
From a FEniCS forward model, dolfin-adjoint automatically generates the
symbolic adjoint system of equations and computes the functional gradient (11)
using the adjoint solution. The FEniCS framework automatically generates
and compiles efficient C++ code for the assembly of the relevant linear sys-
tems from the symbolic representations of both forward and adjoint equations,
and solves the nonlinear and linear systems using e.g. PETSc [3]. With this
setup, we observed that a typical solution of the Euler-Lagrange equation (4)
takes 6 Newton iterations.
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Fig. 2 Finite element representation of cubes of cardiac tissue undergoing simple shear in
the NS mode. The bottom of the cube is fixed and the top displacement is given. Left:
homogeneous deformation with a constant shear angle. Right: finite element solution on a
6 × 6 × 6 mesh. The plot shows the value of the NS-component of the right Cauchy Green
strain tensor C.

3 Numerical Results

3.1 Verification

Each of the finite element, adjoint, and optimization solvers have been carefully
verified, separately and combined, as follows. (i) The finite element solver was
verified by the method of manufactured solutions, resulting in the expected
second-order convergence for the displacement gradients [17]. (ii) We verified
the computation of stresses in the finite element model by prescribing a homo-
geneous deformation and comparing the resulting numerically integrated top
face shear stress values to analytically computed values. The analytic values
were based on the calculations found in [16, Section 5a] and the numerical
values were observed to match closely. (iii) We confirmed the correctness of
the adjoint gradients by using Taylor’s theorem: the expression

Î(m)− Î(m∗)−∇Î(m)(m−m∗) (14)

converged to 0 at a rate of 2 in (m − m∗), which can only be expected if
∇Î(m) is computed accurately.

3.2 Parameter estimation with synthetic data

Additionally, we verified the optimization solver by performing a synthetic
data test. Using a known set of material parameters, we generated integrated
stress values for all 6 shear modes used in the experiment [9] using the com-
putational model, and used these synthetic data as target for optimization.
As known material parameters, we used values 80% lower than the material
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Table 1 Synthetic data test results. The first row (Initial) contains the material parameter
values used to initialize the algorithm, while the second row (Target) contains the parameters
that were used to generate the synthetic stresses. The rows marked ’Homogeneous’ and
’Finite Element’ contain optimized parameter values coming from homogeneous deformation
and finite element models. These optimized values are matched perfectly by the optimized
homogeneous model and very closely by the finite element model.

a b af bf as bs afs bfs I
(kPa) (kPa) (kPa) (kPa) (mN)

Initial 0.059 8.023 18.472 16.026 2.481 11.120 0.216 11.436
Target (80%) 0.047 6.418 14.778 12.821 1.985 8.896 0.173 9.149
Homogeneous 0.047 6.418 14.778 12.821 1.985 8.896 0.173 9.149 4.611 ×10−8

Finite Element 0.047 6.406 14.778 12.821 1.983 8.938 0.173 9.155 0.00082

parameter values used as the initial guess for the optimization. We performed
this test using our two models for deformation. The first model assumed a ho-
mogeneous shear angle through the material and only numerically integrated
the top face stress. The second model was a finite element model with a 1×1×1
mesh. Since the displacement field is element-wise quadratic, this allows for
more flexibility in the deformation field.

The results of this synthetic data test are presented in Table 1 and show
that the optimization algorithm is able to recover the material parameters.

3.3 Parameter estimation with experimental stress data

In the following, we present the results of fitting the Holzapfel-Ogden strain
energy law (2) using the objective function (13) and a limited memory BFGS
optimizer with bound constraints. The BFGS algorithm makes use of the gra-
dient of the objective functional which we obtain using the adjoint gradient
formula (11).

As the numerical solution of the nonlinear Euler-Lagrange equation (4)
easily fails to converge when a material parameter becomes too small, we
set a lower bound of 1.0 × 10−2 on the components of m while optimizing
finite element models. This bound was not necessary for the homogeneous
deformation models as no Euler-Lagrange equation is solved. All optimizations
were carried out until the optimizer was unable to further reduce the objective
functional or an absolute tolerance of 1.0 × 10−6 in the objective functional
was reached.

