
TADA: An Active Measurement Tool for

Automatic Detection of AQM

February 1, 2016

1

Abstract

The problem of overbuffering in today’s Internet (termed as bufferbloat)
has recently drawn a great amount of attention from the research com-
munity. This has led to the development of various active queue manage-
ment (AQM) schemes. The last years have seen a lot of effort to show
the benefits of AQMs over simple tail-drop queuing and to encourage de-
ployment. Yet it is still unknown to what extent AQMs are deployed in
the Internet. In this paper, we present an end-to-end active measurement
method to detect AQMs on the path bottleneck. We have developed an
active measurement tool, named TADA, and evaluated our measurement
methodology on a controlled experimental testbed. Experimental results
show that the proposed approach provides the basis to identify whether
an AQM is deployed on the bottleneck.

2

1 Introduction

The classical approach for handling packets in a router is to use tail-drop FIFO
queueing. It establishes a single queue for each outgoing link, and forwards
packets on that link in the order of arrival. Packets are dropped, from the tail
of the queue, only when the queue is full. To maximise the link utilisation, and
minimise loss, operators typically configure large packet buffers in their routers.
However, research has shown that oversized buffers have resulted in large stand-
ing queues, and consequently increased end-to-end latency, a phenomenon that
has come to be known as “bufferbloat” [9]. Bufferbloat occurs when very large
buffers in the network, in combination with simple queueing schemes, create
excessive delays due to TCP flows probing for bandwidth. Bufferbloat has been
measured in different parts of the Internet, ranging from ADSL to cable modem
users [7, 16, 20].

As awareness of the topic of Bufferbloat has risen, so too has the interest
in methods to resolve it. Active queue management (AQM) schemes appear
to be the most promising approach because significant network-wide benefits
can be derived by implementing AQMs on the access network elements (e.g.,
broadband modems) [22]. AQMs prevent or minimize delay by managing the
queue of packets intelligently [19, 8, 18]. They are able to outperform the
classic tail-drop solution in many ways, for example by avoiding excessive queue
buildup and preventing flow synchronization.

Although AQMs have been extensively studied [11, 15, 17, 22] and have
proved to outperform the classic tail-drop solution, it is only in the last few
years, through the efforts in the bufferbloat project and others [6, 5], that it has
started to get a foothold in deployed edge routers [1, 4]. However, we do not
know to which degree the efforts towards promoting AQMs have convinced the
ISPs and equipment manufacturers to deploy AQMs instead of large tail-drop
queues. Answering this question, as the first step, requires a method that can
detect the presence of AQM-enabled routers in a network.

This detection problem can as well be viewed as an instance of a new class
of network tomography [21] problems. Instead of estimating internal link de-
lays, losses, or the network topology, in this class of tomography problems the
objective is to identify the type of forwarding modules that a packet flow goes
through. Knowing this may help engineers develop more efficient computer
networks and increase quality of service. As an example, some transport proto-
cols will perform poorly over certain AQMs [10, 17]. Knowing about the AQM
deployed on the bottleneck may provide Operating System and application de-
signers with information that can help them make better decisions for their
services. In addition, knowing whether a path contains an AQM could be ben-
eficial for future network performance measurement studies and development
of new active measurement tools. For example, some existing active measure-
ment tools [13, 14, 12] assume that ISPs mostly use tail-drop queues. Knowing
about the presence of an AQM in the path invalidates this assumptions and
may inform on the accuracy of the results.

In this paper, we present an active measurement tool, called TADA (Tool

3

Figure 1: The Network Topology

for Automatic Detection of AQMs), that can detect if the bottleneck router
on a particular communication path uses AQM. Our detection technique is
based on analyzing the patterns of queue delays and packet losses. We use
two statistics, namely Pairwise Comparison Test and Pairwise Difference Test,
defined in [12] to maintain accuracy even in the presence of background traffic,
which can cause dramatic fluctuations in the measurements. We have evaluated
the tool using an experimental testbed in a controlled laboratory environment.
As per the proposed approach, the tool is able to detect the presence of an AQM
on the bottleneck router.

