
28.08.2019

1

What makes software
development projects

successful, and what makes
them fail?

(and how to find out)

Summer School, August 2019

Magne Jørgensen
SimulaMet & OsloMet

What do we get in return
from our huge investments

in digitalization?

28.08.2019

2

Is this (still) true?

“… 10% increase in ICT investment leads to a
0.6% (points) increase in growth”
(è around half of the current (very low)
increase in productivity is due to ICT-
investments!)
”… the growth impact of ICT has grown over time.”

28.08.2019

3

Many studies show positive effect
Research method quiz: Is there anything strange with Fig 6?

There is more to productivity
increase than productivity

increase

28.08.2019

4

So, productivity through
digitalization is important –
How well do we succeed

with it?

28.08.2019

5

Are we this bad?
(or are just the study bad?)

(page 13 of their 1994-report): “We then called and mailed a number of confidential
surveys to a random sample of top IT executives, asking them to share failure stories.”

The most frequently reported results
on software projects (from 1994,
repeated bi-yearly) found that:

• 31% of all projects are cancelled
before they complete

• Average cost overrun of 189%

Another frequently referred study:
The consequences of software failures (2017)

What would you ask/look for to find out how reliable this number is?

28.08.2019

6

What they actually calculated (and still calculate) has
nothing to do with ”losses” and makes no sense

In short, they:
1) Find news articles about bugs.
2) Find a number related to cost present

in the article (e.g., «how much the
affected software cost to implement»)

3) Add these numbers
Article below: ”Losses” are the
total development cost of F-35! (counted
twice, since two reported faults)

Around 10% of all digitalization projects are cancelled or
completed with little or no client benefits.

About 50% get into substantial problems with either client
benefits, technical quality, cost control, time control or
development productivity.
(below: a selection of Norwegian IT failures)

Clearly not all investments are successful

28.08.2019

7

A selection of results on
patterns underlying

digitalization success and
failures

28.08.2019

8

15

Leonard Koppett, Sporting News 1978

What is the probability that this connection is by random?

When making a decision or choice,
the world is no more the same (Dan Gilbert)

ted.com/talks/lang/eng/dan_gilbert_asks_why_are_we_happy.html

28.08.2019

9

“I see it when I believe it” vs “I believe it when I see it”

§Design:

§Data sets with randomly set performance data comparing
“traditional” and “agile” methods.

§Survey of each developer’s belief in agile methods

§Question: How much do you, based on the data set, agree in:
“Use of agile methods has caused a better performance when
looking at the combination of productivity and user satisfaction.”

§Result:

§Previous belief in agile determined
what they saw in the random data

Very satisfiedSatisfiedDissatisfied

9
8
7
6

5
4
3
2
1
0

Very satisfiedSatisfiedDissatisfied
Agile

User Satisfaction

Pr
od

uc
tiv

ity
 (

Fu
nc

tio
n

Po
in

ts
/W

or
k-

da
y) Traditional

Individual Value Plot of Productivity

Panel variable: Development Method

The ease of creating beliefs:
Are risk-willing or risk-averse developers better?

Study design: Research evidence + Self-generated argument.

Question: Based on your experience, do you think that risk-willing programmers are
better than risk-averse programmers?

1 (totally agree) – 5 (No difference) - 10 (totally disagree)
Neutral group: Average 5.0

Group
A:

Group
B:Initially

Average 3.3
Debriefing
Average 2: 3.5

2 weeks later
Average 3: 3.5

Initially
Average 5.4
Debriefing
Average 2: 5.0

2 weeks later
Average 3: 4.9

28.08.2019

10

Why don’t we know how to
avoid failures and be

successful with software
development?

There are
thousands of

reports, research
papers and

presentations on
how to succeed
with software
development

projects

28.08.2019

11

Example list of success factors
SUCCESS CRITERIA IMPORTANCE (POINTS)

1. User Involvement 19
2. Executive Management Support 16
3. Clear Requirements 15
4. Proper Planning 11
5. Realistic Expectations 10
6. Short Project Milestones 9
7. Competent Staff 8
8. Ownership 6
9. Clear Vision & Objectives 3
10. Hard-Working, Focused Staff 3
TOTAL 100

The list of success factors has not changed much since the 1960s!
More or less the same list is for example presented in:
Gotterer, M.H. Management of computer programmers. Proceedings of
the spring joint computer conference. 1969. ACM

Many methods claim success

28.08.2019

12

Cobb’s paradox?