3.3.1 Material parameter estimation using a priori knowledge

The material parameters of the Holzapfel-Ogden model have previously been
estimated using a homogeneous deformation model [16, Table 1, 2nd row].
We first used these values as the initial values for optimization of our homo-
geneous model targeting the transversely isotropic and orthotropic data sets.
The optimized results are listed in Table 2 with the label Homogeneous.
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a b af bf as bs afs bfs I It.
(kPa) (kPa) (kPa) (kPa) (mN)

Transversely Isotropic
Homogeneous 0.876 4.219 97.828 30.093 2.002 4.191 × 10−5 0.330 1.137 3.903 96
N = 1 0.060 16.941 30.484 29.556 2.110 0.264 0.036 0.884 5.553 90
N = 2 0.731 6.821 22.062 40.044 0.010 0.010 0.183 13.619 3.011 86
N = 4 0.775 6.955 21.640 39.866 0.010 0.010 0.218 13.654 2.857 12
N = 6 0.732 7.362 21.511 40.020 0.010 0.010 0.209 13.862 2.827 16
N = 8 0.736 7.363 21.507 40.019 0.010 0.010 0.201 13.862 2.833 5

Orthotropic
Homogeneous 0.775 5.929 138.283 7.065 13.61 8.222 × 10−10 1.037 2.304 7.057 178
N = 1 0.766 6.857 31.642 15.209 2.070 0.010 0.352 15.242 5.880 69
N = 2 1.041 6.553 29.371 15.982 1.741 0.010 0.118 23.294 4.563 59
N = 4 1.041 6.553 29.371 15.982 1.741 0.010 0.118 23.294 4.508 10

Table 2 Material parameters fitted to the orthotropic and transversely isotropic datasets
for the Homogeneous and N × N × N finite element models. I refers to the value of the
objective functional. The number of optimization iterations, each consisting of functional
and functional gradient evaluation(s), are given in the rightmost column.

We next turned to consider finite element models allowing for heteroge-
neous shear displacements. Beginning with a 1 × 1 × 1 cube and the optimal
material parameters from the homogeneous model as initial values, we com-
puted optimal values for the 1 × 1 × 1 case. This procedure was repeated for
N × N × N cubes with N = 2, 4, 6, 8, using the results of the previous op-
timization as the initial condition for the next case. The resulting parameter
values are presented in Table 2, and the corresponding optimal stress-strain
curves are shown in Figure 3.

We note that going from N = 6 to N = 8 using the transversely isotropic
data and going from N = 2 to N = 4 using the orthotropic data does not
change the first significant digit of any of the material parameters and therefore
consider our finite element models to be sufficiently refined at this resolution.
Indeed, for the orthotropic data, going from N = 2 to N = 4 does not change
the first three significant digits.

3.3.2 Material parameter estimation using multi-start optimization

In this section, we present the results of using the multi-start method to es-
timate the optimal material parameters, rather than relying on a good initial
guess. For the calculation of random initial guesses we set Pmax = 40, cf. Sec-
tion 2.3. This value is close to the largest material parameter found in Table 2.
Note that this choice gives a conservative set of initial parameters for the opti-
mization algorithm (low initial values) which in turn enhances the robustness
of the procedure. We also set 60 as an upper bound for each material parame-
ter value during the optimization. Without this upper bound we observed that
many optimizations crashed or converged to suboptimal local minima.
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Fig. 3 Comparison of optimized model stress-strain curves with experimental data. The
dots are interpolated experimental data at Gauss points, the solid lines show the output of
the finite element models. An N = 2 cube was used in the plot labeled ’Orthotropic’, while
an N = 6 cube was used in the plot labeled ’Transversely Isotropic’.
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Table 3 Results of fitting material parameters to the transversely isotropic and orthotropic
data sets using the multi-start method. The rows labeled ’Best Fit’ correspond to the op-
timizations with the lowest misfit value I, and the rows labeled ’Mean’ and ’SD’ give the
mean and standard deviation of parameters not counting badly fitted sets (Table 4). The
rows labeled ’N =’ are copied from Table 2 for easy reference.

a b af bf as bs afs bfs I
(kPa) (kPa) (kPa) (kPa) (mN)

Transversely Isotropic

N = 6 0.732 7.362 21.511 40.020 0.010 0.010 0.209 13.862 2.827
Best Fit 0.795 6.855 21.207 40.545 0.010 0.010 0.130 17.446 2.802
Mean 0.799 6.823 21.207 40.545 0.010 0.495 0.127 17.869 2.810
SD 0.027 0.214 0.038 0.091 0.000 1.103 0.023 2.758 0.034

Orthotropic

N = 2 1.041 6.553 29.371 15.982 1.741 0.010 0.118 23.294 4.563
Best Fit 1.041 6.553 29.371 15.982 1.741 0.010 0.118 23.296 4.563
Mean 1.046 6.536 29.321 16.023 1.736 0.010 0.119 23.274 4.569
SD 0.013 0.020 0.089 0.289 0.229 0.030 0.000 0.012 0.475