The rest of the paper is organized as follows: First we explain the key idea
of our measurement approach in Section 2. Section 3 describes TADA in detail.
Then, we show experimental results in Section 4, which verify the tool accuracy.
Finally, Section 5 concludes the paper and discusses potential future work.

2 Design

In this section, we first present the basic idea for differentiating between AQM
and tail-drop. We then proceed by explaining the detection method in detail in
Section 2.2 and Section 2.3.

2.1 Basic Idea

Consider a path from a Sender to a Receiver as illustrated in Figure 1. Suppose
that the capacity of the path bottleneck is C, and that Sender transmits an
isochronous stream at a constant bit rate Rs > C to Receiver for a duration
of t seconds. The stream consists of N maximum-segment sized (MSS) packets.
We detect if the bottleneck in the Sender-to-Receiver path uses AQM. We
do this detection at the Receiver.

When the stream rate Rs is larger than the bottleneck available bandwidth
C, the packets begin to build up a queue at the bottleneck. If the bottleneck
employs tail-drop as its queue management scheme, and t is long enough, the
queue will exceed the available buffer at some point. A tail-drop only drops
packets when there is no space left in its buffer. On the other hand, active
queue management schemes do not wait until their buffer is saturated. AQM
schemes start dropping packets out of their buffer as soon as they detect the

4

Q
u
e
u
e

D
e
l
a
y

Transmission Time

tail-drop

 0 1 2 3 4 5

 0

 20

 40

 60

 80

 100

L
o
s
s

D
e
n
s
i
t
y

Transmission Time

AQM

Queue Delay

Loss Density

packets lost

Figure 2: AQM Vs. tail-drop queue delay trend

queue is growing too large [19, 8, 18].
In our work the main idea for differentiating between AQMs and tail-drop

is to detect if packets are dropped while the queue is still growing. To do so, we
record packet loss information, and use the trend in packets’ queue delay to
provide an insight into the queue growth.

Suppose that Receiver receives a stream of K packets (0 ≤ K ≤ N). N−K
packets have been dropped by the bottleneck router. Receiver computes the
queue delay for each received packet based on the packets transmission time ti,
and arrival time ai. To do so, Receiver calculates the one-way delay (OWD)
for all delivered packets as Di = ai − ti first; the queue delays of packet i
would be Qi = Di −Dm, where Dm is the minimum OWD1. Since Rs > C, as
long as the queue is building up, the packets’ queue delays have an increasing
trend. Meaning that packet i will wait in the queue for a longer time duration
than packet i− 1.

When the bottleneck’s queue is full, the packets’ queue delay reaches its
maximum, and will stop increasing. In this case, if the queue management is
tail-drop then new packets can get into the queue at the same rate the pack-
ets leave the queue, causing a constant queue delay trend. Otherwise, if the
queue management is an AQM, the queue delay trend will eventually become
decreasing2.

To analyse this idea for AQM detection, we have tried to simulate the con-
tinuous constant bit rate traffic between sender and receiver via a bottleneck.
And we have tried to analyse the trend for queue delay and loss pattern.
Simulation results are presented in Figs. 3-

Recall that, in the case of tail-drop, no packets are lost before the queue
is full. This does not hold if we have an AQM. Therefore, we can distinguish
between tail-drop and AQM by investigating the first part of the queue delay

curve until its maximum. We refer to this part, which is monotonically increas-
ing, as the first increasing part of the queue delay trend. Combining the first

1Since we are only interested in the relative queue delays not the absolute ones, the
presence of a clock offset does not influence these measurements.

2In the case of ARED, it eventually becomes constant. However, as opposed to tail-drop,
some packets are lost before the queue delay trend becomes constant.