We know why projects fail, we know how to prevent their
failure – so why do they still fail?

What is a proper response to Cobb’s paradox? Do
software professionals ignore the knowledge?

Cobb’s paradox is no paradox. We don’t know that
much about why something fails and how to succeed.

The simple truth is
that ...

§ The high complexity and
innovativeness of product, process
and people organization means
that we can hardly expect to
succeed all the time

§ Much of what happens is outside of
the control of the project

§ Connections are context
dependent and hard to identify and
understand

§ There is a network of connections
and we’re inherently poor at
identifying and understanding
indirect relationships

§ The relationships are probabilistic
and we’re inherently poor at
understand non-deterministic
relationships

... we’ll probably
never fully

understand and
control what it takes

to succeed

28.08.2019

13

A diversion into
probabilistic relationships

Just to illustrate how poor we are at identifying them
(and a bit just for the fun of it)

Representativeness
bias

(seeing patterns that
are not there)

Question: Assume five throws with a fair
coin. Which of the following sequences
is more likely to occur?
Alt. 1: Head-Head-Head-Head
Alt. 2: Head-Tail-Head-Tail

Answer: Same probability

Relevance: We tend to use to the
representative heuristic (Alt 2. is more
“representative” of sequence of coin
flipping) and think that non-
representative sequence (such as Alt. 1)
are surprising patterns.

28.08.2019

14

Failure of seeing
true patterns

Question: Assume a sequence of throws
with a fair coin. Which of the following two
sequences is more likely to occur FIRST?
Alt. 1: Head-Head
Alt. 2: Tail-Head
Example: Head-Tail-Tail-Head-Head….
à Tail-Head occurs before Head-Head

Answer: It is 75% likely to first observe
Tail-Head and only 25% likely to first
observe Head-Head

Relevance: Some probabilistic
connections are connected, hidden and
non-intuitive. Difficult to see them …

One more...
(mainly for fun, but

also to show how poor
our probabilistic

intuition is)

§ A country has regulated that no
family is allowed to have more than
one son, but as many daughters as
they want.

§ This means that allowed sequences
of child-births are:

§ Boy (stop, not allowed to have
more children)

§ Girl-Boy (stop)

§ Girl-Girl-Boy (stop)

§ etc.

§ Question: How does this law affect
the proportion of men and women in
the country?

§ Answer: Not effect at all. There will
still be about 50-50 men and women

28.08.2019

15

Back to software projects

What does it mean to succeed and to fail with software
development?

Software project success: What is it?

Success dimensions:
• Client benefits delivered
• Cost control
• Time control
• Development efficiency
• Software properties (technical quality)

28.08.2019

16

We need to be evidence-based to improve success:
Evidence-based software engineering (EBSE)

- Tore Dybå, Barbara Kitchenham and Magne Jørgensen, Evidence-based
Software Engineering for Practitioners, IEEE Software, Vol. 22, No. 1, Jan-Feb
2005.

§ The main steps of EBSE are as follows:

§ Convert a relevant problem or need for information into an
answerable question.

§ Search the literature and practice-based experience for the best
available evidence to answer the question.

§ Critically appraise the evidence for its validity, impact, and
applicability.

§ Integrate the appraised evidence with practical experience and the
client's values and circumstances to make decisions about practice.

§ Evaluate performance in comparison with previous performance and
seek ways to improve it.

What is valid evidence? A real-life example (1)

§ A software development department wanted to replace their “old-
fashioned” development tool with a more modern and hopefully more
efficient one.

§ They visited many possible vendors, participated at numerous
demonstrations, and contacted several “reference customers”. Finally,
they chose a development tool. The change cost about 10-20 million NOK
+ training and other indirect costs.

§ A couple of years after the change, the department measured the change
in development efficiency (not common – most software organizations
never study the effect of their choices).