Table 4 Badly fitting sets from multi-start optimization. The fit values, I, are significantly
higher than those reported in Table 3.

a b af bf as bs afs bfs I
(kPa) (kPa) (kPa) (kPa) (mN)

Transversely Isotropic

0.010 1.282 29.254 11.417 0.010 0.010 1.330 7.365 17.955
1.068 0.010 37.315 9.722 0.104 0.010 3.322 1.902 13.094

Orthotropic

0.010 7.187 32.433 13.095 0.010 9.293 5.286 5.068 21.621

In each multi-start experiment, 30 random starting points were used. For
the orthotropic data set, all 30 optimizations converged. For the transversely
isotropic dataset, 27 optimizations converged. Those that did not converge
were unable to numerically solve (4) at the point in parameter space that the
optimizer was currently evaluating. The simulations were run with N = 6 for
the transversely isotropic case and N = 2 for the orthotropic case.

The results of the multi-start optimizations show that all but three opti-
mized parameter sets are very close to the previously obtained values. Table 3
shows the best fitting parameter sets, means, and standard deviations of the
optimizations that fit reasonably well. We note that the means and best fits
are very close to those obtained in Table 2, and that almost all the standard
deviations are very small compared to the means. The three poorly fitted pa-
rameter sets that we obtained as local minima are included in Table 4 for
completeness.



16 Gabriel Balaban et al.

Table 5 Holzapfel-Ogden law parameter estimates from this and previous studies. Note
that objective functional (I-) values are obtained using the orthotropic data used in this
study, and not the data used in the studies the parameter estimates originate form.

Source a b af bf as bs afs bfs I
(kPa) (kPa) (kPa) (kPa) (mN)

Holzapfel et al 2009 0.059 8.023 18.472 16.026 2.481 11.120 0.216 11.436 36.688
Goektepe et al 2011 0.496 7.209 15.193 20.417 3.283 11.176 0.662 9.466 30.208
Wang et al 2013 0.2362 0.810 20.037 14.154 3.7245 5.1645 0.4108 11.300 34.845
Current (Orthotropic Dataset) 1.041 6.553 29.371 15.982 1.741 0.01 0.118 23.294 4.563

3.3.3 Objective functional values for alternative material parameters

Several other studies [13, 16, 27] have used variants of the Dokos et al. 2002
shear data [9] to calibrate the Holzapfel and Ogden strain energy (2). These
studies used homogenized deformation models for the optimization. In Table 5
we list the computed objective functional value of parameter sets originating
from previous studies using the orthotropic dataset and finite element model
(N = 2). The results indicate that our parameter set fits these data better
than the previously computed ones.

3.4 Computational efficiency of the adjoint-based functional gradient

Adjoint solver efficiency may be measured by comparing the runtime of the
adjoint and forward solves. Here, we examine the overall gradient efficiency in
a similar manner. We consider the evaluation of the gradient of the objective
functional (13), though in a reduced case with only a single shear mode in-
cluded in the sum and a reduced forward solve consisting of a single nonlinear
solver iteration. In this case, the forward and adjoint models each consist of a
single linear solve in addition to a number of residual evaluations. For larger
linear system sizes, the runtime of a linear solve is expected to dominate the
runtime of assembly, and thus these forward and adjoint models are of roughly
the same computational expense.

For this reduced case, we evaluated the adjoint-based gradient for a range
of linear system sizes. For each system size, we calculated the gradient runtime
ratio; that is, the runtime used by the evaluation of the gradient divided by the
runtime of the forward solve. The resulting ratios are plotted in Figure 4. The
curve indicates that the gradient run-time ratio gets close to the theoretically
optimal value of 1 as we increase the system size.
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Fig. 4 Gradient efficiency: ratio of gradient evaluation runtime over single Newton iteration
runtime for increasing linear system sizes.