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2
x 10

6

Time

Q
u
e
u
in

g
 d

e
la

y

Droptail

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

A
cc

u
m

u
la

tiv
e
 P

a
ck

e
t
d
ro

p

qDelay

Drop

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16
x 10

4

Time

Q
u
e
u
in

g
 d

e
la

y

CoDel

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

A
cc

u
m

u
la

tiv
e
 P

a
ck

e
t
d
ro

p

qDelay

Drop

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2
x 10

5

Time

Q
u
e
u
in

g
 d

e
la

y

PIE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

A
cc

u
m

u
la

tiv
e
 P

a
ck

e
t
d
ro

p

qDelay

Drop

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

Time(s)

Q
u
e
u
in

g
 d

e
la

y
 (

m
s
)

ARED

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

A
c
c
u
m

u
la

ti
v
e
 P

a
c
k
e
t
d
ro

p

qDelay

Drop

Figure 3: Queueing delay and loss pattern results for AQM simulation

increasing part with loss occurrences in the same period, Receiver can infer
whether any loss happened while the queue was growing and detect whether an
AQM is used.

Besides queue delay and loss occurances, Receiver uses another metric
to be able to differentiate between AQM and tail-drop in various scenarios. Us-
ing a Gaussian kernel density estimator [2], Receiver calculates loss density

for every packet i as Li (Equation 1). Each sequence number i is considered as
a data point (1 ≤ i ≤ K). |i− j| is the distance from data point i to the packet
loss with sequence number j.

Li =
∑

Over j

1√
2π
e−
|i−j|

2 (1)

Loss density could be interpreted as the bottleneck drop scheme loss distribu-
tion. Loss density information helps Receiver detecting tail-drop from AQM
in the presence of high load background traffic. It is also useful in distinguishing
between different AQMs.

Figure 2 depicts sample measurements of queue delay and packet loss for
tail-drop and AQM3. A tail-drop shows zero loss density at first, a significant
increase in loss occurrences when there is no more space in its buffer, and stays
almost constant after. While, AQMs loss density has a correlated relationship
with its queue delay. Applying the method mentioned in previous paragraphs

3In Figures 2-8 we intentionally removed the numbers on the y-axis, since we are only
interested in the trend not the exact values.

6

and by just looking at the graphs, we can easily detect that the graph on the left
corresponds to a tail-drop and the right one is an AQM. However, to automate
the detection process in a real environment, we need to use mathematical and
statistical analysis techniques to reliably identify the queue delay trend, and
find its first increasing part, and maximum.

In the following, we first explain how the queue delay information is used
to find the first increasing part. Then, we explain how we add packet loss

and loss density information to detect the presence or absence of AQM.

2.2 Finding the First Increasing Part

As mentioned in the previous section, the key idea of our approach is to find the
first increasing part of the queue delays’ trend and check if any packets were
lost in that period. In general, and particularly in realistic environments over
Internet where the traffic pattern is complex, finding the desired increasing part
of the queue delay trend is not easy. The complexity is due to the fluctuation
in the packets’ queue delay. Jain et al [12] have proposed a reliable algorithm
to smooth a fluctuated curve. They employed two complementary statistics,
called Pairwise Comparison Test (PCT) and Pairwise Difference Test (PDT).
We use the same method to identify the queue delay trend and find its first
increasing part.

2.2.1 PCT and PDT

Let Q = 〈q1, q2, ..., qK〉 be a sequence of measurements regarding queuing delays
corresponding to the sequence of packet transmission times T = 〈t1, t2, ..., tK〉
(i.e., qi is the queue delay experienced by the packet that was sent at ti). We
first partition Q into Γ = round(

√
K) groups of measurements. Then, for each

group j ∈ {1, ...,Γ}, we compute its median q̂j , and define Q̂ as the sequence

〈q̂1, ..., q̂Γ〉. Note that the sequence of medians Q̂ is more robust than Q to
outliers and errors.