§ Unfortunately, the development efficiency had not improved and the new
development tool was far from as good as expected.

§ This illustrated that even when applying much resources and time to
collect evidence, software professionals may fail in making good
decisions. What went wrong in this case?

28.08.2019

17

What went wrong? A real-life example (2)

§ The collection and evaluation of evidence had focused on “tool functionality”,
following the principle “the more functionality, the better”.

§ The demonstrations focused on strengths of the tools, not on weaknesses.
Although, the software professionals were aware of this, they probably failed to
compensate for what the demonstrations did not demonstrate. (We are not good
at identifying lacking information!)

§ The reference customers had themselves invested much money in the new tool.
As long as they do not plan to replace the tool, then they would however not be
reference customers anymore, they will tend to defend their decisions.
(Avoidance of cognitive dissonance.)

§ Although the amount of information (evidence) was high, they organization
lacked the most essential information (independent evaluations of the tools in
context similar to their own) and processes for critical evaluation of the
information.

§ In addition, they lacked the awareness of how they were impacted by the tool
vendors persuasion techniques.

§ Guidance in the principles of evidence-based software engineering would, we
think, improved the decision.

What could have been done better?

§ Formulate the problems and goals more precisely
§ Collect evidence (research, experience from neutral sources, …).

§ At that time, there were no research studies, but possibly studies on related
tools and neutral experience, available.

§ They could, for example, try to find tool customers similar to one’s own
organization and use more structured and critical experience elicitation
processes.

§ They should avoid that the tool vendor chose the reference customers.
§ Complete of own empirical studies.

§ Invite the tool vendors to solve problems specified by the department itself
at the department’s own premises.

§ Many vendors seem to accept this type of “competition”, given an
important client. If not, pay them to to some work on a representative
project.

§ Avoid decision biases, such as those from vendor demonstrations, dinners with
the tool vendors and other situations known to include more persuasion than
valid information (or, at least, they should not let those who were exposed to
this type of impact participate in the decision.)

28.08.2019

18

35

Exercises
How would you test the following claims in an
evidence-based manner?

1) “Most (93%) of our communication is non-
verbal” (common claim in presentation courses
and books)

2) “45% of features of “traditional projects” are
never used (Standish Group, again …)

3) ”There is an increase in cost of removing
errors in later phases” (common claims in
testing)

4) “Agile is better than traditional methods”
(common claim by agile people)

36

tinyurl.com/origami-berlin

28.08.2019

19

Does the software development
method matter?

(Does it help to work agile?)

Common belief (amongst agile people): Yes

Try to explain what these agile claims (values) mean

28.08.2019

20

Our studies: Yes, agile helps, but …
The numbers show the increase (in percent points) in proportion of successful projects

… only when including frequent delivery to production and flexible
scope.
Agile projects not including these practices were LESS successful than
non-agile projects! We need to emphasize individual practices to
understand connections with success.

Agile Frequent delivery
to production

Flexible scope

Client benefits 16% 22% 29%

Technical quality 21% 6% 32%

Budget control 2% 22% 29%

Time control 8% 11% 24%

Efficiency 11% 5% 24%

Similar results in our follow-up surveys and studies. NB: Correlation is
not (necessarily) causation.

«True» agile is particularly good at delivering client benefits in larger projects
(mean success wrt delivered benefits 1 (failure) ..5 (very successful)

28.08.2019

21

Agile is not agile
(requirement

change and type of
agile development)

Are larger
(and presumably more complex) projects

less successful?

Common belief: Yes

28.08.2019

22

Our (initial) result: No
Large projects not less successful

than smaller ones (similar finding in all studies)

Criterion < 1 mill Euro 1-10 mill Euro > 10 mill Euro
Client benefits 31% 47% 35%
Tech. quality 24% 28% 25%
Budget control 24% 47% 47%
Time control 29% 35% 35%
Efficiency 24% 12% 24%

The numbers (percentages) represent the proportion of projects
assessed to be successful or very successful with respect to a success criterion.

But, the first results hid that we only had studied
completed projects

Adding non-completed projects in follow-up studies gave
that the largest projects (> 10 mill Euro) were strongly
over-represented in the group of failed projects (2-3 times
more frequent).