4 Discussion

4.1 Choice of shearing experiment datasets

Of the six shearing experiment datasets, cf. Figure 1, we have used two for
parameter estimation here. One of the reasons for this choice is an incompati-
bility of most of the datasets with assumptions made in the design of the strain
energy functional (2). In particular, the strain energy (2) dictates an ordering
of the shear mode stiffnesses in the case of a homogeneous shear displacement.
This can easily be seen by modifying (5.23) – (5.28) of [16] to fit the invariants
chosen in (2). Two of these orderings are

τFS ≥ τFN ≥ τNF
τSF ≥ τSN ≥ τNF

(15)

where τij denotes a shear force in the direction of the mode ij.
Out of the six datasets, only one is consistent with these orderings, namely

the 6th one, which was used here under the label transversely isotropic. In
this dataset the stress-strain relationship is typical of a transversely isotropic
material with a stiffer fiber direction. In several other cardiac mechanics sim-
ulation studies [11,12,19], the Holzapfel and Ogden energy functional (2) has
been simplified to model transversely isotropic behavior by removing the terms
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involving the invariants I4s, I8fs. For such a simplified model one could use
the parameter estimates for a, b, af , bf that we obtained from the Transversely
Isotropic dataset.

However, the Holzapfel and Ogden model was originally proposed to model
orthotropic behavior. This motivates also targeting a dataset displaying fully
orthotropic behavior. In particular, dataset 2 in Figure 1 is such and compares
well with Figure 6 of [9] and Figure 2 of [16]. By switching the SF and SN
curves of Dataset 2 we were able to reinterpret this data in a way that is
consistent with the interpretation in [16], and the shear stiffness orderings (15).

4.2 Comparison of optimal material parameter values

We have obtained two sets of material parameters: one corresponding to an
orthotropic case and one corresponding to a transversely isotropic case. We
observe that for both sets of material parameters, the bs parameter essentially
vanishes. For the Transversely Isotropic case, both as and bs essentially vanish,
which is in excellent agreement with the transversely isotropic stress-strain
pattern.

Comparing the Orthotropic material parameter values to the previously
published values in Table 5, we observe that the fit of our material parameters
is significantly better, as expected. By using a finite element model we have
been able to relax the homogeneous shearing angle assumption and more re-
alistically model the motion of the cubes in the shearing experiment. We note
that our material parameters differs from those previously published, and also
that there is a significant variability in the parameter values previously re-
ported.

4.3 Computing functional gradients in cardiac mechanics

Figure 4 demonstrates that the computational cost of the adjoint gradient
computation is comparable to that of a single iteration of the nonlinear so-
lution algorithm of (4) for larger system sizes. For smaller system sizes, the
cost of symbolic computation and the cost of residual and Jacobian assem-
bly contribute significantly yielding higher ratios – as expected. Wang et al.’s
2013 simulations of a human left ventricle in diastole use system sizes of ap-
proximately 100 000 degrees of freedom [27]. Given the trend in Figure 4, we
can expect that the adjoint method and solver implemented in this work will
continue to be efficient at this scale and beyond.

Comparatively, assuming the use of Newton’s method for the solution of
nonlinear systems, the evaluation of a finite difference gradient requires a lin-
ear system assembly and solve for each Newton iteration, and one nonlinear
solve is required per component of the gradient. Counting the 8 parameters
in the Holzapfel-Ogden model (2), and assuming a typical solution of the
Euler-Lagrange equation (4) takes 6 Newton iterations, we can expect the
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computational cost of finite difference gradient evaluation to be circa 48 times
greater than that of the adjoint method.

In the optimization results of Table 2, we observed iteration counts of up
to 178 for the optimization of 8 parameters using our gradient-based method.
This compares favorably with the circa 7000 iterations needed to estimate 9
parameters using a global method in [29, Figure 5].

4.4 Implications for organ-scale image-based parameter estimation

Although we have tested our adjoint-based multi-start optimization method
on the 2002 shear data of Dokos et al [9], we believe our methods will provide
the biggest advantage in the case of optimizing cardiac model parameters in
high spatial resolution at the organ scale to MRI or echocardiographic image
data. This would allow for the proper modelling of regional differences in tissue
stiffness, which is for example present in patients with post-infarct fibrosis.

In this paper we made the choice to use 30 multi-start points, and were
able to obtain good results. However in the organ-scale case with patient image
data it might not be clear how to choose between computational efficiency (less
multi-start points) and robustness (more multi-start points). Possible solutions
to this issue are the use of optimal stopping criteria [4] or more sophisticated
local-global searches [14,26].

5 Conclusion

In this work, we have presented a new application of efficient gradient-based
optimization methods in the context of estimating cardiac hyperelastic mate-
rial parameters from experimental data. In particular, we have demonstrated
how an adjoint solution can greatly speed up the evaluation of functional
gradients. These methods have produced two new sets of material parameter
values that yield simulated stress-strain curves that fit closely to orthotropic
and transversely isotropic shear data. For future parameter estimation studies
using a local search algorithm, multi-start or a similar method should be used
in order to avoid suboptimal minima.
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