The PCT metric of Q̂ is calculated as follows:

PCT (Q̂, n) =

n∑
j=2

I(q̂j > q̂j−1)

n− 1
(2)

Where 2 ≤ n ≤ Γ and I(X) is one if X holds, and zero otherwise. PCT
measures the fraction of consecutive measurement pairs that are increasing,
and so 0 ≤PCT ≤ 1. The PDT of Q̂ is:

PDT (Q̂, n) =
q̂n − q̂1

n∑
j=2

|q̂j − q̂j−1|
(3)

Where 2 ≤ n ≤ Γ. PDT evaluates the strength of the variation in the measure-
ments. Note that −1 ≤ PDT ≤ 1. If there is a strong increasing trend, PCT and

7

Q
u
e
u
e

D
e
l
a
y

M
e
d
i
a
n

Transmission Time

tail-drop

Queue Delay Medians

PCT

PDT

0

0.2

0.4

0.6

0.8

1

P
C
T
/
P
D
T

V
a
l
u
e

Transmission Time

AQM

Figure 4: PCT and PDT values for the queue delay measurements in Figure 2

Q
u
e
u
e

D
e
l
a
y

Transmission Time

tail-drop

C
u
m
m
u
l
a
t
i
v
e

L
o
s
s

N
r

Transmission Time

AQM

Left Section of The Key Increasing Part

The Key Increasing Part

The First Increasing Part

Figure 5: Visualization of TI , TM , and TL for an example of tail-drop (left), and
an example of AQM (right).

PDT approach to one. The authors of [12] identify a set of values as increasing
if either PCT > 0.66 and PDT > 0.45, or PDT > 0.55 and PDT > 0.54. In
our work we use the same thresholds.

2.2.2 Algorithm for finding the increasing part

In our approach, we use the same statistics (i.e., PCT and PDT) to find the first
increasing part of the queue delays Q. In other words, the goal is to find the
largest sequence of queue delays that have an increasing trend, starting from
q1. Algorithm 1 presents the pseudo code we used to find the increasing part
of the queue delays. The algorithm iterates over 2 ≤ g ≤ Γ, and computes
PCT (Q̂, g) and PDT (Q̂, g); checks them against the desired range specified
above and updates the index value. The return value of the algorithm is the
largest g for which PCT (Q̂, g) and PDT (Q̂, g) are in the desired range.

If neither of the conditions in lines 7 and 8 of Algorithm 1 are ever satisfied
throughout the algorithm, resulting in index = 0, we cannot use the collected
queue delay information for detection. In this case, the queue management
scheme is unknown. Otherwise, QI = 〈q1, ..., qg〉 forms the first increasing part.

8

We use TI , a sub-sequence of T starting at t1 and ending at tg, to denote the
time sequence corresponding to QI .

Algorithm 1

1: g := 2
2: index := 0
3: procedure SeparateIncPart(Q̂)
4: while g ≤ Γ do
5: pct := PCT (Q̂, g)
6: pdt := PDT (Q̂, g)
7: if (pct > 0.66 and pdt > 0.45) or
8: (pdt > 0.55 and pct > 0.54) then
9: index := g

return index

Figure 4 shows PCT and PDT values calculated in each iteration of Algo-
rithm 1. The blue points are the medians of queue delays (Q̂) for the examples
in Figure 2. In each graph, the cyan line shows the largest index returned by
Algorithm 1.

2.3 Detection

If Algorithm 1 return index = 0, then we do not have useful data to make
a conclusion. Consequently, we decide that the queue is unknown. Other-
wise, after finding the first increasing part of the queue delays trend, we use
the recorded loss occurrence and loss density information to detect the
bottleneck queue management. Following we first describe how we separate
tail-drop from AQM. Then we proceed by describing our method for differenti-
ating between ARED and CoDel/PIE. Finally, we investigate the possibility of
distinguishing between PIE and CoDel.

2.3.1 AQM or tail-drop

In the first step towards detecting AQM from tail-drop, we check if any packets
were lost in the first increasing part (i.e., TI). If there are no packets lost at
the increasing part of the queue delays, our job is completed. The bottleneck
queue management is tail-drop. This happens when the bottleneck queue is very
large. Sender transmits a stream for a duration of t seconds. The packets fill
up the bottleneck queue, but they do not saturate it. As a result, while queue

delays has an increasing trend, there is not any packet lost in that period.
Therefore, Receiver can infer the bottleneck queue is tail-drop.