A rule of thumb (based on offshoring projects) is that ten
times larger project size leads to twice the risk of failure.

Also of interest:
• Different reasons for problems for small and large projects.
• Higher risk of failure with larger projects should not be used to

divide ”logical connected deliveries” into separate projects.

28.08.2019

23

Agile software projects seem
to be less affected by large

project size

Does contract type matter?

Common belief:
Clients: Fixed price contracts is better
Providers: Time & materials payment is better

28.08.2019

24

Our finding: Time & materials type of contracts
much better for both the client and the

provider (several studies)

Fixed price Time & Material

Client benefits 0% (success rate) 59%

Technical quality 22% 24%

Budget control 33% 31%

Time control 11% 29%

Efficiency 0% 19%

First study: Extremely negative results for Fixed price contracts.

Stronger emphasis on
low price in selection
of provider

Lower
client/stakeholder
involvement in
project management

Stronger focus on
specification and
less on what gives
the client more
benefits

Project scope
changes and scope
flexibility perceived
more as a risk

Less use of agile
development with
frequent deliveries to
production and
flexible scope

Lower client
involvement
in
management
of resources

Less focus on benefit
management during
the project
execution

Higher risk of project
problems

Lower
emphasis
on provider
skill

Higher risk of
provider and
developer skill
problems

Higher risk of quality
or productivity
problems

Higher risk of client
benefits problems

Less and late
feedback from users
and stakeholder

Failure pattern (Fixed price behaviour)

Higher risk of
opportunistic provider
behaviour, when
making financial loss

Higher risk of selection
of a provider with
price based on over-
optimistic effort
estimate

Fixed price contracts

28.08.2019

25

Stronger emphasis on
evaluation of skill, less
emphasis on low price,
in selection of provider

Stronger client and
stakeholder
involvement in
project management

Project scope
changes and scope
flexibility perceived
as a an opportunity

More use of agile
development with
frequent deliveries to
production and
flexible scope

Stronger client
involvement in
management
(monitoring, selection) of
resources

More focus on benefit
management during
the project execution

Higher likelihood of project success

Higher likelihood of
competent provider
and skilled
developers

Higher likelihood of
good quality and
productivity

Higher likelihood of
delivering the expected
client benefits

More, earlier and
better feedback
from users and other
stakeholder

Success pattern (Time and materials behavior)

Less risk of
opportunistic
behaviour of provider

Time & materials contracts

Does it help with “benefits
management”?

Common belief: Yes (but few do it)

28.08.2019

26

Our finding: Not all benefit management
practices led to much improvements

Benefit management practices Proportion Increase in success rate (wrt benefits)

Cost-benefit analysis (up front) 47% 6%

Benefit responsible appointed 57% 22%

Plan for benefit management 33% 31%

Benefit management during proj. execution 53% 34%

Evaluation of benefit during/after proj. exec. 31% 19%

Survey 1: Survey

Benefit management practices Present Not present/don’t know

Cost-benefit analysis (up front) 31% with problems 22% with problems

Benefit responsible appointed 28% with problems 29% with problems

Plan for benefit management 29% with problems 28% with problems

Benefit management during proj. execution 20% with problems 35% with problems

Survey 2 (in-depth study):

Characteristics of the
successful project

28.08.2019

27

Characteristics of the successful project
§ Good control of ambition level. Avoiding ”too much” at the

same time and good at saying ”no” to adding complexity.
§ Use of contracts that avoid ”fixed price”-behavior.
§ Client with competence to select and manage competent

providers and individual resources (not so much focus on
low price)
§ Selection of resources from more than one provider

§ Flexibility in scope (not only ”must have”-functionality)
§ Client is (as a minimum) strongly involved in the planning

and execution of benefits management.
§ Use of agile development with frequent deliveries to

production (or at least with proper testing/feedback from
real users)

§ Early start of involvement of stakeholders (especially the
users) and planning and preparing for deployment.