However, if there are some packets lost, there is still a chance that the queue
management scheme is tail-drop. This might happen because the increasing
part we find is an approximation of the actual increasing part of the trend.
Consequently, it might include a non-increasing part of the queue delay trend.

9

In Figure 5 we used cyan lines to mark the first increasing parts, which in the
case of both graphs include a portion of the non-increasing part of the trend.

If there are some packets lost during TI , we first exclude the non-increasing
part by finding the maximum value of queue delays (qM) in the increasing part
selected by Algorithm 1. Let tM be the packet transmission time corresponding
to qM . We refer to the time interval between t1 and tM as the key increasing
period, and denote it with TM . In Figure 5 the key increasing period and TM
are marked using blue lines.

Again, if there are not any packets lost during TM , we conclude that the
path’s bottleneck is using tail-drop. Otherwise, we need to further inspect the
combination of the queue delays and the loss occurrence information during
the key increasing period to be able to make a decision.

We first divide the key increasing period TM into two sections TL and TR.
The left part (TL) starts from t1 to the point where the first packet loss

occurred, denoted as tl. The right part TR contains the rest of the sub-sequence
TM (i.e., starts from tl+1 and ends at tM). TL and tl are marked using purple
lines in Figure 5.

After finding TL and TR, we compute the slope of the line connecting (t1, q1)
to (tl, ql), and the slope of the line connecting (tl+1, ql+1) to (tM , qM). If the left
part slope is more than τ times larger than the right part slope, we infer that
the bottleneck queue management is tail-drop. Otherwise, the bottleneck queue
management scheme is most probably AQM. However, in the presence of heavy
background traffic, a tail-drop bottleneck might produce a very similar queue

delay trend to an AQM. Therefore, to increase the accuracy, we would look at
the packets’ loss density during (TR). If the bottleneck queue scheme is AQM,
the packets’ queue delay and loss density during (TR) would be highly cor-
related, while the correlation between queue delay and loss density would
be less than or approximately equal to zero for a tail-drop, depending on the
situation.

Table 1 summarizes all the notations we have introduced in this section.

2.3.2 ARED Vs. CoDel/PIE

The next step in the detection procedure is to differentiate between ARED and
CoDel/PIE. First, let us look at the sample measurements of ARED and PIE
in Figure 6. Recall that we removed the non-increasing part of the first in-
creasing part of the queue delays by finding maximum queue delay in the first
increasing part and called it the key increasing part. The difference between
PIE(CoDel) and ARED lies in the non-increasing part of the first increasing
part we found in Section 2.2. We marked the non-increasing part by cyan
lines in Figure 6. Each subfigure includes a small graph containing median
queue delays for the non-increasing part. We can see that the queue delay

medians for ARED gets constant after maximum queue delay because ARED
tries to keep queue delay between minimum and maximum thresholds. How-
ever, PIE(CoDel) would behave differently. PIE(CoDel) queue delay has a
decreasing trend after max queue delay. Consequently, to detect ARED from

10

Table 1: Notations and assumptions

ParameterDescription
C Capacity of the link
N Total number of transmitted packets
K Number of successfully received packets
Rs Transmission rate
t Transmission duration
ε constant used to update transmission

rate
l packet loss threshold
Q Set representing queue delay measure-

ments
T Set for sequence of transmission times

PIE(CoDel), we would look at PCT and PDT values for the non-increasing
period.

If the bottleneck queue is ARED, PCT would have an independent value
around 0.5 and PDT would be around zero. Otherwise, PCT would be approx-
imately zero and PDT would have a high negative value around −0.8. This
implies that the specific period has an decreasing trend which leads us to the
conclusion that the bottleneck queue management scheme is either CoDel or
PIE.

2.3.3 CoDel Vs. PIE

3 TADA

We have developed a measurement tool, called TADA, that actively detects if an
AQM scheme is deployed on the middlebox. The tool is composed of a Sender

process running at the sender machine and a Receiver process running at the
receiver machine. The tool uses UDP for the constant bit rate (probing) stream
and TCP for a control channel between the endpoints.

TADA works in an iterative manner. In each iteration r, Sender transmits a
constant bit rate stream with rate Rs(r) to Receiver for a fixed amount of time
t. Receiver collects queue delay and packet loss information for the whole
period. It then analyzes this information to detect the presence of AQM based
on the idea described in section 2. We use the path capacity C as the starting
transmission rate Rs(0), and increase it by a factor of (1 + ε) in each iteration.
In Section 3.1, we describe an approach for estimating the path capacity C. By
using C as the starting transmission rate and increasing it in each iteration, we
maximize the chance that the packets sent by the sender are queued somewhere
in the Sender-to-Receiver path. Note that if queuing does not happen during
the transmission phase, the receiver will not be able to record any interesting

11

Q
u
e
u
e

D
e
l
a
y

Transmission Time

(a) ARED Queue Delay

Q
u
e
u
e

D
e
l
a
y

Transmission Time

(b) PIE Queue Delay

Figure 6: PIE and ARED sample measurement - The small figures shows median
queue delays for the non-key insreasing prt

data for detection. In addition, if the transmission rate is too large, it may
congest a wrong bottleneck (i.e., a router before the actual bottleneck of the
path). To avoid this, we use a very small ε for updating the transmission rate.

In the following, we first describe our approach for estimating the path ca-
pacity. Then we explain the detection loop in which we use the detection method
presented in section 2.

3.1 Capacity Estimation

To estimate the path capacity we send N number of MSS-sized (size S) back-
to-back packets to the Receiver. Suppose that P ≤ N packets are successfully

received. The Receiver estimates the path capacity as: C = (P−1)S
σ (where σ

is calculated as the difference between received timestamps of the last and first
packets). In our implementation, we use N = 500 packets.

3.2 Detection Loop

In each iteration r, we apply the detection method described in Section 2 on
the collected queue delay and packet loss information to check if an AQM is
used. If the method detects tail-drop, the algorithm terminates reporting the ab-
sence of an AQM. Otherwise, the algorithm has either detected an AQM on the
bottleneck queue or the queue type is unknown. In both cases, a new iteration

12

r+1 starts with a higher transmission rate calculated as Rs(r+1) = (1+ε)Rs(r).
To increase the transmission rate, we keep the packet size unchanged (MSS size)
and only decrease the inter-transmission time (ITT) between packets. We re-
peat this iterative process until a high enough packet loss rate (i.e, larger
than l%) is reached or tail-drop is detected. In the end, TADA terminates by
reporting that the queue management is either tail-drop, AQM, or unknown.

4 Evaluation

In this section, we evaluate the accuracy of the proposed measurement approach
in a controlled testbed.

4.1 Experimental setup

The controlled testbed consists of two sender machines (i.e., Sender and XSender)
and one receiver machine (i.e., Receiver) connected through a three-hop path
as shown in Figure 1. The first two intermediate boxes between the senders and
the receiver are Linux routers: First Router and Second Router. We used an-
other machine to emulate network delay using Netem [3] (Netem Machine). The
delay is 50ms in each direction. All the machines run Debian Linux on a 4.0.0
kernel. XSender was used to produce background traffic. In our experiments
we examined several scenarios:• Single bottleneck: In this case, First Router has 1Gbps bandwidth and
Second Router has 10Mbps bandwidth, making Second Router the bottle-
neck of the path.

• Serial bottlenecks: Here, we use two different values for First Router

bandwidth:{15Mbps, 100Mbps}, and kept the Second Router bandwidth 10Mbps.We repeat each experiment 50 times. Each experiment had a certain level of
background traffic load: (1) no load, where we have no background traffic,
(2) low load, where we only have short flows (generated using a TCP traffic
generator4) as background traffic, (3) medium load, where both short flows and
one greedy TCP flow are present, and (4) high load, where there are short flows
and three greedy TCP flows.