54

Exercise: Evidence-based practice
(group work - if we have enough time)
1) Formulate a question (or problem) about the how you can

positively influence software development success.
<This could be anything from the effect of a particular programming
tool/language to contracts, development methods and team organization.>
NB: Remember to formulate this in a way that makes it possible and
meaningful to collect evidence about it and answer the question.
è Short discussion

2) Collect empirical evidence (here: use google scholar to find at
least one relevant paper – if available, a systematic literature
review)

3) Evaluate the paper critically, both related to relevance and
validity of the evidence.

[4) Aggregate the evidence … Another time …]

Give a 5 minutes presentation of what you found out …

28.08.2019

28

Failure factors from a study of 400.000 small projects

Jørgensen, Magne. "Failure factors of small software projects at a global

outsourcing marketplace." Journal of systems and software 92 (2014): 157-169.

Regional differences in failure rate

28.08.2019

29

Assume Incorrect results Incorrect significant
results

50% true
relationships

Ca. 40% Ca. 35%

30% true
relationships

Ca. 60%
(most results are
false)

Ca. 45%
(nearly half of the significant
results are false)

The study also – perhaps more importantly – shows that
there must be a large amount of researcher and publication
bias in our studies

Replication of 100 experiments reported in papers
published in 2008 in three top psychology journals
(Replication sample size 3-4 times the original size)

Open Science Collaboration. Estimating the reproducibility of psychological science. Science
349.6251 (2015).
Reproduced effect size was on average about one third of the originally reported effect size.

28.08.2019

30

• Sample sizes on average about five times higher than
in the original studies.

• Statistically significant effect in the same direction as
the original study for 13 (62%) studies, and the effect
size of the replications was on average about 50% of
the original effect size.

Other researchers, when
averaging their
judgments, were
amazingly good at
guessing which results
that would be possible to
reproduce. Studies with few

observations, p-value
close to 0.05, no
convincing reason
(theory) behind and
news-friendly results
were typically not
reproduced.

28.08.2019

31

This is further illustrated in: “Why most discovered true associations
are inflated”, Ioannidis, Epidemiology, Vol 19, No 5, Sept 2008

Small

Large

Medium

Example from empirical software engineering
Data from: Hannay, Jo E., et al. "The effectiveness of pair programming: A meta-analysis."
Information and Software Technology 51.7 (2009): 1110-1122.

28.08.2019

32

63

TITLE: What makes software development projects successful, and what makes them fail?
Abstract: Numerous research studies and consultancy reports make claims about how often, or rather how
seldom, software projects are successful, why so many of them fail, and how to succeed more often. These studies
and reports have reported very much the same success and failure factors and the same advices since the 1960s.
If we already know how to make a successful software project, why is the proportion of failed software projects
about the same as earlier? Are software professionals ignorant of the published knowledge or are there other
reasons? Important reasons for the little use of the knowledge may be that previous studies have had very little
focus on the most important success dimension, i.e., delivering value, contain very little practical advice on how to
succeed, and have not managed to include the context-dependency and complexity of the connections between
process choices and outcome. In this course I present evidence-based, practical advices based on a set of own
and other researchers’ empirical studies on software projects. It starts with an attempt to better define and
operationalize what we should mean with project success and how to analyze and describe the context-dependent
and probabilistic network of connections between essential choices and behavior, and the outcome of software
projects. Then evidence connecting software development success to sourcing models, contract types,
competence evaluation, cost-benefit analyses, benefits management, software development processes and project
management is presented. Finally, the evidence is summarized and presented as context-dependent patterns of
software project success and failure.

Biography: Magne Jørgensen is a chief research scientist at Simula Metropolitan Center for Digital Engineering, a
professor at Oslo Metropolitan University, a consultant at Scienta and a guest professor at Kathmandu University.
His research includes work on management of software projects, evidence-based software engineering and human
judgment. He has published on these and other topics in software engineering, forecasting, management and
psychology journals. He has been ranked the top scholar in systems and software engineering four times and was
in 2014 given the ACM Sigsoft award for most influential paper the last ten years for his work on evidence-based
software engineering. He is member of the Norwegian Digitalization Advisory Board.

Time: August 28, 13-17.
Place: Architecture (A) Building, «Strasse des 17. Juni, 152». Lecture room A053 (ground floor).