We investigated TADA’s accuracy for tail-drop against three different pa-
rameterless AQM variants, namely CoDel, PIE, and ARED for which we have
used the LARTC tc tool for emulation. In our experiments, we used t = 5s,
ε = 0.1, and l = 20% (as defined earlier in Table 1).

4.2 Results

4.2.1 Without background traffic

In the first phase of our evaluation, we have used TADA to detect the presence
of AQM for the scenario where there is no other flow, results are illustrated in

4The traffic generator opens a TCP connection every 50ms, requesting a Pareto distribution
with download size α = 0.9 having minimum size of 1KB. Every request by Receiver opens
a new TCP connection, closed by the XSender after sending the data.

13

Q
u
e
u
e

D
e
l
a
y

tail-drop

C
u
m
m
u
l
a
t
i
v
e

L
o
s
s

N
r

ARED

Queue Delay

Cumulative Loss Nr

1 2 3 4

Q
u
e
u
e

D
e
l
a
y

Transmission Time

PIE

1 2 3 4

C
u
m
m
u
l
a
t
i
v
e

L
o
s
s

N
r

Transmission Time

CoDel

Right section of the key increasing period

Left section of the key increasing period

Figure 7: Sample result for single bottleneck scenario with no load

Figure 7. Each graph in Figure 7 corresponds to a different queue management
scheme; namely tail-drop, ARED, PIE, and CoDel. The left and right parts of
the key increasing part (defined in Section 2) are marked using two different
background patterns and separated by vertical lines. TADA is able to detect
bottleneck queue management schemes accurately in 100% of the test runs for
this scenario. However, there are varying background traffic patterns on the
Internet. We therefore want to investigate how the tool performs with different
background traffic loads, as discussed below.

4.2.2 With background traffic

In the second phase, we have performed a series of experiments using different
background traffic loads as described earlier. Figure 8 shows a sample result
for a single bottleneck path and in the presence of high load background traffic.
The same visual aesthetics as used in Figure 7 are applied to show the results
for different queue management schemes.

Table 2 reports the accuracy of TADA for each scenario. As shown in this
table, TADA is able to correctly detect the presence of an AQM in most cases,
even with a loaded bottleneck. Detection failure are due to various reasons,
such as high load background, or presence of multiple lossy routers (e.g., serial
bottlenecks with very similar bottleneck capacities). In addition, depending on
the access technology and path conditions, the network may randomly drop
some packets. This can affect the accuracy of TADA.

14

Table 2: Accuracy of detection for the scenarios where the bottleneck is sub-
jected to background traffic.

Scenario Load Accuracy

Single bottleneck
Low 100%
Medium 100%
High 97%

Serial bottleneck (100Mbps)
Low 100%
Medium 98%%
High 89%

Serial bottleneck (15Mbps)
Low 100%
Medium 70%
High 50%

Q
u
e
u
e

D
e
l
a
y

tail-drop

C
u
m
m
u
l
a
t
i
v
e

L
o
s
s

N
r

ARED

Queue Delay

Cumulative Loss Nr

1 2 3 4

Q
u
e
u
e

D
e
l
a
y

Transmission Time

PIE

1 2 3 4

C
u
m
m
u
l
a
t
i
v
e

L
o
s
s

N
r

Transmission Time

CoDel

Right section of the key increasing period

Left section of the key increasing period

Figure 8: Sample result for single bottleneck scenario with high load background

5 Conclusion and future work

We have presented a novel approach that can detect whether a bottleneck router
uses an AQM as its queue management scheme. We have evaluated our pro-
posed approach by developing an active measurement tool and evaluated it in
a controlled testbed setup. The testbed results show that the tool is able to
accurately detect the presence of an AQM on the bottleneck router when there
is no background traffic. The detection is also accurate in the presence of low
background traffic like short flows or one greedy flow. However, if the back-
ground traffic is high load, like more than 3 greedy flows, the accuracy goes

15

down. Nevertheless, we can estimate the load of the background traffic and
discard the detection process if the background traffic is too high.

For future work, we intend to investigate the possibility of separating differ-
ent AQMs from each other. In addition, we plan to explore multiple concurrent
flows to identify scheduling (flow queueing) effects in parallel queues.

References

[1] Cerowrt router firmware for fighting bufferbloat. http://www.

bufferbloat.net/projects/cerowrt. Accessed: 2015-09-13.

[2] Kernel Density Estimators.

[3] Netem - Linux network emulator. http://www.linuxfoundation.org/

collaborate/workgroups/networking/netem. Accessed: 2015-03-25.

[4] Openwrt router software. https://openwrt.org/. Accessed: 2015-09-17.

[5] RITE Project. http://www.riteproject.eu/. Accessed: 2014-06-15.

[6] The Bufferbloat projects. http://www.bufferbloat.net/. Accessed:
2015-06-15.

[7] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu. Characteriz-
ing Residential Broadband Networks. In Proc. of IMC’07, 2007.

[8] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED: An algorithm for
increasing the robustness of RED’s active queue management. Technical
report, 2001.

[9] J. Gettys. Bufferbloat: Dark buffers in the Internet. IEEE Internet Com-
puting, 15(3), 2011.

[10] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M. Taht. Fighting the
bufferbloat: On the coexistence of aqm and low priority congestion con-
trol. In INFOCOM, 2013 Proceedings IEEE, pages 3291–3296, April 2013.

[11] E. Grigorescu, C. Kulatunga, and G. Fairhurst. Evaluation of the impact of
packet drops due to AQM over capacity limited paths. In Proc. of ICNP’13,
2013.

[12] M. Jain and C. Dovrolis. Pathload: A measurement tool for end-to-end
available bandwidth. In Proc. of PAM’02, 2002.

[13] P. Kanuparthy and C. Dovrolis. Diffprobe: Detecting ISP service discrim-
ination. In INFOCOM. IEEE, 2010.

[14] P. Kanuparthy and C. Dovrolis. Shaperprobe: End-to-end detection of ISP
traffic shaping using active methods. In IMC’11. ACM, 2011.

16

http://www.bufferbloat.net/projects/cerowrt
http://www.bufferbloat.net/projects/cerowrt
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
https://openwrt.org/
http://www.riteproject.eu/
http://www.bufferbloat.net/

[15] N. Khademi, D. Ros, and M. Welzl. The new AQM kids on the block:
An experimental evaluation of CoDel and PIE. In Proc. of INFOCOM’14
WKSHPS, 2014.

[16] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: Illuminating
the Edge Network. In Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, IMC ’10, 2010.

[17] N. Kuhn, E. Lochin, and O. Mehani. Revisiting old friends: Is CoDel really
achieving what RED cannot? In Proceedings of the 2014 ACM SIGCOMM
Workshop on Capacity Sharing Workshop, CSWS ’14, 2014.

[18] K. Nichols and V. Jacobson. Controlling queue delay. Queue, 10(5), May
2012.

[19] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg. PIE: A lightweight control scheme to address
the bufferbloat problem. In HPSR. IEEE, 2013.

[20] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and
A. Pescapè. Broadband Internet performance: A view from the gateway.
In Proc. of SIGCOMM’11, 2011.

[21] Y. Vardi. Network tomography: Estimating source-destination traffic in-
tensities from link data. Journal of the American Statistical Association,
91(433):365–377, Mar. 1996.

[22] G. White and D. Rice. Active queue management in DOCSIS 3.1 networks.
Communications Magazine, IEEE, 53(3):126–132, 2015.

17

	Introduction
	Design
	Basic Idea
	Finding the First Increasing Part
	PCT and PDT
	Algorithm for finding the increasing part

	Detection
	AQM or tail-drop
	ARED Vs. CoDel/PIE
	CoDel Vs. PIE

	TADA
	Capacity Estimation
	Detection Loop

	Evaluation
	Experimental setup
	Results
	Without background traffic
	With background traffic

	Conclusion and future work

